
RAIRO-Oper. Res. 56 (2022) 3777–3788 RAIRO Operations Research
https://doi.org/10.1051/ro/2022174 www.rairo-ro.org

A FIXED-PARAMETER ALGORITHM FOR A UNIT-EXECUTION-TIME
UNIT-COMMUNICATION-TIME TASKS SCHEDULING PROBLEM WITH A

LIMITED NUMBER OF IDENTICAL PROCESSORS

Alix Munier Kordon* and Ning Tang

Abstract. This paper considers the minimization of the maximum lateness for a set of dependent
tasks with unit duration, unit communication delays release times and due dates. The number of
processors is limited, and each task requires one processor for its execution. A time window built
from an upper bound of the minimum maximum lateness is associated to each task. The parameter
considered is the pathwidth of the associated interval graph. A fixed-parameter algorithm based on a
dynamic programming approach is developed to solve this optimization problem. This is, as far as we
know, the first fixed-parameter algorithm for a scheduling problem with communication delays and a
limited number of processors.

Mathematics Subject Classification. 90B35, 68Q27.

Received November 16, 2021. Accepted October 4, 2022.

1. Introduction

Scheduling problems with communication delays have been intensively studied since 1990s because of the
importance of practical applications. Several surveys are dedicated to this class of problems known to be mostly
NP-hard [4, 9, 11,24].

This paper considers a scheduling problem with communication delays defined as follows: a set 𝒯 =
{1, 2, . . . , 𝑛} of 𝑛 tasks is to be executed on 𝑚 identical machines (processors). Each machine can process
at most one task at a time and each task is to be processed once. Tasks have a unit execution time and are
partially ordered by a precedence graph 𝒢 = (𝒯 ,𝒜). Let 𝜎 be a feasible schedule; for any task 𝑖 ∈ 𝒯 , 𝑡𝜎𝑖 denotes
the starting time of the task 𝑖 following 𝜎. For any arc (𝑖, 𝑗) ∈ 𝒜, the task 𝑖 must finish its execution before
the task 𝑗 starts executing, i.e. 𝑡𝜎𝑖 + 1 ≤ 𝑡𝜎𝑗 . If the tasks 𝑖 and 𝑗 are assigned to different processors, a unit
communication delay must be added after the execution of the task 𝑖 to send data to the task 𝑗, thus 𝑡𝜎𝑖 +2 ≤ 𝑡𝜎𝑗 .
Moreover, we assume that release dates 𝑟𝑖 ∈ N and due dates 𝑑𝑖 ∈ N are given. Then, the inequality 𝑟𝑖 ≤ 𝑡𝜎𝑖
holds for each task 𝑖 ∈ 𝒯 .

The maximum lateness of a feasible schedule 𝜎 is defined as 𝐿(𝜎) = max𝑖∈𝒯 (𝑡𝜎𝑖 + 1 − 𝑑𝑖); the minimiza-
tion of the maximum lateness is denoted by 𝐿max. The problem considered in this paper is designated by
𝑃 |𝑟𝑖, prec, 𝑝𝑖 = 1, 𝑐𝑖𝑗 = 1|𝐿max using standard notations [13]. The minimization of the maximum lateness

Keywords. Scheduling, communication delays, minimization of the maximum lateness, fixed-parameter algorithm.

Sorbonne Université, CNRS, LIP6, F-75005 Paris, France.
*Corresponding author: Alix.Munier@lip6.fr

c○ The authors. Published by EDP Sciences, ROADEF, SMAI 2022

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1051/ro/2022174
https://www.rairo-ro.org
https://orcid.org/0000-0002-2170-6366
mailto:Alix.Munier@lip6.fr
https://creativecommons.org/licenses/by/4.0

3778 A. MUNIER KORDON AND N. TANG

includes the minimization of the makespan 𝐶max; Indeed, the minimization of the maximum lateness for an
instance with 𝑑𝑖 = 0 for each task 𝑖 ∈ 𝒯 corresponds to minimize the makespan.

Rayward-Smith [18] was the first author to study the problem 𝑃 |prec, 𝑝𝑖 = 1, 𝑐𝑖𝑗 = 1|𝐶max and to establish
its NP-hardness. Later, Hoogeveen et al. [15] proved that the decision problem 𝑃 |prec, 𝑝𝑖 = 1, 𝑐𝑖𝑗 = 1|𝐶max ≤ 3
is polynomially solvable while 𝑃 |prec, 𝑝𝑖 = 1, 𝑐𝑖𝑗 = 1|𝐶max ≤ 4 is NP-complete.

Several authors developed algorithms for solving scheduling problems with similar constraints. Velt-
man provided in [23] an exact dynamic programming algorithm of time complexity 𝒪(2𝑤(𝐺) × 𝑛2𝑤(𝐺)) for
𝑃 |prec, 𝑝𝑖 = 1, 𝑐𝑖𝑗 = 1|𝐶max where 𝑤(𝐺) is the width of the precedence graph 𝐺, i.e. the size of the largest
antichain. Zinder et al. [26] have developed and tested an exact branch-and-bound algorithm for the problem
𝑃 |prec, 𝑝𝑖 = 1, 𝑐𝑖𝑗 = 1|𝐿max. For more general problems, several authors considered integer linear programming
formulations (ILP in short). Davidović et al. [6] tackled scheduling problems for a fixed network of processors;
communications are proportional to both the amount of exchanged data between pairs of dependent tasks and
the distance between processors in the multiprocessor architecture. These authors developed two formulations
and compared them experimentally. Later, Ait El Cadi et al. [1] improved this approach by reducing the size of
the linear program (number of variables and constraints) and adding cuts; they compared positively to the pre-
vious works. Venugopalan and Sinnen [25] provided a new ILP formulation for 𝑃 |prec, 𝑐𝑖𝑗 |𝐶max and comparisons
with Davidović et al. [6] for several classes of graphs and fixed number of processors.

Fixed-parameter algorithms for NP-complete problems allow to obtain polynomial-time algorithms when
some parameters are fixed [5, 8]. More precisely, a fixed-parameter algorithm solves any instance of a problem
of size 𝑛 in time 𝑓(𝑘) × poly(𝑛), where 𝑓 is allowed to be a computable superpolynomial function and 𝑘 the
associated parameter.

Mnich and van Bevern [16] surveyed recently main results on parameterized complexity for scheduling prob-
lems and identified 15 challenging open problems. For the scheduling problem with usual precedence constraints,
many researchers consider the width 𝑤(𝐺) of the precedence graph as a parameter, leading usually to nega-
tive results. Du et al. [10] proved that 𝑃2|chains|𝐶max is strongly NP-hard for unbounded width. Günther
et al. [14] proved that 𝑃2|chains, 𝑤(𝐺) ≤ 3|𝐶max is weakly NP-hard. Bodlaender and Fellows [3] proved that
𝑃 |prec, 𝑝𝑖 = 1|𝐶max is W[2]-hard parameterized by the width and the number of machines. More recently, van
Bevern et al. [22] proved that 𝑃2|prec, 𝑝𝑗 ∈ {1, 2}|𝐶max is W[2]-hard parameterized by the width 𝑤(𝐺).

Let us suppose that an upper bound 𝐿̄ of the maximum lateness is fixed. We develop in this paper a fixed-
parameter algorithm for 𝑃 |𝑟𝑖, prec, 𝑝𝑖 = 1, 𝑐𝑖𝑗 = 1|𝐿max in time complexity 𝒪(𝑛2 + 𝑛 × 𝑝𝑤(𝐿̄) × 23𝑝𝑤(𝐿̄)). Let
us consider the interval graph ℐ(𝐿̄) = (𝒯 , 𝐸(𝐿̄)) associated to the time windows (𝑟𝑖, 𝑑𝑖 + 𝐿̄), 𝑖 ∈ 𝒯 . An edge
𝑒 = (𝑖, 𝑗) ∈ 𝐸(𝐿̄) if the intersection (𝑟𝑖, 𝑑𝑖 + 𝐿̄) ∩ (𝑟𝑗 , 𝑑𝑗 + 𝐿̄) ̸= ∅. The parameter 𝑝𝑤(𝐿̄) is the pathwidth of
the interval graph ℐ(𝐿̄) [2]; It corresponds to the maximum number of intersecting time windows (𝑟𝑖, 𝑑𝑖 + 𝐿̄),
𝑖 ∈ 𝒯 minus 1. Our algorithm is as far as we know the first fixed-parameter algorithm for solving a scheduling
problem with communication delays and a bounded number of processors.

