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ON r»-HUED COLORING OF PRODUCT GRAPHS

LINGMEI LIANG, FENGXIA L1U*® AND BAOYINDURENG WU

Abstract. A (k,r)-coloring of a graph G is a proper coloring with k colors such that for every vertex
v with degree d(v) in G, the color number of the neighbors of v is at least min{d(v), r}. The smallest
integer k such that G has a (k,r)-coloring is called the r-hued chromatic number and denoted by
Xr(G). In Kaliraj et al. [Taibah Univ. Sci. 14 (2020) 168-171], it is determined the 2-hued chromatic
numbers of Cartesian product of complete graph and star graph. In this paper, we extend its result
and determine the r-hued chromatic number of Cartesian product of complete graph and star graph.
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1. INTRODUCTION

All graphs are simple and finite, with undefined terminologies and notion begins referred to [1] in this
paper. As in [1], V(G), E(G), A(G) and §(G) denote the vertex set, the edge set, the maximum degree and
the minimum degree of a graph G, respectively. For v € V(G), let Ng(v) denote the set of vertices adjacent
to v in G, and dg(v) = |Ng(v)|. For positive integers k and r, a (k,r)-coloring of a graph G is a mapping
c:V(G) = {1,2,3,4,...,k}, satisfying both of the following conditions:

)
(C1): c(u) # ¢(v) for every edge uv € E(G);
(C2): |e(Ng(v))| > min{dg(v),r} for any v € V(G).

Following [1], a mapping ¢ : V(G) — {1,2,3,4, ..., k} satisfying (C1) only is a proper k-coloring of G. The
chromatic number of G, denoted by x(G), is the smallest integer k such that G has a proper k-coloring. The
r-hued chromatic number of G, denoted by x,(G), is the smallest integer k such that G has a (k,r)-coloring.
The notion of r-hued coloring was first introduced in [7,9], where x2(G) is called the dynamic number of graph
G, and the corresponding chromatic number is denoted x4(G). In [2], Brooks’ Theorem stated that a connected
graph G satisfies x(G) < A(G) + 1, where the equality holds if and only if G is an odd cycle or a complete
graph. In [7], Lai et al. proved the best possible upper bounds of y2(G) as an analogue to Brooks’ Theorem.

Theorem 1.1. Let G be a connected graph.
(i) If A(G) < 3, then x2(G) < 4, unless G = Cs, in which case x2(Cs) =5 [7].
(ii) If A(G) >4, then x2(G) < A(G) +1 [7].
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(iii) If G is planar graph with G # Cs, then x2(G) <4 [5].

In [10], Lai et al. proved that if G is a planar graph and r > 8, then x,.(G) < 2r + 16. Earlier Brooks type
upper bounds of the r-hued chromatic number can be found in [3,6,8].

Theorem 1.2. Let G be a connected graph, and r > 2 be an integer.
(i) If A(G) <7, then x(G) < A(G) + 12 —r+1 [6].
(i) xr(G) < A%(G) + 1, where the equality holds if and only if G is a Moore graph [3].
(iil) x-(G) < rA(G) + 1, with equality if and only if G is r-reqular with diameter 2 and girth 5 [8].
A lower bound for r-hued chromatic number of G as follows.

Theorem 1.3 ([6], Prop. 2.1). Let G be a graph, and r > 2 be an integer. Then x.(G) > min{A(G),r} + 1,
and this lower bound is sharp.

Let G and H be two graphs. The Cartesian product of G and H, denoted by GUH, is a graph with the
vertex set V(G) x V(H) such that two vertices (u,v) and (z,y) are adjacent if and only if u = 2 and vy € E(H)
or v =y and uz € E(G). It follows by definition that A(GUH) = A(G) + A(H).

Kaliraj et al. [4] studied 2-hued chromatic numbers of Cartesian product of complete graph and star graph,
for positive integers s > 2 and n,

3, ifn=1,;
X2 (KnDKl,s) = 4, ifn:2;
n, otherwise.
In this paper, we extend the above result, and prove the following theorem.

