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ON 𝑟-HUED COLORING OF PRODUCT GRAPHS

Lingmei Liang, Fengxia Liu* and Baoyindureng Wu

Abstract. A (𝑘, 𝑟)-coloring of a graph 𝐺 is a proper coloring with 𝑘 colors such that for every vertex
𝑣 with degree 𝑑(𝑣) in 𝐺, the color number of the neighbors of 𝑣 is at least min{𝑑(𝑣), 𝑟}. The smallest
integer 𝑘 such that 𝐺 has a (𝑘, 𝑟)-coloring is called the 𝑟-hued chromatic number and denoted by
𝜒𝑟(𝐺). In Kaliraj et al. [Taibah Univ. Sci. 14 (2020) 168–171], it is determined the 2-hued chromatic
numbers of Cartesian product of complete graph and star graph. In this paper, we extend its result
and determine the 𝑟-hued chromatic number of Cartesian product of complete graph and star graph.
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1. Introduction

All graphs are simple and finite, with undefined terminologies and notion begins referred to [1] in this
paper. As in [1], 𝑉 (𝐺), 𝐸(𝐺), ∆(𝐺) and 𝛿(𝐺) denote the vertex set, the edge set, the maximum degree and
the minimum degree of a graph 𝐺, respectively. For 𝑣 ∈ 𝑉 (𝐺), let 𝑁𝐺(𝑣) denote the set of vertices adjacent
to 𝑣 in 𝐺, and 𝑑𝐺(𝑣) = |𝑁𝐺(𝑣)|. For positive integers 𝑘 and 𝑟, a (𝑘, 𝑟)-coloring of a graph 𝐺 is a mapping
𝑐 : 𝑉 (𝐺) → {1, 2, 3, 4, . . . , 𝑘}, satisfying both of the following conditions:

(𝐶1): 𝑐(𝑢) ̸= 𝑐(𝑣) for every edge 𝑢𝑣 ∈ 𝐸(𝐺);
(𝐶2): |𝑐(𝑁𝐺(𝑣))| ≥ min{𝑑𝐺(𝑣), 𝑟} for any 𝑣 ∈ 𝑉 (𝐺).

Following [1], a mapping 𝑐 : 𝑉 (𝐺) → {1, 2, 3, 4, . . . , 𝑘} satisfying (𝐶1) only is a proper 𝑘-coloring of 𝐺. The
chromatic number of 𝐺, denoted by 𝜒(𝐺), is the smallest integer 𝑘 such that 𝐺 has a proper 𝑘-coloring. The
𝑟-hued chromatic number of 𝐺, denoted by 𝜒𝑟(𝐺), is the smallest integer 𝑘 such that 𝐺 has a (𝑘, 𝑟)-coloring.
The notion of 𝑟-hued coloring was first introduced in [7,9], where 𝜒2(𝐺) is called the dynamic number of graph
𝐺, and the corresponding chromatic number is denoted 𝜒𝑑(𝐺). In [2], Brooks’ Theorem stated that a connected
graph 𝐺 satisfies 𝜒(𝐺) ≤ ∆(𝐺) + 1, where the equality holds if and only if 𝐺 is an odd cycle or a complete
graph. In [7], Lai et al. proved the best possible upper bounds of 𝜒2(𝐺) as an analogue to Brooks’ Theorem.

Theorem 1.1. Let 𝐺 be a connected graph.

(i) If ∆(𝐺) ≤ 3, then 𝜒2(𝐺) ≤ 4, unless 𝐺 = 𝐶5, in which case 𝜒2(𝐶5) = 5 [7].
(ii) If ∆(𝐺) ≥ 4, then 𝜒2(𝐺) ≤ ∆(𝐺) + 1 [7].
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(iii) If 𝐺 is planar graph with 𝐺 ̸= 𝐶5, then 𝜒2(𝐺) ≤ 4 [5].

In [10], Lai et al. proved that if 𝐺 is a planar graph and 𝑟 ≥ 8, then 𝜒𝑟(𝐺) ≤ 2𝑟 + 16. Earlier Brooks type
upper bounds of the 𝑟-hued chromatic number can be found in [3, 6, 8].

Theorem 1.2. Let 𝐺 be a connected graph, and 𝑟 ≥ 2 be an integer.

(i) If ∆(𝐺) ≤ 𝑟, then 𝜒𝑟(𝐺) ≤ ∆(𝐺) + 𝑟2 − 𝑟 + 1 [6].
(ii) 𝜒𝑟(𝐺) ≤ ∆2(𝐺) + 1, where the equality holds if and only if 𝐺 is a Moore graph [3].
(iii) 𝜒𝑟(𝐺) ≤ 𝑟∆(𝐺) + 1, with equality if and only if 𝐺 is 𝑟-regular with diameter 2 and girth 5 [8].

A lower bound for 𝑟-hued chromatic number of 𝐺 as follows.

Theorem 1.3 ([6], Prop. 2.1). Let 𝐺 be a graph, and 𝑟 ≥ 2 be an integer. Then 𝜒𝑟(𝐺) ≥ min{∆(𝐺), 𝑟} + 1,
and this lower bound is sharp.

Let 𝐺 and 𝐻 be two graphs. The Cartesian product of 𝐺 and 𝐻, denoted by 𝐺�𝐻, is a graph with the
vertex set 𝑉 (𝐺)×𝑉 (𝐻) such that two vertices (𝑢, 𝑣) and (𝑥, 𝑦) are adjacent if and only if 𝑢 = 𝑥 and 𝑣𝑦 ∈ 𝐸(𝐻)
or 𝑣 = 𝑦 and 𝑢𝑥 ∈ 𝐸(𝐺). It follows by definition that ∆(𝐺�𝐻) = ∆(𝐺) + ∆(𝐻).

Kaliraj et al. [4] studied 2-hued chromatic numbers of Cartesian product of complete graph and star graph,
for positive integers 𝑠 ≥ 2 and 𝑛,

𝜒2 (𝐾𝑛�𝐾1,𝑠) =

⎧⎨⎩ 3, if 𝑛 = 1;
4, if 𝑛 = 2;
𝑛, otherwise.

In this paper, we extend the above result, and prove the following theorem.

Theorem 1.4. For all fixed positive integers 𝑟, 𝑟-hued chromatic number of Cartesian product of complete
graph and star graph as follows:

𝜒𝑟(𝐾𝑛�𝐾1,𝑠) =
{︂

𝑛, if 𝑟 < 𝑛;
max{2𝑛, min{𝑟 + 1, 𝑛 + 𝑠}}, if 𝑟 ≥ 𝑛.

2. Proofs of the main results

Throughout this section, 𝑛 ≥ 2, 𝑠 ≥ 1 are integers, and we always devote 𝑉 (𝐾𝑛) = {𝑎1, 𝑎2, . . . , 𝑎𝑛}, 𝑉 (𝐾1,𝑠) =
{𝑤, 𝑣1, . . . , 𝑣𝑠}, where 𝑤 is the only vertex with 𝑑(𝑤) = 𝑠 in 𝑉 (𝐾1,𝑠). By the definition of Cartesian products,

𝑉 (𝐾𝑛�𝐾1,𝑠) =
𝑛⋃︁

𝑖=1

{𝑎𝑖𝑤} ∪
𝑛⋃︁

𝑖=1

{𝑎𝑖𝑣𝑗 : 1 ≤ 𝑗 ≤ 𝑠}.

