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THE SUPER-CONNECTIVITY OF DOUBLE GENERALIZED PETERSEN
GRAPHS

Gülnaz Boruzanlı Ekİncİ*

Abstract. The super–connectivity of a graph 𝐺 is the minimum number of vertices whose removal
disconnects the graph without isolating a vertex. In this paper, we prove that the super–connectivity
of double generalized Petersen graph 𝐷𝑃 (𝑛, 𝑘) is equal to four when 𝑛 ≥ 4, 𝑘 ≥ 1 and 𝑛 ̸= 2𝑘.
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1. Introduction

Let 𝐺 be a graph with vertex set 𝑉 (𝐺) and edge set 𝐸(𝐺). The neighbourhood of 𝑣 ∈ 𝑉 (𝐺), denoted by
𝑁𝐺(𝑣), is the set of vertices adjacent to 𝑣 in 𝐺. The degree of 𝑣, denoted by deg𝐺(𝑣) is the cardinality of 𝑁𝐺(𝑣).
Let 𝛿(𝐺) denote the minimum vertex degree in 𝐺. If deg𝐺(𝑣) = 𝑟 for every 𝑣 ∈ 𝑉 (𝐺), then 𝐺 is called 𝑟-regular.
For any vertex set 𝑆 ⊆ 𝑉 (𝐺), let 𝐺[𝑆] denote the subgraph induced by 𝑆.

A graph 𝐺 is connected if there exists a path between any two vertices; otherwise 𝐺 is disconnected. A
component of 𝐺 is a maximal connected subgraph of 𝐺. For a non-complete connected graph 𝐺, a vertex-
cut 𝑆 is a subset of 𝑉 (𝐺) such that 𝐺 − 𝑆 is disconnected. The connectivity of 𝐺, denoted by 𝜅(𝐺), is the
minimum size of a vertex–cut if 𝐺 is not a complete graph, and 𝜅(𝐺) = |𝑉 (𝐺)| − 1 if otherwise. Analogously,
for a connected graph 𝐺, a disconnecting set 𝐹 is a subset of 𝐸(𝐺) such that 𝐺−𝐹 is disconnected. The
edge-connectivity of 𝐺, denoted by 𝜆(𝐺), is the minimum size of a disconnecting set. The connectivity and
the edge–connectivity are two of the most important parameters to measure the reliability of networks. It is
well known that 𝜅(𝐺) ≤ 𝜆(𝐺) ≤ 𝛿(𝐺) for any graph 𝐺. Harary [16] introduced the conditional connectivity
and the conditional edge-connectivity by imposing some conditions on each component of the resulting graph.
Motivated by this study, many researchers have studied various types of the conditional connectivity on several
graph classes. The super–connectivity and super edge–connectivity are introduced in [2, 10] and have been
studied extensively for several graph classes, such as circulant graphs [3], hypercubes [14, 15, 25, 26], split-star
networks [17], generalized Petersen graphs [4], Kneser graphs [5, 6], line graphs [24].

A vertex-cut 𝑆 ⊂ 𝑉 (𝐺) is called a super vertex-cut if the resulting graph 𝐺 − 𝑆 does not have an isolated
vertex, that is, each component of 𝐺 − 𝑆 has at least two vertices. The super–connectivity of 𝐺, denoted by
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Figure 1. The double generalized Petersen graphs 𝐷𝑃 (5, 2) and 𝐷𝑃 (8, 3). Note that the
vertices in {𝑥𝑖, 𝑦𝑖 | 𝑖 ∈ Z𝑛} are represented by black filled circles and the vertices in {𝑢𝑖, 𝑣𝑖 | 𝑖 ∈
Z𝑛} are represented by empty circles.

𝜅′(𝐺), is the size of a minimum super vertex-cut. If there is no super vertex-cut in 𝐺, then we write 𝜅′(𝐺) = +∞.
Analogously, a disconnecting set 𝐹 ⊂ 𝑉 (𝐺) is called a super edge-cut if the resulting graph 𝐺−𝐹 does not have
an isolated vertex, that is, each component of 𝐺 − 𝐹 has at least two vertices. The super edge-connectivity of
𝐺, denoted by 𝜆′(𝐺), is the size of a minimum super edge-cut. If there is no super edge-cut in 𝐺, then we write
𝜆′(𝐺) = +∞.