Theorem 1.4. For all fized positive integers r, r-hued chromatic number of Cartesian product of complete
graph and star graph as follows:

if r <my

n7
Xr(KnlE o) = {max{Qmmin{r +1,n+s}}, ifr>n.

2. PROOFS OF THE MAIN RESULTS

Throughout this section, n > 2, s > 1 are integers, and we always devote V(K,,) = {a1,a2,...,an}, V(K1) =
{w,v1,...,vs}, where w is the only vertex with d(w) = s in V(K7 ). By the definition of Cartesian products,

V(KHDKLS) = U{aiw} U U{awj 1< < 3},
i=1 i=1

For presentational purpose, we also write

a1w a1vV1 a1V te a1Vg
asw [eHX%] agva e a2Vg
V(K,OK; ) = _ : : _
p—1W  Ap-1V1  Gp-1V2 -+ (Gp-1Us
anw anv1 anva e anVs 1y (511
By the definition of K,,[1K; s, we have the following observations.
S n
Nk, ok, (aiw) = ( Haiv}u | {aw} (2.1)
j=1 k=1,k#i
n
Ni,ox,.(av) = | {awv;} U {aiw}. (2.2)

k=1,k#i
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1 1V3 <= 1Us
) 1% a/ 3 e US
U1 302 3U3 « . f13Vs

FIGURE 1. K3UK]; 4; the circle is K3[Ko.

For a fixed positive integer r > n, we first determine a lower bound for r-hued chromatic number of Cartesian
product of complete graphs K, and K; ,, which is useful for the proof of Theorems 2.3 and 2.4.

Lemma 2.1. Ifr > n, then x,(K,0K; ) > 2n.

Proof. We prove x,(K,0K; ) > 2n by contradiction. Suppose that x,(K,0K; ) < 2n — 1. We assume that
co: V(K,OK: ) — {1,2,3,...,2n—1} is a (2n — 1, r)-coloring. As s > 1, K; , contains a subgraph isomorphic
to Ko, and so K,,[JK; s always contains an induced subgraph H = K, 0K (see Fig. 1 for an illustration, where
K3OK; s contains K3Ky as a subgraph).

Since |V(H)| = 2n, there always exist two vertices in H which are colored with the same color. Without
loss of generality, we assume that cy(a;w) = co(a;jv1), where i # j. For the vertex a;vi, by (2.1), we have
{a;w,a;v1} € Ng, ok, ,(av1). Since 7 > n, |co(Nk, ok, . (aiv1))] < n —1 < min{r,n} = n, which contradicts
to that ¢g is a (2n — 1,7)-coloring. Hence x, (K,0K; 5) > 2n. O

Corollary 2.2. If r > n, then x,(K,0K3) = 2n.

Proof. Let V(K,) = {a1,a2,as3,...,a,}, and V(K3) = {v1,v2}. By the definition of Cartesian products,
V(K,O0K>) = U {av; : 1 < j < 2}. The order of K,0K, is |V (K,OK>)| = 2n. On the one hand,
xr(K,O0Ks) < |V(K,OK5)|, then x,(K,0K>5) < 2n. On the other hand, by Lemma 2.1, let s = 1, then
Xr(Kn,OKs) > 2n, so x,(K,0K5) = 2n. |

We first prove the case when s > r for Theorem 1.4.
Theorem 2.3. Let K,,01K; s be a Cartesian product graph. If s > r, then
r+1, ifr>2n;

xr(KpnOK7 ) =< 2n, ifn<r<2n;
n, if r <mn.

