RATIRO-Oper. Res. 56 (2022) 3777-3788 RAIRO Operations Research
https://doi.org/10.1051/ro/2022174 WWW.rairo-ro.org

A FIXED-PARAMETER ALGORITHM FOR A UNIT-EXECUTION-TIME
UNIT-COMMUNICATION-TIME TASKS SCHEDULING PROBLEM WITH A
LIMITED NUMBER OF IDENTICAL PROCESSORS

ALiIXx MUNIER KORDON*® AND NING TANG

Abstract. This paper considers the minimization of the maximum lateness for a set of dependent
tasks with unit duration, unit communication delays release times and due dates. The number of
processors is limited, and each task requires one processor for its execution. A time window built
from an upper bound of the minimum maximum lateness is associated to each task. The parameter
considered is the pathwidth of the associated interval graph. A fixed-parameter algorithm based on a
dynamic programming approach is developed to solve this optimization problem. This is, as far as we
know, the first fixed-parameter algorithm for a scheduling problem with communication delays and a
limited number of processors.

Mathematics Subject Classification. 90B35, 68Q27.

Received November 16, 2021. Accepted October 4, 2022.

1. INTRODUCTION

Scheduling problems with communication delays have been intensively studied since 1990s because of the
importance of practical applications. Several surveys are dedicated to this class of problems known to be mostly
NP-hard [4,9,11,24].

This paper considers a scheduling problem with communication delays defined as follows: a set 7 =
{1,2,...,n} of n tasks is to be executed on m identical machines (processors). Each machine can process
at most one task at a time and each task is to be processed once. Tasks have a unit execution time and are
partially ordered by a precedence graph G = (7,.A). Let o be a feasible schedule; for any task ¢ € 7, t7 denotes
the starting time of the task i following o. For any arc (4,j) € A, the task ¢ must finish its execution before
the task j starts executing, i.e. {7 +1 < ¢7. If the tasks ¢ and j are assigned to different processors, a unit
communication delay must be added after the execution of the task i to send data to the task j, thus t7 +2 < 7.
Moreover, we assume that release dates r; € N and due dates d; € N are given. Then, the inequality r; < ¢7
holds for each task i € 7.

The maximum lateness of a feasible schedule ¢ is defined as L(o) = max;er(tJ + 1 — d;); the minimiza-
tion of the maximum lateness is denoted by Lp.x. The problem considered in this paper is designated by
P|r;,prec,p; = 1,¢i; = 1|Lmax using standard notations [13]. The minimization of the maximum lateness

Keywords. Scheduling, communication delays, minimization of the maximum lateness, fixed-parameter algorithm.

Sorbonne Université, CNRS, LIP6, F-75005 Paris, France.
*Corresponding author: Alix.Munier@lip6.fr

© The authors. Published by EDP Sciences, ROADEF, SMAI 2022

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1051/ro/2022174
https://www.rairo-ro.org
https://orcid.org/0000-0002-2170-6366
mailto:Alix.Munier@lip6.fr
https://creativecommons.org/licenses/by/4.0

3778 A. MUNIER KORDON AND N. TANG

includes the minimization of the makespan Cp,,x; Indeed, the minimization of the maximum lateness for an
instance with d; = 0 for each task i € 7 corresponds to minimize the makespan.

Rayward-Smith [18] was the first author to study the problem P|prec,p; = 1,¢;; = 1|Cmax and to establish
its NP-hardness. Later, Hoogeveen et al. [15] proved that the decision problem P|prec,p; = 1,¢;; = 1|Crax < 3
is polynomially solvable while P|prec,p; = 1, ¢;; = 1|Crax < 4 is NP-complete.

Several authors developed algorithms for solving scheduling problems with similar constraints. Velt-
man provided in [23] an exact dynamic programming algorithm of time complexity O(2%(%) x n?%(@)) for
Plprec,p; = 1,¢;j = 1|Cmax where w(G) is the width of the precedence graph G, i.e. the size of the largest
antichain. Zinder et al. [26] have developed and tested an exact branch-and-bound algorithm for the problem
Plprec, p; = 1,¢;; = 1|Linax. For more general problems, several authors considered integer linear programming
formulations (ILP in short). Davidovi¢ et al. [6] tackled scheduling problems for a fixed network of processors;
communications are proportional to both the amount of exchanged data between pairs of dependent tasks and
the distance between processors in the multiprocessor architecture. These authors developed two formulations
and compared them experimentally. Later, Ait El Cadi et al. [1] improved this approach by reducing the size of
the linear program (number of variables and constraints) and adding cuts; they compared positively to the pre-
vious works. Venugopalan and Sinnen [25] provided a new ILP formulation for P|prec, ¢;j|Cmax and comparisons
with Davidovié et al. [6] for several classes of graphs and fixed number of processors.

Fixed-parameter algorithms for NP-complete problems allow to obtain polynomial-time algorithms when
some parameters are fixed [5,8]. More precisely, a fixed-parameter algorithm solves any instance of a problem
of size n in time f(k) x poly(n), where f is allowed to be a computable superpolynomial function and %k the
associated parameter.