For presentational purpose, we also write

𝑉 (𝐾𝑛�𝐾1,𝑠) =

⎡⎢⎢⎢⎢⎣
𝑎1𝑤 𝑎1𝑣1 𝑎1𝑣2 · · · 𝑎1𝑣𝑠

𝑎2𝑤 𝑎2𝑣1 𝑎2𝑣2 · · · 𝑎2𝑣𝑠

...
...

...
...

𝑎𝑛−1𝑤 𝑎𝑛−1𝑣1 𝑎𝑛−1𝑣2 · · · 𝑎𝑛−1𝑣𝑠

𝑎𝑛𝑤 𝑎𝑛𝑣1 𝑎𝑛𝑣2 · · · 𝑎𝑛𝑣𝑠

⎤⎥⎥⎥⎥⎦
𝑛×(𝑠+1)

By the definition of 𝐾𝑛�𝐾1,𝑠, we have the following observations.

𝑁𝐾𝑛�𝐾1,𝑠
(𝑎𝑖𝑤) =

𝑠⋃︁
𝑗=1

{𝑎𝑖𝑣𝑗} ∪
𝑛⋃︁

𝑘=1,𝑘 ̸=𝑖

{𝑎𝑘𝑤} (2.1)

𝑁𝐾𝑛�𝐾1,𝑠
(𝑎𝑖𝑣𝑗) =

𝑛⋃︁
𝑘=1,𝑘 ̸=𝑖

{𝑎𝑘𝑣𝑗} ∪ {𝑎𝑖𝑤}. (2.2)
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Figure 1. 𝐾3�𝐾1,𝑠; the circle is 𝐾3�𝐾2.

For a fixed positive integer 𝑟 ≥ 𝑛, we first determine a lower bound for 𝑟-hued chromatic number of Cartesian
product of complete graphs 𝐾𝑛 and 𝐾1,𝑠, which is useful for the proof of Theorems 2.3 and 2.4.

Lemma 2.1. If 𝑟 ≥ 𝑛, then 𝜒𝑟(𝐾𝑛�𝐾1,𝑠) ≥ 2𝑛.

Proof. We prove 𝜒𝑟(𝐾𝑛�𝐾1,𝑠) ≥ 2𝑛 by contradiction. Suppose that 𝜒𝑟(𝐾𝑛�𝐾1,𝑠) ≤ 2𝑛 − 1. We assume that
𝑐0 : 𝑉 (𝐾𝑛�𝐾1,𝑠) → {1, 2, 3, . . . , 2𝑛− 1} is a (2𝑛− 1, 𝑟)-coloring. As 𝑠 ≥ 1, 𝐾1,𝑠 contains a subgraph isomorphic
to 𝐾2, and so 𝐾𝑛�𝐾1,𝑠 always contains an induced subgraph 𝐻 = 𝐾𝑛�𝐾2 (see Fig. 1 for an illustration, where
𝐾3�𝐾1,𝑠 contains 𝐾3�𝐾2 as a subgraph).

Since |𝑉 (𝐻)| = 2𝑛, there always exist two vertices in 𝐻 which are colored with the same color. Without
loss of generality, we assume that 𝑐0(𝑎𝑖𝑤) = 𝑐0(𝑎𝑗𝑣1), where 𝑖 ̸= 𝑗. For the vertex 𝑎𝑖𝑣1, by (2.1), we have
{𝑎𝑖𝑤, 𝑎𝑗𝑣1} ⊆ 𝑁𝐾𝑛�𝐾1,𝑠

(𝑎𝑖𝑣1). Since 𝑟 ≥ 𝑛, |𝑐0(𝑁𝐾𝑛�𝐾1,𝑠
(𝑎𝑖𝑣1))| ≤ 𝑛 − 1 < min{𝑟, 𝑛} = 𝑛, which contradicts

to that 𝑐0 is a (2𝑛− 1, 𝑟)-coloring. Hence 𝜒𝑟(𝐾𝑛�𝐾1,𝑠) ≥ 2𝑛. �

Corollary 2.2. If 𝑟 ≥ 𝑛, then 𝜒𝑟(𝐾𝑛�𝐾2) = 2𝑛.

Proof. Let 𝑉 (𝐾𝑛) = {𝑎1, 𝑎2, 𝑎3, . . . , 𝑎𝑛}, and 𝑉 (𝐾2) = {𝑣1, 𝑣2}. By the definition of Cartesian products,
𝑉 (𝐾𝑛�𝐾2) =

⋃︀𝑛
𝑖=1{𝑎𝑖𝑣𝑗 : 1 ≤ 𝑗 ≤ 2}. The order of 𝐾𝑛�𝐾2 is |𝑉 (𝐾𝑛�𝐾2)| = 2𝑛. On the one hand,

𝜒𝑟(𝐾𝑛�𝐾2) ≤ |𝑉 (𝐾𝑛�𝐾2)|, then 𝜒𝑟(𝐾𝑛�𝐾2) ≤ 2𝑛. On the other hand, by Lemma 2.1, let 𝑠 = 1, then
𝜒𝑟(𝐾𝑛�𝐾2) ≥ 2𝑛, so 𝜒𝑟(𝐾𝑛�𝐾2) = 2𝑛. �

We first prove the case when 𝑠 ≥ 𝑟 for Theorem 1.4.

Theorem 2.3. Let 𝐾𝑛�𝐾1,𝑠 be a Cartesian product graph. If 𝑠 ≥ 𝑟, then

𝜒𝑟(𝐾𝑛�𝐾1,𝑠) =

⎧⎨⎩ 𝑟 + 1, if 𝑟 ≥ 2𝑛;
2𝑛, if 𝑛 ≤ 𝑟 < 2𝑛;
𝑛, if 𝑟 < 𝑛.

Proof. Since ∆(𝐾𝑛) = 𝑛 − 1, ∆(𝐾1,𝑠) = 𝑠, then ∆(𝐾𝑛�𝐾1,𝑠) = ∆(𝐾𝑛) + ∆(𝐾1,𝑠) = (𝑛 − 1) + 𝑠. As 𝑛 ≥ 1,
∆(𝐾𝑛�𝐾1,𝑠) = 𝑛 − 1 + 𝑠 ≥ 𝑠 ≥ 𝑟. We consider the following three cases to prove this theorem, and we shall
use 𝑛× (𝑠 + 1) matrix to present a coloring of 𝑉 (𝐾𝑛�𝐾1,𝑠).
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Case 1. 𝑟 ≥ 2𝑛.
By Theorem 1.3, we have 𝜒𝑟(𝐾𝑛�𝐾1,𝑠) ≥ min{∆(𝐾𝑛�𝐾1,𝑠), 𝑟} + 1 = min{𝑛 − 1 + 𝑠, 𝑟} + 1 = 𝑟 + 1. To
show that 𝜒𝑟(𝐾𝑛�𝐾1,𝑠) ≤ 𝑟 +1, we define 𝑐1 : 𝑉 (𝐾𝑛�𝐾1,𝑠) → {1, 2, 3, . . . , 𝑟, 𝑟 +1} as follows. Since 𝑟 ≥ 2𝑛,
𝑟 − 𝑛 + 1 ≥ 2𝑛− 𝑛 + 1 = 𝑛 + 1, 𝑟 − 𝑛 + 1 > 𝑛. Let 𝐴 = (𝑎𝑖𝑗)𝑛×(𝑠+1) be a 𝑛× (𝑠 + 1) matrix as follows,

𝐴 =

⎡⎢⎢⎢⎢⎣
𝑟 − 𝑛 + 2 1 2 · · · 𝑟 − 𝑛− 1 𝑟 − 𝑛 𝑟 − 𝑛 + 1 · · · 𝑟 − 𝑛 + 1
𝑟 − 𝑛 + 3 2 3 · · · 𝑟 − 𝑛 𝑟 − 𝑛 + 1 1 · · · 1
𝑟 − 𝑛 + 4 3 4 · · · 𝑟 − 𝑛 + 1 1 2 · · · 2

...
...