Proof. Since A(K,) =n—1, A(Ky ) = s, then A(K, 0K ) = A(K,) +A(K1s) =(n—1)+s. Asn > 1,
A(K,O0K;5) =n—14s > s > r. We consider the following three cases to prove this theorem, and we shall
use n X (s + 1) matrix to present a coloring of V(K,, 0K ).
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Case 1. r > 2n.
By Theorem 1.3, we have x,(K,,0K; ) > min{A(K,0K; ;),r} +1 =min{fn —1+s,7r} +1=r+1. To
show that x,(K,0K; s) < r+1, we define ¢; : V(K,0K; 5) — {1,2,3,...,r,7+1} as follows. Since r > 2n,
r—n+1>2n—n+1l=n+1,r—n+1>n. Let A= (aij)nx(s+1) be an x (s+ 1) matrix as follows,

r—n+2 1 2 oo r—mn—1 r—n r—-n+1 - r—m+1
r—n+3 2 3 r—mn r—n+1 1 1
A—|r—n+4 3 4 ooor—=n+1 1 2 2
r+1 n n+l - n—3 n—2 n—1 n—1 i (s41)

where the s entries of ith row are {r —n+1+4,i,i+1,...,r—n,r—n+1,1,2,...,i—1,i—1,...,i—1} C
{1,2,3,...,r+1} when 1 < ¢ <n,and a; ; = @; r—n+2 Whenr—n+3 < j < s+1. Define ¢; (V(K,0K 5)) =
A Forl <i<n,1<j<s, ci(av;) = a;j41,andso {c1(av;)|1 <i<n,1<j<s}={1,23,...,r—n+1}.
For1<i<m,ci(aw)=a3=r—n+1+iandso {ci(aw)l <i<n}={r—n+14+1,r—n+1+4+2r—
n+l1+3,...,r—n+l+nt={r—n+2,r—n+3,r—n+4,...,r+1}. It follows that, if k& # i, then
ci(a;w) # c1(a;v5), c1(aw) # ci(arw) and ¢ (a;v;) # c1(agvj). As r > 2n, every entry a;; in A satisfies
1<ua;; <r+1, and so ¢ is a proper (r + 1)-coloring of K, 00K ;.

Next we need to show c¢; satisfies (C2). For a vertex of the form a;w, by (2.1), we have d(a;w) =

INk, Ok, . (a;w)] = n — 1+ s. Since ¢(Ng, ok, (aw)) = {1,2,3,...,7 + I}\{r — n + 1 + i},
le1(Nk, 0ok, , (aiw))| = r = min{n — 1 + s,7}. For a vertex of the form a;v;, by (2.2), we have d(a;v;) =
|Nk, Ok, . (a;v;)| = n. By matrix A, ¢;(Nk, 0k, , (a;v;)) contains n—1 different colors of {1,2,3,...,r—n+1}

and one color ¢ (a;w) =7 —n+1+1,so [c1(Nk, 0k, , (a;v;))| = n = min{d(a;v;),r}. Thus ¢; isa (r+1,7)-
coloring of K,0K] s, hence x,(K,0K; ) <7+ 1. To sum up, x,(K,0K; ) =r+ 1.

Case 2. n<r <2n.
By Lemma 2.1, we have x,(K,0K; ) > 2n. Since 1 <n<r<s 1<r—-n+1<r<s,r—n+1<s,
andasn<r<2n 1<r—-n4+1<n+1,sor—n+1<n.To show that XT(KnDKl,s) < 2n, we define
c2: V(K,OK1 ) —{1,2,3,...,n,n+1,...,2n} and a n x (s + 1) matrix B = (bj;)nx(s+1) as follows,

n+1 1 2 3 - r—-n+l1 r—-n+1 - r—-n+l
n+2 2 3 4 - r—m4+2 r—-—m+2 -+ r—m+4+2
B= ; ; : ; : : ;
n+n—-—2 n—-2 n—-1 n r-n—2 r—-n—2 .. r—n-—2
n+n—-1 n-1 n T - r-n-1 r-—n-1 -+ r—n-1
2n " 1 2 ren ren r—n nXx(s+1)

