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A BOUND FOR THE 𝐴𝛼-SPECTRAL RADIUS OF A CONNECTED GRAPH
AFTER VERTEX DELETION

Chunxiang Wang and Tao She*

Abstract. 𝐺 is a simple connected graph with adjacency matrix 𝐴(𝐺) and degree diagonal matrix
𝐷(𝐺). The signless Laplacian matrix of 𝐺 is defined as 𝑄(𝐺) = 𝐷(𝐺) + 𝐴(𝐺). In 2017, Nikiforov
[1] defined the matrix 𝐴𝛼(𝐺) = 𝛼𝐷(𝐺) + (1 − 𝛼)𝐴(𝐺) for 𝛼 ∈ [0, 1]. The 𝐴𝛼-spectral radius of 𝐺
is the maximum eigenvalue of 𝐴𝛼(𝐺). In 2019, Liu et al. [2] defined the matrix Θ𝑘(𝐺) as Θ𝑘(𝐺) =
𝑘𝐷(𝐺) + 𝐴(𝐺), for 𝑘 ∈ R. In this paper, we present a new type of lower bound for the 𝐴𝛼-spectral
radius of a graph after vertex deletion. Furthermore, we deduce some corollaries on Θ𝑘(𝐺), 𝐴(𝐺), 𝑄(𝐺)
matrices.
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1. Introduction and preliminaries

We consider non-empty simple connected graph 𝐺 with vertex set 𝑉 (𝐺) and edge set 𝐸(𝐺) throughout this
paper. Let 𝑉 (𝐺) = {𝑣1, 𝑣2, . . . , 𝑣𝑛}. If any pair of vertices 𝑣𝑖 and 𝑣𝑗 are adjacent, then we write 𝑣𝑖𝑣𝑗 ∈ 𝐸(𝐺) or
𝑣𝑖 ∼ 𝑣𝑗 . For a vertex 𝑣𝑘 ∈ 𝑉 (𝐺), the neighborhood of 𝑣𝑘 is the set 𝑁(𝑣𝑘) = 𝑁𝐺(𝑣𝑘) = {𝑤 ∈ 𝑉 (𝐺) : 𝑤 ∼ 𝑣𝑘},
and 𝑑𝐺(𝑣𝑘) denotes the degree of 𝑣𝑘 with 𝑑𝐺(𝑣𝑘) = |𝑁(𝑣𝑘)|. Let 𝑑𝑘 = 𝑑𝐺(𝑣𝑘) if there is no ambiguity. Let 𝑉𝑚 be
any fixed subset of 𝑉 (𝐺) containing 𝑚 vertices. For 𝑉𝑚 ⊆ 𝑉 (𝐺) with |𝑉𝑚| = 𝑚, let 𝐺[𝑉𝑚] be the subgraph of
𝐺 induced by 𝑉𝑚, 𝐺− 𝑉𝑚 be the subgraph induced by 𝑉 (𝐺)− 𝑉𝑚. Let 𝐺∨𝐻 denote the graph obtained from
the disjoint union 𝐺 + 𝐻 by adding all edges between graph 𝐺 and graph 𝐻. A regular graph with vertices of
degree 𝑟 is called a 𝑟-regular graph. Let 𝐾𝑛, 𝐾𝑠,𝑡 denote the clique and complete bipartite graph respectively
and 𝐾1,𝑛−1 be the star of order 𝑛.