If every minimum vertex-cut (resp. disconnecting set) isolates a vertex, then 𝐺 is super–connected (resp.
super edge-connected). It is clear that if 𝐺 is super–connected, then 𝜅′(𝐺) > 𝜅(𝐺), otherwise 𝜅′(𝐺) = 𝜅(𝐺).
Similarly, if 𝐺 is super edge-connected, then 𝜆′(𝐺) > 𝜆(𝐺), otherwise 𝜆′(𝐺) = 𝜆(𝐺). Thus, it is a natural
question to ask the super–connectivity (resp. super edge-connectivity) of 𝐺 if it is known to be super–connected
(resp. super edge-connected).

The class of generalized Petersen graphs, introduced by Coxeter [7] in 1950 and named by Watkins [23] in
1969, is a natural generalization of the well-known Petersen graph. Given an integer 𝑛 ≥ 3 and 𝑘 ∈ Z𝑛 − {0},
2 ≤ 2𝑘 < 𝑛, the generalized Petersen graph 𝐺𝑃 (𝑛, 𝑘) is defined to have the vertex set {𝑢𝑖, 𝑣𝑖|𝑖 ∈ Z𝑛} and the
edge set 𝑂 ∪ 𝐼 ∪ 𝑆, where

𝑂 = {{𝑢𝑖, 𝑢𝑖+1} | 𝑖 ∈ Z𝑛} (the outer edges)
𝐼 = {{𝑣𝑖, 𝑣𝑖+𝑘} | 𝑖 ∈ Z𝑛} (the inner edges)
𝑆 = {{𝑢𝑖, 𝑣𝑖} | 𝑖 ∈ Z𝑛} (the spokes)

The generalized Petersen graph 𝐺𝑃 (𝑛, 𝑘) has been investigated thoroughly in literature [1, 9, 12,13,22]
In [28], Zhou and Feng defined the double generalized Petersen graphs to classify cubic vertex-transitive

non-Cayley graphs of order 8𝑝, for any prime 𝑝. Given an integer 𝑛 ≥ 3 and 𝑘 ∈ Z𝑛 − {0}, 2 ≤ 2𝑘 < 𝑛, the
double generalized Petersen graph 𝐷𝑃 (𝑛, 𝑘) is defined to have the vertex set {𝑥𝑖, 𝑦𝑖, 𝑢𝑖, 𝑣𝑖 | 𝑖 ∈ Z𝑛} and the edge
set 𝑂 ∪ 𝐼 ∪ 𝑆, where

𝑂 = {{𝑥𝑖, 𝑥𝑖+1}, {𝑦𝑖, 𝑦𝑖+1} | 𝑖 ∈ Z𝑛} (the outer edges)
𝐼 = {{𝑢𝑖, 𝑣𝑖+𝑘}, {𝑣𝑖, 𝑢𝑖+𝑘} | 𝑖 ∈ Z𝑛} (the inner edges)
𝑆 = {{𝑥𝑖, 𝑢𝑖}, {𝑦𝑖, 𝑣𝑖} | 𝑖 ∈ Z𝑛} (the spokes).

Note that 𝐷𝑃 (𝑛, 𝑘) is defined by modifying the generalized Petersen graph construction such that the sub-
graph induced by the outer edges is a union of two disjoint n-cycles (See Fig. 1 for 𝐷𝑃 (5, 2) and 𝐷𝑃 (8, 3)). Due
to its interesting properties, the class of double generalized Petersen graphs has received increasing attention
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in recent years. In [29], all vertex-transitive graphs and all non-Cayley vertex-transitive graphs are determined
among this class. Later, both Sakamoto [20] and Wang [21] proved that all 𝐷𝑃 (𝑛, 𝑘) graphs are Hamiltonian.
In [8], the determining number of this class is determined by Das [8]. Recently, the canonical double covers [19]
and the Hamilton laceability [18] of this class are investigated.

In this paper we focus our attention on the reliability of double generalized Petersen graphs. We determine
the super–connectivity of 𝐷𝑃 (𝑛, 𝑘) when 𝑛 ≥ 4, 𝑘 ≥ 1 and 𝑛 ̸= 2𝑘. We also obtain the super–edge–connectivity
of 𝐷𝑃 (𝑛, 𝑘) as a conclusion of the main result.

2. The super–connectiviy of DP(n,k)

Let the vertex set 𝑉 (𝐷𝑃 (𝑛, 𝑘)) have a partition 𝑉 (𝐷𝑃 (𝑛, 𝑘)) = 𝑋 ∪ 𝑌 ∪ 𝑈 ∪ 𝑉 , where 𝑋 = {𝑥𝑖 | 𝑖 ∈ Z𝑛},
𝑌 = {𝑦𝑖 | 𝑖 ∈ Z𝑛}, 𝑈 = {𝑢𝑖 | 𝑖 ∈ Z𝑛} and 𝑉 = {𝑣𝑖 | 𝑖 ∈ Z𝑛}.

