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ON 2-MATCHING COVERED GRAPHS AND 2-MATCHING DELETED
GRAPHS

Guowei Dai*

Abstract. For a family of connected graphs 𝒜, a spanning subgraph 𝐻 of a graph 𝐺 is called an
𝒜-factor of 𝐺 if each component of 𝐻 is isomorphic to some graph in 𝒜. A graph 𝐺 has a perfect
2-matching if 𝐺 has a spanning subgraph 𝐻 such that each component of 𝐻 is either an edge or a
cycle, i.e., 𝐻 is a {𝑃2, 𝐶𝑖|𝑖 ≥ 3}-factor of 𝐺. A graph 𝐺 is said to be 2-matching covered if, for every
edge 𝑒 ∈ 𝐸(𝐺), there is a perfect 2-matching 𝑀𝑒 of 𝐺 such that 𝑒 belongs to 𝑀𝑒. A graph 𝐺 is called
a 2-matching deleted graph if, for every edge 𝑒 ∈ 𝐸(𝐺), 𝐺 − 𝑒 possesses a perfect 2-matching. In
this paper, we first obtain respective new characterizations for 2-matching covered graphs in bipartite
and non-bipartite graphs by new proof technologies, distinct from Hetyei’s or Berge’s classical results.
Secondly, we give a necessary and sufficient condition for a graph to be a 2-matching deleted graph.
Thirdly, we we prove that planar graphs with minimum degree at least 4 and 𝐾1,𝑟-free graphs (𝑟 ≥ 3)
with minimum degree at least 𝑟 + 1 are 2-matching deleted graphs, respectively.
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1. Introduction

All graphs in this paper are finite and simple. We refer to [5] for notation and terminologies not defined here.
Let 𝐺 = (𝑉 (𝐺), 𝐸(𝐺)) be a graph with vertex set 𝑉 (𝐺) and edge set 𝐸(𝐺). For 𝑣 ∈ 𝑉 (𝐺), we use 𝑑𝐺(𝑣) and
𝑁𝐺(𝑣) to denote the degree of 𝑣 and the set of vertices adjacent to 𝑣 in 𝐺, respectively. For 𝑆 ⊆ 𝑉 (𝐺), we write
𝑁𝐺(𝑆) = ∪𝑣∈𝑆𝑁𝐺(𝑣). We use 𝛿(𝐺) to denote the minimum degree of a graph 𝐺. We use 𝜔(𝐺), 𝑖(𝐺) to denote
the number of components and isolated vertices of a graph 𝐺, respectively.

For a connected graph 𝐺, its toughness, denoted by 𝜏(𝐺), was first introduced by Chv𝑎́tal [6] as follows. If
𝐺 is complete, then 𝜏(𝐺) = +∞; otherwise,

𝜏(𝐺) = min
{︂

|𝑆|
𝜔(𝐺− 𝑆)

: 𝑆 ⊆ 𝑉 (𝐺), 𝜔(𝐺− 𝑆) ≥ 2
}︂

.

The binding number is introduced by Woodall [19] and defined as

bind(𝐺) = min
{︂
|𝑁𝐺(𝑆)|
|𝑆|

: ∅ ≠ 𝑆 ⊆ 𝑉 (𝐺), 𝑁𝐺(𝑆) ̸= 𝑉 (𝐺)
}︂

.
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The isolated toughness, denoted by 𝐼𝑡(𝐺), was first introduced by Yang, Ma and Liu [20] as follows. If 𝐺 is
complete, then 𝐼𝑡(𝐺) = +∞; otherwise,

𝐼𝑡(𝐺) = min
{︂

|𝑆|
𝑖(𝐺− 𝑆)

: 𝑆 ⊆ 𝑉 (𝐺), 𝑖(𝐺− 𝑆) ≥ 2
}︂

.

For 𝑋 ⊆ 𝑉 (𝐺), let 𝐺[𝑋] be the subgraph of 𝐺 induced by 𝑋, and define 𝐺 − 𝑋 := 𝐺[𝑉 (𝐺) − 𝑋]. For
convenience, we use 𝐺 − 𝑥 to denote the graph 𝐺 − {𝑥}. Let 𝐾1,𝑟 denote the complete bipartite with partite
sets of size one and 𝑟. For an integer 𝑟 ≥ 3, a graph 𝐺 is said to be 𝐾1,𝑟-free if 𝐺 does not contain an induced
subgraph isomorphic to 𝐾1,𝑟.

Let 𝒜 be a family of connected graphs. If 𝐺 has a spanning subgraph 𝐻 such that every component of 𝐻
is isomorphic to some graph in 𝒜, then 𝐻 is said to be an 𝒜-factor of 𝐺. A graph 𝐺 has a perfect 2-matching
if 𝐺 has a spanning subgraph 𝐻 such that each component of 𝐻 is either an edge or a cycle, i.e., 𝐻 is a
{𝑃2, 𝐶𝑖|𝑖 ≥ 3}-factor of 𝐺. A graph 𝐺 is said to be 2-matching covered if there is a perfect 2-matching of 𝐺
including any given edge 𝑒 ∈ 𝐸(𝐺). A graph 𝐺 is called a 2-matching deleted graph if 𝐺 possesses a perfect
2-matching excluding any given edge 𝑒 ∈ 𝐸(𝐺).

A spanning subgraph 𝐻 of graph 𝐺 is called 1-factor (perfect matching) if 𝑑𝐻(𝑥) = 1 holds for any 𝑥 ∈ 𝑉 (𝐺).
Since Tutte proposed the well known Tutte 1-factor theorem [17], there are many results on graph factors
[2, 7–9, 11–13, 18] and path-factors in claw-free graphs and cubic graphs [3, 10, 14, 15]. More results on graph
factors can be found in the survey papers and books in [1, 16,21].