...
...

...
...

...
𝑟 + 1 𝑛 𝑛 + 1 · · · 𝑛− 3 𝑛− 2 𝑛− 1 · · · 𝑛− 1

⎤⎥⎥⎥⎥⎦
𝑛×(𝑠+1)

where the 𝑠 entries of 𝑖th row are {𝑟−𝑛 + 1 + 𝑖, 𝑖, 𝑖 + 1, . . . , 𝑟−𝑛, 𝑟−𝑛 + 1, 1, 2, . . . , 𝑖− 1, 𝑖− 1, . . . , 𝑖− 1} ⊆
{1, 2, 3, . . . , 𝑟+1} when 1 ≤ 𝑖 ≤ 𝑛, and 𝑎𝑖,𝑗 = 𝑎𝑖,𝑟−𝑛+2 when 𝑟−𝑛+3 ≤ 𝑗 ≤ 𝑠+1. Define 𝑐1(𝑉 (𝐾𝑛�𝐾1,𝑠)) =
𝐴. For 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑠, 𝑐1(𝑎𝑖𝑣𝑗) = 𝑎𝑖,𝑗+1, and so {𝑐1(𝑎𝑖𝑣𝑗)|1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑠} = {1, 2, 3, . . . , 𝑟−𝑛+1}.
For 1 ≤ 𝑖 ≤ 𝑛, 𝑐1(𝑎𝑖𝑤) = 𝑎𝑖1 = 𝑟− 𝑛 + 1 + 𝑖, and so {𝑐1(𝑎𝑖𝑤)|1 ≤ 𝑖 ≤ 𝑛} = {𝑟− 𝑛 + 1 + 1, 𝑟− 𝑛 + 1 + 2, 𝑟−
𝑛 + 1 + 3, . . . , 𝑟 − 𝑛 + 1 + 𝑛} = {𝑟 − 𝑛 + 2, 𝑟 − 𝑛 + 3, 𝑟 − 𝑛 + 4, . . . , 𝑟 + 1}. It follows that, if 𝑘 ̸= 𝑖, then
𝑐1(𝑎𝑖𝑤) ̸= 𝑐1(𝑎𝑖𝑣𝑗), 𝑐1(𝑎𝑖𝑤) ̸= 𝑐1(𝑎𝑘𝑤) and 𝑐1(𝑎𝑖𝑣𝑗) ̸= 𝑐1(𝑎𝑘𝑣𝑗). As 𝑟 ≥ 2𝑛, every entry 𝑎𝑖𝑗 in 𝐴 satisfies
1 ≤ 𝑎𝑖𝑗 ≤ 𝑟 + 1, and so 𝑐1 is a proper (𝑟 + 1)-coloring of 𝐾𝑛�𝐾1,𝑠.
Next we need to show 𝑐1 satisfies (𝐶2). For a vertex of the form 𝑎𝑖𝑤, by (2.1), we have 𝑑(𝑎𝑖𝑤) =
|𝑁𝐾𝑛�𝐾1,𝑠

(𝑎𝑖𝑤)| = 𝑛 − 1 + 𝑠. Since 𝑐1(𝑁𝐾𝑛�𝐾1,𝑠
(𝑎𝑖𝑤)) = {1, 2, 3, . . . , 𝑟 + 1}∖{𝑟 − 𝑛 + 1 + 𝑖},

|𝑐1(𝑁𝐾𝑛�𝐾1,𝑠
(𝑎𝑖𝑤))| = 𝑟 = min{𝑛 − 1 + 𝑠, 𝑟}. For a vertex of the form 𝑎𝑖𝑣𝑗 , by (2.2), we have 𝑑(𝑎𝑖𝑣𝑗) =

|𝑁𝐾𝑛�𝐾1,𝑠
(𝑎𝑖𝑣𝑗)| = 𝑛. By matrix 𝐴, 𝑐1(𝑁𝐾𝑛�𝐾1,𝑠

(𝑎𝑖𝑣𝑗)) contains 𝑛−1 different colors of {1, 2, 3, . . . , 𝑟−𝑛+1}
and one color 𝑐1(𝑎𝑖𝑤) = 𝑟−𝑛 + 1 + 𝑖, so |𝑐1(𝑁𝐾𝑛�𝐾1,𝑠

(𝑎𝑖𝑣𝑗))| = 𝑛 = min{𝑑(𝑎𝑖𝑣𝑗), 𝑟}. Thus 𝑐1 is a (𝑟 + 1, 𝑟)-
coloring of 𝐾𝑛�𝐾1,𝑠, hence 𝜒𝑟(𝐾𝑛�𝐾1,𝑠) ≤ 𝑟 + 1. To sum up, 𝜒𝑟(𝐾𝑛�𝐾1,𝑠) = 𝑟 + 1.

Case 2. 𝑛 ≤ 𝑟 < 2𝑛.
By Lemma 2.1, we have 𝜒𝑟(𝐾𝑛�𝐾1,𝑠) ≥ 2𝑛. Since 1 ≤ 𝑛 ≤ 𝑟 ≤ 𝑠, 1 ≤ 𝑟 − 𝑛 + 1 ≤ 𝑟 ≤ 𝑠, 𝑟 − 𝑛 + 1 ≤ 𝑠,
and as 𝑛 ≤ 𝑟 < 2𝑛, 1 ≤ 𝑟 − 𝑛 + 1 < 𝑛 + 1, so 𝑟 − 𝑛 + 1 ≤ 𝑛. To show that 𝜒𝑟(𝐾𝑛�𝐾1,𝑠) ≤ 2𝑛, we define
𝑐2 : 𝑉 (𝐾𝑛�𝐾1,𝑠) → {1, 2, 3, . . . , 𝑛, 𝑛 + 1, . . . , 2𝑛} and a 𝑛× (𝑠 + 1) matrix 𝐵 = (𝑏𝑖𝑗)𝑛×(𝑠+1) as follows,

𝐵 =

⎡⎢⎢⎢⎢⎢⎢⎣

𝑛 + 1 1 2 3 · · · 𝑟 − 𝑛 + 1 𝑟 − 𝑛 + 1 · · · 𝑟 − 𝑛 + 1
𝑛 + 2 2 3 4 · · · 𝑟 − 𝑛 + 2 𝑟 − 𝑛 + 2 · · · 𝑟 − 𝑛 + 2

...
...