𝐴(𝐺) denotes the adjacency matrix and 𝐷(𝐺) denotes the diagonal matrix of the degrees of 𝐺. The signless
Laplacian matrix of 𝐺 is defined as 𝑄(𝐺) = 𝐷(𝐺) + 𝐴(𝐺). In 2017, Nikiforov [1] proposed the matrix 𝐴𝛼(𝐺) of
a graph 𝐺

𝐴𝛼(𝐺) = 𝛼𝐷(𝐺) + (1− 𝛼)𝐴(𝐺),

for 𝛼 ∈ [0, 1], which successfully extends the theories of 𝐴(𝐺) and 𝑄(𝐺). Let 𝐴𝛼 = 𝐴𝛼(𝐺) if there is no
ambiguity. It is not hard to see that 𝐴0 is the adjacency matrix and 2𝐴 1

2
is the signless Laplacian matrix. In

2019, Liu et al. [2] defined the matrix Θ𝑘(𝐺) as Θ𝑘(𝐺) = 𝑘𝐷(𝐺) + 𝐴(𝐺), for 𝑘 ∈ R.
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Denote the eigenvalues of 𝑛 × 𝑛 symmetric matrix 𝑀 by 𝜌1(𝑀) ≥ 𝜌2(𝑀) ≥ . . . ≥ 𝜌𝑛(𝑀). The largest
eigenvalue 𝜌𝛼(𝐺) := 𝜌1(𝐴𝛼(𝐺)) of the 𝐴𝛼-matrix is defined as the 𝐴𝛼-spectral radius of 𝐺. Similarly, we
can define the Θ𝑘-spectral radius and 𝑄-spectral radius of 𝐺. Let 𝜌𝛼 = 𝜌𝛼(𝐺) if there is no ambiguity. Let
x = (𝑥1, 𝑥2, . . . , 𝑥𝑛)𝑇 be a unit nonnegative eigenvector of 𝜌𝛼 corresponding to the vertex set {𝑣1, 𝑣2, . . . , 𝑣𝑛}.
Let 𝐺𝑚 = (𝐺− 𝑉𝑚)

⋃︀
𝑚𝐾1. For other undefined notations and terminologies, refer to [3].

Many scholars already succeeded in finding bounds for the 𝐴𝛼-spectral radius. For more results in this
direction, readers can refer to a survey [1] by Nikiforov and some other articles [4–9]. In 2019, Guo et al.
[10] and Sun et al. [11] presented a relation between 𝜌1(𝐺) and 𝜌1(𝐺 − 𝑣𝑘) for adjacency matrices 𝐴(𝐺) and
𝐴(𝐺− 𝑣𝑘), where 𝑣𝑘 is a vertex of 𝐺. The better bound given by [11] is shown as follow

𝜌1(𝐴(𝐺)) ≤
√︁

𝜌2
1(𝐴(𝐺− 𝑣𝑘)) + 2𝑑𝑘 − 1. (1)

Since (1) is well used in analyzing the graph structure (see [12]), we try to extend the above inequation to more
matrices, such as 𝐴𝛼(𝐺), Θ𝑘(𝐺), 𝑄(𝐺). Using some different methods from [10, 11], we get the results in this
paper. As far as the authors know, this topic has not been explored elsewhere.

From the following proposition given by Nikiforov, we know that there exists a positive eigenvector x corre-
sponding to 𝜌𝛼 if 𝛼 ∈ [0, 1).

Proposition 1.1 (Proposition 13 of [1]). Let 𝛼 ∈ [0, 1), let 𝐺 be a connected graph, let x be a nonnegative
eigenvector to 𝜌1(𝐴𝛼(𝐺)), and let 𝐻 be a proper subgraph of 𝐺, then
(i) x is positive and is unique up to scaling;
(ii) 𝜌1(𝐴𝛼(𝐻)) < 𝜌1(𝐴𝛼(𝐺)).

The 𝐴𝛼-spectrum of 𝐾𝑛 and 𝐾1,𝑛−1 are given by Nikiforov as follows:

Proposition 1.2 (Proposition 36 of [1]). The eigenvalues of 𝐴𝛼(𝐾𝑛) are

𝜌1(𝐴𝛼(𝐾𝑛)) = 𝑛− 1,

𝜌𝑘(𝐴𝛼(𝐾𝑛)) = 𝛼𝑛− 1 𝑓𝑜𝑟 1 < 𝑘 ≤ 𝑛.