We first prove the following useful lemma to show that deleting at most three vertices from 𝑋 ∪ 𝑌 or from
𝑈 ∪ 𝑉 does not disconnect the graph.

Lemma 2.1. Let 𝒢 = 𝐷𝑃 (𝑛, 𝑘) for 𝑛 ≥ 4, 𝑘 ≥ 1 and 𝑛 ̸= 2𝑘. Let 𝑆 ⊂ 𝑉 (𝒢) such that |𝑆| ≤ 3. If 𝑆 is contained
either in 𝑋 ∪ 𝑌 or in 𝑈 ∪ 𝑉 , then 𝒢 − 𝑆 is connected.

Proof. Let 𝑆 ⊂ 𝑉 (𝒢), where 𝑟 = |𝑆| ≤ 3. Suppose to the contrary that 𝑆 is a vertex–cut such that 𝑆 ⊂ 𝑋 ∪ 𝑌
or 𝑆 ⊂ 𝑈 ∪ 𝑉 .

It is easy to check that 𝒢 does not have a cut–vertex, that is, 𝐺 does not have a vertex–cut of size 1. Thus,
𝑟 ≥ 2. There are two cases to consider:

Case 1. We first let 𝑆 be contained in 𝑋 ∪ 𝑌 . Then there are two subcases to consider.
(𝑖) Let 𝑆 be either in 𝑋 or in 𝑌 , without loss of generality, say in 𝑋. Thus, the cycle induced by 𝑌 is intact.

Note that each vertex of 𝑈 has two neighbours in 𝑉 and each vertex of 𝑉 has a neighbour in 𝑌 in 𝒢 −𝑆.
It is easy to see that each vertex 𝑥𝑖 ∈ 𝑋 − 𝑆 is adjacent to 𝑢𝑖 ∈ 𝑈 in 𝒢 − 𝑆. Hence, the remaining graph
𝒢 − 𝑆 is connected, a contradiction.

(𝑖𝑖) Let 𝑆 ∩ 𝑋 ̸= ∅ and 𝑆 ∩ 𝑌 ̸= ∅. Since 𝑟 is either 2 or 3 by the assumption, at least one of 𝑋 and 𝑌
contains exactly one vertex from 𝑆. Without loss of generality, assume that 𝑆 ∩𝑋 = {𝑥𝛼}. The vertices
in 𝑋 − {𝑥𝛼} lies on a path of length 𝑛 − 1 and each 𝑢𝑖 ∈ 𝑈 − {𝑢𝛼} is adjacent to 𝑥𝑖 ∈ 𝑋 − {𝑥𝛼} in
𝒢 − 𝑆. Thus, all the vertices of (𝑋 − {𝑥𝛼}) ∪ (𝑈 − {𝑢𝛼}) are in the same component of 𝒢 − 𝑆, say 𝐶.
Note that each vertex of 𝑉 has at least one neighbour in 𝑈 − {𝑢𝛼}, that is, each vertex of 𝑉 has a
neighbour in 𝐶. This means that the vertex set 𝑉 is contained in 𝐶. Note also that each vertex of 𝑌 −𝑆
has a neighbour in 𝑉 , that is, each vertex of 𝑌 − 𝑆 has a neighbour in 𝐶. Hence, all the vertices of
(𝑋 − {𝑥𝛼}) ∪ (𝑈 − {𝑢𝛼}) ∪ 𝑉 ∪ (𝑌 − 𝑆) are in the same component, 𝐶. We now consider the vertex 𝑢𝛼.
Since 𝑢𝛼 has two neighbours in 𝑉 , the resulting graph 𝒢 − 𝑆 is connected, a contradiction.

Case 2. We now let 𝑆 be contained in 𝑈 ∪ 𝑉 . Then there are two cases to consider:
(𝑖) Let 𝑆 be either in 𝑈 or in 𝑉 , without loss of generality, say in 𝑈 . The cycles induced by 𝑋 and 𝑌 are

intact. Since each 𝑣𝑖 ∈ 𝑉 is adjacent to 𝑦𝑖 ∈ 𝑌 in 𝒢 − 𝑆, all the vertices of 𝑉 ∪ 𝑌 are in the same
component of 𝒢 − 𝑆. Note also that each 𝑢𝑖 ∈ 𝑈 − 𝑆 is adjacent to 𝑥𝑖 ∈ 𝑋 in 𝒢 − 𝑆, thus all the vertices
of (𝑈 − 𝑆) ∪𝑋 are in the same component of 𝒢 − 𝑆. Since |𝑈 | = 𝑛 ≥ 4 and 𝑟 ≤ 3 by the assumption,
we have |𝑈 − 𝑆| ≥ 1. Each 𝑢𝑖 ∈ 𝑈 − 𝑆 has two neighbours in 𝑉 in 𝒢 − 𝑆. That is, 𝒢 − 𝑆 is connected, a
contradiction.