The pathwidth was identified recently by several authors as an important parameter for several classes of
scheduling problems. De Weerdt et al. [7] provided an exact fixed-parameter algorithm in the slack and the
pathwidth for a sequencing problem with rejection, set-up times and penalties. Munier Kordon [17] devel-
oped a fixed-parameter algorithm in the pathwidth for the basic scheduling problem 𝑃 |𝑟𝑖, prec, 𝑝𝑖 = 1|𝐶max

to handle both precedence constraints and resource limitations. A similar approach was developed by Tang
and Munier Kordon [21] who presented a fixed-parameter algorithm in the pathwidth in time complexity
𝒪(𝑛3 + 𝑛× 𝑝𝑤(𝐶)× 24𝑝𝑤(𝐶)) for the scheduling problem with communication delays and unlimited number of
processors 𝑃 |𝑟𝑖, prec, 𝑝𝑖 = 1, 𝑐𝑖𝑗 = 1|𝐶max. The value 𝐶 is here an upper bound of the minimum makespan. This
approach was extended in this paper by considering a more complex criteria, namely the maximum lateness,
and a limited number of parallel identical processors. Moreover, the structure of the algorithm was improved
to limit the enumeration to active schedules with a slightly better worst-case time complexity. A schedule 𝜎 is
active if there is not another feasible schedule 𝜎′ such that, for each task 𝑖 ∈ 𝒯 , 𝑡𝜎

′

𝑖 ≤ 𝑡𝜎𝑖 with at least one of
these inequalities is strict [19].

A FP ALGORITHM FOR A UET-UCT SCHEDULING PROBLEM 3779

This paper is organized as follows: Section 2 presents additional notations. In order to limit the combinatorial
explosion of the method, we identify a structural property of the set of tasks schedulable at each time instant
and a characterization of active schedules [19]. Our algorithm is presented in Section 3, and its correctness
established in Section 4. Section 5 is devoted to its complexity. Section 6 is our conclusion.

2. Problem definition and dominance properties

This section is devoted to some theoretical lemmas that will be considered for the correctness of our algorithm.
A small example is also provided. The scheduling problem considered is described in Section 2.1, while a small
example is presented in Section 2.2. Section 2.3 presents some important notations and a structural property of
feasible schedules. Lastly, Section 2.3 presents a dominance property of active schedules that will be considered
below.

2.1. Problem definition

For each task 𝑖 ∈ 𝒯 , let Γ+(𝑖) (resp. Γ−(𝑖)) be the set of direct successors (resp. predecessors) of 𝑖, i.e.
Γ+(𝑖) = {𝑗 ∈ 𝒯 , (𝑖, 𝑗) ∈ 𝒜} and Γ−(𝑖) = {𝑗 ∈ 𝒯 , (𝑗, 𝑖) ∈ 𝒜}.

We observe that a feasible schedule 𝜎 is completely defined by the starting times vector 𝑡𝜎 ∈ N𝑛. Indeed, for
any arc 𝑒 = (𝑖, 𝑗) ∈ 𝒜, we note 𝑥𝜎

𝑖𝑗 the communication delay between the tasks 𝑖 and 𝑗; we set 𝑥𝜎
𝑖𝑗 = 0 if the

execution of the task 𝑗 starts right after the task 𝑖. These two tasks are necessarily executed by a same processor
and the communication delay is removed. Otherwise, a communication delay is required between the completion
time of the task 𝑖 and the starting time of the task 𝑗 and thus 𝑥𝜎

𝑖𝑗 = 1. We then set 𝑥𝜎
𝑖𝑗 = min{𝑡𝜎𝑗 − 𝑡𝜎𝑖 − 1, 1}

for each arc 𝑒 = (𝑖, 𝑗) ∈ 𝒜.
The problem considered is expressed below. A time-indexed formulation should be considered to transform

it into an integer linear program [20] for modelling the resource constraints. We set 𝑑max = max𝑖∈𝒯 𝑑𝑖 (resp.
𝑟max = max𝑖∈𝒯 𝑟𝑖) the maximum due date (resp. release time); we also suppose that an upper bound of the
maximum lateness 𝐿̄ is fixed. We then observe that 𝐶 = min(𝑟max + 2𝑛, 𝑑max + 𝐿̄) is an upper bound of the
makespan of any active feasible schedule which maximum lateness is bounded by 𝐿̄.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize 𝐿

𝑡 ∈ N𝑛; 𝐿 ∈ Z;∀𝑒 = (𝑖, 𝑗) ∈ 𝒜, 𝑥𝑖𝑗 ∈ {0, 1} (1)
∀𝑖 ∈ 𝒯 , 𝐿 ≥ 𝑡𝑖 + 1− 𝑑𝑖 and 𝑡𝑖 ≥ 𝑟𝑖 (2)
∀𝑒 = (𝑖, 𝑗) ∈ 𝒜, 𝑥𝑖𝑗 = min{𝑡𝑗 − 𝑡𝑖 − 1, 1} (3)
∀𝑒 = (𝑖, 𝑗) ∈ 𝒜, 𝑡𝑖 < 𝑡𝑗 (4)

∀𝑖 ∈ 𝒯 ,
∑︁

𝑗∈Γ+(𝑖)

𝑥𝑖𝑗 ≥ |Γ+(𝑖)| − 1 (5)

∀𝑖 ∈ 𝒯 ,
∑︁

𝑗∈Γ−(𝑖)

𝑥𝑗𝑖 ≥ |Γ−(𝑖)| − 1 (6)

∀𝛼 ∈ {0, . . . , 𝐶}, |{𝑖 ∈ 𝒯 , 𝑡𝑖 = 𝛼}| ≤ 𝑚. (7)

Since communications delays and length of the tasks are unitary, starting times can be reduced to integer
values; Inequalities (2) come from the definition of the maximum lateness and the release dates. Communication
delays are defined from the starting time of the tasks (3). Inequalities (4)–(6) express the communication delay
constraints: any task 𝑖 has at most one successor (resp. predecessor) performed at its completion time (resp.
just before its starting time) on the same processor. Inequalities (7) express the limitation on the number of
processors.

3780 A. MUNIER KORDON AND N. TANG

Figure 1. An instance of 𝑃 |𝑟𝑖, prec, 𝑝𝑖 = 1, 𝑐𝑖𝑗 = 1|𝐿max with 𝑚 = 2 machines.

Figure 2. A feasible schedule 𝜎 of maximum lateness 𝐿(𝜎) = 2 associated to the example
given in Figure 1.

2.2. Example

Let us consider an instance of our scheduling problem defined by 7 tasks of unit length. The precedence
graph, release dates and due dates are reported by Figure 1. The number of machines is fixed to 2. A feasible
schedule 𝜎 of maximum lateness 𝐿(𝜎) = 2 is given by Figure 2.

2.3. Time windows, pathwidth, and a structural property

Let us consider that an upper bound of the maximum lateness 𝐿̄ is fixed. This value can be easily computed
by extending the classical Graham priority list algorithm [12]. Then for any optimal feasible schedule 𝜎, each
task 𝑖 ∈ 𝒯 has to be completed in the time window [𝑟𝑖, 𝑑𝑖 + 𝐿̄], which is equivalent to 𝑡𝜎𝑖 ≥ 𝑟𝑖 and 𝑡𝜎𝑖 ≤ 𝑑𝑖 + 𝐿̄−1.

Let us suppose that the tasks are numbered following increasing release times, that is 𝑟1 ≤ 𝑟2 . . . ≤ 𝑟𝑛. We
also suppose that the minimum value for a release date 𝑟min = 𝑟1 = 0. We can consider that release dates are
compatible with respect to precedence, that is, if (𝑖, 𝑗) ∈ 𝒜, 𝑟𝑖 + 1 ≤ 𝑟𝑗 .