...
...

...
...

...
𝑛 + 𝑛− 2 𝑛− 2 𝑛− 1 𝑛 · · · 𝑟 − 𝑛− 2 𝑟 − 𝑛− 2 · · · 𝑟 − 𝑛− 2
𝑛 + 𝑛− 1 𝑛− 1 𝑛 1 · · · 𝑟 − 𝑛− 1 𝑟 − 𝑛− 1 · · · 𝑟 − 𝑛− 1

2𝑛 𝑛 1 2 · · · 𝑟 − 𝑛 𝑟 − 𝑛 · · · 𝑟 − 𝑛

⎤⎥⎥⎥⎥⎥⎥⎦
𝑛×(𝑠+1)

where the 𝑛 entries of 𝑗th column are {𝑗−1, 𝑗, 𝑗+1, 𝑗+2, . . . , 𝑛−1, 𝑛, 1, 2, . . . , 𝑗−2, . . . , 𝑗−2} ⊆ {1, 2, 3, . . . , 𝑛−
1, 𝑛} when 2 ≤ 𝑗 ≤ 𝑟 − 𝑛 + 2, and 𝑏𝑖𝑗 = 𝑏𝑖,𝑟−𝑛+2 when 𝑟 − 𝑛 + 3 ≤ 𝑗 ≤ 𝑠 + 1, 2 ≤ 𝑖 ≤ 𝑛. Define
𝑐2(𝑉 (𝐾𝑛�𝐾1,𝑠)) = 𝐵. For 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑠, 𝑐2(𝑎𝑖𝑣𝑗) = 𝑏𝑖,𝑗+1, and so {𝑐2(𝑎𝑖𝑣𝑗)|1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑠} =
{1, 2, 3, . . . , 𝑛}. For 1 ≤ 𝑖 ≤ 𝑛, 𝑐2(𝑎𝑖𝑤) = 𝑏𝑖1 = 𝑛+𝑖, and so {𝑐2(𝑎𝑖𝑤)|1 ≤ 𝑖 ≤ 𝑛} = {𝑛+1, 𝑛+2, 𝑛+3, . . . , 𝑛+
𝑛} = {𝑛 + 1, 𝑛 + 2, 𝑛 + 3, . . . , 2𝑛}. It follows that, if 𝑘 ̸= 𝑖, then 𝑐2(𝑎𝑖𝑤) ̸= 𝑐2(𝑎𝑖𝑣𝑗), 𝑐2(𝑎𝑖𝑤) ̸= 𝑐2(𝑎𝑘𝑤) and
𝑐2(𝑎𝑖𝑣𝑗) ̸= 𝑐2(𝑎𝑘𝑣𝑗). As 𝑛 ≤ 𝑟 < 2𝑛, every entry 𝑏𝑖𝑗 in 𝐵 satisfies 1 ≤ 𝑏𝑖𝑗 ≤ 2𝑛, and so 𝑐2 is a proper
2𝑛-coloring of 𝐾𝑛�𝐾1,𝑠.
Next we need to show 𝑐2 satisfies (𝐶2). For a vertex of the form 𝑎𝑖𝑤, by (2.1), we have 𝑑(𝑎𝑖𝑤) =
|𝑁𝐾𝑛�𝐾1,𝑠

(𝑎𝑖𝑤)| = 𝑛 − 1 + 𝑠. Since 𝑐2(𝑁𝐾𝑛�𝐾1,𝑠
(𝑎𝑖𝑤)) = {1, 2, 3, . . . , 𝑟 − 𝑛 + 1} ∪ {𝑛 + 1, 𝑛 + 2, 𝑛 +

3, . . . , 2𝑛} ∖ {𝑛 + 𝑖}, then |𝑐2(𝑁𝐾𝑛�𝐾1,𝑠
(𝑎𝑖𝑤))| = 𝑟 = min{𝑛 − 1 + 𝑠, 𝑟}. For a vertex of the form 𝑎𝑖𝑣𝑗 , by

(2.2), we have 𝑑(𝑎𝑖𝑣𝑗) = |𝑁𝐾𝑛�𝐾1,𝑠
(𝑎𝑖𝑣𝑗)| = 𝑛. By matrix 𝐵, the color set 𝑐2(𝑁𝐾𝑛�𝐾1,𝑠

(𝑎𝑖𝑣𝑗)) contains
𝑛 − 1 different colors of {1, 2, 3, . . . , 𝑛} and one color 𝑐2(𝑎𝑖𝑤) = 𝑛 + 𝑖, we have |𝑐2(𝑁𝐾𝑛�𝐾1,𝑠

(𝑎𝑖𝑣𝑗))| = 𝑛,
then |𝑐2(𝑁𝐾𝑛�𝐾1,𝑠

(𝑎𝑖𝑣𝑗))| = 𝑛 = min{𝑑(𝑎𝑖𝑣𝑗), 𝑟}. Thus 𝑐2 is a (2𝑛, 𝑟)-coloring of 𝐾𝑛�𝐾1,𝑠, and so
𝜒𝑟(𝐾𝑛�𝐾1,𝑠) ≤ 2𝑛. To sum up, 𝜒𝑟(𝐾𝑛�𝐾1,𝑠) = 2𝑛.
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Case 3. 𝑟 < 𝑛.
Since 𝐾𝑛�𝐾1,𝑠 always contains an induced subgraph 𝐾𝑛, 𝜒𝑟(𝐾𝑛�𝐾1,𝑠) ≥ 𝑛. To show that 𝜒𝑟(𝐾𝑛�𝐾1,𝑠) ≤
𝑛, we define 𝑐3 : 𝑉 (𝐾𝑛�𝐾1,𝑠) → {1, 2, 3, . . . , 𝑛} and a 𝑛× (𝑠 + 1) matrix 𝐶 = (𝑐𝑖𝑗)𝑛×(𝑠+1) as follows,

𝐶 =

⎡⎢⎢⎢⎢⎣
2 1 1 · · · 1
3 2 2 · · · 2
...

...
...