(𝑖𝑖) Let 𝑆∩𝑈 ̸= ∅ and 𝑆∩𝑉 ̸= ∅. Since 𝑟 is either 2 or 3 by the assumption, at least one of 𝑈 and 𝑉 contains
exactly one vertex from 𝑆. Without loss of generality, say 𝑉 . This subcase can be proved similarly as
in the previous case, due to the fact that each 𝑢𝑖 ∈ 𝑈 − 𝑆 has at least one neighbour in 𝑉 − 𝑆 in the
resulting graph 𝒢 − 𝑆.

�
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Theorem 2.2. Let 𝑛 ≥ 3, 𝑘 ≥ 1 and 𝑛 ̸= 2𝑘. The connectivity of the graph 𝐷𝑃 (𝑛, 𝑘) is three.

Proof. Let 𝒢 = 𝐷𝑃 (𝑛, 𝑘). The connectivity 𝜅(𝒢) ≤ 𝛿(𝒢) = 3. Since 𝒢 does not have a cut–vertex, we have
𝜅(𝒢) ≥ 2. In order to finish the proof of the theorem, it is enough to show that there is no vertex–cut of size
two. If 𝑛 = 3, then there is exactly one case to consider, that is, 𝑘 = 1. It is easy to check that the size of a
minimum vertex–cut is three for 𝐷𝑃 (3, 1). Thus, in the rest of the proof, we consider the case when 𝑛 ≥ 4.

Suppose to the contrary that 𝑆 is a vertex–cut of 𝒢 such that |𝑆| = 2. Note that 𝑆 cannot be contained in
𝑋 ∪ 𝑌 or 𝑈 ∪ 𝑉 , by Lemma 2.1. Thus, |𝑆 ∩ (𝑋 ∪ 𝑌 )| = 1 and |𝑆 ∩ (𝑈 ∪ 𝑉 )| = 1.

Since |𝑆 ∩ (𝑋 ∪ 𝑌 )| = 1, we have either |𝑆 ∩𝑋| = 1 or |𝑆 ∩ 𝑌 | = 1. Without loss of generality, assume that
|𝑆 ∩𝑋| = 1. We need to consider the following two cases.

Case 1. Let |𝑈 ∩ 𝑆| = 1. First note that the cycle induced by 𝑌 is intact and each vertex of 𝑉 is connected
to this outer cycle by a spoke. Note also that every remaining vertex of 𝑈 − 𝑆 is adjacent to two
vertices of 𝑉 . Thus, all the vertices in 𝑌 ∪ 𝑉 ∪ (𝑈 − 𝑆) are in the same component of 𝒢 − 𝑆, say 𝐶.
Let 𝑋 ∩𝑆 = {𝑥𝛼} and 𝑈 ∩𝑆 = {𝑢𝛽}. If 𝛼 = 𝛽, then each vertex 𝑥𝑖 ∈ 𝑋−𝑆 is adjacent to 𝑢𝑖 ∈ 𝑈 −𝑆.
Since the vertices of 𝑈 −𝑆 are in 𝐶, the resulting graph 𝒢 −𝑆 is connected, a contradiction. If 𝛼 ̸= 𝛽,
then each vertex 𝑥𝑖 ∈ 𝑋 − {𝑥𝛼, 𝑥𝛽} is adjacent to 𝑢𝑖 ∈ 𝑈 − {𝑢𝛼, 𝑢𝛽}. We only need to consider 𝑥𝛽 .
Note that at least one of 𝑥𝛽−1 and 𝑥𝛽+1 is in 𝑋 − 𝑆. Thus, there is a path between 𝑥𝛽 and a vertex
from 𝐶 in 𝒢 − 𝑆. That is, 𝒢 − 𝑆 is connected, a contradiction.

Case 2. Let |𝑉 ∩ 𝑆| = 1. First note that the cycle induced by 𝑌 is intact and each remaining vertex in 𝑉 − 𝑆
is connected to this cycle by a spoke. Since |𝑉 ∩ 𝑆| = 1, each vertex of 𝑈 has at least one neighbour
in 𝑉 − 𝑆. Since each remaining vertex 𝑥𝑖 ∈ 𝑋 − 𝑆 is adjacent to 𝑢𝑖 ∈ 𝑈 , it is easy to see that 𝒢 − 𝑆
is connected, a contradiction.