Next lemma bounds the maximum value of the release dates and 𝐶:

Lemma 2.1. We can suppose that 𝑟max = max𝑖∈𝒯 𝑟𝑖 ≤ 2(𝑛− 1) and 𝐶 ≤ 4𝑛− 2 without loss of generality.

Proof. Let suppose by contradiction that 𝑟𝑛 > 2(𝑛 − 1), and let 𝑖⋆ be the smallest value 𝑖 ∈ {1, . . . , 𝑛} with
𝑟𝑖 > 2(𝑖− 1); since 𝑟1 = 0, we get that 𝑖⋆ > 1. For every task 𝑗 ∈ {1, . . . , 𝑖⋆ − 1}, 𝑟𝑗 ≤ 2(𝑗 − 1).

The biggest values for the release date of tasks 𝑗 in {1, . . . , 𝑖⋆ − 1} is 𝑟′𝑗 = 2(𝑗 − 1) and the most constrained
instance is a path 1 → 2 . . . → 𝑖⋆− 1. In this case, the only active feasible schedule 𝜎 is 𝑡𝜎𝑗 = 2(𝑗− 1). Thus, any
active feasible schedule of tasks {1, . . . , 𝑖⋆−1} would end at time 2(𝑖⋆−2)+1 or before. Since 𝑟𝑖⋆ ≥ 2(𝑖⋆−1)+1,
there will be at least two idle time slots at time 2(𝑖⋆ − 2) + 1 and 2(𝑖⋆ − 1) before the beginning of tasks in
{𝑖⋆, 𝑖⋆ + 1, . . . 𝑛}. Since release times are compatible with respect to precedence, we can treat separately the
two sets of tasks {1, . . . , 𝑖⋆−1} and {𝑖⋆, . . . , 𝑛}. The second scheduling problem considers tasks {𝑖⋆, . . . , 𝑛} with
release times 𝑟𝑗 = 𝑟𝑗 − 𝑟𝑖⋆ and due dates 𝑑𝑗 = 𝑑𝑗 − 𝑟𝑖⋆ . Thus, the first part of the lemma is proved.

Now, since 𝐶 = min(𝑟max + 2𝑛, 𝑑max + 𝐿̄), 𝐶 ≤ 4𝑛− 2 and the lemma is proved. �

For any value 𝛼 ∈ {0, . . . , 𝐶}, we set 𝑋𝛼 = {𝑖 ∈ 𝒯 , (𝛼, 𝛼 + 1) ∩ (𝑟𝑖, 𝑑𝑖 + 𝐿̄) ̸= ∅} the set of tasks that are
schedulable at time 𝛼 considering only the time windows. We also set 𝑍𝛼 = {𝑖 ∈ 𝒯 , 𝑑𝑖 + 𝐿̄ ≤ 𝛼 + 1} as the set

A FP ALGORITHM FOR A UET-UCT SCHEDULING PROBLEM 3781

of tasks that must be completed at time 𝛼 + 1. The pathwidth 𝑝𝑤(𝐿̄) is the maximum size of 𝑋𝛼 minus 1, i.e.
𝑝𝑤(𝐿̄) = max𝛼∈{0,...,𝐶} |𝑋𝛼| − 1.

Since 𝐿̄ is an upper bound of the minimum maximum lateness, our optimization problem is solvable even if
we restrict our algorithm to the determination of feasible schedules 𝜎 with 𝐿(𝜎) ≤ 𝐿̄.

Now, let suppose that 𝜎 is a feasible schedule with 𝐿(𝜎) ≤ 𝐿̄. For every integer 𝛼 ∈ {0, . . . , 𝐶 − 1}, we set
𝒯 𝜎

𝛼 = {𝑖 ∈ 𝒯 , 𝑡𝜎𝑖 = 𝛼} as the set of tasks performed at time 𝛼 by 𝜎. The following lemma will be considered
further to reduce the size of the tasks sets built at each step of our algorithm.

Lemma 2.2. Let 𝜎 be a feasible schedule of 𝒢 of maximum lateness 𝐿(𝜎) bounded by 𝐿̄. For any 𝛼 ∈ {0, . . . , 𝐶−
1},

⋃︀𝛼
𝛽=0 𝒯 𝜎

𝛽 − 𝑍𝛼 ⊆ 𝑋𝛼 ∩𝑋𝛼+1.

Proof. Since 𝜎 is feasible, for any 𝛼 ∈ {0, . . . , 𝐶−1}, 𝒯 𝜎
𝛼 ⊆ 𝑋𝛼 and thus, ∀𝑖 ∈

⋃︀𝛼
𝛽=0 𝒯 𝜎

𝛽 , 𝑟𝑖 ≤ 𝛼. Moreover, each
task 𝑖 /∈ 𝑍𝛼 satisfies 𝑑𝑖 + 𝐿̄ ≥ 𝛼 + 2.

Thus, for any task 𝑖 ∈
⋃︀𝛼

𝛽=0 𝒯 𝜎
𝛽 − 𝑍𝛼, [𝛼, 𝛼 + 2] ⊆ [𝑟𝑖, 𝑑𝑖 + 𝐿̄]. Therefore

⋃︀𝛼
𝛽=0 𝒯 𝜎

𝛽 − 𝑍𝛼 ⊆ 𝑋𝛼 ∩𝑋𝛼+1, and
the lemma is proved. �

For the example given by Figure 1 and the upper bound 𝐿̄ = 2, we get 𝐶 = min(2 + 14, 3 + 2) = 5,
𝑋0 = {1, 2, 3}, 𝑋1 = {1, 2, 3, 4, 5}, 𝑋2 = {1, 2, 3, 4, 5, 6, 7}, 𝑋3 = {4, 5, 6, 7}, 𝑋4 = {6, 7} and 𝑋5 = ∅. Similarly,
𝑍0 = 𝑍1 = ∅, 𝑍2 = {1, 2, 3}, 𝑍3 = {1, 2, 3, 4, 5} and 𝑍4 = {1, 2, 3, 4, 5, 6, 7} = 𝑍5.

Now, let us consider the feasible schedule given by Figure 2. For 𝛼 = 3,
⋃︀3

𝛽=0 𝒯 𝜎
𝛽 − 𝑍3 = {1, 2, 3, 4, 5, 6} −

{1, 2, 3, 4, 5} = {6}. Since 𝑋3 ∩𝑋4 = {6, 7}, we get that
⋃︀3

𝛽=0 𝒯 𝜎
𝛽 − 𝑍3 ⊆ 𝑋3 ∩𝑋4.

2.4. A general dominance property of active schedules

Let us consider that 𝜎 is a feasible schedule of maximum lateness bounded by 𝐿̄. For every integer 𝛼 ∈
{−1, . . . , 𝐶 − 1}, we set 𝑊𝛼 =

⋃︀𝛼
𝛽=0 𝒯 𝜎

𝛽 and 𝐵𝛼 = 𝒯 𝜎
𝛼 . The set 𝑊𝛼 contains all the tasks that are executed in

time [0, 𝛼 + 1), and 𝐵𝛼 contains all the tasks that are executed at time 𝛼. Notice that 𝑊−1 = 𝐵−1 = ∅.
For a fixed value 𝛼 ∈ {−1, . . . , 𝐶 − 2}, we note 𝒮(𝑊𝛼, 𝐵𝛼) to be the set of tasks from 𝑋𝛼+1 − 𝑊𝛼 that

are schedulable at time 𝛼 + 1 following 𝑊𝛼 and 𝐵𝛼. Formally, 𝒮(𝑊𝛼, 𝐵𝛼) = {𝑖 ∈ 𝑋𝛼+1 − 𝑊𝛼, Γ−(𝑖) ⊆
𝑊𝛼 and |Γ−(𝑖) ∩𝐵𝛼| ≤ 1}.