Proposition 1.3 (Proposition 38 of [1]). The eigenvalues of 𝐴𝛼(𝐾1,𝑛−1) are

𝜌1(𝐴𝛼(𝐾1,𝑛−1)) =
1
2
(︀
𝛼𝑛 +

√︀
𝛼2𝑛2 + 4(𝑛− 1)(1− 2𝛼)

)︀
,

𝜌𝑛(𝐴𝛼(𝐾1,𝑛−1)) =
1
2
(︀
𝛼𝑛−

√︀
𝛼2𝑛2 + 4(𝑛− 1)(1− 2𝛼)

)︀
,

𝜌𝑘(𝐴𝛼(𝐾1,𝑛−1)) = 𝛼 𝑓𝑜𝑟 1 < 𝑘 < 𝑛.

Proposition 1.4 (Corollary 1 of [10]). Let 𝐺 be a connected graph with 𝑛 vertices. Then

𝜌1(𝐴(𝐺)) ≥ 𝑚𝑎𝑥{
√︀

𝑑(𝑣), 𝑣 ∈ 𝑉 (𝐺)},

with equality holding if and only if 𝐺 = 𝐾1,𝑛−1.

2. Main results

Theorem 2.1. Let 𝛼 ∈ [0, 1) and let 𝑣𝑘 be a vertex of a connected graph 𝐺 with degree 𝑑𝑘. Then

𝜌𝛼(𝐺− 𝑣𝑘) ≥ 𝜌𝛼 − 𝛼− (1− 𝛼)2𝑑𝑘

𝜌𝛼 − 𝛼𝑑𝑘
(2)

with equality holding if and only if 𝐺 is the join of the vertex 𝑣𝑘 and a regular graph of order 𝑛− 1.
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Theorem 2.1 will be proved in Section 3.

Corollary 2.2. Let 𝑘 ∈ [0, +∞) and let 𝑣 be a vertex of a connected graph 𝐺 with degree 𝑑(𝑣). Then

𝜆1(Θ𝑘(𝐺− 𝑣)) ≥ 𝜆1(Θ𝑘(𝐺))− 𝑘 − 𝑑(𝑣)
𝜆1(Θ𝑘(𝐺))− 𝑘𝑑(𝑣)

with equality holding if and only if 𝐺 is the join of the vertex 𝑣 and a regular graph of order 𝑛− 1.

By setting 𝛼 = 0 in (2) we obtain the following corollary.

Corollary 2.3. Let 𝑣𝑘 be a vertex of a connected graph 𝐺 with degree 𝑑𝑘. Then

𝜌1(𝐴(𝐺− 𝑣𝑘)) ≥ 𝜌1(𝐴(𝐺))− 𝑑𝑘

𝜌1(𝐴(𝐺))
(3)

with equality holding if and only if 𝐺 is the join of the vertex 𝑣𝑘 and a regular graph of order 𝑛− 1.

When 𝑑𝑘 > 𝜌1(𝐴(𝐺)), Corollary 2.3 gives a lower bound for 𝜌𝛼(𝐺 − 𝑣𝑘) which is better than√︀
𝜌2(𝐴(𝐺))− 2𝑑𝑘 + 1 deducible from (1). In fact, by Proposition 1.4, we have 𝜌1(𝐴(𝐺)) − 𝑑𝑘

𝜌1(𝐴(𝐺)) > 0. By
Corollary 2.3, we have

𝜌1(𝐴(𝐺− 𝑣𝑘)) ≥ 𝜌1(𝐴(𝐺))− 𝑑𝑘

𝜌1(𝐴(𝐺))

=

√︃
𝜌2
1(𝐴(𝐺))− 2𝑑𝑘 +

𝑑2
𝑘

𝜌2
1(𝐴(𝐺))

>
√︀

𝜌2(𝐴(𝐺))− 2𝑑𝑘 + 1.