For matchings in bipartite graphs, König (1931) and Hall (1935) obtained the so-called König-Hall Theorem
(sometimes, known as Hall’s Theorem), respectively.

Theorem 1.1. (König-Hall [5]) Let 𝐺 = (𝑋, 𝑌 ) be a connected bipartite graph such that |𝑋| = |𝑌 |. Then 𝐺
has a perfect matching if and only if |𝑁𝐺(𝑆)| ≥ |𝑆| for any subset 𝑆 ⊆ 𝑋.

In 1953, Tutte proved the following characterization for the existence of perfect 2-matchings in a graph.

Theorem 1.2. (Tutte [17]) A graph 𝐺 has a perfect 2-matching if and only if 𝑖(𝐺 − 𝑆) ≤ |𝑆| for any subset
𝑆 ⊆ 𝑉 (𝐺).

The equivalence as following is due mostly to Hetyei (see also Akiyama and Kano [1]).

Theorem 1.3. (Hetyei [1]) If 𝐺 is a connected bipartite graph with partition (𝑈, 𝑊 ), then each edge of 𝐺 is
contained in a 1-factor if and only if |𝑈 | = |𝑊 | and |𝑁𝐺(𝑋)| > |𝑋| for any non-empty proper subset 𝑋 ⊆ 𝑈 .

A graph 𝐺 is 2-matching covered if and only if 𝐺 is “regularizable”, where a graph is regularizable if it can
be transformed into a regular multigraph by giving each edge some positive multiplicity. Regularizable graphs
were introduced and studied by Berge.

Theorem 1.4. (Berge [4]) For a connected graph 𝐺 that is not a bipartite graph with partite sets of equal size,
the following conditions are equivalent:

(a) 𝐺 is regularizable,
(b) for each edge 𝑒 of 𝐺, there exists a perfect 2-matching of 𝐺 covering 𝑒,
(c) for every non-empty independent set 𝑋 of vertices, |𝑁𝐺(𝑋)| > |𝑋|.

2. 2-matching covered graph

Lemma 2.1. Let 𝐺 be a graph such that 𝑉 (𝐺) = 𝑋 ∪ 𝑌, 𝑋 ∩ 𝑌 = ∅ and |𝑋| = |𝑌 |. If 𝑌 is an independent set
in 𝐺, then 𝐺 has a 1-factor if and only if 𝑖(𝐺− 𝑆) ≤ |𝑆| for any 𝑆 ⊆ 𝑋.
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Proof. Necessity: Let 𝑀 be a 1-factor of 𝐺, then 𝑀 is a perfect 2-matching of 𝐺 obviously. It follows from
Theorem 1.2 that 𝑖(𝐺− 𝑆) ≤ |𝑆| for any subset 𝑆 ⊆ 𝑉 (𝐺). Hence, 𝑖(𝐺− 𝑆) ≤ |𝑆| holds for any 𝑆 ⊆ 𝑋.

Sufficiency: Choose 𝑆 := ∅, then 𝑖(𝐺) = 𝑖(𝐺 − 𝑆) ≤ |𝑆| = 0. Let 𝐺′ = 𝐺 − 𝐸(𝑋), then there is no isolated
vertex in 𝐺′. Otherwise, there exists a isolated vertex 𝑢 ∈ 𝑉 (𝐺′) such that 𝑢 ∈ 𝑋. By choosing 𝑆 := 𝑋 ∖ {𝑢}, it
follows that 𝑖(𝐺− 𝑆) = |𝑌 ∪ {𝑢}| = |𝑌 |+ 1 = |𝑋|+ 1 > |𝑆|, a contradiction. On the one hand, it is obviously
𝐼(𝐺 − 𝑆) ⊆ 𝐼(𝐺′ − 𝑆). On the other hand, all the isolated vertices of 𝐺′ − 𝑆 are in 𝑌 since 𝑖(𝐺′) = 𝑖(𝐺) = 0.
Note that every edge in 𝐸(𝑋) is not adjacent to any vertex in 𝑌 . This together with 𝐼(𝐺′ − 𝑆) ⊆ 𝑌 implies
that 𝐼(𝐺′ − 𝑆) ⊆ 𝐼(𝐺− 𝑆). Therefore, 𝑖(𝐺′ − 𝑆) = 𝑖(𝐺− 𝑆) ≤ |𝑆| for any 𝑆 ⊆ 𝑋. It follows immediately that
|𝑁 ′

𝐺(𝑇 )| ≥ |𝑇 | for any 𝑇 ⊆ 𝑌 since 𝑁 ′
𝐺(𝑇 ) ⊆ 𝑋 and |𝑇 | ≤ 𝑖(𝐺−𝑁 ′

𝐺(𝑇 )) ≤ |𝑁 ′
𝐺(𝑇 )|. By Theorem 1.1, 𝐺′ has a

1-factor. Hence, 𝐺 has a 1-factor. �

Theorem 2.2. (i) A connected bipartite graph 𝐺 = (𝑋, 𝑌 ) is 2-matching covered if and only if |𝑋| = |𝑌 | and
𝑖(𝐺−𝑆) ≤ |𝑆|−1 for any non-empty proper subset 𝑆 ⊆ 𝑋; (ii) A connected non-bipartite graph 𝐺 is 2 matching
covered if and only if 𝑖(𝐺− 𝑆) ≤ |𝑆| − 1 for any non-empty proper subset 𝑆 ⊆ 𝑉 (𝐺).