Now, we observe that a set of tasks 𝐵 can be scheduled at time 𝛼+1 following 𝑊𝛼 and 𝐵𝛼 if 𝐵 ⊆ 𝒮(𝑊𝛼, 𝐵𝛼)
with |𝐵| ≤ 𝑚 and there is no couple of tasks (𝑖, 𝑗) ∈ 𝐵2 with a same predecessor in 𝐵𝛼 (i.e. for each couple of
tasks (𝑖, 𝑗) ∈ 𝐵2, Γ−(𝑖)∩ Γ−(𝑗)∩𝐵𝛼 = ∅). We set then 𝐶(𝑊𝛼, 𝐵𝛼) to be the set of all the subsets of 𝒮(𝑊𝛼, 𝐵𝛼)
that fulfills all these conditions.

Lastly, we may reduce our study to active schedules without loss of generality; then we set 𝐴(𝑊𝛼, 𝐵𝛼) to be
the set of the elements from 𝐶(𝑊𝛼, 𝐵𝛼) that are maximum by inclusion.

Lemma 2.3. Let us consider that 𝜎 is an active feasible schedule of maximum lateness bounded by 𝐿̄. For any
value 𝛼 ∈ {−1, . . . , 𝐶 − 2}, 𝒯 𝜎

𝛼+1 ∈ 𝐴(𝑊𝛼, 𝐵𝛼).

Proof. Let us suppose by contradiction that, for a fixed value 𝛼 ∈ {−1, . . . , 𝐶 − 2}, 𝒯 𝜎
𝛼+1 ̸∈ 𝐴(𝑊𝛼, 𝐵𝛼). Since

tasks from 𝒯 𝜎
𝛼+1 are all schedulable together at time 𝛼 + 1, 𝒯 𝜎

𝛼+1 ∈ 𝐶(𝑊𝛼, 𝐵𝛼), and thus 𝒯 𝜎
𝛼+1 ∈ 𝐶(𝑊𝛼, 𝐵𝛼)−

𝐴(𝑊𝛼, 𝐵𝛼). The consequence is that 𝒯 𝜎
𝛼+1 is not maximum for the inclusion in 𝐶(𝑊𝛼, 𝐵𝛼), and thus 𝜎 is not

active, a contradiction. �

3. Description of the algorithm

This section is dedicated to the description of our algorithm. Section 3.1 describes the multistage graph 𝑆(𝒢)
built, while Section 3.2 is devoted to the algorithm.

3782 A. MUNIER KORDON AND N. TANG

3.1. Description of the multistage graph

Our algorithm builds an associated multistage graph 𝑆(𝒢) = (𝑉,𝐸) described as follows:
Nodes of 𝑆(𝒢). The set of nodes 𝑉 is partitioned into 𝐶 + 1 stages. For any value 𝛼 ∈ {−1, . . . , 𝐶 − 1}, 𝑁𝛼

is the set of nodes at stage 𝛼. A node 𝑝 ∈ 𝑁𝛼 is a triple (𝑌 (𝑝), 𝐵(𝑝), 𝐿(𝑝)), where 𝑌 (𝑝) ⊆ 𝑋𝛼 ∩ 𝑋𝛼+1 − 𝑍𝛼,
𝐵(𝑝) ⊆ 𝑌 (𝑝) ∪ 𝑍𝛼 ⊆ 𝒯 and 𝐿(𝑝) ∈ Z ∪ {+∞}. The node 𝑝 is associated to the feasible schedules 𝜎(𝑝) of tasks
from 𝑊 (𝑝) = 𝑌 (𝑝) ∪ 𝑍𝛼 ending at time 𝛼 + 1 with tasks from 𝐵(𝑝) scheduled at time 𝛼. Thus, we also get
𝐵(𝑝) ⊆ 𝑋𝛼 and |𝐵(𝑝)| ≤ 𝑚. Lastly, 𝐿(𝑝) is the minimum maximum lateness among all the feasible schedules
associated to 𝑝. Moreover, 𝑁−1 = {𝑠} with 𝑊 (𝑠) = 𝐵(𝑠) = ∅ and 𝐿(𝑠) = −∞.
Arcs of 𝑆(𝒢). For each value 𝛼 ∈ {0, . . . , 𝐶 − 2} and (𝑝, 𝑞) ∈ 𝑁𝛼 × 𝑁𝛼+1, there is an arc (𝑝, 𝑞) ∈ 𝐸 if the
following conditions are fulfilled:

(A.1) Tasks from 𝑊 (𝑞) = 𝑌 (𝑞) ∪ 𝑍𝛼+1 are completed at time 𝛼 + 2 with tasks from 𝐵(𝑞) executed at time
𝛼 + 1 and those from 𝐵(𝑝) at time 𝛼. Thus, 𝑊 (𝑝) ∪ 𝐵(𝑞) = 𝑊 (𝑞) and since tasks are executed once,
𝑊 (𝑝) ∩𝐵(𝑞) = ∅;

(A.2) Any task 𝑖 ∈ 𝐵(𝑞) must be schedulable at time 𝛼 + 1 and all the schedule considered are active, thus by
Lemma 2.3, 𝐵(𝑞) ∈ 𝐴(𝑊 (𝑝), 𝐵(𝑝));

(A.3) The node 𝑠 is a source of 𝑆(𝒢), thus for any node 𝑝 ∈ 𝑁0, (𝑠, 𝑝) ∈ 𝐸.

Maximum Lateness of a node of 𝑆(𝒢). For any node 𝑞 ∈ 𝑁𝛼 with 𝛼 ∈ {0, . . . , 𝐶−1}, let ℓ(𝑞) = 𝛼+1−min𝑖∈𝐵(𝑞) 𝑑𝑖

be the maximum lateness of the tasks from 𝐵(𝑞). Recall that these tasks are executed at time 𝛼.
For any value 𝛼 ∈ {−1, . . . , 𝐶 − 1} and 𝑞 ∈ 𝑁𝛼, 𝐿(𝑞) is the minimum maximum lateness of a schedule of

tasks from 𝑊 (𝑞) = 𝑌 (𝑞) ∪ 𝑍𝛼 with 𝐵(𝑞) ⊆ 𝑊 (𝑞) scheduled at time 𝛼. 𝐿 is defined as follows:

(1) by convention, 𝐿(𝑠) = −∞;
(2) for any value 𝛼 ∈ {0, . . . , 𝐶 − 1} and 𝑞 ∈ 𝑁𝛼,

𝐿(𝑞) = max
(︂

ℓ(𝑞), min
𝑝∈Γ−(𝑞)

𝐿(𝑝)
)︂

.

Here, Γ−(𝑞) is the set of the immediate predecessors of 𝑞 in 𝑆(𝒢). Next lemma provides a technical property
on 𝐿 that will be considered below to evaluate the maximum lateness of a node of 𝑆(𝒢).

Lemma 3.1. Let us consider a node 𝑞 ∈ 𝑁𝛼 with 𝛼 ∈ {1, . . . , 𝐶 − 1} and its predecessors Γ−(𝑞) =
{𝑝1, 𝑝2, . . . , 𝑝𝑘} ⊆ 𝑁𝛼−1. Let us also consider the sequence of integers defined as 𝐿0(𝑞) = +∞ and for
𝑖 ∈ {1, . . . , 𝑘},

𝐿𝑖(𝑞) = max
(︂

ℓ(𝑞), min
𝑗∈{1,...,𝑖}

𝐿(𝑝𝑗)
)︂

.

Then, for any integer 𝑖 ∈ {1, . . . , 𝑘},

𝐿𝑖(𝑞) = max(ℓ(𝑞), min(𝐿(𝑝𝑖), 𝐿𝑖−1(𝑞))).

Proof. For 𝑖 = 1, by definition,

𝐿1(𝑞) = max(ℓ(𝑞), 𝐿(𝑝1)) = max(ℓ(𝑞), min(𝐿(𝑝1), 𝐿0(𝑞))).