The case when |𝑆 ∩ 𝑌 | = 1 can be proved similarly, thus it is omitted. �

In Theorem 2.3, we prove that the super–connectivity of 𝒢 = 𝐷𝑃 (𝑛, 𝑘) is four when 𝑛 ≥ 4, 𝑘 ≥ 1 and 𝑛 ̸= 2𝑘.
We first show that if 𝑆 is a vertex set of order three, then 𝒢 − 𝑆 is either connected or contains an isolated
vertex. In order to finish the proof, we present a super vertex–cut of order four.

Note that the theorem is not true when 𝑛 = 3. If 𝑆 = 𝑈 , then the remaining graph 𝒢 − 𝑆 is disconnected
and does not have an isolated vertex. Thus, when 𝑛 = 3, there exists a super vertex–cut of order 𝜅, that is,
𝐷𝑃 (𝑛, 𝑘) is not super–𝜅 for 𝑛 = 3.

Theorem 2.3. Let 𝑛 ≥ 4, 𝑘 ≥ 1 and 𝑛 ̸= 2𝑘. The super–connectivity of the graph 𝐷𝑃 (𝑛, 𝑘) is four.

Proof. For any graph 𝐺, we know that 𝜅′(𝐺) ≥ 𝜅(𝐺). Letting 𝒢 = 𝐷𝑃 (𝑛, 𝑘), we have 𝜅′(𝒢) ≥ 𝜅(𝒢) = 3.
We first suppose that 𝑆 is a super vertex–cut of order three, that is, 𝒢 − 𝑆 is disconnected and does not

have an isolated vertex. By Lemma 2.1, the vertex–cut 𝑆 can not be contained in 𝑋 ∪ 𝑌 or in 𝑈 ∪ 𝑉 . Thus,
𝑆 ∩ (𝑋 ∪ 𝑌 ) ̸= ∅ and 𝑆 ∩ (𝑈 ∪ 𝑉 ) ̸= ∅, that is, 𝑆 contains at least one inner vertex and one outer vertex. There
are two cases to consider:

Case 1. Let |𝑆 ∩ (𝑋 ∪ 𝑌 )| = 1 and |𝑆 ∩ (𝑈 ∪ 𝑉 )| = 2. Without loss of generality, assume that |𝑆 ∩𝑋| = 1 and
thus |𝑆 ∩𝑌 | = 0. Let 𝑆 ∩𝑋 = {𝑥𝛼}. Note that the cycle induced by 𝑌 is intact and 𝑋−{𝑥𝛼} induces
a path 𝒫 of length 𝑛− 1. We need to consider the following three subcases:

(𝑖) Let |𝑆 ∩ 𝑈 | = 2 where 𝑆 ∩ 𝑈 = {𝑢𝛽 , 𝑢𝛾}.
Each vertex 𝑣𝑖 ∈ 𝑉 is adjacent to 𝑦𝑖 ∈ 𝑌 and each vertex 𝑢𝑖 ∈ 𝑈 − 𝑆 is adjacent to two vertices in 𝑉 .
Thus, all the vertices in 𝑌 ∪ 𝑉 ∪ (𝑈 − 𝑆) are in the same component of 𝒢 − 𝑆, say 𝐶. Since 𝑛 ≥ 4, there
exists a vertex 𝑥𝜃 ∈ 𝑋 − 𝑆 lying on the path 𝒫 such that 𝜃 /∈ {𝛼, 𝛽, 𝛾}. Note that 𝑥𝜃 is adjacent to
𝑢𝜃 ∈ 𝐶. Thus, the remaining graph 𝒢 − 𝑆 is connected, a contradiction.
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(𝑖𝑖) Let |𝑆 ∩ 𝑉 | = 2 where 𝑆 ∩ 𝑉 = {𝑣𝛽 , 𝑣𝛾}.
Note that each vertex 𝑣𝑖 ∈ 𝑉 − {𝑣𝛽 , 𝑣𝛾} is adjacent to 𝑦𝑖 ∈ 𝑌 . Thus, all the vertices in 𝑌 ∪ (𝑉 − 𝑆) are
in the same component of 𝒢 − 𝑆, say 𝐶.
We first suppose that 𝑁𝒢(𝑣𝛽)∩𝑁𝒢(𝑣𝛾) = ∅. Each vertex in 𝑈 has at least one neighbour in 𝑉 −𝑆. Thus,
the vertices of 𝑈 are also in 𝐶. Since any vertex 𝑥𝑖 ∈ 𝑋 − {𝑥𝛼} is adjacent to 𝑢𝑖 ∈ 𝑈 , the remaining
graph 𝒢 − 𝑆 is connected, a contradiction.
We then suppose that 𝑁𝒢(𝑣𝛽)∩𝑁𝒢(𝑣𝛾) = {𝑢𝜃}. If 𝛼 = 𝜃, then the resulting graph 𝒢 − 𝑆 has an isolated
vertex, a contradiction. If 𝛼 ̸= 𝜃, then we know that each vertex 𝑢𝑖 ∈ 𝑈 − {𝑢𝜃} is adjacent to a vertex
from 𝑉 −𝑆. Thus, all the vertices in 𝑌 ∪ (𝑈 −{𝑢𝜃})∪ (𝑉 −𝑆) are in the same component of 𝒢−𝑆, say 𝐶.
Note that 𝑢𝜃 is adjacent to a vertex of 𝒫, namely 𝑥𝜃. On the other hand, each vertex 𝑥𝑖 ∈ 𝑋 − {𝑥𝛼, 𝑥𝜃}
is adjacent to 𝑢𝑖 in 𝒢 − 𝑆. Thus, the remaining graph 𝒢 − 𝑆 is connected, a contradiction.