Proof. (i) Necessity: Let 𝐺 = (𝑋, 𝑌 ) be a connected 2-matching covered bipartite graph. Then, by Theorem 1.3,
|𝑋| = |𝑌 | and |𝑁𝐺(𝑇 )| ≥ |𝑇 | + 1 for any non-empty proper subset 𝑇 ⊆ 𝑌 . For any non-empty proper subset
𝑆 ⊆ 𝑋, every isolated vertex of 𝐺 − 𝑆 belongs to 𝑌 , denoted by 𝑇 = 𝐼(𝐺 − 𝑆) ⊆ 𝑌 . On the one hand,
|𝑁𝐺(𝑇 )| ≥ |𝑇 | + 1 = 𝑖(𝐺 − 𝑆) + 1. On the other hand, |𝑁𝐺(𝑇 )| ≤ |𝑆| since 𝑇 = 𝐼(𝐺 − 𝑆). Hence, 𝑖(𝐺 − 𝑆) ≤
|𝑁𝐺(𝑇 )| − 1 ≤ |𝑆| − 1 for any non-empty proper subset 𝑆 ⊆ 𝑋.

Sufficiency: Let 𝐺 = (𝑋,𝑌 ) be a connected bipartite graph with |𝑋| = |𝑌 | such that 𝑖(𝐺−𝑆) ≤ |𝑆|−1 for any
non-empty proper subset 𝑆 ⊆ 𝑋. Then we argue that |𝑁𝐺(𝑇 )| ≥ |𝑇 |+1 for any non-empty proper subset 𝑇 ⊆ 𝑌 .
Otherwise, there exists proper subset ∅ ≠ 𝑇 ⊆ 𝑌 such that |𝑁𝐺(𝑇 )| ≤ |𝑇 |. Note that |𝑁𝐺(𝑇 )| ≠ ∅ since 𝐺 is
connected. Choose 𝑆 := |𝑁𝐺(𝑇 )|. As |𝑁𝐺(𝑇 )| ≤ |𝑇 | < |𝑌 | = |𝑋|, we have that 𝑁𝐺(𝑇 ) ̸= 𝑋 and thus ∅ ≠ 𝑆 ⊆ 𝑋.
It follows that 𝑖(𝐺 − 𝑆) ≤ |𝑆| − 1. On the other hand, 𝑖(𝐺 − 𝑆) = 𝑖(𝐺 − 𝑁𝐺(𝑇 )) ≥ |𝑇 | ≥ |𝑁𝐺(𝑇 )| = |𝑆|, a
contradiction. Hence, |𝑁𝐺(𝑇 )| ≥ |𝑇 |+ 1 for any non-empty proper subset 𝑇 ⊆ 𝑌 . It follows from Theorem 1.3
that 𝐺 is a 2-matching covered graph.

(ii) Necessity: By way of contradiction, assume that there exists non-empty proper subset 𝑆 ⊆ 𝑉 (𝐺) such that
𝑖(𝐺− 𝑆) ≥ |𝑆|. Since 𝐺 is a 2-matching covered graph, 𝐺 has a perfect 2-matching, and thus 𝑖(𝐺− 𝑆′) ≤ |𝑆′|
for any 𝑆′ ⊆ 𝑉 (𝐺). This together with 𝑖(𝐺− 𝑆) ≥ |𝑆| implies that 𝑖(𝐺− 𝑆) = |𝑆| > 0. As 𝐺 is a nonbipartite
graph, 𝐸(𝑆) ̸= ∅ or there exists a nontrivial component of 𝐺− 𝑆.

Case 1. 𝐸(𝑆) ̸= ∅.
Suppose 𝑒 = 𝑥𝑦 ∈ 𝐸(𝑆) such that 𝑥, 𝑦 ∈ 𝑆. There must exist a perfect 2-matching 𝐹 covering 𝑒 since
𝐺 is a 2-matching covered graph. Denote the component of 𝐹 containing 𝑒 by 𝐶. Note that every
component of 𝐹 is either an edge or a cycle by the definition of perfect 2-matchings.

– If 𝐶 is an edge, then 𝐺′ = 𝐺 − {𝑥, 𝑦} has a perfect 2-matching 𝐹 − {𝑥, 𝑦}. Choose 𝑆′ := 𝑆 ∖ {𝑥, 𝑦},
then 𝑖(𝐺′ − 𝑆′) = 𝑖(𝐺 − 𝑆) = |𝑆| = |𝑆′| + 2 > |𝑆′|. By Theorem 1.2, 𝐺′ has no perfect 2-matching, a
contradiction.

– If 𝐶 is a cycle and |𝐶| ≥ 3, then 𝐺′′ = 𝐺− 𝑉 (𝐶) has a perfect 2-matching 𝐹 − 𝑉 (𝐶). As 𝑒 ∈ 𝐸(𝑆), we
have that |𝑆 ∩ 𝑉 (𝐶)| > |𝐼(𝐺− 𝑆) ∩ 𝑉 (𝐶)|. Choose 𝑆′′ := 𝑆 − 𝑉 (𝐶), then

𝑖(𝐺′′ − 𝑆′′) ≥ |𝐼(𝐺− 𝑆)− 𝐼(𝐺− 𝑆) ∩ 𝑉 (𝐶)|
= 𝑖(𝐺− 𝑆)− |𝐼(𝐺− 𝑆) ∩ 𝑉 (𝐶)|
> 𝑖(𝐺− 𝑆)− |𝑆 ∩ 𝑉 (𝐶)|
≥ |𝑆| − |𝑆 ∩ 𝑉 (𝐶)|
= |𝑆′′|.