Mnich and van Bevern [16] surveyed recently main results on parameterized complexity for scheduling prob-
lems and identified 15 challenging open problems. For the scheduling problem with usual precedence constraints,
many researchers consider the width w(G) of the precedence graph as a parameter, leading usually to nega-
tive results. Du et al. [10] proved that P2|chains|Cpax is strongly NP-hard for unbounded width. Giinther
et al. [14] proved that P2|chains, w(G) < 3|Cpax is weakly NP-hard. Bodlaender and Fellows [3] proved that
Plprec, p; = 1|Ciax is W[2]-hard parameterized by the width and the number of machines. More recently, van
Bevern et al. [22] proved that P2|prec, p; € {1,2}|Cpax is W[2]-hard parameterized by the width w(G).

Let us suppose that an upper bound L of the maximum lateness is fixed. We develop in this paper a fixed-
parameter algorithm for P|r;, prec,p; = 1,¢;j = 1|Lyax in time complexity O(n? + n x pw(L) x 23P%(L). Let
us consider the interval graph Z(L) = (7, E(L)) associated to the time windows (r;,d; + L), i € 7. An edge
e = (i,j) € E(L) if the intersection (r;,d; + L) N (rj,d; + L) # 0. The parameter pw(L) is the pathwidth of
the interval graph Z(L) [2]; It corresponds to the maximum number of intersecting time windows (r;,d; + L),
i € 7 minus 1. Our algorithm is as far as we know the first fixed-parameter algorithm for solving a scheduling
problem with communication delays and a bounded number of processors.

The pathwidth was identified recently by several authors as an important parameter for several classes of
scheduling problems. De Weerdt et al. [7] provided an exact fixed-parameter algorithm in the slack and the
pathwidth for a sequencing problem with rejection, set-up times and penalties. Munier Kordon [17] devel-
oped a fixed-parameter algorithm in the pathwidth for the basic scheduling problem P|r;,prec,p; = 1|Ciax
to handle both precedence constraints and resource limitations. A similar approach was developed by Tang
and Munier Kordon [21] who presented a fixed-parameter algorithm in the pathwidth in time complexity
O(n® +n x pw(C) x 272(©) for the scheduling problem with communication delays and unlimited number of
processors P|r;, prec,p; = 1, ¢ij = 1|Cmax. The value C is here an upper bound of the minimum makespan. This
approach was extended in this paper by considering a more complex criteria, namely the maximum lateness,
and a limited number of parallel identical processors. Moreover, the structure of the algorithm was improved
to limit the enumeration to active schedules with a slightly better worst-case time complexity. A schedule o is
active if there is not another feasible schedule o’ such that, for each task i € T, t¢ < t¢ with at least one of
these inequalities is strict [19].

A FP ALGORITHM FOR A UET-UCT SCHEDULING PROBLEM 3779

This paper is organized as follows: Section 2 presents additional notations. In order to limit the combinatorial
explosion of the method, we identify a structural property of the set of tasks schedulable at each time instant
and a characterization of active schedules [19]. Our algorithm is presented in Section 3, and its correctness
established in Section 4. Section 5 is devoted to its complexity. Section 6 is our conclusion.

2. PROBLEM DEFINITION AND DOMINANCE PROPERTIES

This section is devoted to some theoretical lemmas that will be considered for the correctness of our algorithm.
A small example is also provided. The scheduling problem considered is described in Section 2.1, while a small
example is presented in Section 2.2. Section 2.3 presents some important notations and a structural property of
feasible schedules. Lastly, Section 2.3 presents a dominance property of active schedules that will be considered
below.

2.1. Problem definition

For each task ¢ € 7, let T (i) (resp. ' (i)) be the set of direct successors (resp. predecessors) of i, i.e.
M@ ={je7T,(i,j) €A and (i) = {j € T, (j,i) € A}.

We observe that a feasible schedule o is completely defined by the starting times vector t € N™. Indeed, for
any arc e = (i,j) € A, we note x7; the communication delay between the tasks i and j; we set zf; = 0 if the
execution of the task j starts right after the task ¢. These two tasks are necessarily executed by a same processor
and the communication delay is removed. Otherwise, a communication delay is required between the completion
time of the task 7 and the starting time of the task j and thus z¢; = 1. We then set z¢; = min{t — 7 — 1,1}
for each arc e = (i,7) € A.

The problem considered is expressed below. A time-indexed formulation should be considered to transform
it into an integer linear program [20] for modelling the resource constraints. We set dpmax = max;e7r d; (resp.
Tmax = MaX;e7 ;) the maximum due date (resp. release time); we also suppose that an upper bound of the
maximum lateness L is fixed. We then observe that C = min(rmax + 27, dmax + f/) is an upper bound of the
makespan of any active feasible schedule which maximum lateness is bounded by L.

minimize L

te N, L eZ;Ye=(i,j) € A z;; € {0,1} (1)

VieT,L>t;+1—d; andt; >1r; (2)

Ve = (Z,]) S .A, Tij = min{tj —t;—1, 1} (3)

Ve = (i,§) € A t; < t; (4)

VieT, Y ;> [T -1 (5)
JETT(4)

VieT, Y xi>[T() -1 (6)
JET—(4)

Va € {0,...,C},{i € T,t; = a}| < m. (7)

Since communications delays and length of the tasks are unitary, starting times can be reduced to integer
values; Inequalities (2) come from the definition of the maximum lateness and the release dates. Communication
delays are defined from the starting time of the tasks (3). Inequalities (4)—(6) express the communication delay
constraints: any task ¢ has at most one successor (resp. predecessor) performed at its completion time (resp.
just before its starting time) on the same processor. Inequalities (7) express the limitation on the number of
Processors.

