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A BOUND FOR THE A,-SPECTRAL RADIUS OF A CONNECTED GRAPH
AFTER VERTEX DELETION

CHUNXIANG WANG® AND TAO SHE*

Abstract. G is a simple connected graph with adjacency matrix A(G) and degree diagonal matrix
D(G). The signless Laplacian matrix of G is defined as Q(G) = D(G) + A(G). In 2017, Nikiforov
[1] defined the matrix Ao (G) = aD(G) + (1 — a)A(G) for a € [0,1]. The As-spectral radius of G
is the maximum eigenvalue of A,(G). In 2019, Liu et al. [2] defined the matrix ©;(G) as Or(G) =
kD(G) + A(G), for k € R. In this paper, we present a new type of lower bound for the A,-spectral
radius of a graph after vertex deletion. Furthermore, we deduce some corollaries on Ox(G), A(G), Q(G)
matrices.
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1. INTRODUCTION AND PRELIMINARIES

We consider non-empty simple connected graph G with vertex set V(G) and edge set F(G) throughout this
paper. Let V(G) = {v1,ve,...,v,}. If any pair of vertices v; and v; are adjacent, then we write v;v; € E(G) or
v; ~ v;. For a vertex v, € V(G), the neighborhood of vy is the set N(vg) = Ng(vi) = {w € V(G) : w ~ vi},
and dg(vy) denotes the degree of v, with dg(vi) = |N(vg)|. Let di = dg(vg) if there is no ambiguity. Let V;,, be
any fixed subset of V(G) containing m vertices. For V;,, C V(G) with |V,,,| = m, let G[V,,] be the subgraph of
G induced by V,,,, G — V,,, be the subgraph induced by V(G) — V,,,. Let GV H denote the graph obtained from
the disjoint union G + H by adding all edges between graph G and graph H. A regular graph with vertices of
degree r is called a r-regular graph. Let K, K, denote the clique and complete bipartite graph respectively
and K ,—1 be the star of order n.

A(QG) denotes the adjacency matrix and D(G) denotes the diagonal matrix of the degrees of G. The signless
Laplacian matrix of G is defined as Q(G) = D(G) + A(G). In 2017, Nikiforov [1] proposed the matrix A,(G) of
a graph G

Ao(G) = aD(G) + (1 - a)A(G),

for a € [0,1], which successfully extends the theories of A(G) and Q(G). Let A, = A,(G) if there is no
ambiguity. It is not hard to see that Ay is the adjacency matrix and 2A 1 is the signless Laplacian matrix. In
2019, Liu et al. [2] defined the matrix O (G) as ©,(G) = kD(G) + A(G), for k € R.
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Denote the eigenvalues of n x n symmetric matrix M by p1 (M) > p2(M) > ... > po(M). The largest
eigenvalue po(G) = p1(Aa(G)) of the A,-matrix is defined as the A,-spectral radius of G. Similarly, we
can define the O-spectral radius and Q-spectral radius of G. Let p, = po(G) if there is no ambiguity. Let
x = (71,22,...,7,)T be a unit nonnegative eigenvector of p, corresponding to the vertex set {vy,ve,...,v,}.
Let G, = (G — V) UmK7. For other undefined notations and terminologies, refer to [3].

Many scholars already succeeded in finding bounds for the A,-spectral radius. For more results in this
direction, readers can refer to a survey [1] by Nikiforov and some other articles [4-9]. In 2019, Guo et al.
[10] and Sun et al. [11] presented a relation between pi(G) and p1(G — vi) for adjacency matrices A(G) and
A(G — vi), where vy, is a vertex of G. The better bound given by [11] is shown as follow

PLAG)) < \/P3(A(G — vi)) + 2y — 1. (1)

Since (1) is well used in analyzing the graph structure (see [12]), we try to extend the above inequation to more
matrices, such as A,(G), Ok(G), Q(G). Using some different methods from [10, 11], we get the results in this
paper. As far as the authors know, this topic has not been explored elsewhere.

From the following proposition given by Nikiforov, we know that there exists a positive eigenvector x corre-
sponding to p, if a € [0, 1).

Proposition 1.1 (Proposition 13 of [1]). Let « € [0,1), let G be a connected graph, let & be a nonnegative
eigenvector to p1(Aa(G)), and let H be a proper subgraph of G, then
(i) x is positive and is unique up to scaling;

(1) p1(Aa(H)) < p1(Aa(G)).
The A,-spectrum of K,, and K ,,_; are given by Nikiforov as follows:

Proposition 1.2 (Proposition 36 of [1]). The eigenvalues of Ay (K,,) are

Pl(Aa(Kn)) =n—1,
p(Ao(Ky)) =an—1 for 1<k<n.