Let us consider now 𝑖 ∈ {2, . . . , 𝑘} and let 𝑀𝑖 = min(𝐿(𝑝𝑖), 𝐿𝑖−1(𝑞)). Two cases are considered:

– If ℓ(𝑞) ≥ 𝑀𝑖, let us suppose first that 𝑀𝑖 = 𝐿(𝑝𝑖), then min𝑗∈{1,...,𝑖} 𝐿(𝑝𝑗) ≤ ℓ(𝑞) and by definition 𝐿𝑖(𝑞) =
max(ℓ(𝑞), min𝑗∈{1,...,𝑖} 𝐿(𝑝𝑗)) = ℓ(𝑞); Now, if we suppose that 𝑀𝑖 = 𝐿𝑖−1(𝑞), then 𝐿𝑖−1(𝑞) ≤ ℓ(𝑞) and thus
𝐿𝑖−1(𝑞) = ℓ(𝑞). Since 𝐿(𝑝𝑖) ≥ 𝐿𝑖−1(𝑞), we get 𝐿(𝑝𝑖) ≥ min𝑗∈{1,...,𝑖−1} 𝐿(𝑝𝑗) and thus 𝐿𝑖(𝑞) = 𝐿𝑖−1(𝑞) = ℓ(𝑞).

– Else, ℓ(𝑞) < 𝑀𝑖 and thus min(𝐿(𝑝𝑖), 𝐿𝑖−1(𝑞)) > ℓ(𝑞). Since 𝐿𝑖−1(𝑞) > ℓ(𝑞), 𝐿𝑖−1(𝑞) = min𝑗∈{1,...,𝑖−1} 𝐿(𝑝𝑗);
thus we obtain min𝑗∈{1,...,𝑖} 𝐿(𝑝𝑗) = min(𝐿𝑖−1(𝑞), 𝐿(𝑝𝑖)) = 𝑀𝑖, and the lemma is proved.

�

A FP ALGORITHM FOR A UET-UCT SCHEDULING PROBLEM 3783

3.2. Description of the algorithm

Algorithm 1 builds iteratively the multistage graph 𝑆(𝒢) = (𝑉,𝐸). For any set of tasks 𝑋 ⊆ 𝒯 , let 𝒫(𝑋) be
the set of all subsets of 𝑋 including the empty set. This algorithm returns the minimum value of the maximum
lateness if it is upper bounded by 𝐿̄, +∞ otherwise.

The algorithm is composed by three main sections. Lines 3–5 correspond to the initialization step.
Lines 6 and 7 build all the possible nodes lines 8–18 build the arcs and delete all the non connected nodes. The
evaluation of 𝐿(𝑞) at line 14 follows Lemma 3.1.

Algorithm 1: Minimum maximum lateness 𝐿opt if 𝐿opt ≤ 𝐿̄, +∞ otherwise.
1 Input: A precedence graph 𝒢 = (𝒯 ,𝒜), release dates 𝑟 and due dates 𝑑
2 Output: 𝐿opt if 𝐿opt ≤ 𝐿̄, +∞ otherwise
3 for 𝛼 ∈ {0, 1, . . . , 𝐶} do
4 Calculate 𝑋𝛼 and 𝑍𝛼

5 𝑁−1 = {𝑠 = (∅, ∅,−∞)}, 𝑉 = 𝑁−1, 𝐸 = ∅, 𝐿opt = +∞
6 for 𝛼 ∈ {0, . . . , 𝐶 − 1} do
7 𝑁𝛼 = {𝑝 = (𝑌, 𝐵, 𝐿), 𝑌 ∈ 𝒫(𝑋𝛼 ∩𝑋𝛼+1 − 𝑍𝛼), 𝐵 ∈ 𝒫(𝑋𝛼 ∩ (𝑌 ∪ 𝑍𝛼)), |𝐵| ≤ 𝑚 and 𝐿 = +∞}
8 for 𝛼 ∈ {−1, . . . , 𝐶 − 2} do
9 for 𝑝 ∈ 𝑁𝛼 do

10 if 𝑌 (𝑝) ∪ 𝑍𝛼 ̸= 𝒯 then
11 for 𝐵 ∈ 𝐴(𝑌 (𝑝) ∪ 𝑍𝛼, 𝐵(𝑝)) do
12 Find 𝑞 ∈ 𝑁𝛼+1 such that (𝑌 (𝑝) ∪ 𝑍𝛼 ∪𝐵, 𝐵) = (𝑌 (𝑞) ∪ 𝑍𝛼+1, 𝐵(𝑞))
13 ℓ(𝑞) = 𝛼 + 2−min𝑖∈𝐵(𝑞) 𝑑𝑖

14 𝐿(𝑞) = max(ℓ(𝑞), min(𝐿(𝑝), 𝐿(𝑞)))
15 𝐸 = 𝐸 ∪ {(𝑝, 𝑞)}

16 else
17 𝐿opt = min(𝐿opt, 𝐿(𝑝))

18 𝑁𝛼+1 = {𝑞 ∈ 𝑁𝛼+1, Γ
−(𝑞) ̸= ∅}, 𝑉 = 𝑉 ∪𝑁𝛼+1

19 return 𝐿opt

Figure 3 presents the graph 𝑆(𝒢) built by Algorithm 1 associated to the example shown by Figure 1 and the
upper bound 𝐿̄ = 2. Algorithm 1 returns the optimal value 𝐿opt = 1.

We observe that the schedule presented by Figure 2 is associated to the path 𝑠 → 𝑝0 → 𝑝1 → 𝑝2 → 𝑝3 → 𝑝4

with 𝑝0 = ({1, 2}, {1, 2}, 0), 𝑝1 = ({1, 2, 3}, {3}, 1), 𝑝2 = ({4, 5}, {4, 5}, 1), 𝑝3 = ({6}, {6}, 1) and 𝑝4 = (∅, {7}, 2).
The maximum lateness of the path is 𝐿(𝑝4) = 2.

Conversely, the path 𝑠 → 𝑞0 → 𝑞1 → 𝑞2 → 𝑞3 with 𝑞0 = ({1, 3}, {1, 3}, 0), 𝑞1 = ({1, 2, 3, 4}, {2, 4}, 0),
𝑞2 = ({4, 5, 6}, {5, 6}, 1) and 𝑞3 = ({6, 7}, {7}, 1) corresponds to the active feasible schedule 𝜎 of maximum
lateness 𝐿(𝜎) = 1 presented by Figure 4.

4. Correctness of Algorithm 1

This section is devoted to the proof of the correctness of Algorithm 1. Lemma 4.1 shows that the evaluation
of the maximum lateness 𝐿(𝑞) for each node 𝑞 ∈ 𝑁 is correct with respect to the definition of Section 3.1.
Lemma 4.2 shows that any active feasible schedule is associated to a path of 𝑆(𝒢) from 𝑠 to a node without
successor, while Lemma 4.4 proves that extremum paths of 𝑆(𝒢) are associated to feasible schedules. Our main
theorem follows.

3784 A. MUNIER KORDON AND N. TANG

Figure 3. The multistage auxiliary graph 𝑆(𝒢) = (𝑉,𝐸) associated with the example given in
Figure 1. Each node 𝑝 ∈ 𝑁𝛼 is designated by the triple (𝑌 (𝑝), 𝐵(𝑝), 𝐿(𝑝)). The nodes 𝑝 filled
in gray are associated to a set of feasible schedules which minimum maximum lateness is 𝐿(𝑝).

Figure 4. The active feasible schedule 𝜎 of maximum lateness 𝐿(𝜎) = 1 associated to the
path 𝑠 → 𝑞0 → 𝑞1 → 𝑞2 → 𝑞3 with 𝑞0 = ({1, 3}, {1, 3}, 0), 𝑞1 = ({1, 2, 3, 4}, {2, 4}, 0), 𝑞2 =
({4, 5, 6}, {5, 6}, 1) and 𝑞3 = ({6, 7}, {7}, 1).

Lemma 4.1. For any node 𝑞 ∈ 𝑁𝛼 with 𝛼 ∈ {−1, . . . , 𝐶 − 1}, the value 𝐿(𝑞) computed by Algorithm 1 follows
the definition of the minimum maximum lateness of a node (see, Sect. 3.1).