...
𝑛 𝑛− 1 𝑛− 1 · · · 𝑛− 1
1 𝑛 𝑛 · · · 𝑛

⎤⎥⎥⎥⎥⎦
𝑛×(𝑠+1)

Define 𝑐3(𝑉 (𝐾𝑛�𝐾1,𝑠)) = 𝐶. For 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑠, 𝑐3(𝑎𝑖𝑣𝑗) = 𝑐𝑖,𝑗+1, and so {𝑐3(𝑎𝑖𝑣𝑗)|1 ≤ 𝑖 ≤ 𝑛, 1 ≤
𝑗 ≤ 𝑠} = {1, 2, 3, . . . , 𝑛}. For 1 ≤ 𝑖 ≤ 𝑛 − 1, 𝑐3(𝑎𝑖𝑤) = 𝑖 + 1, and 𝑐3(𝑎𝑛𝑤) = 1, so {𝑐3(𝑎𝑖𝑤)|1 ≤ 𝑖 ≤ 𝑛} =
{1, 2, 3, . . . , 𝑛}. It follows that, if 𝑘 ̸= 𝑖, then 𝑐3(𝑎𝑖𝑤) ̸= 𝑐3(𝑎𝑖𝑣𝑗), 𝑐3(𝑎𝑖𝑤) ̸= 𝑐3(𝑎𝑘𝑤) and 𝑐3(𝑎𝑖𝑣𝑗) ̸= 𝑐3(𝑎𝑘𝑣𝑗).
Since every entry 𝑐𝑖𝑗 in 𝐶 satisfies 1 ≤ 𝑐𝑖𝑗 ≤ 𝑛, so 𝑐3 is a proper 𝑛-coloring of 𝐾𝑛�𝐾1,𝑠.
Next we need to show 𝑐3 satisfies (𝐶2). For a vertex of the form 𝑎𝑖𝑤, by (2.1), we have |𝑁𝐾𝑛�𝐾1,𝑠

(𝑎𝑖𝑤)| =
𝑛− 1 + 𝑠, so 𝑑(𝑎𝑖𝑤) = 𝑛− 1 + 𝑠 ≥ 𝑛 > 𝑟. For 1 ≤ 𝑖 ≤ 𝑛− 1, 𝑐3(𝑁𝐾𝑛�𝐾1,𝑠

(𝑎𝑖𝑤)) = {1, 2, . . . , 𝑛}∖{𝑖 + 1}, and
for 𝑖 = 𝑛, 𝑐3(𝑁𝐾𝑛�𝐾1,𝑠

(𝑎𝑛𝑤)) = {2, . . . , 𝑛}, then |𝑐3(𝑁𝐾𝑛�𝐾1,𝑠
(𝑎𝑖𝑤))| = 𝑛− 1 ≥ min{𝑑(𝑎𝑖𝑤), 𝑟} = min{𝑛−

1+𝑠, 𝑟} = 𝑟. For a vertex of the form 𝑎𝑖𝑣𝑗 , by (2.2), we have |𝑁𝐾𝑛�𝐾1,𝑠
(𝑎𝑖𝑣𝑗)| = 𝑛, so 𝑑(𝑎𝑖𝑤) = 𝑛 > 𝑟. Since

𝑐3(𝑁𝐾𝑛�𝐾1,𝑠
(𝑎𝑖𝑣𝑗)) = {1, 2, . . . , 𝑛}∖{𝑖}, then |𝑐3(𝑁𝐾𝑛�𝐾1,𝑠

(𝑎𝑖𝑣𝑗))| = 𝑛− 1 ≥ min{𝑑(𝑎𝑖𝑣𝑗), 𝑟} = min{𝑛, 𝑟} =
𝑟. Thus 𝑐3 is a (𝑛, 𝑟)-coloring of 𝐾𝑛�𝐾1,𝑠, hence 𝜒𝑟(𝐾𝑛�𝐾1,𝑠) ≤ 𝑛. To sum up, 𝜒𝑟(𝐾𝑛�𝐾1,𝑠) = 𝑛. �

In the following, we prove the case 𝑠 < 𝑟 for Theorem 1.4.

Theorem 2.4. Let 𝐾𝑛�𝐾1,𝑠 be a Cartesian product graph. If 𝑠 < 𝑟, then

𝜒𝑟(𝐾𝑛�𝐾1,𝑠) =

⎧⎨⎩ max(𝑛 + 𝑠, 2𝑛), if 𝑟 ≥ 𝑛 and 𝑛− 1 + 𝑠 ≤ 𝑟;
max(2𝑛, 𝑟 + 1), if 𝑟 ≥ 𝑛 and 𝑛− 1 + 𝑠 > 𝑟;
𝑛, if 𝑟 < 𝑛.

Proof. We consider the following three cases to prove this theorem, and we shall use 𝑛 × (𝑠 + 1) matrix to
present a coloring of 𝑉 (𝐾𝑛�𝐾1,𝑠).

Case 1. 𝑟 ≥ 𝑛 and 𝑛− 1 + 𝑠 ≤ 𝑟.
Since ∆(𝐾𝑛) = 𝑛− 1, ∆(𝐾1,𝑠) = 𝑠, then ∆(𝐾𝑛�𝐾1,𝑠) = ∆(𝐾𝑛) + ∆(𝐾1,𝑠) = (𝑛− 1) + 𝑠 ≤ 𝑟. We consider
the following two subcases.
Subcase 1.1. 𝑛 ≤ 𝑠.

By Theorem 1.3, we have 𝜒𝑟(𝐾𝑛�𝐾1,𝑠) ≥ min{∆(𝐾𝑛�𝐾1,𝑠), 𝑟}+1 = min{𝑛−1+𝑠, 𝑟}+1 = 𝑛−1+𝑠+1 =
𝑛+𝑠. To show that 𝜒𝑟(𝐾𝑛�𝐾1,𝑠) ≤ 𝑛+𝑠, we define 𝑐4 : 𝑉 (𝐾𝑛�𝐾1,𝑠) → {1, 2, 3, . . . , 𝑛+𝑠} and a 𝑛×(𝑠+1)
matrix 𝐷 = (𝑑𝑖𝑗)𝑛×(𝑠+1) as follows,

𝐷 =

⎡⎢⎢⎢⎢⎣
𝑠 + 1 1 2 · · · 𝑠− 2 𝑠− 1 𝑠
𝑠 + 2 2 3 · · · 𝑠− 1 𝑠 1
𝑠 + 3 3 4 · · · 𝑠 1 2

...
...

...
...

...
...

𝑠 + 𝑛 𝑛 𝑛 + 1 · · · 𝑛− 3 𝑛− 2 𝑛− 1

⎤⎥⎥⎥⎥⎦
𝑛×(𝑠+1)

where the 𝑠 + 1 entries of 𝑖th row are {𝑠 + 𝑖, 𝑖, 𝑖 + 1, . . . , 𝑠 − 1, 𝑠, 1, 2, . . . , 𝑖 − 1} ⊆ {1, 2, · · · , 𝑠 + 𝑛}
when 1 ≤ 𝑖 ≤ 𝑛. Define 𝑐4(𝑉 (𝐾𝑛�𝐾1,𝑠)) = 𝐷. For 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑠, 𝑐4(𝑎𝑖𝑣𝑗) = 𝑑𝑖,𝑗+1, and
so {𝑐4(𝑎𝑖𝑣𝑗)|1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑠} = {1, 2, 3, . . . , 𝑠}. For 1 ≤ 𝑖 ≤ 𝑛, 𝑐4(𝑎𝑖𝑤) = 𝑑𝑖1 = 𝑠 + 𝑖, and so
{𝑐4(𝑎𝑖𝑤)|1 ≤ 𝑖 ≤ 𝑛} = {𝑠 + 1, 𝑠 + 2, 𝑠 + 3, . . . , 𝑠 + 𝑛}. It follows that, if 𝑘 ̸= 𝑖, then 𝑐4(𝑎𝑖𝑤) ̸= 𝑐4(𝑎𝑖𝑣𝑗),
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𝑐4(𝑎𝑖𝑤) ̸= 𝑐4(𝑎𝑘𝑤) and 𝑐4(𝑎𝑖𝑣𝑗) ̸= 𝑐4(𝑎𝑘𝑣𝑗). As 𝑛 ≤ 𝑠, every entry 𝑑𝑖𝑗 in 𝐷 satisfies 1 ≤ 𝑑𝑖𝑗 ≤ 𝑛 + 𝑠, and
so 𝑐4 is a proper (𝑛 + 𝑠)-coloring of 𝐾𝑛�𝐾1,𝑠.
Next we need to show 𝑐4 satisfies (𝐶2). For a vertex of the form 𝑎𝑖𝑤, by (2.1), we have 𝑑(𝑎𝑖𝑤) =
|𝑁𝐾𝑛�𝐾1,𝑠