3780 A. MUNIER KORDON AND N. TANG

a ieT|1]2]34]5]6]|7
r. 10100
a‘ 4 [1[1]1]212(3[3

FIGURE 1. An instance of P|r;, prec,p; = 1, ¢;j = 1|Limax with m = 2 machines.

—_
—_
&)
[\

FIGURE 2. A feasible schedule o of maximum lateness L(c) = 2 associated to the example
given in Figure 1.

2.2. Example

Let us consider an instance of our scheduling problem defined by 7 tasks of unit length. The precedence
graph, release dates and due dates are reported by Figure 1. The number of machines is fixed to 2. A feasible
schedule o of maximum lateness L(c) = 2 is given by Figure 2.

2.3. Time windows, pathwidth, and a structural property

Let us consider that an upper bound of the maximum lateness L is fixed. This value can be easily computed
by extending the classical Graham priority list algorithm [12]. Then for any optimal feasible schedule o, each
task i € T has to be completed in the time window [r;, d; +E], which is equivalent to tJ > r; and tJ < d; +L—1.

Let us suppose that the tasks are numbered following increasing release times, that is r1 < ry... < r,. We
also suppose that the minimum value for a release date ryni, = 71 = 0. We can consider that release dates are
compatible with respect to precedence, that is, if (i,7) € A, r; +1 < rj.

Next lemma bounds the maximum value of the release dates and C:

Lemma 2.1. We can suppose that rmax = max;er r; < 2(n— 1) and C < 4n — 2 without loss of generality.

Proof. Let suppose by contradiction that r,, > 2(n — 1), and let ¢* be the smallest value i € {1,...,n} with
r; > 2(i — 1); since r; = 0, we get that ¢* > 1. For every task j € {1,...,s* — 1}, r; <2(j — 1).

The biggest values for the release date of tasks j in {1,...,7* — 1} is r; = 2(j — 1) and the most constrained
instance is a path 1 — 2... — ¢* — 1. In this case, the only active feasible schedule o is {] = 2(j —1). Thus, any
active feasible schedule of tasks {1,...,7* — 1} would end at time 2(¢* —2) +1 or before. Since r;» > 2(i* —1) 41,
there will be at least two idle time slots at time 2(i* — 2) + 1 and 2(i* — 1) before the beginning of tasks in
{#*,i* + 1,...n}. Since release times are compatible with respect to precedence, we can treat separately the

two sets of tasks {1,...,i* —1} and {i*,...,n}. The second scheduling problem considers tasks {i*,...,n} with
release times 7; = r; — r;» and due dates d;j = dj — 7;». Thus, the first part of the lemma is proved.
Now, since C' = min(rmax + 21, dmax + L), C < 4n — 2 and the lemma is proved. O

For any value « € {0,...,C}, we set Xo = {i € T, (e, +1) N (ri,d; + L) # 0} the set of tasks that are
schedulable at time « considering only the time windows. We also set Z, = {i € 7,d; + L < o+ 1} as the set

A FP ALGORITHM FOR A UET-UCT SCHEDULING PROBLEM 3781

of tasks that must be completed at time « + 1. The pathwidth pw(L) is the maximum size of X, minus 1, i.e.
pw(L) =max,cro, oy | Xal = 1.

Since L is an upper bound of the minimum maximum lateness, our optimization problem is solvable even if
we restrict our algorithm to the determination of feasible schedules o with L(c) < L.

Now, let suppose that o is a feasible schedule with L(c) < L. For every integer o € {0,...,C — 1}, we set
77 = {i € T,t7 = a} as the set of tasks performed at time « by o. The following lemma will be considered
further to reduce the size of the tasks sets built at each step of our algorithm.

.....

Lemma 2.2. Let o be a feasible schedule of G of mazimum lateness L(c) bounded by L. For any a € {0,...,C—
1}, ngo 1§ — Za € Xo N Xat1.

Proof. Since o is feasible, for any a € {0,...,C -1}, 72 C X, and thus, Vi € ngo 75, ri < a. Moreover, each
task i ¢ Z, satisfies d; + L > o + 2.

Thus, for any task i € Ug_y 75 — Za, [, +2] C [ri,d; + L]. Therefore Us=075 — Za € Xo N Xo41, and
the lemma is proved. O

For the example given by Figure 1 and the upper bound L = 2, we get C' = min(2 + 14,3 + 2) = 5,
XO = {1,2,3}, X1 = {1,2,3,4,5}, X2 = {1,2,3,4,5,6,7}, X3 = {4,5,6, 7}, X4 = {6, 7} and X5 = (Z) Slmllarly,
Z() = Zl = @, ZQ = {1,2,3}, Zg = {1,2,3,4,5} and Z4 = {1,2,3,4,5,6,7} = Z5

Now, let us consider the feasible schedule given by Figure 2. For a = 3, UZ:O 15 — Zs = {1,2,3,4,5,6} —
{1,2,3,4,5} = {6}. Since X3 N X4 = {6,7}, we get that J}_, 75 — Z3 C X3 N X,

2.4. A general dominance property of active schedules

Let us consider that o is a feasible schedule of maximum lateness bounded by L. For every integer a €
{-1,...,C — 1}, we set W,, = ngo 75 and B, = 7. The set W, contains all the tasks that are executed in
time [0, + 1), and B, contains all the tasks that are executed at time a. Notice that W_; = B_; = 0.