Proof. 𝐿(𝑠) is set to −∞ and is not modified. Let us consider a node 𝑞 ∈ 𝑁𝛼 of 𝑆(𝒢) with 𝛼 ∈ {0, . . . , 𝐶 − 1}
and the value ℓ(𝑞) = 𝛼 + 1−min𝑖∈𝐵(𝑞) 𝑑𝑖. If 𝛼 = 0, 𝐿(𝑞) = ℓ(𝑞) is correctly set at line 5 of Algorithm 1.

Now, if 𝛼 > 0, 𝐿(𝑞) = +∞ at the initialization of the node 𝑞. Since 𝑞 belongs to 𝑆(𝒢), then Γ−(𝑞) ̸= ∅,
thus the value 𝐿(𝑞) is adjusted once for each predecessor of 𝑞. Let Γ−(𝑞) = {𝑝1, . . . , 𝑝𝑘} ⊆ 𝑁𝛼−1 be the
predecessors of 𝑞 numbered following the inner loop lines 9–17. Let us denote by 𝐿𝑖(𝑞) the value of 𝐿(𝑞)
associated to 𝑝𝑖 for 𝑖 ∈ {1, . . . , 𝑘}. Following line 14, 𝐿𝑖(𝑞) = max(ℓ(𝑞), min(𝐿(𝑝𝑖), 𝐿𝑖−1(𝑞)). Thus, by Lemma 3.1,

A FP ALGORITHM FOR A UET-UCT SCHEDULING PROBLEM 3785

𝐿𝑖(𝑞) = max(ℓ(𝑞), min𝑗∈{1,...,𝑖} 𝐿(𝑝𝑗)) and 𝐿𝑘(𝑝) is the minimum maximum lateness of 𝑞, which proves the
lemma. �

Lemma 4.2. Any active feasible schedule 𝜎 of maximum lateness bounded by 𝐿̄ is associated to a path 𝜈(𝜎) of
𝑆(𝒢) ending at a node 𝑝 ∈ 𝑁𝛼 with 𝛼 ∈ {0, . . . , 𝐶 − 1} and 𝑊 (𝑝) = 𝑌 (𝑝) ∪ 𝑍𝛼 = 𝒯 . Moreover, the maximum
lateness 𝐿(𝜎) = max𝑞∈𝜈(𝜎) 𝐿(𝑞).

Proof. Let us consider an active feasible schedule of maximum lateness bounded by 𝐿̄. Let us denote by 𝐶(𝜎)
the length of the schedule 𝜎, i.e. 𝐶(𝜎) = max𝑖∈𝒯 (𝑡𝜎𝑖 + 1). Clearly, since 𝜎 is active, 𝐶(𝜎) ≤ 𝐶. For 𝛼 ∈
{0, . . . , 𝐶(𝜎)− 1}, we set 𝑊𝛼 =

⋃︀𝛼
𝛽=0 𝒯 𝜎

𝛽 and 𝐵𝛼 = 𝒯 𝜎
𝛼 .

The set 𝐴(∅, ∅) contains the maximum sets of tasks schedulable at time 0. Since 𝜎 is a feasible active schedule,
there exists 𝑞0 ∈ 𝑁0 such that 𝑊 (𝑞0) = 𝑌 (𝑞0) ∪ 𝑍0 = 𝐵(𝑞0) = 𝑊0 = 𝐵0. Moreover, (𝑠, 𝑞0) ∈ 𝐴 and thus A.3 is
verified.

Moreover, since 𝜎 is feasible, for every value 𝛼 ∈ {0, . . . , 𝐶(𝜎) − 1}, 𝒯 𝜎
𝛼 ⊆ 𝑋𝛼. According to Lemma 2.2,⋃︀𝛼

𝛽=0 𝒯 𝜎
𝛽 − 𝑍𝛼 ⊆ 𝑋𝛼 ∩ 𝑋𝛼+1. So the node 𝑞𝛼 = (𝐼(𝑞𝛼), 𝐵(𝑞𝛼), +∞) has been built at stage 𝛼 in the loop of

lines 6 and 7 of Algorithm 1.
We prove that for every value 𝛼 ∈ {0, . . . , 𝐶(𝜎)− 2}, (𝑞𝛼, 𝑞𝛼+1) ∈ 𝐴.

– 𝑌 (𝑞𝛼+1) ∪ 𝑍𝛼+1 = 𝑊 (𝑞𝛼+1) =
⋃︀𝛼+1

𝛽=0 𝒯 𝜎
𝛽 =

⋃︀𝛼
𝛽=0 𝒯 𝜎

𝛽 ∪ 𝒯 𝜎
𝛼+1 = 𝑊 (𝑞𝛼) ∪ 𝐵(𝑞𝛼+1) = 𝑌 (𝑞𝛼) ∪ 𝑍𝛼 ∪ 𝐵(𝑞𝛼+1).

Moreover, 𝑊 (𝑞𝛼) ∩𝐵(𝑞𝛼+1) =
⋃︀𝛼

𝛽=0 𝒯 𝜎
𝛽 ∩ 𝒯 𝜎

𝛼+1 = ∅. Thus, A.1 is verified.
– Since 𝜎 is a feasible active schedule, A.2 is verified.

We conclude that (𝑠, 𝑞0, 𝑞1, . . . , 𝑞𝐶(𝜎)−1) is a path of 𝑆(𝒢). Moreover, 𝑌 (𝑞𝐶(𝜎)−1)∪𝑍𝐶(𝜎)−1 = 𝑊 (𝑞𝐶(𝜎)−1) = 𝒯
since the schedule 𝜎 ends at time 𝐶(𝜎), thus 𝑝 = 𝑞𝐶(𝜎)−1 is an ending node.

Lastly, by Lemma 4.1, each value 𝐿(𝑞𝛼) computed by Algorithm 1 for 𝛼 ∈ {0, . . . , 𝐶(𝜎)− 1} is the minimum
maximum lateness of the sub-schedule associated to 𝑞𝛼; the maximum lateness of the schedule 𝜎 is thus 𝐿(𝜎) =
max𝑞∈𝜈(𝜎) 𝐿(𝑞), which concludes the proof. �

Lemma 4.3. Let (𝑠, 𝑝0, 𝑝1, . . . , 𝑝𝐶−1) be a path of 𝑆(𝒢) with 𝑌 (𝑝𝐶−1) ∪ 𝑍𝐶−1 = 𝑊 (𝑝𝐶−1) = 𝒯 . For each task
𝑖 ∈ 𝒯 , there exists a unique value 𝛼 ∈ {0, . . . , 𝐶 − 1} such that 𝑖 ∈ 𝐵(𝑝𝛼).

Proof. According to the definition of 𝑆(𝒢), 𝑊 (𝑝0) ⊆ 𝑊 (𝑝1) ⊆ · · · ⊆ 𝑊 (𝑝𝐶−1). Moreover, by assumption,
𝑊 (𝑝𝐶−1) = 𝒯 . Thus, for each task 𝑖 ∈ 𝒯 , there is a unique 𝛼 ∈ {0, . . . , 𝐶−1} with 𝑖 ∈ 𝑊 (𝑝𝛼) and 𝑖 /∈ 𝑊 (𝑝𝛼−1).
Since 𝑊 (𝑝𝛼−1) ∪𝐵(𝑝𝛼) = 𝑊 (𝑝𝛼), we get 𝑖 ∈ 𝐵(𝑝𝛼). �

Lemma 4.4. Each node 𝑝 ∈ 𝑁𝛼 such that 𝛼 ∈ {0, . . . , 𝐶 − 1} and 𝑌 (𝑝) ∪ 𝑍𝛼 = 𝑊 (𝑝) = 𝒯 is associated to an
active feasible schedule 𝜎 of maximum lateness 𝐿(𝜎) = 𝐿(𝑝).

Proof. Let us consider a node 𝑝 ∈ 𝑁𝐶−1 with 𝑊 (𝑝) = 𝒯 and 𝐶 ∈ {0, . . . , 𝐶−1}. We build iteratively a sequence
of nodes 𝑝−1, 𝑝0, 𝑝1, . . . , 𝑝𝐶−1 of 𝑆(𝒢) as follows:

(1) 𝑝𝐶−1 = 𝑝;
(2) for each 𝑘 ∈ {1, . . . 𝐶 − 1}, 𝑝𝑘−1 is a predecessor of 𝑝𝑘 in 𝑆(𝒢) such that 𝐿(𝑝𝑘−1) is minimum;
(3) 𝑝−1 = 𝑠.