(𝑖𝑖𝑖) Let |𝑆 ∩ 𝑈 | = 1 and |𝑆 ∩ 𝑉 | = 1, where 𝑆 ∩ 𝑈 = {𝑢𝛽} and 𝑆 ∩ 𝑉 = {𝑣𝛾}.
Each vertex 𝑣𝑖 ∈ 𝑉 −𝑆 is adjacent to 𝑦𝑖 ∈ 𝑌 . Moreover, each vertex 𝑢𝑖 ∈ 𝑈 −{𝑢𝛽} is adjacent to at least
one vertex from 𝑉 − {𝑣𝛾}. Thus, all the vertices in 𝑌 ∪ (𝑉 − 𝑆)∪ (𝑈 − 𝑆) are in the same component of
𝒢−𝑆, say 𝐶. Since 𝑛 ≥ 4, there exists a vertex 𝑥𝜃 ∈ 𝑋−𝑆 lying on the path 𝒫 such that 𝜃 ∈ Z𝑛−{𝛼, 𝛽}.
Note that 𝑥𝜃 is adjacent to 𝑢𝜃 ∈ 𝐶. Thus, the remaining graph 𝒢 − 𝑆 is connected, a contradiction.

The case when |𝑆 ∩𝑋| = 0 and |𝑆 ∩ 𝑌 | = 1 can be proved similarly, thus it is omitted.
Case 2. Let |𝑆 ∩ (𝑋 ∪ 𝑌 )| = 2 and |𝑆 ∩ (𝑈 ∪ 𝑉 )| = 1. Without loss of generality, assume that |𝑆 ∩𝑈 | = 1 and

|𝑆 ∩ 𝑉 | = 0. Let 𝑆 ∩ 𝑈 = {𝑢𝛾}. We need to consider the following three subcases:
(𝑖) Let |𝑆 ∩𝑋| = 2, where 𝑆 ∩𝑋 = {𝑥𝛼, 𝑥𝛽}. Note that the cycle induced by 𝑌 is intact. Since 𝑆 ∩ 𝑉 = ∅,

the vertices in 𝑌 ∪ 𝑉 are all in the same component of 𝒢 − 𝑆, say 𝐶. Each vertex of 𝑈 − 𝑆 is adjacent
to two vertices in 𝑉 , thus the vertices in 𝑈 − 𝑆 are also in 𝐶.
If 𝛾 ∈ {𝛼, 𝛽}, then note that each vertex 𝑥𝑖 ∈ 𝑋 − 𝑆 is adjacent to 𝑢𝑖 in 𝒢 − 𝑆. Thus, the remaining
graph 𝒢 − 𝑆 is connected, a contradiction.
If 𝛾 /∈ {𝛼, 𝛽}, then we first consider the vertex 𝑥𝛾 . If 𝑁𝒢(𝑥𝛾) ∩ 𝑋 = {𝑥𝛼, 𝑥𝛽}, then 𝑥𝛾 is an isolated
vertex in the remaining graph 𝒢 − 𝑆, a contradiction. Otherwise, if 𝑁𝒢(𝑥𝛾) ∩𝑋 ̸= {𝑥𝛼, 𝑥𝛽}, then note
that at least one of 𝑥𝛾−1 and 𝑥𝛾+1 is in 𝑋 − 𝑆. Thus, there is a path between 𝑥𝛾 and a vertex from 𝐶
in 𝒢 − 𝑆. That is, 𝑥𝛾 ∈ 𝐶. Note also that each vertex 𝑥𝑖 ∈ 𝑋 − {𝑥𝛼, 𝑥𝛽 , 𝑥𝛾} is adjacent to 𝑢𝑖 in 𝒢 − 𝑆.
Thus, 𝒢 − 𝑆 is connected, a contradiction.