(𝑎𝑖𝑤)| = 𝑛−1+𝑠. Since 𝑐4(𝑁𝐾𝑛�𝐾1,𝑠
(𝑎𝑖𝑤)) = {1, 2, 3, . . . , 𝑠}∪{𝑠+1, 𝑠+2, . . . , 𝑠+𝑛}∖{𝑠+ 𝑖},

then |𝑐4(𝑁𝐾𝑛�𝐾1,𝑠
(𝑎𝑖𝑤))| = 𝑛 + 𝑠 − 1, |𝑐4(𝑁𝐾𝑛�𝐾1,𝑠

(𝑎𝑖𝑤))| = min{𝑑(𝑎𝑖𝑤), 𝑟} = min{𝑛 − 1 + 𝑠, 𝑟}. For
a vertex of the form 𝑎𝑖𝑣𝑗 , by (2.2), we have 𝑑(𝑎𝑖𝑣𝑗) = |𝑁𝐾𝑛�𝐾1,𝑠

(𝑎𝑖𝑣𝑗)| = 𝑛. By matrix 𝐷, the color set
𝑐4(𝑁𝐾𝑛�𝐾1,𝑠

(𝑎𝑖𝑣𝑗)) always contains 𝑛−1 different colors of {1, 2, 3, . . . , 𝑠} and one color 𝑐4(𝑎𝑖𝑤) = 𝑠+ 𝑖,
so |𝑐4(𝑁𝐾𝑛�𝐾1,𝑠

(𝑎𝑖𝑣𝑗))| = 𝑛 = min{𝑑(𝑎𝑖𝑣𝑗), 𝑟} = min{𝑛, 𝑟}. Thus 𝑐4 is a (𝑛 + 𝑠, 𝑟)-coloring of 𝐾𝑛�𝐾1,𝑠,
then 𝜒𝑟(𝐾𝑛�𝐾1,𝑠) ≤ 𝑛 + 𝑠. To sum up, 𝜒𝑟(𝐾𝑛�𝐾1,𝑠) = 𝑛 + 𝑠.

Subcase 1.2. 𝑛 > 𝑠.
By Lemma 2.1, we have 𝜒𝑟(𝐾𝑛�𝐾1,𝑠) ≥ 2𝑛. To show that 𝜒𝑟(𝐾𝑛�𝐾1,𝑠) ≤ 2𝑛, we define 𝑐5 :
𝑉 (𝐾𝑛�𝐾1,𝑠) → {1, 2, 3, . . . , 2𝑛} and a 𝑛× (𝑠 + 1) matrix 𝐸 = (𝑒𝑖𝑗)𝑛×(𝑠+1) as follows,

𝐸 =

⎡⎢⎢⎢⎢⎢⎢⎣

𝑛 + 1 1 2 3 · · · 𝑠
𝑛 + 2 2 3 4 · · · 𝑠 + 1

...
...

...
...

...
𝑛 + 𝑛− 2 𝑛− 2 𝑛− 1 𝑛 · · · 𝑠− 3
𝑛 + 𝑛− 1 𝑛− 1 𝑛 1 · · · 𝑠− 2

2𝑛 𝑛 1 2 · · · 𝑠− 1

⎤⎥⎥⎥⎥⎥⎥⎦
𝑛×(𝑠+1)

where the 𝑛 entries of 𝑗th column are {𝑗 − 1, 𝑗, 𝑗 + 1, . . . , 𝑛 − 1, 𝑛, 1, 2, . . . , 𝑗 − 2} ⊆ {1, 2, . . . , 𝑛} when
2 ≤ 𝑗 ≤ 𝑠 + 1. Define 𝑐5(𝑉 (𝐾𝑛�𝐾1,𝑠)) = 𝐸. For 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑠, 𝑐5(𝑎𝑖𝑣𝑗) = 𝑒𝑖,𝑗+1, and so
{𝑐5(𝑎𝑖𝑣𝑗)|1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑠} = {1, 2, 3, . . . , 𝑛}. For 1 ≤ 𝑖 ≤ 𝑛, 𝑐5(𝑎𝑖𝑤) = 𝑒𝑖1 = 𝑛 + 𝑖, and so
{𝑐5(𝑎𝑖𝑤)|1 ≤ 𝑖 ≤ 𝑛} = {𝑛 + 1, 𝑛 + 2, 𝑛 + 3, . . . , 2𝑛}. It follows that, if 𝑘 ̸= 𝑖, then 𝑐5(𝑎𝑖𝑤) ̸= 𝑐5(𝑎𝑖𝑣𝑗),
𝑐5(𝑎𝑖𝑤) ̸= 𝑐5(𝑎𝑘𝑤) and 𝑐5(𝑎𝑖𝑣𝑗) ̸= 𝑐5(𝑎𝑘𝑣𝑗). As 𝑛 > 𝑠, every entry 𝑒𝑖𝑗 in 𝐸 satisfies 1 ≤ 𝑒𝑖𝑗 ≤ 2𝑛, and so
𝑐5 is a proper 2𝑛-coloring of 𝐾𝑛�𝐾1,𝑠.
Next we need to show 𝑐5 satisfies (𝐶2). For a vertex of the form 𝑎𝑖𝑤, by (2.1), we have 𝑑(𝑎𝑖𝑤) =
|𝑁𝐾𝑛�𝐾1,𝑠

(𝑎𝑖𝑤)| = 𝑛 − 1 + 𝑠. Since 𝑐5(𝑁𝐾𝑛�𝐾1,𝑠
(𝑎𝑖𝑤)) = {1, 2, . . . , 𝑛, 𝑛 + 1, 𝑛 + 2, . . . , 2𝑛}∖{𝑛 + 𝑖},

then |𝑐5(𝑁𝐾𝑛�𝐾1,𝑠
(𝑎𝑖𝑤))| = 2𝑛 − 1 ≥ min{𝑑(𝑎𝑖𝑤), 𝑟} = min{𝑛 − 1 + 𝑠, 𝑟} = 𝑛 − 1 + 𝑠. For a ver-

tex of the form 𝑎𝑖𝑣𝑗 , by (2.2), we have 𝑑(𝑎𝑖𝑣𝑗) = |𝑁𝐾𝑛�𝐾1,𝑠
(𝑎𝑖𝑣𝑗)| = 𝑛. By matrix 𝐸, the color set

𝑐5(𝑁𝐾𝑛�𝐾1,𝑠
(𝑎𝑖𝑣𝑗)) always contains 𝑛−1 different colors of {1, 2, 3, . . . , 𝑛} and one color 𝑐5(𝑎𝑖𝑤) = 𝑛+ 𝑖,

so |𝑐5(𝑁𝐾𝑛�𝐾1,𝑠
(𝑎𝑖𝑣𝑗))| = 𝑛, then |𝑐5(𝑁𝐾𝑛�𝐾1,𝑠

(𝑎𝑖𝑣𝑗))| = 𝑛 = min{𝑑(𝑎𝑖𝑣𝑗), 𝑟} = min{𝑛, 𝑟}. Thus 𝑐5 is a
(2𝑛, 𝑟)-coloring of 𝐾𝑛�𝐾1,𝑠, so 𝜒𝑟(𝐾𝑛�𝐾1,𝑠) ≤ 2𝑛. To sum up, 𝜒𝑟(𝐾𝑛�𝐾1,𝑠) = 2𝑛.