By Theorem 1.2, 𝐺′′ has no perfect 2-matching, a contradiction.
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Case 2. 𝐸(𝑆) = ∅.
In this case, 𝐺 − 𝑆 has a nontrivial component 𝐷, and there exists an edge
𝑒′ = 𝑢𝑣 connecting 𝐷 and 𝑆 such that 𝑢 ∈ 𝐷, 𝑣 ∈ 𝑆. Then 𝐺 has a perfect
2-matching covering 𝑒′, denoted by 𝐹 ′, since 𝐺 is a 2-matching covered graph. Denote the
component of 𝐹 ′ containing 𝑒′ by 𝐶 ′.

– If 𝐶 ′ is an edge, then 𝐺1 = 𝐺− {𝑢, 𝑣} has a perfect 2-matching 𝐹 ′ − {𝑢, 𝑣}. Choose 𝑆1 := 𝑆 ∖ {𝑢}, then
𝑖(𝐺1 − 𝑆1) ≥ 𝑖(𝐺− 𝑆) ≥ |𝑆| > |𝑆1|. By Theorem 1.2, 𝐺1 has no perfect 2-matching, a contradiction.

– If 𝐶 ′ is a cycle and |𝐶 ′| ≥ 3, then 𝐺2 = 𝐺− 𝑉 (𝐶) has a perfect 2-matching 𝐹 ′ − 𝑉 (𝐶 ′). As 𝐶 ′ is a cycle
containing 𝑒′, we have that |𝑆 ∩ 𝑉 (𝐶 ′)| > |𝐼(𝐺− 𝑆) ∩ 𝑉 (𝐶 ′)|. Choose 𝑆2 := 𝑆 − 𝑉 (𝐶 ′), then

𝑖(𝐺2 − 𝑆2) ≥ |𝐼(𝐺− 𝑆)− 𝐼(𝐺− 𝑆) ∩ 𝑉 (𝐶 ′)|
= 𝑖(𝐺− 𝑆)− |𝐼(𝐺− 𝑆) ∩ 𝑉 (𝐶 ′)|
> 𝑖(𝐺− 𝑆)− |𝑆 ∩ 𝑉 (𝐶 ′)|
≥ |𝑆| − |𝑆 ∩ 𝑉 (𝐶 ′)|
= |𝑆2|.

By Theorem 1.2, 𝐺2 has no perfect 2-matching, a contradiction.

Sufficiency: For any edge 𝑒 = 𝑥𝑦, 𝐺* := 𝐺−{𝑥, 𝑦} has at most one isolated vertex since 𝑖(𝐺*) = 𝑖(𝐺−{𝑥, 𝑦}) ≤
|{𝑥, 𝑦}| − 1 = 1.

Case 1. 𝑖(𝐺*) = 1.
Let 𝑢 be the isolated vertex of 𝐺*, and 𝐶1, 𝐶2, . . . , 𝐶𝑘 be the other connected components of 𝐺*. We
first argue that 𝐶𝑖 has a perfect 2-matching 𝐹𝑖 for any 1 ≤ 𝑖 ≤ 𝑘. Otherwise, by Theorem 1.2, there
exists 𝑆𝑖 ⊆ 𝑉 (𝐶𝑖) such that 𝑖(𝐶𝑖 − 𝑆𝑖) ≥ |𝑆𝑖| + 1. Choose 𝑆 := 𝑆𝑖 ∪ {𝑥, 𝑦}, then 𝑆 is a non-empty
proper subset of 𝐺, and 𝑖(𝐺 − 𝑆) = |{𝑢}| + 𝑖(𝐶𝑖 − 𝑆𝑖) ≥ 1 + (|𝑆𝑖| + 1) = |𝑆|, a contradiction. It is
easy to find that there exists no pendant vertex in 𝐺 since 𝑖(𝐺 − 𝑆) ≤ |𝑆| − 1 for any proper subset
∅ ̸= 𝑆 ⊆ 𝑉 (𝐺). Hence, 𝑢 ∈ 𝑁𝐺(𝑥) ∩ 𝑁𝐺(𝑦), i.e., 𝑥𝑢𝑦𝑥 is a cycle in 𝐺. Then, 𝑥𝑢𝑦𝑥 ∪ (

⋃︀𝑘
𝑖=1 𝐹𝑖) is a

perfect 2-matching of 𝐺 containing 𝑒, i.e., 𝐺 is a 2-matching covered graph.
Case 2. 𝑖(𝐺*) = 0.

Let 𝐶1, 𝐶2, . . . , 𝐶𝑚 be the connected components of 𝐺*, where 𝑚 ≥ 1. If every 𝐶𝑖 has a perfect 2-
matching 𝐹𝑖 for 1 ≤ 𝑖 ≤ 𝑚, then {𝑥𝑦, 𝐹1, 𝐹2, . . . , 𝐹𝑚} is a perfect 2-matching of 𝐺 containing 𝑒, i.e.,
𝐺 is a 2-matching covered graph. If there exist 𝐶𝑖, 𝐶𝑗(1 ≤ 𝑖 ̸= 𝑗 ≤ 𝑚) such that both 𝐶𝑖 and 𝐶𝑗

has no perfect 2-matching, then, by Theorem 1.2, there exist 𝑆𝑖 ⊆ 𝑉 (𝐶𝑖), 𝑆𝑗 ⊆ 𝑉 (𝐶𝑗) respectively
such that 𝑖(𝐶𝑖 − 𝑆𝑖) ≥ |𝑆𝑖| + 1 and 𝑖(𝐶𝑗 − 𝑆𝑗) ≥ |𝑆𝑗 | + 1. Choose 𝑆 := 𝑆𝑖 ∪ 𝑆𝑗 ∪ {𝑥, 𝑦} which is a
non-empty proper subset of 𝐺, then 𝑖(𝐺− 𝑆) = 𝑖(𝐶𝑖 − 𝑆𝑖) + 𝑖(𝐶𝑗 − 𝑆𝑗) ≥ |𝑆𝑖|+ 1 + |𝑆𝑗 |+ 1 = |𝑆|, a
contradiction. Thus, there is exactly one element of {𝐶1, 𝐶2, . . . , 𝐶𝑚} which has no perfect 2-matching.
Without of generality, assume 𝐶1 has no perfect 2-matching and every 𝐶𝑡 has a perfect 2-matching 𝐹𝑡

for 2 ≤ 𝑡 ≤ 𝑚. Then it is sufficient to show that

𝐶 ′1 := 𝐺[𝑉 (𝐶1) ∪ {𝑥, 𝑦}] has a perfect 2−matching covering 𝑒. (1)