For a fixed value a € {—1,...,C — 2}, we note S(W,, B,) to be the set of tasks from X1 — W, that
are schedulable at time « + 1 following W, and B,. Formally, S(W,,B,) = {i € Xay1 — Wo, (i) C
W, and [T~ (i) N B,| < 1}.

Now, we observe that a set of tasks B can be scheduled at time a+ 1 following W, and B,, if B C S(W,, By)
with |B| < m and there is no couple of tasks (i, j) € B? with a same predecessor in B, (i.e. for each couple of
tasks (i,7) € B2, T~ (1) NT~(§) N By = 0). We set then C(W,, B,) to be the set of all the subsets of S(W,, By)
that fulfills all these conditions.

Lastly, we may reduce our study to active schedules without loss of generality; then we set A(W,, B,) to be
the set of the elements from C(W,,, B,) that are maximum by inclusion.

Lemma 2.3. Let us consider that o is an active feasible schedule of mazimum lateness bounded by L. For any
value v € {—1,...,C =2}, T2, € A(W,, B,).

Proof. Let us suppose by contradiction that, for a fixed value a € {~1,...,C — 2}, 17, & A(W,, By). Since
tasks from 7.7, ; are all schedulable together at time oo + 1, 77, ; € C(W,, B,), and thus 77, , € C(W,, B,) —
A(Wy, By). The consequence is that 7.7, is not maximum for the inclusion in C(W,, B,), and thus o is not
active, a contradiction. (I

3. DESCRIPTION OF THE ALGORITHM

This section is dedicated to the description of our algorithm. Section 3.1 describes the multistage graph S(G)
built, while Section 3.2 is devoted to the algorithm.

3782 A. MUNIER KORDON AND N. TANG

3.1. Description of the multistage graph

Our algorithm builds an associated multistage graph S(G) = (V, E) described as follows:

Nodes of S(G). The set of nodes V is partitioned into C' + 1 stages. For any value a € {-1,...,C — 1}, N,
is the set of nodes at stage a. A node p € N, is a triple (Y (p), B(p), L(p)), where Y (p) C X, N Xot1 — Za,
B(p) CY(p)UZ, C T and L(p) € Z U {+o0}. The node p is associated to the feasible schedules o(p) of tasks
from W(p) = Y(p) U Z, ending at time « + 1 with tasks from B(p) scheduled at time «. Thus, we also get
B(p) C X, and |B(p)| < m. Lastly, L(p) is the minimum maximum lateness among all the feasible schedules
associated to p. Moreover, N_; = {s} with W(s) = B(s) =0 and L(s) = —oo.

Arcs of S(G). For each value a € {0,...,C — 2} and (p,q) € Ny x Nyi1, there is an arc (p,q) € E if the
following conditions are fulfilled:

(A.1) Tasks from W(q) = Y(q) U Zn+1 are completed at time « + 2 with tasks from B(q) executed at time
a + 1 and those from B(p) at time a. Thus, W(p) U B(q) = W(q) and since tasks are executed once,
W(p) N B(q) = 0;

(A.2) Any task i € B(g) must be schedulable at time « + 1 and all the schedule considered are active, thus by
Lemma 2.3, B(q) € A(W(p), B(p));

(A.3) The node s is a source of S(G), thus for any node p € Ny, (s,p) € E.

Magzimum Lateness of a node of S(G). For any node ¢ € N, with a € {0,...,C—1}, let £(q) = a+1—min;ep(q) ds
be the maximum lateness of the tasks from B(q). Recall that these tasks are executed at time .

For any value o € {—1,...,C — 1} and ¢ € N,, L(q) is the minimum maximum lateness of a schedule of
tasks from W(q) = Y (q) U Z, with B(q) C W (q) scheduled at time «. L is defined as follows:
(1) by convention, L(s) = —o0;
(2) for any value o € {0,...,C — 1} and q € N,

L(g) = max <£(q), min L(p)).
Pl (q)
Here, I'"(q) is the set of the immediate predecessors of ¢ in S(G). Next lemma provides a technical property
on L that will be considered below to evaluate the maximum lateness of a node of S(G).

Lemma 3.1. Let us consider a node ¢ € N, with a € {1,...,C — 1} and its predecessors T (q) =
{p1,p2,---, Pk} € Na_1. Let us also consider the sequence of integers defined as Lo(q) = +oo and for
ie{l,...,k},

Then, for any integer i € {1,...,k},
Li(q) = max(¢(q), min(L(p;), Li-1(q)))-

Proof. For i =1, by definition,
Ly (q) = max(£(q), L(p1)) = max(¢(q), min(L(p1), Lo(q)))-

Let us consider now ¢ € {2,...,k} and let M; = min(L(p;), Li—1(q)). Two cases are considered:

~ If £(q) > M;, let us suppose first that M; = L(p;), then minjeyy,.. ;3 L(pj) < £(q) and by definition L;(q) =
max(¢(q), minjeqy,.. 53 L(p;)) = £(q); Now, if we suppose that M; = L; _1(q), then L; 1(q) < {(¢q) and thus
Li—1(q) = £(q). Since L(p;) > Li—1(q), we get L(p;) > minjeq,.. -1} L(p;) and thus L;(q) = L;—1(q) = £(q).

— Else, £(¢q) < M; and thus min(L(p;), Li-1(q)) > €(q). Since Li—1(q) > €(q), Li-1(q) = minjer, .. -1} L(p;);
thus we obtain minje(,... ;3 L(p;) = min(L;—1(q), L(p;)) = M;, and the lemma is proved.