By Subcases 1.1 and 1.2, we can conclude that 𝜒𝑟(𝐾𝑛�𝐾1,𝑠) = max(𝑛+𝑠, 2𝑛), where 𝑟 ≥ 𝑛 and 𝑛−1+𝑠 ≤ 𝑟.
Case 2. 𝑟 ≥ 𝑛 and 𝑛− 1 + 𝑠 > 𝑟.

Now, we consider the following two subcases.
Subcase 2.1. 𝑟 − 𝑛 + 1 ≤ 𝑛.

By Lemma 2.1, we have 𝜒𝑟(𝐾𝑛�𝐾1,𝑠) ≥ 2𝑛. To show that 𝜒𝑟(𝐾𝑛�𝐾1,𝑠) ≤ 2𝑛, we define 𝑐6 :
𝑉 (𝐾𝑛�𝐾1,𝑠) → {1, 2, 3, . . . , 𝑛, 𝑛 + 1, . . . , 2𝑛} and a 𝑛 × (𝑠 + 1) matrix 𝐹 = (𝑓𝑖𝑗)𝑛×(𝑠+1) as follows,

𝐹 =

⎡⎢⎢⎢⎢⎢⎢⎣

𝑛 + 1 1 2 3 · · · 𝑟 − 𝑛 + 1 · · · 𝑟 − 𝑛 + 1
𝑛 + 2 2 3 4 · · · 𝑟 − 𝑛 + 2 · · · 𝑟 − 𝑛 + 2

...
...

...
...

...
...

𝑛 + 𝑛− 2 𝑛− 2 𝑛− 1 𝑛 · · · 𝑟 − 𝑛− 2 · · · 𝑟 − 𝑛− 2
𝑛 + 𝑛− 1 𝑛− 1 𝑛 1 · · · 𝑟 − 𝑛− 1 · · · 𝑟 − 𝑛− 1

2𝑛 𝑛 1 2 · · · 𝑟 − 𝑛 · · · 𝑟 − 𝑛

⎤⎥⎥⎥⎥⎥⎥⎦
𝑛×(𝑠+1)

where the 𝑛 entries of 𝑗th column are {𝑗 − 1, 𝑗, 𝑗 + 1, 𝑗 + 2, . . . , 𝑛, 1, 2, . . . , 𝑗 − 2} ⊆ {1, 2, . . . , 𝑛} when
2 ≤ 𝑗 ≤ 𝑟−𝑛+2, and 𝑓𝑖𝑗 = 𝑓𝑖,𝑟−𝑛+2 when 𝑟−𝑛+3 ≤ 𝑗 ≤ 𝑠+1, 2 ≤ 𝑖 ≤ 𝑛. Define 𝑐6(𝑉 (𝐾𝑛�𝐾1,𝑠)) = 𝐹 .
For 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑠, 𝑐6(𝑎𝑖𝑣𝑗) = 𝑓𝑖,𝑗+1, and so {𝑐6(𝑎𝑖𝑣𝑗)|1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑠} = {1, 2, 3, . . . , 𝑛}. For
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1 ≤ 𝑖 ≤ 𝑛, 𝑐6(𝑎𝑖𝑤) = 𝑓𝑖1 = 𝑛 + 𝑖, and so {𝑐6(𝑎𝑖𝑤)|1 ≤ 𝑖 ≤ 𝑛} = {𝑛 + 1, 𝑛 + 2, 𝑛 + 3, . . . , 2𝑛}. It follows
that, if 𝑘 ̸= 𝑖, then 𝑐6(𝑎𝑖𝑤) ̸= 𝑐6(𝑎𝑖𝑣𝑗), 𝑐6(𝑎𝑖𝑤) ̸= 𝑐6(𝑎𝑘𝑤) and 𝑐6(𝑎𝑖𝑣𝑗) ̸= 𝑐6(𝑎𝑘𝑣𝑗). As 𝑟 − 𝑛 + 1 ≤ 𝑛,
every entry 𝑓𝑖𝑗 in 𝐹 satisfies 1 ≤ 𝑓𝑖𝑗 ≤ 2𝑛, and so 𝑐6 is a proper 2𝑛-coloring of 𝐾𝑛�𝐾1,𝑠.
Next we need to show 𝑐6 satisfies (𝐶2). For a vertex of the form 𝑎𝑖𝑤, by (2.1), we have 𝑑(𝑎𝑖𝑤) =
|𝑁𝐾𝑛�𝐾1,𝑠

(𝑎𝑖𝑤)| = 𝑛−1+𝑠. Since 𝑐6(𝑁𝐾𝑛�𝐾1,𝑠
(𝑎𝑖𝑤)) = {1, 2, 3, . . . , 𝑟−𝑛+1}∪{𝑛+1, 𝑛+2, . . . , 2𝑛}∖{𝑛+

𝑖}, then |𝑐6(𝑁𝐾𝑛�𝐾1,𝑠
(𝑎𝑖𝑤))| = 𝑟 = min{𝑑(𝑎𝑖𝑤), 𝑟} = min{𝑛 − 1 + 𝑠, 𝑟}. For a vertex of the form 𝑎𝑖𝑣𝑗 ,

by (2.2), we have 𝑑(𝑎𝑖𝑣𝑗) = |𝑁𝐾𝑛�𝐾1,𝑠
(𝑎𝑖𝑣𝑗)| = 𝑛. By matrix 𝐹 , the color set 𝑐6(𝑁𝐾𝑛�𝐾1,𝑠

(𝑎𝑖𝑣𝑗)) always
contains 𝑛− 1 different colors of {1, 2, 3, . . . , 𝑛} and one color 𝑐6(𝑎𝑖𝑤) = 𝑛 + 𝑖, so |𝑐6(𝑁𝐾𝑛�𝐾1,𝑠

(𝑎𝑖𝑣𝑗))| =
𝑛 = min{𝑑(𝑎𝑖𝑣𝑗), 𝑟} = min{𝑛, 𝑟}. Thus 𝑐6 is a (2𝑛, 𝑟)-coloring of 𝐾𝑛�𝐾1,𝑠, so 𝜒𝑟(𝐾𝑛�𝐾1,𝑠) ≤ 2𝑛. To
sum up, 𝜒𝑟(𝐾𝑛�𝐾1,𝑠) = 2𝑛.