This sequence is defined since each node of 𝑁𝛼 with 𝛼 ∈ {0, . . . , 𝐶 − 1} has at least one predecessor (or it
will be deleted at line 18). Moreover, 𝑝𝑘 ∈ 𝑁𝑘 for 𝑘 ∈ {−1, . . . , 𝐶 − 1}.

Now, by Lemma 4.3, for each task 𝑖 ∈ 𝒯 , there exists a unique value 𝛼 ∈ {0, . . . , 𝐶 − 1} with 𝑖 ∈ 𝐵(𝑝𝛼).
Thus, a starting time can be defined for 𝑖 by setting 𝑡𝜎𝑖 = 𝛼. We prove in the following that these starting times
define an active feasible schedule 𝜎.

We first observe that for each value 𝛼 ∈ {−1, . . . , 𝐶−1}, 𝐵(𝑝𝛼) ⊆ 𝑋𝛼 and |𝐵(𝑝𝛼)| ≤ 𝑚. Thus, the maximum
lateness of each task is bounded by 𝐿̄; the constraints (2) and (7) of the problem definition are fulfilled.

3786 A. MUNIER KORDON AND N. TANG

Now, let consider a task 𝑖 ∈ 𝐵(𝑝𝛼) with 𝛼 ∈ {0, . . . , 𝐶 − 1}. By condition A.2, 𝑖 is schedulable at time 𝛼.
Thus, all its predecessors are belonging to 𝑊 (𝑝𝛼−1) and the condition (4) of the problem definition is verified.

Moreover, 𝐵(𝑝𝛼) ∈ 𝐴(𝑊 (𝑝𝛼−1), 𝐵(𝑝𝛼−1)). Thus, there is at least one predecessor 𝑗 of 𝑖 scheduled at time
𝛼− 1 and 𝑗 has no other successor scheduled at time 𝛼. Thus, conditions (5) and (6) of the problem definition
are validated.

Lastly, elements from 𝐴(𝑊 (𝑝𝛼), 𝐵(𝑝𝛼)) for 𝛼 ∈ {0, . . . , 𝐶 − 1} are maximum by inclusion; this condition
guarantees that 𝜎 is an active schedule.

Now, by definition of the sequence 𝑝𝑘, 𝐿(𝑝𝑘) = max(ℓ(𝑝𝑘), 𝐿(𝑝𝑘−1)) with ℓ(𝑝𝑘) = 𝑘 + 1−min𝑖∈𝐵(𝑝𝑘) 𝑑𝑖. Thus,
𝐿(𝑝0) ≤ 𝐿(𝑝1) . . . ≤ 𝐿(𝑝𝐶−1). By Lemma 4.1, the maximum lateness of the schedule 𝜎 is 𝐿(𝜎) = 𝐿(𝑝𝐶−1) = 𝐿(𝑝)
and the lemma is proved. �

Theorem 4.5 (Correctness of Algorithm 1). Algorithm 1 returns the minimum maximum lateness 𝐿(𝜎) ≤ 𝐿̄
of a feasible schedule 𝜎 if it exists, +∞ if there is no feasible schedule of maximum lateness bounded by 𝐿̄.

Proof. Let us suppose first that Algorithm 1 returns a value 𝐿⋆. Then, let a node 𝑝 ∈ 𝑁 such that 𝐿⋆ = 𝐿(𝑝) =
min{𝐿(𝑝), 𝑝 ∈ 𝑁, 𝑊 (𝑝) = 𝒯 }. By Lemma 4.4, 𝑝 is associated to an active feasible schedule of maximum lateness
𝐿(𝑝), thus the minimum maximum lateness of our instance 𝐿opt ≤ 𝐿⋆. Now, let us suppose by contradiction
that 𝐿⋆ > 𝐿opt. Thus, there exists an active feasible schedule 𝜎 such that 𝐿(𝜎) = 𝐿opt and 𝜎 is not associated
to a path of 𝑆(𝒢), which contradicts Lemma 4.2, and thus 𝐿⋆ = 𝐿opt.

Now, let us suppose that there is no node 𝑝 ∈ 𝑁 such that 𝑊 (𝑝) = 𝒯 ; in this case, Algorithm 1 returns +∞.
By Lemma 4.2, there is no active feasible schedule and the theorem is proved. �

5. Complexity analysis

We study in this section the complexity of Algorithm 1 to conclude that our scheduling problem is fixed-
parameter tractable in the pathwidth.

Lemma 5.1. Let us denote by 𝑛 the number of tasks and 𝑝𝑤(𝐿̄) the pathwidth associated to the upper bound 𝐿̄
of the maximum lateness. For any value 𝛼 ∈ {0, . . . , 𝐶−1}, the number of elements of 𝑁𝛼 belongs to 𝒪(22𝑝𝑤(𝐿̄)).

Proof. By Algorithm 1, the number of nodes in 𝑁𝛼 for 𝛼 ∈ {0, . . . , 𝐶 − 1} is bounded by 2|𝑋𝛼| × 2|𝑋𝛼+1|. The
values |𝑋𝛼| and |𝑋𝛼+1| are both bounded by 𝑝𝑤(𝐿̄) + 1, thus the lemma holds. �

Lemma 5.2. The time complexity of the inner loop of Algorithm 1 (lines 9–17) for a fixed node 𝑝 ∈ 𝑁𝛼 and
𝛼 ∈ {−1, . . . , 𝐶 − 2} is 𝒪(𝑝𝑤(𝐿̄)× 2𝑝𝑤(𝐿̄)).

Proof. Let us suppose that 𝑌 (𝑝) ∪ 𝑍𝛼 = 𝑊 (𝑝) ̸= 𝒯 . By definition, 𝐴(𝑊 (𝑝), 𝐵(𝑝)) ⊆ 𝒫(𝑋𝛼+1) and thus
|𝐴(𝑊 (𝑝), 𝐵(𝑝))| ≤ 2|𝑋𝛼+1|.

Searching for a node 𝑞 in 𝑁𝛼+1 can be done in time 𝒪(log |𝑁𝛼+1|); By Lemma 5.1, 𝒪(log |𝑁𝛼+1|) ⊆ 𝒪(𝑝𝑤(𝐿̄)),
thus the overall time of the inner loop is 𝒪(𝑝𝑤(𝐿̄)× 2𝑝𝑤(𝐿̄)), and the lemma is proved. �

Theorem 5.3 (Complexity of Algorithm 1). The time complexity of Algorithm 1 is 𝒪(𝑛2+𝑛×𝑝𝑤(𝐿̄)×23𝑝𝑤(𝐿̄)),
where 𝑝𝑤(𝐿̄) is the pathwidth of the interval graph associated to the time windows (𝑟𝑖, 𝑑𝑖 + 𝐿̄), 𝑖 ∈ 𝒯 . The space
complexity of this algorithm is 𝒪(𝑛× 24𝑝𝑤(𝐿̄)).

Proof. The time complexity of the computation of the sets 𝑋𝛼 and 𝑍𝛼 for 𝛼 ∈ {0, . . . , 𝐶} (lines 3 and 4) is
𝒪(𝑛2) since 𝐶 is bounded by 4𝑛− 2 following Lemma 2.1.

The time complexity for building 𝑉 at lines 7 and 8 is 𝒪(𝑛 × 22𝑝𝑤(𝐿̄)) by Lemmas 5.1 and 2.1. Following
Lemma 5.2, the whole complexity of building arcs of 𝑆(𝒢) in lines 9–20 is 𝒪(𝑛× 22𝑝𝑤(𝐿̄) × 𝑝𝑤(𝐿̄)× 2𝑝𝑤(𝐿̄)).

The overall complexity of the algorithm is thus 𝒪(𝑛2 +𝑛×𝑝𝑤(𝐿̄)×23𝑝𝑤(𝐿̄)), and the first part of the theorem
holds.