.....

O

A FP ALGORITHM FOR A UET-UCT SCHEDULING PROBLEM 3783

3.2. Description of the algorithm

Algorithm 1 builds iteratively the multistage graph S(G) = (V, E). For any set of tasks X C 7, let P(X) be
the set of all subsets of X including the empty set. This algorithm returns the minimum value of the maximum
lateness if it is upper bounded by L, +o0o otherwise.

The algorithm is composed by three main sections. Lines 3-5 correspond to the initialization step.
Lines 6 and 7 build all the possible nodes lines 8-18 build the arcs and delete all the non connected nodes. The
evaluation of L(q) at line 14 follows Lemma 3.1.

Algorithm 1: Minimum maximum lateness Lopt if Lopty < L, +00 otherwise.

1 Input: A precedence graph G = (7T,.A), release dates r and due dates d
2 Output: Loy if Lgpt < L, +o0 otherwise
3 for a € {0,1,...,C} do

4 | Calculate X, and Za
5 Noi={s=(0,0,-00)}, V.=N_1, E=0, Lopt = +00
6 for a € {0,...,C —1} do
7 | Na={p=(Y,B,L),Y € P(Xoa N Xat1 — Za), BEP(Xa N (Y UZy)),|Bl <mand L = +oc}
8 forac{-1,...,C0 -2} do
9 for p € N, do
10 if Y(p) U Za # 7 then
11 for B € A(Y(p) U Z., B(p)) do
12 Find g € Na41 such that (Y(p) U Z,UB,B) = (Y(¢) U Za+1, B(q))
13 g) = a+2 —minep(g) di
14 L(q) = max(¢(q), min(L(p), L(q)))
15 E=EU{(pa}
16 else
17 L Lopt = min(Lopt, L(p))
18 | Nat1={q € Na+1,T"(q) #0}, V=V U Naj1

19 return Loyt

Figure 3 presents the graph S(G) built by Algorithm 1 associated to the example shown by Figure 1 and the
upper bound L = 2. Algorithm 1 returns the optimal value Lopy = 1.

We observe that the schedule presented by Figure 2 is associated to the path s — pg — p1 — p2 — p3 — p4
with pg = ({13 2}3 {17 2}7 O)a p1 = ({17 2, 3}7 {3}7 1)7 b2 = ({43 5}v {4v 5}3 1)7 b3 = ({6}7 {6}3 1) and py = (Q)a {7}7 2)
The maximum lateness of the path is L(ps) = 2.

Conversely, the path s — ¢ — @1 — g2 — g3 with ¢ = ({1,3},{1,3},0), ¢ = ({1,2,3,4},{2,4},0),
g2 = ({4,5,6},{5,6},1) and ¢3 = ({6,7},{7},1) corresponds to the active feasible schedule ¢ of maximum
lateness L(o) = 1 presented by Figure 4.

4. CORRECTNESS OF ALGORITHM 1

This section is devoted to the proof of the correctness of Algorithm 1. Lemma 4.1 shows that the evaluation
of the maximum lateness L(q) for each node ¢ € N is correct with respect to the definition of Section 3.1.
Lemma 4.2 shows that any active feasible schedule is associated to a path of S(G) from s to a node without
successor, while Lemma 4.4 proves that extremum paths of S(G) are associated to feasible schedules. Our main
theorem follows.

3784 A. MUNIER KORDON AND N. TANG

No ({124 {1.210) ({L3h{1310) (({2.3}{23}0)

M (1231 640)) ((1,23,41{2,4,0) (({1,2,3,4,{1,4},0)

({4,5,6},{5,6},1)

Ny ({4,5},{4,5},1)

N ({6}, {6}, 1)

N (©.0.2)

FIGURE 3. The multistage auxiliary graph S(G) = (V, E) associated with the example given in
Figure 1. Each node p € N, is designated by the triple (Y (p), B(p), L(p)). The nodes p filled
in gray are associated to a set of feasible schedules which minimum maximum lateness is L(p).

FIGURE 4. The active feasible schedule o of maximum lateness L(c) = 1 associated to the
path s — qo — 1 — q2 — g3 with g9 = ({173}7{173}70)a q1 = ({172,374}7{274}70)7 q2 =
({47 9, 6}7 {57 6}7 1) and q3 = ({67 7}7 {7}? 1)

Lemma 4.1. For any node ¢ € N, with o € {—1,...,C — 1}, the value L(q) computed by Algorithm 1 follows
the definition of the minimum maximum lateness of a node (see, Sect. 3.1).

Proof. L(s) is set to —oo and is not modified. Let us consider a node ¢ € N,, of S(G) with a € {0,...,C — 1}
and the value £(q) = a + 1 — min;cp(q) di. If @ = 0, L(q) = £(q) is correctly set at line 5 of Algorithm 1.