By setting 𝛼 = 1
2 in (2) we obtain the following corollary.

Corollary 2.4. Let 𝑣𝑘 be a vertex of a connected graph 𝐺 with degree 𝑑𝑘, and let 𝑄(𝐺) be the signless Laplacian
matrix of 𝐺. Then

𝜌1(𝑄(𝐺− 𝑣𝑘)) ≥ 𝜌1(𝑄(𝐺))− 1− 𝑑𝑘

𝜌1(𝑄(𝐺))− 𝑑𝑘
(4)

with equality holding if and only if 𝐺 is the join of the vertex 𝑣𝑘 and a regular graph of order 𝑛− 1.

Define Φ(𝛼, 𝑟, 𝑛) = 1
2 (𝛼𝑛 + 𝑟) + 1

2

√︀
(𝛼𝑛 + 𝑟)2 − 4(𝑟𝛼 + 2𝛼− 1)(𝑛− 1).

Corollary 2.5. Let 𝐺 be the join of the vertex 𝑣𝑘 and a 𝑟-regular graph of order 𝑛− 1, 𝛼 ∈ [0, 1). Then

(𝑖) 𝜌𝛼 =
1
2

(𝛼𝑛 + 𝑟) +
1
2

√︀
(𝛼𝑛 + 𝑟)2 − 4(𝑟𝛼 + 2𝛼− 1)(𝑛− 1);

(𝑖𝑖) 𝜌1(𝐴(𝐺)) =
𝑟

2
+

1
2

√︀
𝑟2 + 4(𝑛− 1);

(𝑖𝑖𝑖) 𝜌1(𝑄(𝐺)) =
𝑛

2
+ 𝑟 +

√︂
(
𝑛

2
+ 𝑟)2 − 2𝑟(𝑛− 1).

Proof. (𝑖) Since 𝐺− 𝑣𝑘 is a 𝑟-regular graph, it is obvious that 𝜌𝛼(𝐺− 𝑣𝑘) = 𝑟. By Theorem 2.1, we have

𝑟 = 𝜌𝛼(𝐺− 𝑣𝑘) = 𝜌𝛼 − 𝛼− (1− 𝛼)2𝑑𝑘

𝜌𝛼 − 𝛼𝑑𝑘
= 𝜌𝛼 − 𝛼− (1− 𝛼)2(𝑛− 1)

𝜌𝛼 − 𝛼(𝑛− 1)
·
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Hence

𝜌2
𝛼 − (𝛼𝑛 + 𝑟)𝜌𝛼 + (𝑟𝛼 + 2𝛼− 1)(𝑛− 1) = 0.

𝜌𝛼 =
1
2

(𝛼𝑛 + 𝑟) +
1
2

√︀
(𝛼𝑛 + 𝑟)2 − 4(𝑟𝛼 + 2𝛼− 1)(𝑛− 1) = Φ(𝛼, 𝑟, 𝑛).

(ii) 𝜌1(𝐴(𝐺)) = Φ(0, 𝑟, 𝑛) = 𝑟
2 + 1

2

√︀
𝑟2 + 4(𝑛− 1).

(iii) 𝜌1(𝑄(𝐺)) = 2Φ(1
2 , 𝑟, 𝑛) = 𝑛

2 + 𝑟 +
√︀

(𝑛
2 + 𝑟)2 − 2𝑟(𝑛− 1). �

Remark 2.6. In particular, 𝜌𝛼 values of 𝐾1,𝑛−1(star), 𝐾1∨ 𝑛−1
2 𝐾2(friendship graph), 𝐾1∨𝐶𝑛−1(wheel graph),

𝐾1 ∨ (𝐶𝑛1 + 𝐶𝑛2 + . . . + 𝐶𝑛𝑘
)(multi-wheel graph), 𝐾𝑛(complete graph) are Φ(𝛼, 0, 𝑛), Φ(𝛼, 1, 𝑛), Φ(𝛼, 2, 𝑛),

Φ(𝛼, 2, 𝑛), Φ(𝛼, 𝑛− 1, 𝑛) respectively.
We can also calculate 𝜌𝛼 by equitable quotient matrices for the graphs in Corollary 2.5.