On the one hand, since 𝐶1 has no perfect 2-matching, by Theorem 1.2, there exists 𝑆′ ⊆ 𝑉 (𝐶1) such
that 𝑖(𝐶1 − 𝑆′) ≥ |𝑆′| + 1. On the other hand, if 𝑖(𝐶1 − 𝑆′) ≥ |𝑆′| + 2, then 𝑆 := 𝑆′ ∪ {𝑥, 𝑦} is a
non-empty proper subset of 𝐺 and 𝑖(𝐺− 𝑆) = 𝑖(𝐶1 − 𝑆′) ≥ |𝑆′|+ 2 = |𝑆|, a contradiction. Hence, we
have that 𝑖(𝐶1 − 𝑆′) = |𝑆′| + 1. Note that 𝑆′ is a non-empty set since 𝑖(𝐺*) = 0. We assume that 𝑆′

is a minimal barrier set of 𝑉 (𝐶1), i.e., 𝑖(𝐶1 − 𝑆′′) ≤ |𝑆′′| holds for any proper subset 𝑆′′ ⊆ 𝑆′.

Let 𝑊 := {𝑥1, 𝑥2, . . . , 𝑥𝑑} be the set of isolated vertices of 𝐶1 − 𝑆′, where 𝑑 ≥ 2. We argue that

𝑁𝐺(𝑥) ∩𝑊 ̸= ∅. (2)
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Otherwise, 𝑖(𝐺− (𝑆′ ∪{𝑦})) ≥ 𝑖(𝐶1−𝑆′) = |𝑆′|+ 1 = |𝑆′ ∪{𝑦}|, a contradiction. Similarly, we can obtain that

𝑁𝐺(𝑦) ∩𝑊 ̸= ∅. (3)

Moreover, we also argue that every nontrivial component 𝐶𝑗
1 of 𝑖(𝐶1 − 𝑆′) has a perfect 2-matching 𝐹 𝑗

1 (𝑗 =
1, 2, . . . , 𝑝). Otherwise, suppose 𝐶1

1 has no perfect 2-matching, then there exists 𝑆1 ⊆ 𝑉 (𝐶1
1 ) such that 𝑖(𝐶1

1 −
𝑆1) ≥ |𝑆1| + 1 by Theorem 1.2. Choose 𝑆 := 𝑆1 ∪ 𝑆′ ∪ {𝑥, 𝑦}, then 𝑆 is a non-empty proper subset of 𝐺 and
𝑖(𝐺− 𝑆) = 𝑖(𝐶1 − 𝑆′) + 𝑖(𝐶1

1 − 𝑆1) ≥ |𝑆′|+ 1 + |𝑆1|+ 1 = |𝑆1 ∪ 𝑆′ ∪ {𝑥, 𝑦}| = |𝑆|, a contradiction.

Claim 2.3. 𝐺 := 𝐺[𝑆′ ∪ {𝑥, 𝑦} ∪𝑊 ] has a perfect 2-matching containing 𝑒.

Proof. We first argue that for any 1 ≤ 𝑖 ≤ 𝑑, 𝐺𝑖 := 𝐺−{𝑥, 𝑦, 𝑥𝑖} has a 1-factor 𝐹 ′𝑖 . Suppose there is no 1-factor in
𝐺𝑖, then by Lemma 2.1, there exists 𝑆′′ ⊆ 𝑆′ such that 𝑖(𝐺𝑖−𝑆′′) ≥ |𝑆′′|+1. On the one hand, by the arguments
similar to Lemma 2.1, we have that 𝐼(𝐺𝑖−𝑆′′) ⊆ 𝐼(𝐶1−𝑆′′), and thus 𝑖(𝐶1−𝑆′′) ≥ 𝑖(𝐺𝑖−𝑆′′) ≥ |𝑆′′|+ 1. On
the other hand, it is obviously 𝑆′′ is a proper subset of 𝑆′, then 𝑖(𝐶1 − 𝑆′′) ≤ |𝑆′′| since 𝑆′ is a minimal barrier
set of 𝑉 (𝐶1), a contradiction. According to (2) and (3), we will distinguish two cases below to show that 𝐺 has
perfect 2-matchings containing 𝑒.

– If there exists 𝑢 ∈ 𝑁𝐺(𝑥)∩𝑁𝐺(𝑦)∩𝑊 , then without of generality, assume 𝑢 = 𝑥1. Since 𝐺1 := 𝐺−{𝑥, 𝑦, 𝑥1}
has a 1-factor 𝐹 ′1, 𝑥𝑥1𝑦𝑥 ∪ 𝐹 ′1 is a perfect 2-matching of 𝐺 containing 𝑒.