A FP ALGORITHM FOR A UET-UCT SCHEDULING PROBLEM 3787

Let us consider now the evaluation of the space complexity. By Lemma 5.1, the number of nodes |𝑁𝛼| with
𝛼 ∈ {0, . . . , 𝐶 − 1} belongs to 𝒪(22𝑝𝑤(𝐿̄)). Thus, the total number of vertices of 𝑆(𝒢), |𝑉 | = 1 +

∑︀𝐶−1
𝛼=0 |𝑁𝛼| is

in 𝒪(𝐶× 22𝑝𝑤(𝐿̄)). By Lemma 2.1, we deduce that |𝑉 | belongs to 𝒪(𝑛× 22𝑝𝑤(𝐿̄)). Moreover, the number of arcs
|𝐸| is bounded by |𝑁0|+

∑︀𝐶−2
𝛼=1 |𝑁𝛼| × |𝑁𝛼+1|, which is in 𝒪(𝑛× 24𝑝𝑤(𝐿̄)) achieving the proof. �

6. Conclusion and perspectives

We proved in this paper that the scheduling problem 𝑃 |𝑟𝑖, prec, 𝑝𝑖 = 1, 𝑐𝑖𝑗 = 1|𝐿max is fixed-parameter
tractable in the pathwidth 𝑝𝑤(𝐿̄) of the interval graph ℐ(𝐿̄) associated with the intervals (𝑟𝑖, 𝑑𝑖 + 𝐿̄), 𝑖 ∈ 𝒯 . We
extended previous approaches [17,21] to tackle both communications delay, a limited number of machines, and
to optimize the maximum lateness. We also limit our enumeration to active schedules, which allows to decrease
the worst-case complexity of the method.

We believe that this work opens up many perspectives. From a theoretical point of view, many fundamental
questions remain open as the existence of a fixed-parameter algorithm in the width, or the possible extension
of this work to scheduling problems with large communication delays. From a practical point of view, our
algorithm defines an original exploration scheme probably well suited to general scheduling problems. Similarly
to branch-and-bound methods, dominance properties allow to reduce the size of the generated multistage graph.
It would then be interesting to test this new class of algorithms to compare their performance with those from
the literature.

Acknowledgements. We are very grateful to the two reviewers for their helpful recommendations.

References

[1] A. Ait El Cadi, R. Ben Atitallah, S. Hanafi, N. Mladenovic and A. Artiba, New MIP model for multiprocessor scheduling
problem with communication delays. Optim. Lett. 11 (2017) 1091–1107.

[2] H.L. Bodlaender, A tourist guide through treewidth. Acta Cybern. 11 (1992) 1–21.

[3] H.L. Bodlaender and M.R. Fellows, W[2]-hardness of precedence constrained 𝑘-processor scheduling. Oper. Res. Lett. 18 (1995)
93–97.

[4] P. Chrétienne and C. Picouleau, Scheduling with communication delays: a survey, in Scheduling Theory and its Applications.
John Wiley & Sons, New York (1995) 65–90.

[5] M. Cygan, F.V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk and S. Saurabh, Parameterized
Algorithms, 1st edition. Springer Publishing Company, Incorporated (2015).

[6] T. Davidović, L. Liberti, N. Maculan and N. Mladenovic, Towards the Optimal Solution of the Multiprocessor Scheduling
Problem with Communication Delays. MISTA Conference (2007).

[7] M. de Weerdt, R. Baart and L. He, Single-machine scheduling with release times, deadlines, setup times, and rejection. Eur.
J. Oper. Res. 291 (2021) 629–639.

[8] R.G. Downey and M.R. Fellows, Fundamentals of Parameterized Complexity. Springer, London (2013).

[9] M. Drozdowski, Scheduling for Parallel Processing. Springer (2009).

[10] J. Du, J.Y.-T. Leung and G.H. Young, Scheduling chain-structured tasks to minimize makespan and mean flow time. Inf.
Comput. 92 (1991) 219–236.

[11] R. Giroudeau and J.-C. Koenig, Scheduling with communication delays, in Multiprocessor Scheduling, edited by E. Levner.
IntechOpen, Rijeka (2007).

[12] R.L. Graham, Bounds for certain multiprocessing anomalies. Bell Syst. Tech. J. 45 (1966) 1563–1581.

[13] R.L. Graham, E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan, Optimization and approximation in deterministic sequencing
and scheduling: a survey, in Discrete Optimization II. Annals of Discrete Mathematics, edited by P.L. Hammer, E.L. Johnson
and B.H. Korte. Vol. 5. Elsevier (1979) 287–326.

[14] E. Günther, F.G. König and N. Megow, Scheduling and packing malleable and parallel tasks with precedence constraints of
bounded width. J. Comb. Optim. 27 (2014) 164–181.

[15] H. Hoogeveen, J.K. Lenstra and B. Veltman, Three, four, five, six, or the complexity of scheduling with communication delays.
Oper. Res. Lett. 16 (1994) 129–137.

[16] M. Mnich and R. Van Bevern, Parameterized complexity of machine scheduling: 15 open problems. Comput. Oper. Res. 100
(2018) 254–261.

[17] A. Munier Kordon, A fixed-parameter algorithm for scheduling unit dependent tasks on parallel machines with time windows.
Discrete Appl. Math. 290 (2021) 1–6.

3788 A. MUNIER KORDON AND N. TANG

[18] V.J. Rayward-Smith, Uet scheduling with unit interprocessor communication delays. Discrete Appl. Math. 18 (1987) 55–71.

[19] L. Schrage, Solving resource-constrained network problems by implicit enumeration – nonpreemptive case. Oper. Res. 18 (1970)
263–278.

[20] J.P. Sousa and L.A. Wolsey, A time indexed formulation of non-preemptive single machine scheduling problems. Math. Program.
54 (1992) 353–367.

[21] N. Tang and A.M. Kordon, A fixed-parameter algorithm for scheduling unit dependent tasks with unit communication delays,
in European Conference on Parallel Processing. Lecture Notes in Computer Science. Vol. 12820. Springer (2021) 105–119.

[22] R. van Bevern, R. Bredereck, L. Bulteau, C. Komusiewicz, N. Talmon and G.J. Woeginger, Precedence-constrained scheduling
problems parameterized by partial order width, in International Conference on Discrete Optimization and Operations Research.
Springer International Publishing (2016) 105–120.

[23] B. Veltman, Multiprocessor scheduling with communication delays, Ph.D. thesis. Eindhoven University of Technology (1993).

[24] B. Veltman, B.J. Lageweg and J.K. Lenstra, Multiprocessor scheduling with communication delays. Parallel Comput. 16 (1990)
173–182.

[25] S. Venugopalan and O. Sinnen, Ilp formulations for optimal task scheduling with communication delays on parallel systems.
IEEE Trans. Parallel Distrib. Syst. 26 (2015) 142–151.

[26] Y. Zinder, B. Su, G. Singh and R. Sorli, Scheduling uet-uct tasks: Branch-and-bound search in the priority space. Optim. Eng.
11 (2010) 627–646.

This journal is currently published in open access under a Subscribe-to-Open model (S2O). S2O is a transformative
model that aims to move subscription journals to open access. Open access is the free, immediate, online availability of
research articles combined with the rights to use these articles fully in the digital environment. We are thankful to our
subscribers and sponsors for making it possible to publish this journal in open access, free of charge for authors.

Please help to maintain this journal in open access!

Check that your library subscribes to the journal, or make a personal donation to the S2O programme, by contacting
subscribers@edpsciences.org

More information, including a list of sponsors and a financial transparency report, available at: https://www.
edpsciences.org/en/maths-s2o-programme

mailto:subscribers@edpsciences.org
https://www.edpsciences.org/en/maths-s2o-programme
https://www.edpsciences.org/en/maths-s2o-programme

	Introduction
	Problem definition and dominance properties
	Problem definition
	Example
	Time windows, pathwidth, and a structural property
	A general dominance property of active schedules

	Description of the algorithm
	Description of the multistage graph
	Nodes of .
	Arcs of .
	Maximum Lateness of a node of .

	Description of the algorithm

	Correctness of Algorithm 1
	Complexity analysis
	Conclusion and perspectives
	References