3. Proof of Theorem 2.1

Lemma 3.1. Let 𝛼 ∈ [0, 1) and let 𝑣𝑘 be a vertex of a connected graph 𝐺 with degree 𝑑𝑘, then 𝜌𝛼 > 𝛼𝑑𝑘.

Proof. Let 𝑥𝑖 be the 𝑖th component of the positive eigenvector x corresponding to 𝜌𝛼. Since 𝑥𝑘 > 0, 𝑥𝑖 > 0,
1− 𝛼 > 0 and

𝜌𝛼𝑥𝑘 =
𝑛∑︁

𝑖=1

𝑎𝑘𝑖𝑥𝑖 = (1− 𝛼)
∑︁

𝑣𝑖∈𝑁(𝑣𝑘)

𝑥𝑖 + 𝛼𝑑𝑘𝑥𝑘,

the result immediately follows. �

Lemma 3.2. Let 𝛼 ∈ [0, 1), 𝑉𝑚 ⊂ 𝑉 (𝐺) with |𝑉𝑚| = 𝑚 and 𝑐𝑠 = |𝑁𝐺(𝑣𝑠)
⋂︀

𝑉𝑚| for 𝑣𝑠 /∈ 𝑉𝑚. Suppose 𝑎𝑖𝑗

is the (𝑖)th row (𝑗)th column element of 𝐴𝛼, and 𝑥𝑖 is the 𝑖th component of the positive unit eigenvector x
corresponding to 𝜌𝛼.Then

∑︁
𝑣𝑘∈𝑉𝑚

𝑥2
𝑘 ≤

1
2

+
1

2𝜌𝛼

(︁ ∑︁
𝑣𝑖∈𝑉𝑚

∑︁
𝑣𝑗∈𝑉𝑚

𝑎𝑖𝑗𝑥𝑖𝑥𝑗 − 𝛼
∑︁

𝑣𝑠 /∈𝑉𝑚

𝑐𝑠𝑥
2
𝑠

)︁
(5)

with equality holding if and only if 𝐺𝑚 is an empty graph.

Proof. Since 𝐴𝛼 = 𝛼𝐷(𝐺) + (1− 𝛼)𝐴(𝐺), we have

𝑎𝑖𝑗 =

⎧⎪⎨⎪⎩
1− 𝛼 𝑖𝑓 𝑖 ̸= 𝑗 𝑎𝑛𝑑 𝑣𝑖 ∈ 𝑁𝐺(𝑣𝑗),
0 𝑖𝑓 𝑖 ̸= 𝑗 𝑎𝑛𝑑 𝑣𝑖 /∈ 𝑁𝐺(𝑣𝑗),
𝛼𝑑𝑖 𝑖𝑓 𝑖 = 𝑗.

Suppose 𝑎′𝑖𝑗 is the (𝑖)th row (𝑗)th column element of 𝐴𝛼(𝐺𝑚), then

𝑎′𝑖𝑗 =

⎧⎪⎨⎪⎩
0 𝑖𝑓 𝑣𝑖 ∈ 𝑉𝑚 𝑜𝑟 𝑣𝑗 ∈ 𝑉𝑚,

𝑎𝑖𝑗 𝑖𝑓 𝑖 ̸= 𝑗 , 𝑣𝑖 /∈ 𝑉𝑚 𝑎𝑛𝑑 𝑣𝑗 /∈ 𝑉𝑚,

𝑎𝑖𝑖 − 𝛼𝑐𝑖 𝑖𝑓 𝑖 = 𝑗 𝑎𝑛𝑑 𝑣𝑖 /∈ 𝑉𝑚.
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Let a𝑘 be the column vector (𝑎𝑘1, 𝑎𝑘2, . . . , 𝑎𝑘𝑛)𝑇 and e𝑘 be the 𝑘th basis column vector (0, . . . , 0, 1, 0, . . . , 0)𝑇 ,
where only the 𝑘th component is 1. We have