– If 𝑁𝐺(𝑥) ∩ 𝑁𝐺(𝑦) ∩ 𝑊 = ∅, then we assume that 𝑥1 ∈ 𝑁𝐺(𝑥), 𝑥𝑑 ∈ 𝑁𝐺(𝑦). By the arguments similar
to Lemma 2.1, both 𝐹 ′1 and 𝐹 ′𝑑 has no edge in 𝐸(𝐺[𝑆′]). Note that, due to structural properties of 1-
factors, there is an alternating path 𝑃 from 𝑥1 to 𝑥𝑑 whose edges are alternately in 𝐸(𝐹 ′1) and 𝐸(𝐹 ′𝑑). Then
𝐹 ′′1 := 𝐹 ′1 − 𝑉 (𝑃 ) or 𝐹 ′′𝑑 = 𝐹 ′𝑑 − 𝑉 (𝑃 ) is a 1-factor of 𝐺− {𝑥, 𝑦} − 𝑉 (𝑃 ). Thus, 𝑥𝑃𝑦𝑥∪ 𝐹 ′′1 or 𝑥𝑃𝑦𝑥∪ 𝐹 ′′𝑑 is
a perfect 2-matching of 𝐺 containing 𝑒.

Hence, Claim 2.3 is true. �

Due to Claim 2.3, let 𝐹 be a perfect 2-matching of 𝐺 containing 𝑒. Then 𝐹 ∪(
⋃︀𝑝

𝑖=1 𝐹 𝑖
1) is a perfect 2-matching

of 𝐶 ′1 containing 𝑒, i.e., the argument (1) holds. Thus, (
⋃︀𝑚

𝑗=2 𝐹𝑗) ∪ 𝐹 ∪ (
⋃︀𝑝

𝑖=1 𝐹 𝑖
1) is a perfect 2-matching of 𝐺

containing 𝑒, i.e., 𝐺 is a 2-matching covered graph. �

3. 2-matching deleted graph

Theorem 3.1. Let 𝐺 be a connected graph. Then 𝐺 is a 2-matching deleted graph if and only if 𝑖(𝐺 − 𝑆) ≤
|𝑆| − 𝜀(𝑆) for all 𝑆 ⊆ 𝑉 (𝐺), where 𝜀(𝑆) is defined by

𝜀(𝑆) =

⎧⎪⎨⎪⎩
2 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑎 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑜𝑓 𝐺− 𝑆 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑒𝑥𝑎𝑐𝑡𝑙𝑦 𝑡𝑤𝑜 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠;
1 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑎 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝐶 𝑜𝑓 𝐺− 𝑆 𝑤𝑖𝑡ℎ 𝑝𝑒𝑛𝑑𝑎𝑛𝑡 𝑒𝑑𝑔𝑒𝑠 𝑎𝑛𝑑 |𝑉 (𝐶)| ≥ 3;
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

Proof. Necessity: Let 𝐺 be a 2-matching deleted graph. Obviously, 𝐺 has a perfect 2-matching. Then, by
Theorem 1.2, 𝑖(𝐺 − 𝑆) ≤ |𝑆| for any 𝑆 ⊆ 𝑉 (𝐺). If 𝑖(𝐺 − 𝑆) ≤ |𝑆| − 2, then 𝑖(𝐺 − 𝑆) ≤ |𝑆| − 𝜀(𝑆) by the
definition of 𝜀(𝑆); If 𝑖(𝐺 − 𝑆) = |𝑆| − 1, then we argue that 𝜀(𝑆) ≤ 1. Otherwise, 𝜀(𝑆) = 2, and 𝐺 − 𝑆 has a
component with exactly one edge, denoted by 𝑒. It follows that 𝑖(𝐺− 𝑒−𝑆) = 𝑖(𝐺−𝑆) + 2 = |𝑆|+ 1 > |𝑆|, and
thus 𝐺 − 𝑒 has no perfect 2-matching, a contradiction. Hence, 𝜀(𝑆) ≤ 1 and 𝑖(𝐺 − 𝑆) = |𝑆| − 1 ≤ |𝑆| − 𝜀(𝑆);
Now, we may assume that 𝑖(𝐺 − 𝑆) = |𝑆|. We argue that 𝜀(𝑆) = 0, otherwise 𝜀(𝑆) = 1, 2, then 𝐺 − 𝑆 has a
component with pendant edges. It is easy to find that 𝑖(𝐺 − 𝑒 − 𝑆) ≥ 𝑖(𝐺 − 𝑆) + 1 = |𝑆| + 1, and thus 𝐺 − 𝑒
has no perfect 2-matching, a contradiction. Hence, 𝜀(𝑆) = 0 and 𝑖(𝐺− 𝑆) = |𝑆| ≤ |𝑆| − 𝜀(𝑆).

Sufficiency: For any given 𝑆 ⊆ 𝑉 (𝐺), 𝑖(𝐺− 𝑆) ≤ |𝑆| − 𝜀(𝑆). Now, it suffices to show that 𝑖(𝐺− 𝑒− 𝑆) ≤ |𝑆|
for any edge 𝑒 ∈ 𝐸(𝐺) by Theorem 1.2. If 𝑒 belongs to some component of 𝐺−𝑆 containing exactly two vertices,
then 𝜀(𝑆) = 2, and thus 𝑖(𝐺− 𝑒− 𝑆) = 𝑖(𝐺− 𝑆) + 2 ≤ |𝑆| − 𝜀(𝑆) + 2 = |𝑆|; If 𝑒 is a pendant edge belongs to a
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component 𝐶 of 𝐺−𝑆 such that |𝐶| ≥ 3, then 𝜀(𝑆) ≥ 1, and thus 𝑖(𝐺−𝑒−𝑆) = 𝑖(𝐺−𝑆)+1 ≤ |𝑆|−𝜀(𝑆)+1 ≤ |𝑆|;
Otherwise, 𝑖(𝐺 − 𝑒 − 𝑆) = 𝑖(𝐺 − 𝑆), and thus 𝑖(𝐺 − 𝑒 − 𝑆) = 𝑖(𝐺 − 𝑆) ≤ |𝑆| − 𝜀(𝑆) ≤ |𝑆| by the definition
of 𝜀(𝑆). Therefore, 𝑖(𝐺 − 𝑒 − 𝑆) ≤ |𝑆| holds for any 𝑆 ⊆ 𝑉 (𝐺) and 𝑒 ∈ 𝐸(𝐺). This completes the proof of
Theorem 3.1. �

Corollary 3.2. Let 𝐺 be a connected graph of order 𝑛 ≥ 3. Then 𝐺 is a 2-matching deleted graph if one of the
following statements holds: (i) 𝜏(𝐺) > 1; (ii) 𝑏𝑖𝑛𝑑(𝐺) > 3/2; (iii) 𝐼𝑡(𝐺) > 2.