where the n entries of jth column are {j—1, j, j+1,7+2,...,n—1,n,1,2,...,j—2,...,7j—2} C{1,2,3,...,n—
1,n} when 2 < j < r—n+2,and b;; = bjp_py2 when r —n+3 < j < s+ 1,2 < i < n. Define
co(V(K,O0K15))=B.For1 <i<mn,1<j<s, calavy) =b; 541, and so {ea(aiv;)]1 <i<n,1 <j<s}=
{1,2,3,...,n}.For 1 <i < n, ca(a;w) = bjy =n+i,and so {c2(a;w)|1 <i<n}={n+1,n+2,n+3,...,n+
n}={n+1,n+2,n+3,...,2n}. It follows that, if k # 4, then co(a,w) # c2(a,;v;), c2(a;w) # cz(arw) and
c2(aivj) # ca(arvj). As n < r < 2n, every entry b;; in B satisfies 1 < b;; < 2n, and so ¢p is a proper
2n-coloring of K,[0K; ;.

Next we need to show cy satisfies (C2). For a vertex of the form a;w, by (2.1), we have d(a;w) =
INk, Ok, . (a;w)] = n — 1+ s. Since c2(Ng,0x, . (aiw)) = {1,2,3,...,r —=n+ 1} U{n+ 1,n+2,n +
3,....2n} \ {n + i}, then |c2(Nk, 0k, . (a;w))] = r = min{n — 1 + s,7}. For a vertex of the form a;v;, by

(2.2), we have d(a;vj) = |Ng,0Ok, ,(aiv;)| = n. By matrix B, the color set ca(Nk, ok, ,(a;v;)) contains
n — 1 different colors of {1,2,3,...,n} and one color cz(a;w) = n + i, we have |co( Nk, ok, . (aivy))| = n,
then |c2(Ng, ok, ,(aivj))] = n = min{d(a;v;),r}. Thus cy is a (2n,7)-coloring of K,[0K;,, and so

xr(KpOK; ) < 2n. To sum up, x,(K,0K; ) = 2n.
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Case 3. r < n.

Since K, [0K; s always contains an induced subgraph K,,, x,(K,0K7 ) > n. To show that x, (K,0K; ) <
n, we define c3 : V(K,0K: ) — {1,2,3,...,n} and an x (s + 1) matrix C = (¢i;)nx(s+1) as follows,

2 1 1 1

3 2 2 2
C:

n n—1 n-—1 n—1

1 n n n

nXx(s+1)

Define ¢3(V(K,0K;)) =C. For 1 <i<n,1<j<s, cs(avy) = ¢ijt1, and so {e3(a;v;)]1 <i<n,1 <
j<s}={1,2,3,...,n}. For 1 <i<n-—1, cs(a;w) =i+ 1, and cz(a,w) = 1, so {cz(a;w)|l <i<n} =
{1,2,3,...,n}. It follows that, if k # ¢, then c3(a;w) # c3(a;v;), cz(a;w) # cz(arw) and c3(a;v;) # cs(agv;).
Since every entry c;; in C' satisfies 1 < ¢;; < n, so c3 is a proper n-coloring of KK ;.

Next we need to show c3 satisfies (C2). For a vertex of the form a;w, by (2.1), we have [Nk, ok, , (aiw)| =
n—1+s,s0d(aw)=n—1+s>n>r Forl<i<n-—1,c3(Ng,ox,,(aw)) ={1,2,...,n}\{i + 1}, and
for i = n, c3(Ng,ok, . (anw)) = {2,...,n}, then [c3(Nk ok, . (a;w))| =n — 1 > min{d(a;w),r} = min{n —
1+s,r} =r. For a vertex of the form a;v;, by (2.2), we have [Nk, ok, , (a;v;)| = n, so d(a;w) = n > r. Since
c3(Nk, ok, , (aiv;)) = {1,2,...,n}\{i}, then |c3(Ng, 0k, , (aivj))| = n—1 > min{d(a;v;),r} = min{n,r} =
r. Thus ¢3 is a (n,r)-coloring of K,[0K; s, hence x,(K,0K; ) < n. To sum up, x,(K,0K; ;) = n. O

In the following, we prove the case s < r for Theorem 1.4.

Theorem 2.4. Let K,,01K; s be a Cartesian product graph. If s < r, then

max(n+s,2n), ifr>nandn—1+s<r;
Xr(Kp,OK7 5) =< max(2n,r+1), ifr>nandn—14s>r;

n,

if r <n.