x𝑇 (𝐴𝛼 −𝐴𝛼(𝐺𝑚))x

= x𝑇
(︁ ∑︁

𝑣𝑘∈𝑉𝑚

(a𝑘e𝑇
𝑘 + e𝑘a𝑇

𝑘 )−
∑︁

𝑣𝑖∈𝑉𝑚

∑︁
𝑣𝑗∈𝑉𝑚

𝑎𝑖𝑗e𝑖e𝑇
𝑗

)︁
x +

∑︁
𝑣𝑠 /∈𝑉𝑚

𝛼𝑐𝑠𝑥
2
𝑠

=
∑︁

𝑣𝑘∈𝑉𝑚

(x𝑇 a𝑘e𝑇
𝑘 x + x𝑇 e𝑘a𝑇

𝑘 x)−
∑︁

𝑣𝑖∈𝑉𝑚

∑︁
𝑣𝑗∈𝑉𝑚

𝑎𝑖𝑗x𝑇 e𝑖e𝑇
𝑗 x +

∑︁
𝑣𝑠 /∈𝑉𝑚

𝛼𝑐𝑠𝑥
2
𝑠

= 2
∑︁

𝑣𝑘∈𝑉𝑚

𝑥𝑘

𝑛∑︁
𝑖=1

𝑥𝑖𝑎𝑘𝑖 −
∑︁

𝑣𝑖∈𝑉𝑚

∑︁
𝑣𝑗∈𝑉𝑚

𝑎𝑖𝑗𝑥𝑖𝑥𝑗 + 𝛼
∑︁

𝑣𝑠 /∈𝑉𝑚

𝑐𝑠𝑥
2
𝑠

= 2𝜌𝛼

∑︁
𝑣𝑘∈𝑉𝑚

𝑥2
𝑘 −

∑︁
𝑣𝑖∈𝑉𝑚

∑︁
𝑣𝑗∈𝑉𝑚

𝑎𝑖𝑗𝑥𝑖𝑥𝑗 + 𝛼
∑︁

𝑣𝑠 /∈𝑉𝑚

𝑐𝑠𝑥
2
𝑠 .

Hence

x𝑇 𝐴𝛼(𝐺𝑚)x = x𝑇 𝐴𝛼x− x𝑇 (𝐴𝛼 −𝐴𝛼(𝐺𝑚))x

= 𝜌𝛼 − 2𝜌𝛼

∑︁
𝑣𝑘∈𝑉𝑚

𝑥2
𝑘 +

∑︁
𝑣𝑖∈𝑉𝑚

∑︁
𝑣𝑗∈𝑉𝑚

𝑎𝑖𝑗𝑥𝑖𝑥𝑗 − 𝛼
∑︁

𝑣𝑠 /∈𝑉𝑚

𝑐𝑠𝑥
2
𝑠

≥ 0 ,

which implies ∑︁
𝑣𝑘∈𝑉𝑚

𝑥2
𝑘 ≤

1
2

+
1

2𝜌𝛼

(︁ ∑︁
𝑣𝑖∈𝑉𝑚

∑︁
𝑣𝑗∈𝑉𝑚

𝑎𝑖𝑗𝑥𝑖𝑥𝑗 − 𝛼
∑︁

𝑣𝑠 /∈𝑉𝑚

𝑐𝑠𝑥
2
𝑠

)︁
.