Proof. Suppose, to the contrary, that 𝐺 is not a 2-matching deleted graph. By Theorem 3.1, there exists
𝑆 ⊆ 𝑉 (𝐺) such that 𝑖(𝐺− 𝑆) > |𝑆| − 𝜀(𝑆). Due to the integrality, 𝑖(𝐺− 𝑆) ≥ |𝑆| − 𝜀(𝑆) + 1.

(i) If 𝐺 has a pendant edge 𝑥𝑦 such that 𝑑𝐺(𝑦) = 1, then 𝜏(𝐺) ≤ |{𝑥}|
𝜔(𝐺−𝑥) ≤

1
2 , a contradiction. Hence, 𝐺 has no

pendant edge. We argue that 𝑆 ̸= ∅, otherwise we have that 𝜀(𝑆) = 0, and thus 𝑖(𝐺) = 𝑖(𝐺−𝑆) > |𝑆|−𝜀(𝑆) = 0,
a contradiction.

– If 𝜀(𝑆) = 0, then 𝑖(𝐺 − 𝑆) ≥ |𝑆| − 𝜀(𝑆) + 1 = |𝑆| + 1 ≥ 2. Then by the definition of 𝜏(𝐺), we obtain
𝜏(𝐺) ≤ |𝑆|

𝜔(𝐺−𝑆) ≤
|𝑆|

𝑖(𝐺−𝑆) ≤
|𝑆|
|𝑆|+1 ≤ 1, a contradiction.

– If 𝜀(𝑆) ∈ {1, 2}, then there is a nontrivial component of 𝐺−𝑆. It follows that 𝑖(𝐺−𝑆) ≥ |𝑆|−𝜀(𝑆)+1 ≥ |𝑆|−1
and 𝜔(𝐺− 𝑆) ≥ 𝑖(𝐺− 𝑆) + 1 ≥ |𝑆|. Then by the definition of 𝜏(𝐺), we obtain 𝜏(𝐺) ≤ |𝑆|

𝜔(𝐺−𝑆) ≤
|𝑆|
|𝑆| = 1, a

contradiction.

(ii) If 𝐺 has a pendant vertex 𝑢, then 𝑏𝑖𝑛𝑑(𝐺) ≤ |𝑁𝐺(𝑢)|
|{𝑢}| = 1, a contradiction. Hence, 𝐺 has no pendant

edge. We argue that 𝑆 ̸= ∅, otherwise we have that 𝜀(𝑆) = 0, and thus 𝑖(𝐺) = 𝑖(𝐺 − 𝑆) > |𝑆| − 𝜀(𝑆) = 0, a
contradiction.

– If 𝜀(𝑆) ∈ {0, 1}, then 𝑖(𝐺− 𝑆) ≥ |𝑆| − 𝜀(𝑆) + 1 ≥ |𝑆|. Note that 𝐼(𝐺− 𝑆) ̸= ∅ and 𝑁𝐺(𝐼(𝐺− 𝑆)) ̸= 𝑉 (𝐺).
Let 𝑋 := 𝐼(𝐺 − 𝑆). Then by the definition of 𝑏𝑖𝑛𝑑(𝐺), we obtain 𝑏𝑖𝑛𝑑(𝐺) ≤ |𝑁𝐺(𝑋)|

|𝑋| ≤ |𝑆|
𝑖(𝐺−𝑆) ≤ 1, a

contradiction.
– If 𝜀(𝑆) = 2, then there is a component 𝐶 of 𝐺 − 𝑆 containing exactly two vertices. It follows that 𝑖(𝐺 −

𝑆) ≥ |𝑆| − 𝜀(𝑆) + 1 = |𝑆| − 1. Let 𝑌 := 𝐼(𝐺 − 𝑆) ∪ 𝑉 (𝐶). By the definition of 𝑏𝑖𝑛𝑑(𝐺), we obtain
𝑏𝑖𝑛𝑑(𝐺) ≤ |𝑁𝐺(𝑌 )|

|𝑌 | ≤ |𝑆∪𝑉 (𝐶)|
𝑖(𝐺−𝑆)+|𝐶| ≤

|𝑆|+2
|𝑆|+1 = 1 + 1

|𝑆|+1 ≤
3
2 , a contradiction.

(iii) If 𝐺 has a pendant edge 𝑥𝑦 such that 𝑑𝐺(𝑦) = 1, then 𝐼𝑡(𝐺) ≤ |{𝑥}|
𝑖(𝐺−𝑥) ≤ 1, a contradiction. Hence, 𝐺

has no pendant edge. We argue that 𝑆 ̸= ∅, otherwise we have that 𝜀(𝑆) = 0, and thus 𝑖(𝐺) = 𝑖(𝐺 − 𝑆) >
|𝑆| − 𝜀(𝑆) = 0, a contradiction.

– If 𝜀(𝑆) = 0, then 𝑖(𝐺 − 𝑆) ≥ |𝑆| − 𝜀(𝑆) + 1 = |𝑆| + 1 ≥ 2. Then by the definition of 𝐼𝑡(𝐺), we obtain
𝐼𝑡(𝐺) ≤ |𝑆|

𝑖(𝐺−𝑆) ≤
|𝑆|
|𝑆|+1 ≤ 1, a contradiction.