Proof. We consider the following three cases to prove this theorem, and we shall use n x (s + 1) matrix to

present a coloring of V(K,0K] ).

Casel. r>nandn—1+s<r.

Since A(K,) =n—1, A(K; ) = s, then A(K, 0K ;) = A(K,,) + A(K1s) = (n—1) + s < r. We consider

the following two subcases.
Subcase 1.1. n < s.

By Theorem 1.3, we have x,(K,0K; ;) > min{A(K, 0K ;),r}+1 = min{n—1+s,r}+1 =n—1+s+1 =
n+s. To show that x, (K,0K1 ) < n+s, we define ¢4 : V(K,0K7 ) — {1,2,3,...,n+s} and anx(s+1)

matrix D = (dij)nx (s41) as follows,

s+1 1 2 s—2 s—1 s
s+2 2 3 s—1 s 1
S 1 2

pD_|s+3 3 4

s+n n n+1

n—3 n—2 n—lnx(sﬂ)

where the s + 1 entries of ith row are {s +4,¢,i +1,...,s —1,5,1,2,...,i — 1} C {1,2,---,s + n}
when 1 < ¢ < n. Define ¢4(V(K,0K14)) = D. For 1 < i <mn, 1< j <s, caav;) = d; 41, and
so {ca(aivj)]1 < i <n,1 <j<s}={1,23,...,s} For 1 <i <n, calasw) = d;j1 = s+ 1, and so
{eca(aw)]l <i<n}={s+1,54+2,s+3,...,5s+ n}. It follows that, if k& # 4, then ca(a;,w) # ca(a;v;),
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ca(a;w) # calarw) and ca(a;v;) # ca(arv;). As n < s, every entry d;; in D satisfies 1 < d;; <n+s, and
80 ¢4 is a proper (n + s)-coloring of K, 0K ;.

Next we need to show ¢4 satisfies (C2). For a vertex of the form a;w, by (2.1), we have d(a;w) =
|Nk, 0k, . (aiw)| = n—1+s. Since c4(Nk,,ox, . (aiw)) = {1,2,3,...,s}U{s+1,5+2,..., s +n}\{s+i},
then |c4(Ng, 0k, ,(aiw))] = n+s — 1, |ca(Ng, 0k, , (aiw))| = min{da;w),r} = min{n — 1 + s,7}. For
a vertex of the form a;v;, by (2.2), we have d(a;v;) = |Nk, 0ok, , (@iv;)| = n. By matrix D, the color set
ca(Ng,0K, . (a;ivj)) always contains n — 1 different colors of {1,2,3,...,s} and one color c4(a;w) = s+1,
so |ca(Nk, 0k, , (@ivj))| = n = min{d(a;v;),r} = min{n,r}. Thus ¢, is a (n + s, 7)-coloring of K,01K; s,
then x,(K,0K7 ) <n+s. To sum up, x,(K,0K1 ) =n+s.

Subcase 1.2. n > s.

By Lemma 2.1, we have x,(K,0K;,) > 2n. To show that x,(K,0K;;) < 2n, we define ¢5 :
V(K,OK1,) — {1,2,3,...,2n} and a n x (s + 1) matrix £ = (ei;),x(s+1) as follows,

n+1 1 2 3 - S
n+2 2 3 4 -+ s+1

E = : : : :
n+n—-2 n—-2 n—-1 n -+ s-—3
n+n—-—1 n-1 n 1 - s=2
2n n 1 2 s—1

nx(s+1)

where the n entries of jth column are {j — 1,4,7+1,...,n—1,n,1,2,...,5 — 2} C {1,2,...,n} when
2 < j < s+ 1. Define ¢5(V(K,OK1,)) = E. For 1 <i <n,1<j<s, cs5(a;v;) = € 41, and so
{es(aivj))1 < i < n,1 <j < s} ={1,23,...,n}. For 1 < i < n, cs(q,w) = e;1 = n+ 1, and so
{es(aw)]l <i<n}={n+1,n+2,n+3,...,2n}. It follows that, if k£ # 4, then c5(a;w) # c5(a;v;),
cs(a;w) # cs(arw) and cs(a;v;) # cs(akv;). As n > s, every entry e;; in E satisfies 1 < e;; < 2n, and so
c5 is a proper 2n-coloring of K,,[1K; .