Note that x is a positive unit eigenvector, we can see that the equality holds if and only if 𝐺𝑚 is an empty
graph. �

Lemma 3.3. Let 𝛼 ∈ [0, 1), let x be the positive eigenvector of 𝐴𝛼(𝐺) corresponding to 𝜌𝛼 with x𝑇x = 1, let
𝑥𝑘 be the 𝑘th component of x, and let 𝑣𝑘 be the 𝑘th vertex of 𝐺. Then

𝜌𝛼(𝐺− 𝑣𝑘) ≥ 𝜌𝛼 − 𝛼− 𝑥2
𝑘

1− 𝑥2
𝑘

(𝜌𝛼 − 𝛼𝑑𝑘). (6)

Proof. Let 𝑉𝑚 = 𝑉 (𝐺)− 𝑣𝑘, then 𝐺𝑚 is an empty graph. By Lemma 3.2, we have∑︁
𝑣𝑡∈𝑉𝑚

𝑥2
𝑡 =

1
2

+
1

2𝜌𝛼

(︁ ∑︁
𝑣𝑖∈𝑉𝑚

∑︁
𝑣𝑗∈𝑉𝑚

𝑎𝑖𝑗𝑥𝑖𝑥𝑗 − 𝛼
∑︁

𝑣𝑠 /∈𝑉𝑚

𝑐𝑠𝑥
2
𝑠

)︁
.

Let x̂ = {𝑥1, . . . , 𝑥𝑘−1, 0, 𝑥𝑘+1, . . . , 𝑥𝑛}𝑇 , whose 𝑘th component is 0.
Let 𝐺1 = (𝐺− 𝑣𝑘)

⋃︀
𝐾1. We get

1− 𝑥2
𝑘 =

∑︁
𝑣𝑡∈𝑉𝑚

𝑥2
𝑡

=
1
2

+
1

2𝜌𝛼

(︁ ∑︁
𝑣𝑖∈𝑉𝑚

∑︁
𝑣𝑗∈𝑉𝑚

𝑎𝑖𝑗𝑥𝑖𝑥𝑗 − 𝛼𝑑𝑘𝑥2
𝑘

)︁
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=
1
2

+
1

2𝜌𝛼

(︁
x𝑇 𝐴𝛼(𝐺1) x + 𝛼

∑︁
𝑣𝑖∈𝑁(𝑣𝑘)

𝑥2
𝑖 − 𝛼𝑑𝑘𝑥2

𝑘

)︁
=

1
2

+
1

2𝜌𝛼

(︁
x̂𝑇 𝐴𝛼(𝐺1) x̂ + 𝛼

∑︁
𝑣𝑖∈𝑁(𝑣𝑘)

𝑥2
𝑖 − 𝛼𝑑𝑘𝑥2

𝑘

)︁
≤ 1

2
+

1
2𝜌𝛼

(︁
𝜌𝛼(𝐺1) x̂𝑇 x̂ + 𝛼− 𝛼𝑥2

𝑘 − 𝛼𝑑𝑘𝑥2
𝑘

)︁
(7)

=
1
2

+
1

2𝜌𝛼

(︁
𝜌𝛼(𝐺− 𝑣𝑘) (1− 𝑥2

𝑘) + 𝛼− 𝛼𝑥2
𝑘 − 𝛼𝑑𝑘𝑥2

𝑘

)︁
,

which implies

𝜌𝛼(𝐺− 𝑣𝑘) ≥ 𝜌𝛼 − 𝛼− 𝑥2
𝑘

1− 𝑥2
𝑘

(𝜌𝛼 − 𝛼𝑑𝑘).

�

Lemma 3.4. Let 𝛼 ∈ [0, 1), let x be the positive eigenvector of 𝐴𝛼(𝐺) corresponding to 𝜌𝛼 with x𝑇x = 1, let
𝑥𝑘 be the 𝑘th component of x, and let 𝑣𝑘 be the 𝑘th vertex of 𝐺. Then

𝑥2
𝑘 ≤

(1− 𝛼)2𝑑𝑘

(𝜌𝛼 − 𝛼𝑑𝑘)2 + (1− 𝛼)2𝑑𝑘
, (8)

with equality holding if and only if 𝐺 is the join of the vertex 𝑣𝑘 and a regular graph of order 𝑛− 1.