Now, if @ > 0, L(q) = 4oc at the initialization of the node ¢. Since g belongs to S(G), then ' (q) # 0,
thus the value L(g) is adjusted once for each predecessor of ¢q. Let ' (¢) = {p1,...,p} € Nu—1 be the
predecessors of ¢ numbered following the inner loop lines 9-17. Let us denote by L;(q) the value of L(q)
associated to p; for i € {1,...,k}. Following line 14, L;(q) = max(¢(q), min(L(p;), L;—1(¢)). Thus, by Lemma 3.1,

A FP ALGORITHM FOR A UET-UCT SCHEDULING PROBLEM 3785

Li(q) = max(€(q), minjcqq,.. ;3 L(p;)) and Li(p) is the minimum maximum lateness of ¢, which proves the
lemma. (]

Lemma 4.2. Any active feasible schedule o of mazimum lateness bounded by L is associated to a path v(c) of
S(G) ending at a node p € N, with a € {0,...,C — 1} and W(p) = Y(p) U Z, = T. Moreover, the mazimum
lateness L(o) = maxgec, (o) L(q).

Proof. Let us consider an active feasible schedule of maximum lateness bounded by L. Let us denote by C(o)
the length of the schedule o, i.e. C(0) = max;er(t¢ + 1). Clearly, since o is active, C(0) < C. For a €
{0,...,C(0) — 1}, we set W, = Uj_(75 and B, = 7]

The set A((), #) contains the maximum sets of tasks schedulable at time 0. Since o is a feasible active schedule,
there exists go € Ny such that W(go) = Y (qo) U Zo = B(qo) = Wy = By. Moreover, (s,qo) € A and thus A.3 is
verified.

Moreover, since o is feasible, for every value a € {0,...,C(0) — 1}, 72 C X,. According to Lemma 2.2,
ngo 1§ — Zo € Xo N Xat1. So the node go = (1(ga), B(ga), +00) has been built at stage a in the loop of
lines 6 and 7 of Algorithm 1.

We prove that for every value a € {0,...,C(0) — 2}, (¢a, Gat1) € A.

= Y(ga+1) U Zav1 = W(qat1) = Ugi_é 15 = Ug:o T UT7 = W(ga) U B(ga+1) = Y(¢a) U Zo U B(qat1)-
Moreover, W(ga) N B(qa+1) = Us—o 7§ N 7711 = 0. Thus, A.1 is verified.
— Since o is a feasible active schedule, A.2 is verified.

We conclude that (s, qo,q1,- .. ,qc()—1) is a path of S(G). Moreover, Y (¢c(o)-1)UZc(0)—1 = W(qc(0)-1) =T
since the schedule o ends at time C(o), thus p = q¢(s)—1 is an ending node.

Lastly, by Lemma 4.1, each value L(g,) computed by Algorithm 1 for a € {0,...,C(c) — 1} is the minimum
maximum lateness of the sub-schedule associated to g, ; the maximum lateness of the schedule ¢ is thus L(c) =
maX,e, (o) L(q), which concludes the proof. O

Lemma 4.3. Let (s,po,p1,...,Pc—1) be a path of S(G) with Y (pc—1) U Zc—1 = W(pc-1) =T . For each task
i € T, there exists a unique value o € {0,...,C — 1} such that i € B(pq)-

Proof. According to the definition of S(G), W(py) € W(p1) C --- € W(pc—1). Moreover, by assumption,
W (pc—1) = T. Thus, for each task ¢ € 7, there is a unique « € {0,...,C—1} with i € W(p,) and i ¢ W(pa—1).
Since W(pa—1) U B(pa) = W(pa), we get i € B(pa)- O

Lemma 4.4. Each node p € N, such that a € {0,...,C — 1} and Y (p) U Z, = W(p) = T is associated to an
active feasible schedule o of maximum lateness L(o) = L(p).

Proof. Let us consider a node p € No_; with W (p) = 7 and C € {0,...,C —1}. We build iteratively a sequence
of nodes p_1,po,p1,-..,pc—1 of S(G) as follows:

(1) pc—1=p;
(2) for each k € {1,...C — 1}, pr—1 is a predecessor of p; in S(G) such that L(pg—1) is minimum;
(3) p_1=s.

This sequence is defined since each node of N, with « € {0,...,C — 1} has at least one predecessor (or it
will be deleted at line 18). Moreover, py € Ny for k € {-1,...,C — 1}.

Now, by Lemma 4.3, for each task ¢ € 7, there exists a unique value o € {0,...,C — 1} with i € B(p,).
Thus, a starting time can be defined for i by setting tJ = a. We prove in the following that these starting times
define an active feasible schedule o.

We first observe that for each value o € {—1,...,C —1}, B(po) C X, and |B(py)| < m. Thus, the maximum
lateness of each task is bounded by L; the constraints (2) and (7) of the problem definition are fulfilled.

3786 A. MUNIER KORDON AND N. TANG

Now, let consider a task i € B(py) with « € {0,...,C — 1}. By condition A.2, i is schedulable at time a.
Thus, all its predecessors are belonging to W (p,—1) and the condition (4) of the problem definition is verified.

Moreover, B(py) € A(W (pa-1), B(pa—1)). Thus, there is at least one predecessor j of ¢ scheduled at time
a — 1 and j has no other successor scheduled at time «. Thus, conditions (5) and (6) of the problem definition
are validated.

Lastly, elements from A(W(py), B(pa)) for @ € {0,...,C — 1} are maximum by inclusion; this condition
guarantees that ¢ is an active schedule.

Now, by definition of the sequence py, L(px) = max(€(py), L(pr—1)) with £(px) = k41 —min;c p(p,) di- Thus,
L(po) < L(p1) ... < L(pc—1). By Lemma 4.1, the maximum lateness of the schedule o is L(c) = L(pc—1) = L(p)
and the lemma is proved. O

Theorem 4.5 (Correctness of Algorithm 1). Algorithm 1 returns the minimum mazimum lateness L(o) < L
of a feasible schedule o if it exists, 400 if there is no feasible schedule of maximum lateness bounded by L.