Next we need to show cs satisfies (C2). For a vertex of the form a;w, by (2.1), we have d(a;w) =
Nk, 0k, . (aiw)] = n — 1+ s. Since ¢5(Ng,0x, . (aiw)) = {1,2,...,n,n +1,n +2,....2n}\{n + i},
then |c5(Ng, 0Ok, ,(aiw))| = 2n —1 > min{d(a;w),7} = min{n — 1+ 5,7} = n — 1+ s. For a ver-
tex of the form a;v;, by (2.2), we have d(a;vj) = |Ng,0k, ,(a;vj)| = n. By matrix F, the color set
cs(Nk,0k,.. (a;ivj)) always contains n — 1 different colors of {1,2,3,...,n} and one color c5(a;w) = n+1,
so |¢5(Nk, 0k, . (aiv;))] = n, then |c5(Ng, ok, . (aivj))| = n = min{d(a;v;),r} = min{n,r}. Thus c5 is a
(2n77“)-coloring of K, 0K 5, so xr(K,OK; 5) < 2n. To sum up, x,(K,0K; 5) = 2n.

By Subcases 1.1 and 1.2, we can conclude that x, (K, 0K ;) = max(n+s,2n), where r > nand n—14s <r.
Case 2. r>nandn—1+s>r.

Now, we consider the following two subcases.

Subcase 2.1. r—n+1<n.

By Lemma 2.1, we have x,(K,0K;;) > 2n. To show that x,(K,0K;;) < 2n, we define ¢ :
V(K,OK:,) — {1,2,3,...,n,n+1,...,2n} and a n x (s + 1) matrix F' = (fij)nx(s+1) as follows,

n+1 1 2 3 - r—-n+1 - r—n+l
n—+2 2 3 4 -+ r—=—m+2 -+ r—n+2
F = : : : : :
n+n—-2 n-2 n-1 n --- r—-n-—-2 -+ r—n-—-2
n+n—1 n-—1 n T - r-n-1 - r—-n-1
2n n 1 2 .. r—n r—n

nx(s+1)
where the n entries of jth column are {j — 1,j,7 4+ 1,7 +2,...,n,1,2,...,5 —2} C {1,2,...,n} when
2<j<r—n+2 and fij = fir—nt2 whenr—n+3 < j < s+1, 2 < i < n. Define ¢s(V(K,0K; 5)) = F.
For 1 <i<n,1<j<s, cs(aivj) = fij+1, and so {cg(a;v;)]1 <i<n,1<j<s}={1,2,3,...,n}. For
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1<i<n,caw)=fin=n+1 and so {cs(aqw)]l <i<n}={n+1,n+2,n+3,...,2n}. It follows
that, if k # 4, then cs(a;w) # co(a;v;), cs(a;w) # co(arw) and cg(av;) # c(agvj). Asr—n+1 <n,
every entry f;; in F' satisfies 1 < f;; < 2n, and so cg is a proper 2n-coloring of K,1K; ;.
Next we need to show cg satisfies (C2). For a vertex of the form a;w, by (2.1), we have d(a;w) =
|Nk, 0k, , (a;w)] = n—14s. Since ¢6(Ng, 0k, , (a;w)) = {1,2,3,...,r—n+1}U{n+1,n+2,..., 2n}\{n+
i}, then |cs(Ng, 0k, . (aiw))| = r = min{d(a;w),r} = min{n — 1+ s,r}. For a vertex of the form a,v;,
by (2.2), we have d(a;v;) = |Nk, 0k, , (aiv;)| = n. By matrix F, the color set c6( Nk, 0Ok, , (aiv;)) always
contains n — 1 different colors of {1,2,3,...,n} and one color cg(a;w) = n+1, s0 les(Nk, 0k, , (aivi))] =
n = min{d(a;v;),r} = min{n,r}. Thus ¢ is a (2n,r)-coloring of K,00K i, so x,(K,OK; ) < 2n. To
sum up, x(K,0K; ;) = 2n.