Proof. Since

𝜌𝛼𝑥𝑘 =
𝑛∑︁

𝑖=1

𝑎𝑘𝑖𝑥𝑖 = (1− 𝛼)
∑︁

𝑣𝑖∈𝑁(𝑣𝑘)

𝑥𝑖 + 𝛼𝑑𝑘𝑥𝑘,

we have

(𝜌𝛼 − 𝛼𝑑𝑘)2𝑥2
𝑘 = (1− 𝛼)2

(︀ ∑︁
𝑣𝑖∈𝑁(𝑣𝑘)

𝑥𝑖

)︀2

≤ (1− 𝛼)2𝑑𝑘

∑︁
𝑣𝑖∈𝑁(𝑣𝑘)

𝑥2
𝑖 (9)

≤ (1− 𝛼)2𝑑𝑘(1− 𝑥2
𝑘). (10)

That is

𝑥2
𝑘 ≤

(1− 𝛼)2𝑑𝑘

(𝜌𝛼 − 𝛼𝑑𝑘)2 + (1− 𝛼)2𝑑𝑘
·

Equality in (10) holds if and only if 𝑁(𝑣𝑘) = 𝑉 (𝐺)− 𝑣𝑘. On this basis, the equality in (9) holds if and only if
all the 𝑥𝑖 is same where 𝑖 ∈ {1, 2, . . . , 𝑛} and 𝑖 ̸= 𝑘, if and only if 𝐺− 𝑣𝑘 is a regular graph. �

Proof of Theorem 2.1. Let x be the positive eigenvector of 𝐴𝛼(𝐺) corresponding to 𝜌𝛼 with x𝑇 x = 1, and
let 𝑥𝑘 be the 𝑘th component of x. By Lemma 3.3, we obtain

𝜌𝛼(𝐺− 𝑣𝑘) ≥ 𝜌𝛼 − 𝛼− 𝑥2
𝑘

1− 𝑥2
𝑘

(𝜌𝛼 − 𝛼𝑑𝑘). (11)
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By Lemma 3.4 we get

𝑥2
𝑘 ≤

(1− 𝛼)2𝑑𝑘

(𝜌𝛼 − 𝛼𝑑𝑘)2 + (1− 𝛼)2𝑑𝑘
. (12)

Since ℎ(𝑥𝑘) = 𝑥2
𝑘

1−𝑥2
𝑘

is a increasing function on 𝑥𝑘 ∈ (0, 1), 𝜌𝛼 − 𝛼𝑑𝑘 > 0 if 𝛼 ∈ [0, 1) (by Lem. 3.1), combining
(11)with (12), we have

𝜌𝛼(𝐺− 𝑣𝑘) ≥ 𝜌𝛼 − 𝛼− 𝑥2
𝑘

1− 𝑥2
𝑘

(𝜌𝛼 − 𝛼𝑑𝑘)

≥ 𝜌𝛼 − 𝛼− (1− 𝛼)2𝑑𝑘

(𝜌𝛼 − 𝛼𝑑𝑘)2
(𝜌𝛼 − 𝛼𝑑𝑘)

= 𝜌𝛼 − 𝛼− (1− 𝛼)2𝑑𝑘

𝜌𝛼 − 𝛼𝑑𝑘
.

This completes the proof of inequality (2).
On one hand, the equality in (2) holds implying the equality in (12) holds. By Lemma 3.4, 𝐺 is the join of

the vertex 𝑣𝑘 and a regular graph of order 𝑛− 1.
On the other hand, if 𝐺 is the join of the vertex 𝑣𝑘 and a regular graph of order 𝑛−1, then the equality in (7)

holds, subsequently the equalities in (6) and (11) hold. Combining with Lemma 3.4, we get that the equalities
in (8) and (12) hold, and the equality in (2) holds. �
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