Proof. Let us suppose first that Algorithm 1 returns a value L*. Then, let a node p € N such that L* = L(p) =
min{L(p),p € N,W(p) =7 }. By Lemma 4.4, p is associated to an active feasible schedule of maximum lateness
L(p), thus the minimum maximum lateness of our instance Lop, < L*. Now, let us suppose by contradiction
that L* > Lop. Thus, there exists an active feasible schedule o such that L(o) = Lopy and o is not associated
to a path of S(G), which contradicts Lemma 4.2, and thus L* = Lps.

Now, let us suppose that there is no node p € N such that W (p) = T; in this case, Algorithm 1 returns +oo.
By Lemma 4.2, there is no active feasible schedule and the theorem is proved. O

5. COMPLEXITY ANALYSIS

We study in this section the complexity of Algorithm 1 to conclude that our scheduling problem is fixed-
parameter tractable in the pathwidth.

Lemma 5.1. Let us denote by n the number of tasks and pw(L) the pathwidth associated to the upper bound L
of the mazimum lateness. For any value o € {0,...,C —1}, the number of elements of Ny, belongs to O(22P*(F)),

Proof. By Algorithm 1, the number of nodes in N, for a € {0,...,C — 1} is bounded by 2lXal 2l Xat1l The

values | X, | and | X 41| are both bounded by pw(L) + 1, thus the lemma holds. O

Lemma 5.2. The time complexity of the inner loop of Algorithm 1 (lines 9-17) for a fized node p € N, and
ae{-1,...,C -2} is O(pw(L) x 2Pw(L))_

Proof. Let us suppose that Y(p) U Z, = W(p) # 7. By definition, A(W(p), B(p)) C P(Xa+1) and thus
AW (p), B(p))| < 2¥er1.

Searching for a node q in N, can be done in time O(log | Ny+1|); By Lemma 5.1, O(log | Na+1]) € O(pw(L)),
thus the overall time of the inner loop is O(pw(L) x 2P*()), and the lemma is proved. O

Theorem 5.3 (Complexity of Algorithm 1). The time complezity of Algorithm 1 is O(n2+nx pw(L)x 237w(1)),
where pw(L) is the pathwidth of the interval graph associated to the time windows (r;,d; + L), i € T. The space
complexity of this algorithm is O(n x 24w (L)),

Proof. The time complexity of the computation of the sets X, and Z, for a € {0,...,C} (lines 3 and 4) is
O(n?) since C is bounded by 4n — 2 following Lemma 2.1.)
The time complexity for building V' at lines 7 and 8 is O(n x 22pw(L)) by Lemmas 5.1 and 2.1. Following
Lemma 5.2, the whole complexity of building arcs of S(G) in lines 9-20 is O(n x 22P*(L) x pw (L) x 2rw(H),
The overall complexity of the algorithm is thus O(n?4n x pw(L) x 23P*(L)) and the first part of the theorem
holds.

A FP ALGORITHM FOR A UET-UCT SCHEDULING PROBLEM 3787

Let us consider now the evaluation of the space complexity. By Lemma 5.1, the number of nodes |N,| with
a € {0,...,C — 1} belongs to O(22v(@L)) Thus, the total number of vertices of S(G), [V] =1+ Zac:_é | No| is
in O(C x 22v(1)), By Lemma 2.1, we deduce that [V| belongs to O(n x 22rw (L)) Moreover, the number of arcs
|E| is bounded by |Np| + 25;12 |Ny| X [Naq1|, which is in O(n x 247@(L)) achieving the proof. O

6. CONCLUSION AND PERSPECTIVES

We proved in this paper that the scheduling problem P|r;,prec,p; = 1,¢;; = 1|Lmax is fixed-parameter
tractable in the pathwidth pw(L) of the interval graph Z(L) associated with the intervals (r;,d; + L), i € T. We
extended previous approaches [17,21] to tackle both communications delay, a limited number of machines, and
to optimize the maximum lateness. We also limit our enumeration to active schedules, which allows to decrease
the worst-case complexity of the method.

We believe that this work opens up many perspectives. From a theoretical point of view, many fundamental
questions remain open as the existence of a fixed-parameter algorithm in the width, or the possible extension
of this work to scheduling problems with large communication delays. From a practical point of view, our
algorithm defines an original exploration scheme probably well suited to general scheduling problems. Similarly
to branch-and-bound methods, dominance properties allow to reduce the size of the generated multistage graph.
It would then be interesting to test this new class of algorithms to compare their performance with those from
the literature.

Acknowledgements. We are very grateful to the two reviewers for their helpful recommendations.

REFERENCES

[1] A. Ait El Cadi, R. Ben Atitallah, S. Hanafi, N. Mladenovic and A. Artiba, New MIP model for multiprocessor scheduling
problem with communication delays. Optim. Lett. 11 (2017) 1091-1107.

[2] H.L. Bodlaender, A tourist guide through treewidth. Acta Cybern. 11 (1992) 1-21.

[3] H.L. Bodlaender and M.R. Fellows, W[2]-hardness of precedence constrained k-processor scheduling. Oper. Res. Lett. 18 (1995)
93-97.

[4] P. Chrétienne and C. Picouleau, Scheduling with communication delays: a survey, in Scheduling Theory and its Applications.
John Wiley & Sons, New York (1995) 65-90.