(𝑖𝑖) Let |𝑆 ∩ 𝑌 | = 2, where 𝑆 ∩ 𝑌 = {𝑦𝛼, 𝑦𝛽}.
Note that the cycle induced by 𝑋 is intact. Each vertex of 𝑢𝑖 ∈ 𝑈 − 𝑆 is adjacent to 𝑥𝑖 ∈ 𝑋. Note that
each vertex in 𝑉 has at least one neighbour in 𝑈 − 𝑆. Thus, the vertices in 𝑋 ∪ (𝑈 − 𝑆) ∪ 𝑉 are all in
the same component of 𝒢 − 𝑆, say 𝐶. Note also that each vertex in 𝑌 − {𝑦𝛼, 𝑦𝛽} is adjacent to a vertex
in 𝑉 . Thus, the remaining graph 𝒢 − 𝑆 is connected, a contradiction.

(𝑖𝑖𝑖) Let |𝑆∩𝑋| = 1 and |𝑆∩𝑌 | = 1, where 𝑆∩𝑋 = {𝑥𝛼} and 𝑆∩𝑌 = {𝑦𝛽}. The set 𝑌 −𝑆 induces a path of
length 𝑛− 1, say 𝒫 and each vertex 𝑣𝑖 ∈ 𝑉 − {𝑣𝛽} is adjacent to a vertex 𝑦𝑖 ∈ 𝑌 − {𝑦𝛽}. Note that each
vertex in 𝑈 − 𝑆 is adjacent to at least one vertex in 𝑉 − {𝑣𝛽}. The vertex 𝑣𝛽 has at least one neighbour
in 𝑈 − 𝑆, say 𝑢𝜃, which is adjacent to a vertex in 𝑉 − {𝑣𝛽}. Thus, the vertices in (𝑌 − 𝑆)∪ 𝑉 ∪ (𝑈 − 𝑆)
are in the same component of 𝒢 − 𝑆, say 𝐶. Now we only need to consider the vertices in 𝑋 − 𝑆. If
𝛼 = 𝛾, then each vertex 𝑥𝑖 ∈ 𝑋 − 𝑆 is adjacent to 𝑢𝑖 ∈ 𝑈 − 𝑆 and thus the remaining graph 𝒢 − 𝑆 is
connected, a contradiction. If 𝛼 ̸= 𝛾, then each vertex 𝑥𝑖 ∈ 𝑋 − 𝑆 is adjacent to 𝑢𝑖 ∈ 𝑈 − 𝑆 except 𝑥𝛾 .
Since |𝑆 ∩𝑋| = 1, at least one of 𝑥𝛾−1 and 𝑥𝛾+1 is in 𝒢 − 𝑆. Thus, 𝒢 − 𝑆 is connected, a contradiction.

The case when |𝑆 ∩ 𝑈 | = 0 and |𝑆 ∩ 𝑉 | = 1 can be proved similarly, thus it is omitted.
Hence it is not enough to delete three vertices from 𝒢 to disconnect it without isolating a vertex, that is,

𝜅′(𝒢) > 3. Consider the endvertices of an edge 𝑒 ∈ 𝐸(𝒢), say 𝑒 = 𝑥0𝑥1. The set 𝑁𝒢(𝑥0) ∪𝑁𝒢(𝑥1)− {𝑥0, 𝑥1} =
{𝑥2, 𝑥𝑛−1, 𝑢0, 𝑢1} forms a super vertex-cut of order four in 𝒢. Thus, 𝜅′(𝒢) ≤ 4 and this finishes the proof. �

By Theorems 2.2 and 2.3, the graph 𝐷𝑃 (𝑛, 𝑘) is obviously super–connected. In 2010, Zhou and Feng [27]
proved that the only super–connected but not super-edge-connected graph with minimum degree 3 is the Ladder
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graph of order 6. Thus, 𝐷𝑃 (𝑛, 𝑘) is super–edge–connected. Since the connectivity and edge-connectivity are
equal for a cubic graph, we have 𝜆′(𝐷𝑃 (𝑛, 𝑘)) > 𝜆(𝐷𝑃 (𝑛, 𝑘)) = 3. On the other hand, the minimum edge
degree of a graph 𝐺 is defined as 𝜉(𝐺) = 𝑚𝑖𝑛{𝜉𝐺(𝑒) | 𝑒 ∈ 𝐸(𝐺)}, where 𝜉𝐺(𝑒) = deg𝐺(𝑥) + deg𝐺(𝑦) − 2 for
𝑒 = 𝑥𝑦 ∈ 𝐸(𝐺). In [11], it is proved that if a connected graph 𝐺 of order at least 4 is not a star 𝐾1,𝑛−1, then
𝜆′(𝐺) ≤ 𝜉(𝐺). Thus, the corollary below follows from our main result.