Subcase 2.2. r —n+1>n.
By Theorem 1.3, we have x, (K, 0K; ) > min{A(K,0K; ;),r} +1 =min{n—1+s,7r}+1=r+1. To
show that x,(K,0K: ) < r+ 1, we define ¢7 : V(K,0K1 ) — {1,2,3,...,r,r+1} and an x (s + 1)
matrix P = (pij)nx(s+1) as follows,

r—-n+2 1 2 r—mn r—-n+1 -+ r—n+1
r—n+3 2 3 oor—=mn+1 1 1
p—|r—n+4 3 4 1 2 2
r+1 n n+l - n—2 n—1 n—1

nx(s+1)

where the s entries of ith row are {r —n+1+d,4,i+ 1,i+2,...,r —n+1,1,2,...06—1,...,i —
1} € {1,2,...,r+ 1} when 1 <4 < n, and p;j; = Pir—nt2 Wwhen r —n +3 < j < s+ 1. Define
cr(V(K,O0K14)) =P.For1 <i<mn,1<j<s,cr(aivj) = pijt1, and so {c7(a;v)|1 <i<n,1<j<
s} =1{1,2,3,...,7=n+1}. For 1 <i <mn, c7(a;w) = pi1 =r —n+1+14, and so {cr(a;w)|l <i<n} =
{r—=n+2,r—n+3,r—n+4,....,r—n+1l+nt={r—n+2,r—n+3,r—n+4,...,r+1}. It follows
that, if k # 4, then c7(a;w) # c7(a;v;), cr(a;w) # cr(arw) and c7(a;v;) # cr(agv). Asr—n+1>n,
every entry p;; in P satisfies 1 < p;; <r+ 1, and so ¢7 is a proper (r + 1)-coloring of K,0K; ;.
Next we need to show c¢; satisfies (C2). For a vertex of the form a;w, by (2.1), we have d(a;w) =
|Nk, ok, ,(aiw)] = n — 1+ s. Since ¢7(Nk, ok, (a;w)) = {1,2,3,...,7 + 1}\{r —n + 1 + i}, then
lc7(Nk, 0k, ., (aiw))| = r = min{d(a;w),r} = min{n — 1 + s,7}. For a vertex of the form a;v;, by (2.2),
we have d(a;v;) = |Nk,ok, . (a;v;)| = n. By matrix P, the color set c¢7(Ng, 0k, ,(a;v;)) contains n — 1
different colors of {1,2,3,...,7 —n+ 1} and one color ¢7(a;,w) =r—n+1+1, so |c7(Ng, Ok, . (aiv;))| =
n = min{d(a;v;),r} = min{n,r}. Thus c7 is a (r + 1, r)-coloring of K, 00K, , so XT(K"DKLS) <r+1.
To sum up, x,(K,0K; ) =r+1.

By Subcase 2.1 and Subcase 2.2, we can conclude that x,(K,0K; ) = max(2n,r + 1), where r > n and

n—1+s>r.

Case 3. r < n.
The proof in this case is the same as in case 3 of Theorem 2.3. O

By Theorems 2.3 and 2.4, we can get Theorem 1.4.

3. CONCLUSION

In this paper, we considered the r-hued chromatic number of Cartesian product of complete graph K, and
star graph K, . Firstly, we classify the positive integer r according to its different values, and then combine with
the properties of chromatic number of graph G, we get a lower bound of r-hued chromatic number of K,,[0K ;.
Secondly, we find a (k,r)-coloring of K,0Kj s, so we get an upper bound of r-hued chromatic number of
K,OK; ;. Finally, we determine the r-hued chromatic number of Cartesian product of complete graph and star
graph.
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