[6] M. Cygan, F.V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk and S. Saurabh, Parameterized
Algorithms, 1st edition. Springer Publishing Company, Incorporated (2015).

[6] T. Davidovié, L. Liberti, N. Maculan and N. Mladenovic, Towards the Optimal Solution of the Multiprocessor Scheduling
Problem with Communication Delays. MISTA Conference (2007).
[7] M. de Weerdt, R. Baart and L. He, Single-machine scheduling with release times, deadlines, setup times, and rejection. Eur.
J. Oper. Res. 291 (2021) 629-639.
[8] R.G. Downey and M.R. Fellows, Fundamentals of Parameterized Complexity. Springer, London (2013).
[9] M. Drozdowski, Scheduling for Parallel Processing. Springer (2009).
[10] J. Du, J.Y.-T. Leung and G.H. Young, Scheduling chain-structured tasks to minimize makespan and mean flow time. Inf.
Comput. 92 (1991) 219-236.
[11] R. Giroudeau and J.-C. Koenig, Scheduling with communication delays, in Multiprocessor Scheduling, edited by E. Levner.
IntechOpen, Rijeka (2007).
[12] R.L. Graham, Bounds for certain multiprocessing anomalies. Bell Syst. Tech. J. 45 (1966) 1563-1581.
[13] R.L. Graham, E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan, Optimization and approximation in deterministic sequencing
and scheduling: a survey, in Discrete Optimization II. Annals of Discrete Mathematics, edited by P.L. Hammer, E.L. Johnson
and B.H. Korte. Vol. 5. Elsevier (1979) 287-326.
[14] E. Glnther, F.G. Ko6nig and N. Megow, Scheduling and packing malleable and parallel tasks with precedence constraints of
bounded width. J. Comb. Optim. 27 (2014) 164-181.
[15] H. Hoogeveen, J.K. Lenstra and B. Veltman, Three, four, five, six, or the complexity of scheduling with communication delays.
Oper. Res. Lett. 16 (1994) 129-137.
[16] M. Mnich and R. Van Bevern, Parameterized complexity of machine scheduling: 15 open problems. Comput. Oper. Res. 100
(2018) 254-261.

[17] A. Munier Kordon, A fixed-parameter algorithm for scheduling unit dependent tasks on parallel machines with time windows.
Discrete Appl. Math. 290 (2021) 1-6.

3788 A. MUNIER KORDON AND N. TANG

[18] V.J. Rayward-Smith, Uet scheduling with unit interprocessor communication delays. Discrete Appl. Math. 18 (1987) 55-71.

[19] L. Schrage, Solving resource-constrained network problems by implicit enumeration — nonpreemptive case. Oper. Res. 18 (1970)
263-278.

[20] J.P. Sousa and L.A. Wolsey, A time indexed formulation of non-preemptive single machine scheduling problems. Math. Program.
54 (1992) 353-367.

[21] N. Tang and A.M. Kordon, A fixed-parameter algorithm for scheduling unit dependent tasks with unit communication delays,
in European Conference on Parallel Processing. Lecture Notes in Computer Science. Vol. 12820. Springer (2021) 105-119.

[22] R. van Bevern, R. Bredereck, L. Bulteau, C. Komusiewicz, N. Talmon and G.J. Woeginger, Precedence-constrained scheduling
problems parameterized by partial order width, in International Conference on Discrete Optimization and Operations Research.
Springer International Publishing (2016) 105-120.

[23] B. Veltman, Multiprocessor scheduling with communication delays, Ph.D. thesis. Eindhoven University of Technology (1993).

[24] B. Veltman, B.J. Lageweg and J.K. Lenstra, Multiprocessor scheduling with communication delays. Parallel Comput. 16 (1990)
173-182.

[25] S. Venugopalan and O. Sinnen, Ilp formulations for optimal task scheduling with communication delays on parallel systems.
IEEE Trans. Parallel Distrib. Syst. 26 (2015) 142-151.

[26] Y. Zinder, B. Su, G. Singh and R. Sorli, Scheduling uet-uct tasks: Branch-and-bound search in the priority space. Optim. Eng.
11 (2010) 627-646.

Subscribe to Open (S20)

A fair and sustainable open access model

This journal is currently published in open access under a Subscribe-to-Open model (S20). S20 is a transformative
model that aims to move subscription journals to open access. Open access is the free, immediate, online availability of
research articles combined with the rights to use these articles fully in the digital environment. We are thankful to our
subscribers and sponsors for making it possible to publish this journal in open access, free of charge for authors.

Please help to maintain this journal in open access!

Check that your library subscribes to the journal, or make a personal donation to the S20 programme, by contacting
subscribers@edpsciences.org

More information, including a list of sponsors and a financial transparency report, available at: https://www.
edpsciences.org/en/maths-s2o0-programme

mailto:subscribers@edpsciences.org
https://www.edpsciences.org/en/maths-s2o-programme
https://www.edpsciences.org/en/maths-s2o-programme

	Introduction
	Problem definition and dominance properties
	Problem definition
	Example
	Time windows, pathwidth, and a structural property
	A general dominance property of active schedules

	Description of the algorithm
	Description of the multistage graph
	Nodes of .
	Arcs of .
	Maximum Lateness of a node of .

	Description of the algorithm

	Correctness of Algorithm 1
	Complexity analysis
	Conclusion and perspectives
	References