Corollary 2.4. Let 𝑛 ≥ 4, 𝑘 ≥ 1 and 𝑛 ̸= 2𝑘. The super–edge connectivity of the graph 𝐷𝑃 (𝑛, 𝑘) is four.

Acknowledgements. This work was supported by the Ege University Scientific Research Projects Coordination Unit under
the project FKB-2021-22840.

References

[1] B. Alspach and J. Liu, On the hamilton connectivity of generalized petersen graphs. Discrete Math. 309 (2009) 5461–
5473.

[2] F.T. Boesch, Synthesis of reliable networks - a survey. IEEE Trans. Reliab. 35 (1986) 240–246.

[3] F. Boesch and R. Tindell, Circulants and their connectivities. J. Graph Theory 8 (1984) 487–499.

[4] G. Boruzanlı Ekinci and J.B. Gauci, On the reliability of generalized petersen graphs. Discrete Appl. Math. 252 (2019)
2–9.

[5] G. Boruzanlı Ekinci and J.B. Gauci, The super–connectivity of Kneser graphs. Discuss. Math. Graph Theory 39 (2019).

[6] Y. Chen, Y. Lin and W. Yan, The super-connectivity of kneser graph kg (n, 3). Preprint arXiv:2103.10041 (2021).

[7] H.S.M. Coxeter, Self-dual configurations and regular graphs. Bull. Am. Math. Soc. 56 (1950) 413–455.

[8] A. Das, Determining number of generalized and double generalized petersen graph, in Conference on Algorithms and Discrete
Applied Mathematics, Springer (2020) 131–140.

[9] B.J. Ebrahimi, N. Jahanbakht and E.S. Mahmoodian, Vertex domination of generalized petersen graphs. Discrete Math. 309
(2009) 4355–4361.

[10] A.-H. Esfahanian, Generalized measures of fault tolerance with application to n-cube networks. IEEE Trans. Comput. 38
(1989) 1586–1591.

[11] A.-H. Esfahanian and S.L. Hakimi, On computing a conditional edge-connectivity of a graph. Inf. Process. Lett. 27 (1988)
195–199.

[12] D. Ferrero and S. Hanusch, Component connectivity of generalized petersen graphs. Int. J. Comput. Math. 91 (2014) 1940–
1963.

[13] L. Gao, X. Xu, J. Wang, D. Zhu and Y. Yang, The decycling number of generalized petersen graphs. Discrete Appl. Math.
181 (2015) 297–300.

[14] M. Ghasemi, Some results about the reliability of folded hypercubes. Bull. Malaysian Math. Sci. Soc. 44 (2021) 1093–
1099.

[15] L. Guo, G. Su, W. Lin, and J. Chen, Fault tolerance of locally twisted cubes. Appl. Math. Comput. 334 (2018)
401–406.

[16] F. Harary, Conditional connectivity. Networks 13 (1983) 347–357.

[17] L. Lin, L. Xu, S. Zhou and S.-Y. Hsieh, The extra, restricted connectivity and conditional diagnosability of split-star networks.
IEEE Trans. Parallel Distrib. Syst. 27 (2016) 533–545.

[18] H. Qiao and J. Meng, On the hamilton laceability of double generalized petersen graphs. Discrete Math. 344 (2021) 112478.

[19] Y.-L. Qin, B. Xia and S. Zhou, Canonical double covers of generalized petersen graphs, and double generalized petersen graphs.
J. Graph Theory 97 (2021) 70–81.

[20] Y. Sakamoto, Hamilton cycles in double generalized petersen graphs. Preprint arXiv:1610.02212 (2016).

[21] X. Wang, All double generalized petersen graphs are hamiltonian. Discrete Math. 340 (2017) 3016–3019.

[22] J.-J. Wang and L.-H. Hsu, On the spanning connectivity of the generalized petersen graphs p (n, 3). Discrete Math. 341 (2018)
672–690.

[23] M.E. Watkins, A theorem on tait colorings with an application to the generalized petersen graphs. J. Comb. Theory 6 (1969)
152–164.
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