Subcase 2.2. 𝑟 − 𝑛 + 1 > 𝑛.
By Theorem 1.3, we have 𝜒𝑟(𝐾𝑛�𝐾1,𝑠) ≥ min{∆(𝐾𝑛�𝐾1,𝑠), 𝑟}+ 1 = min{𝑛− 1 + 𝑠, 𝑟}+ 1 = 𝑟 + 1. To
show that 𝜒𝑟(𝐾𝑛�𝐾1,𝑠) ≤ 𝑟 + 1, we define 𝑐7 : 𝑉 (𝐾𝑛�𝐾1,𝑠) → {1, 2, 3, . . . , 𝑟, 𝑟 + 1} and a 𝑛 × (𝑠 + 1)
matrix 𝑃 = (𝑝𝑖𝑗)𝑛×(𝑠+1) as follows,

𝑃 =

⎡⎢⎢⎢⎢⎣
𝑟 − 𝑛 + 2 1 2 · · · 𝑟 − 𝑛 𝑟 − 𝑛 + 1 · · · 𝑟 − 𝑛 + 1
𝑟 − 𝑛 + 3 2 3 · · · 𝑟 − 𝑛 + 1 1 · · · 1
𝑟 − 𝑛 + 4 3 4 · · · 1 2 · · · 2

...
...

...
...

...
...

𝑟 + 1 𝑛 𝑛 + 1 · · · 𝑛− 2 𝑛− 1 · · · 𝑛− 1

⎤⎥⎥⎥⎥⎦
𝑛×(𝑠+1)

where the 𝑠 entries of 𝑖th row are {𝑟 − 𝑛 + 1 + 𝑖, 𝑖, 𝑖 + 1, 𝑖 + 2, . . . , 𝑟 − 𝑛 + 1, 1, 2, . . . , 𝑖 − 1, . . . , 𝑖 −
1} ⊆ {1, 2, . . . , 𝑟 + 1} when 1 ≤ 𝑖 ≤ 𝑛, and 𝑝𝑖,𝑗 = 𝑝𝑖,𝑟−𝑛+2 when 𝑟 − 𝑛 + 3 ≤ 𝑗 ≤ 𝑠 + 1. Define
𝑐7(𝑉 (𝐾𝑛�𝐾1,𝑠)) = 𝑃 . For 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑠, 𝑐7(𝑎𝑖𝑣𝑗) = 𝑝𝑖,𝑗+1, and so {𝑐7(𝑎𝑖𝑣𝑗)|1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤
𝑠} = {1, 2, 3, . . . , 𝑟 − 𝑛 + 1}. For 1 ≤ 𝑖 ≤ 𝑛, 𝑐7(𝑎𝑖𝑤) = 𝑝𝑖1 = 𝑟 − 𝑛 + 1 + 𝑖, and so {𝑐7(𝑎𝑖𝑤)|1 ≤ 𝑖 ≤ 𝑛} =
{𝑟− 𝑛 + 2, 𝑟− 𝑛 + 3, 𝑟− 𝑛 + 4, . . . , 𝑟− 𝑛 + 1 + 𝑛} = {𝑟− 𝑛 + 2, 𝑟− 𝑛 + 3, 𝑟− 𝑛 + 4, . . . , 𝑟 + 1}. It follows
that, if 𝑘 ̸= 𝑖, then 𝑐7(𝑎𝑖𝑤) ̸= 𝑐7(𝑎𝑖𝑣𝑗), 𝑐7(𝑎𝑖𝑤) ̸= 𝑐7(𝑎𝑘𝑤) and 𝑐7(𝑎𝑖𝑣𝑗) ̸= 𝑐7(𝑎𝑘𝑣𝑗). As 𝑟 − 𝑛 + 1 > 𝑛,
every entry 𝑝𝑖𝑗 in 𝑃 satisfies 1 ≤ 𝑝𝑖𝑗 ≤ 𝑟 + 1, and so 𝑐7 is a proper (𝑟 + 1)-coloring of 𝐾𝑛�𝐾1,𝑠.
Next we need to show 𝑐7 satisfies (𝐶2). For a vertex of the form 𝑎𝑖𝑤, by (2.1), we have 𝑑(𝑎𝑖𝑤) =
|𝑁𝐾𝑛�𝐾1,𝑠

(𝑎𝑖𝑤)| = 𝑛 − 1 + 𝑠. Since 𝑐7(𝑁𝐾𝑛�𝐾1,𝑠
(𝑎𝑖𝑤)) = {1, 2, 3, . . . , 𝑟 + 1}∖{𝑟 − 𝑛 + 1 + 𝑖}, then

|𝑐7(𝑁𝐾𝑛�𝐾1,𝑠
(𝑎𝑖𝑤))| = 𝑟 = min{𝑑(𝑎𝑖𝑤), 𝑟} = min{𝑛− 1 + 𝑠, 𝑟}. For a vertex of the form 𝑎𝑖𝑣𝑗 , by (2.2),

we have 𝑑(𝑎𝑖𝑣𝑗) = |𝑁𝐾𝑛�𝐾1,𝑠
(𝑎𝑖𝑣𝑗)| = 𝑛. By matrix 𝑃 , the color set 𝑐7(𝑁𝐾𝑛�𝐾1,𝑠

(𝑎𝑖𝑣𝑗)) contains 𝑛− 1
different colors of {1, 2, 3, . . . , 𝑟−𝑛 + 1} and one color 𝑐7(𝑎𝑖𝑤) = 𝑟−𝑛 + 1 + 𝑖, so |𝑐7(𝑁𝐾𝑛�𝐾1,𝑠

(𝑎𝑖𝑣𝑗))| =
𝑛 = min{𝑑(𝑎𝑖𝑣𝑗), 𝑟} = min{𝑛, 𝑟}. Thus 𝑐7 is a (𝑟 + 1, 𝑟)-coloring of 𝐾𝑛�𝐾1,𝑠, so 𝜒𝑟(𝐾𝑛�𝐾1,𝑠) ≤ 𝑟 + 1.
To sum up, 𝜒𝑟(𝐾𝑛�𝐾1,𝑠) = 𝑟 + 1.

By Subcase 2.1 and Subcase 2.2, we can conclude that 𝜒𝑟(𝐾𝑛�𝐾1,𝑠) = max(2𝑛, 𝑟 + 1), where 𝑟 ≥ 𝑛 and
𝑛− 1 + 𝑠 > 𝑟.

Case 3. 𝑟 < 𝑛.
The proof in this case is the same as in case 3 of Theorem 2.3. �

By Theorems 2.3 and 2.4, we can get Theorem 1.4.

3. Conclusion

In this paper, we considered the 𝑟-hued chromatic number of Cartesian product of complete graph 𝐾𝑛 and
star graph 𝐾1,𝑠. Firstly, we classify the positive integer 𝑟 according to its different values, and then combine with
the properties of chromatic number of graph 𝐺, we get a lower bound of 𝑟-hued chromatic number of 𝐾𝑛�𝐾1,𝑠.
Secondly, we find a (𝑘, 𝑟)-coloring of 𝐾𝑛�𝐾1,𝑠, so we get an upper bound of 𝑟-hued chromatic number of
𝐾𝑛�𝐾1,𝑠. Finally, we determine the 𝑟-hued chromatic number of Cartesian product of complete graph and star
graph.
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