Proposition 1.3 (Proposition 38 of [1]). The eigenvalues of Aq(K1n—1) are

p1(Aa(K1,n-1)) (an + Vazn? +4(n —1)(1 - 2a) )

pn(Aa(Kl,n—l)) =
pk(Aa(KLnfl)) =

1
2
1
§(om— Vazn? +4(n—1)(1 —2a)),
a for 1<k<n.

Proposition 1.4 (Corollary 1 of [10]). Let G be a connected graph with n vertices. Then
Pi(A(G)) = maz{\/d(v),v € V(G)},
with equality holding if and only if G = Ky p—1.
2. MAIN RESULTS
Theorem 2.1. Let « € [0,1) and let v be a vertex of a connected graph G with degree dy. Then

(1 - Oé)2dk

aG_ >a_ -
pulG = v) 2 po = =2

with equality holding if and only if G is the join of the vertex vy and a reqular graph of order n — 1.
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Theorem 2.1 will be proved in Section 3.

Corollary 2.2. Let k € [0,+00) and let v be a vertex of a connected graph G with degree d(v). Then

d(v)
(O(G)) — kd(v)

AM(Ok(G —v)) > M(Ok(G)) — k — "

with equality holding if and only if G is the join of the vertex v and a regular graph of order n — 1.
By setting @ = 0 in (2) we obtain the following corollary.
Corollary 2.3. Let vi be a vertex of a connected graph G with degree dy.. Then

o d
p1(A(G))

with equality holding if and only if G is the join of the vertex vy and a regular graph of order n — 1.

p1(A(G —vr)) = p1(A(G)) 3)

When di, > pi(A(G)), Corollary 2.3 gives a lower bound for p,(G — wvg) which is better than
VP2(A(G)) — 2di + 1 deducible from (1). In fact, by Proposition 1.4, we have pi(A(G)) — % > 0. By
Corollary 2.3, we have

dy,
p1(A(G))
d

\/P%(A(G)) — 2di + 2AG)
> Vp2(A(G)) — 2dj, + 1.

Pl(A(G — )

Y

p1(A(G)) -

By setting o = % in (2) we obtain the following corollary.

Corollary 2.4. Let vy, be a vertex of a connected graph G with degree dy., and let Q(G) be the signless Laplacian
matriz of G. Then
dy

1o %k
p1(Q(G)) — dy.
with equality holding if and only if G is the join of the vertex vy and a regular graph of order n — 1.

p1(Q(G — ) 2 m(Q(G)) — (4)

Define ®(a,r,n) = (an+71) + 1\/(an+r)2 —4(ra+2a — 1)(n — 1).
Corollary 2.5. Let G be the join of the vertex vy, and a r-reqular graph of order n — 1, a € [0,1). Then

(i) pa= %(om—l—r) + %\/(an—&—r)z —4(ra+2a—1)(n—1);

(i) p(AG) = § + 5/ T 4~ 1)

(iii) p1(Q(Q)) = g +r+ \/(Z +7)2—=2r(n—1).

Proof. (i) Since G — vy, is a r-regular graph, it is obvious that p, (G — vx) = r. By Theorem 2.1, we have

_ _ (1 0P _ (101
7= palG =) = pa—a Pa — Qdy — P Pa —a(n—1)
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Hence

P2 — (an 4+ 7)po + (ra +2a — 1)(n — 1) = 0.

Pa = %(OerT) + %\/(Omﬂ")z —A(ra+2a-1)(n—1) = &(a,r,n).

(i) p1(A(G)) = @(0,r,n) = 5+ 2/r2+4(n—1).
(i) p1(Q(G)) =2®(3,r,n) =241+ /(3 +7)2—2r(n—1). O

Remark 2.6. In particular, p, values of K ,,_1(star), Ky V "T_lKg (friendship graph), K7V C,,_1(wheel graph),
K,V (Ch, + Cpy + ... + Cp, ) (multi-wheel graph), K, (complete graph) are ®(«,0,n), ®(a,1,n), ®(a,2,n),
d(a,2,n), P(a,n — 1,n) respectively.

We can also calculate p, by equitable quotient matrices for the graphs in Corollary 2.5.

3. PROOF OF THEOREM 2.1

Lemma 3.1. Let a € [0,1) and let vi be a vertex of a connected graph G with degree dy, then po, > ady.

Proof. Let z; be the ith component of the positive eigenvector x corresponding to p,. Since xj > 0, z; > 0,
l1—a>0and

n
Pall = Zamxi =(1-a) Z z; + adyxy,
=1 v, EN (vg)

the result immediately follows. O

Lemma 3.2. Let a € [0,1), V,, C V(G) with |V,| = m and c¢s = |[Ng(vs) (V| for vs € Vi,. Suppose a;;
is the (i)th row (j)th column element of A., and x; is the ith component of the positive unit eigenvector x
corresponding to p,.Then

1 1
2 2
Yoadsatg, (X X wma—a Y ) )
VEEVm Vi €Vin v;EViy Vs &V
with equality holding if and only if G, is an empty graph.
Proof. Since Ay = aD(G) + (1 — o) A(G), we have

l—a if i#j and v; € Ng(vj),
a;;j =40 if i#j and wv; ¢ Ng(v)),
ad; if i=j.
Suppose a;; is the (i)th row (j)th column element of A,(G)y,), then

0 if v, €Vy or v €V,
agj: a;j if i#j, vi¢ Ve and v; ¢ Vp,
ai; —ac; if i=j and v; ¢ V.
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Let a; be the column vector (ag1,axs,-..,ar,)” and e; be the kth basis column vector (0,...,0,1,0,...,0)%,
where only the kth component is 1. We have

XT(Aa — A, (Gp))x

:xT( Z (akek +ekak Z Z a;je;e; )x—i— Z acsx

VEEVim Vi €Vin v;EVi Vs & Vi

= E (xT akekx+x ekakx E E aux ee; Tx + g QcsT
VEEVim Vi €Vin V€V, Vs &V
n
=2 Tk TiQp; — A5 T 5 + « CsT
VR EVm i=1 Vi€V 1€V, Vs &V

_ 2 2
= 2pq E Ty, — E E ;T T + E CsTy

VEEVm Vi €Vin V€V Vs & Vin

Hence
xTA0(Gr)x =xTAgx —xT(Ay — Au(G))x

= Pa — 2P Z xiJr Z Z ;T T — Z Cs:ri

VEEVm Vi€V v; €V Vs & Vin

which implies

Z xiﬁ%—i—i( Z Z QijT;T; — Q Z csxi).

VR EVimn Vi€V V€V, Vs & Vin

Note that x is a positive unit eigenvector, we can see that the equality holds if and only if G,, is an empty
graph. O

Lemma 3.3. Let a € [0,1), let & be the positive eigenvector of An(G) corresponding to p, with z'x =1, let
xy be the kth component of @, and let v be the kth vertex of G. Then
2

Tk (po — ady). (6)

aG_ >oc_ -7 2
pa(G = vk) 2 p = a2

Proof. Let V,,, = V(G) — vy, then G,, is an empty graph. By Lemma 3.2, we have

Z a:t—f—i-—( Z Z ;jT;T; — Z CsT )

V€V Vi€V V€V, Vs&Vin

Let X = {z1,...,2%_1,0,%k41,...,2,}7 , whose kth component is 0.
Let G1 = (G — vg) | K1. We get

2 _ 2
1—z;, = E Ty

V4 €V

= % + L( Z Z Qi TiT; — adkxi)

2
Po v, 0 €Vim
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1 1
:§+%(XTAQ(G1)><+0¢ Z xf—adkxi)
’U,;EN(U]C)
:1+i<§<TA (Gh) %X+« Z 22— ad x2>
5 2pa a 1 [ kL
v; EN (vg)
1 1 AT A
<5+ 5y (polG) X5+~ ast — adiat) )
1 1 2 2 2
=§+g(Pa(G—Uk) (l_xk)+a_axk_adkxk>v

which implies
2
Tk
5 (Pa — udy).
1—a3
|

Lemma 3.4. Let o € [0,1), let T be the positive eigenvector of Ay (G) corresponding to p, with z' @ =1, let
xy, be the kth component of @, and let vy be the kth vertex of G. Then

(1 — Oé)2dk

2< 8
5 (o — adi)? + (1— a)%dy ®)
with equality holding if and only if G is the join of the vertex vy and a regular graph of order n — 1.
Proof. Since
path = Y amwi=(1—a) Y zi+adyy,
i=1 v; EN(vg)
we have
2
(po —adi)’z} = (1—a)*( D )
’UiEN(’Uk)
< (1—a)%dy Z z? (9)
v; EN (vg)
< (1—a)?dy(1 —z3). (10)
That is

(1 — oz)Qdk .
(oo —ad)? 1 (1 a)d;

Equality in (10) holds if and only if N(v;) = V(G) — vg. On this basis, the equality in (9) holds if and only if
all the z; is same where ¢ € {1,2,...,n} and i # k, if and only if G — vy, is a regular graph. O

xig

Proof of Theorem 2.1. Let x be the positive eigenvector of A,(G) corresponding to p, with x'x = 1, and
let zj be the kth component of x. By Lemma 3.3, we obtain

2
Lk

2
1—a3

PG —vk) 2 po —a — (Pa — udy). (11)
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By Lemma 3.4 we get

(1 — oz)Qdk

2
< :
= (oa — adi)2 + (1- a)2dy

(12)

Since h(zy) = % is a increasing function on xy, € (0,1), po — ady > 0 if a € [0,1) (by Lem. 3.1), combining
k
(11)with (12), we have

2
x
pa(G = k) 2 pa—a = 775 (pa — ady)

)
(1—a)2dk

= paman (po — audi)? (o — )
1— 2

= — o L
Pa — ady,

This completes the proof of inequality (2).

On one hand, the equality in (2) holds implying the equality in (12) holds. By Lemma 3.4, G is the join of
the vertex v; and a regular graph of order n — 1.

On the other hand, if G is the join of the vertex v; and a regular graph of order n — 1, then the equality in (7)
holds, subsequently the equalities in (6) and (11) hold. Combining with Lemma 3.4, we get that the equalities
in (8) and (12) hold, and the equality in (2) holds. O

Acknowledgements. The work was partially supported by the National Natural Science Foundation of China under Grants
11771172,12061039.

Data Availability Statements. Data sharing not applicable to this article as no datasets were generated or analysed during
the current study.

REFERENCES

1] V. Nikiforov, Merging the A-and @Q-spectral theories. Appl. Anal. Discrete Math. 11 (2017) 81-107.

2] M. Liu, H.-J. Lai and K.Ch. Das, Spectral results on hamiltonian problem. Discrete Math. 342 (2019) 1718-1730.

3] D.B. West, Introduction to Graph Theory-2nd edn. (2001).

4] V. Nikiforov, G. Pastén, O. Rojo and R.L. Soto, On the A,-spectra of trees. Linear Algebra Appl. 520 (2017) 286-305.
5] V. Nikiforov and O. Rojo, A note on the positive semidefinitness of Ao (G). Linear Algebra Appl. 519 (2017) 156-163.
6] V. Nikiforov and O. Rojo, On the a-index of graphs with pendent paths. Linear Algebra Appl. 550 (2018) 87—-104.

7] H. Lin, X. Huang and J. Xue, A Note on the A,-spectral Radius of Graphs (2018).

8] D. Li, Y. Chen and J. Meng, The A,-spectral radius of trees and unicyclic graphs with given degree sequence. Appl. Math.
Comput. 363 (2019).

[9] S. Wang, D. Wong and F. Tian, Bounds for the largest and the smallest a eigenvalues of a graph in terms of vertex degrees.
Linear Algebra Appl. 590 (2020) 210-223.

[10] J.M. Guo, Z.W. Wang and X. Li, Sharp upper bounds of the spectral radius of a graph. Discrete Math. 342 (2019) 2559-2563.
[11] S. Sun and K.C. Das, A conjecture on the spectral radius of graphs. Linear Algebra Appl. (2019) 588.

[12] M. Zhai, H. Lin and J. Shu, Spectral Extrema of Graphs with Fixed Size: Cycles and Complete Bipartite Graphs
(2021).

[
[
[
[
[
[
[
[



3642 C. WANG AND T. SHE

Subscribe to Open (S20)

A fair and sustainable open access model

This journal is currently published in open access under a Subscribe-to-Open model (S20). S20 is a transformative
model that aims to move subscription journals to open access. Open access is the free, immediate, online availability of
research articles combined with the rights to use these articles fully in the digital environment. We are thankful to our
subscribers and sponsors for making it possible to publish this journal in open access, free of charge for authors.

Please help to maintain this journal in open access!

Check that your library subscribes to the journal, or make a personal donation to the S20 programme, by contacting
subscribers@edpsciences.org

More information, including a list of sponsors and a financial transparency report, available at: https://www.
edpsciences.org/en/maths-s2o-programme



mailto:subscribers@edpsciences.org
https://www.edpsciences.org/en/maths-s2o-programme
https://www.edpsciences.org/en/maths-s2o-programme

	Introduction and preliminaries
	Main results
	Proof of Theorem 2.1
	References