– If 𝜀(𝑆) = 1, then 𝑖(𝐺 − 𝑆) ≥ |𝑆| − 𝜀(𝑆) + 1 ≥ |𝑆|. Then by the definition of 𝐼𝑡(𝐺), we obtain 𝐼𝑡(𝐺) ≤
|𝑆|

𝑖(𝐺−𝑆) ≤ 1, a contradiction.
– If 𝜀(𝑆) = 2, then there is a component of 𝐺−𝑆 containing exactly two vertices, denoted by {𝑢, 𝑣}. It follows

that 𝑖(𝐺 − 𝑆) ≥ |𝑆| − 𝜀(𝑆) + 1 ≥ |𝑆| − 1. Let 𝑆′ := 𝑆 ∪ {𝑢}. Then by the definition of 𝐼𝑡(𝐺), we obtain
𝐼𝑡(𝐺) ≤ |𝑆′|

𝑖(𝐺−𝑆′) = |𝑆|+1
𝑖(𝐺−𝑆)+1 ≤

|𝑆|+1
|𝑆| = 1 + 1

|𝑆| ≤ 2, a contradiction. �

Next, we study the relationship between planar graphs or 𝐾1,𝑟-free graphs and 2-matching deleted graphs,
and obtain a minimum degree condition for a planar graph or a 𝐾1,𝑟-free graph being a 2-matching deleted
graph, respectively. To prove our results, we will use an important lemma as following.

Lemma 3.3. [5] Let 𝐺 be a connected planar graph with at least three vertices. If 𝐺 does not contain triangles,
then |𝐸(𝐺)| ≤ 2|𝐺| − 4.
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Corollary 3.4. Let 𝐺 be a connected graph of order 𝑛 ≥ 3. Then 𝐺 is a 2-matching deleted graph if 𝐺 is one
of the following two special classes of graphs:

(i) planar graphs with 𝛿(𝐺) ≥ 4;
(ii) 𝐾1,𝑟-free graphs with 𝛿(𝐺) ≥ 𝑟 + 1, where 𝑟 ≥ 3.

Proof. Suppose 𝐺 is not a 2-matching deleted graph. By Theorem 3.1, there exists a subset 𝑆 ⊆ 𝑉 (𝐺) such that
𝑖(𝐺− 𝑆) > |𝑆| − 𝜀(𝑆). According to the integrality of 𝑖(𝐺− 𝑆), we obtain that 𝑖(𝐺− 𝑆) ≥ |𝑆| − 𝜀(𝑆) + 1. It is
obviously that 𝐺 has no pendant edge since 𝛿(𝐺) ≥ 2. We argue that 𝑆 ̸= ∅, otherwise we have that 𝜀(𝑆) = 0,
and thus 𝑖(𝐺) = 𝑖(𝐺− 𝑆) > |𝑆| − 𝜀(𝑆) = 0, a contradiction.

(i) Set |𝑆| = 𝑠 ≥ 1. We denote by 𝐼(𝐺− 𝑆) the set of isolated vertices in 𝐺− 𝑆. Then we construct a simple
bipartite graph 𝐻 := 𝐻[𝑆, 𝑆] as follows.

– If 𝜀(𝑆) = 0, then 𝑖(𝐺 − 𝑆) ≥ |𝑆| − 𝜀(𝑆) + 1 = |𝑆| + 1. Choose 𝑆 ⊆ 𝐼(𝐺 − 𝑆) such that |𝑆| = 𝑠 + 1. For
any 𝑥 ∈ 𝑆 and 𝑦 ∈ 𝑆, 𝑥𝑦 ∈ 𝐸(𝐻) if and only if 𝑥𝑦 ∈ 𝐸(𝐺). As 𝐺 is a connected planar graph, it is easy to
see that 𝐻 is also a connected planar graph. On the one hand, as 𝛿(𝐺) ≥ 4, it is clear that for each 𝑦 ∈ 𝑆,
we have |𝑁𝐻(𝑦)| ≥ 4. Hence, |𝐻| ≥ 𝑠 + (𝑠 + 1) = 2𝑠 + 1 ≥ 3 and |𝐸(𝐻)| ≥ 4 × |𝑆| = 4𝑠 + 4. On the other
hand, according to the fact that a bipartite graph does not contain any odd cycles, Lemma 3.3 implies that
|𝐸(𝐻)| ≤ 2|𝐻| − 4 = 2× (2𝑠 + 1)− 4 = 4𝑠− 2, a contradiction.

– If 𝜀(𝑆) = 1, then there is a nontrivial component 𝐶 of 𝐺− 𝑆 with pendant vertex 𝑢 and |𝐶| ≥ 3. It follows
that 𝑖(𝐺 − 𝑆) ≥ |𝑆| − 𝜀(𝑆) + 1 = |𝑆|. Choose 𝑆 := 𝑆′ ∪ {𝑢}, where 𝑆′ ⊆ 𝐼(𝐺 − 𝑆) such that |𝑆′| = 𝑠. For
any 𝑥 ∈ 𝑆 and 𝑦 ∈ 𝑆, 𝑥𝑦 ∈ 𝐸(𝐻) if and only if 𝑥𝑦 ∈ 𝐸(𝐺). As 𝐺 is a connected planar graph, it is easy to
see that 𝐻 is also a connected planar graph. On the one hand, as 𝛿(𝐺) ≥ 4, it is clear that |𝑁𝐻(𝑢)| ≥ 3 and
|𝑁𝐻(𝑦)| ≥ 4 holds for each 𝑦 ∈ 𝑆′. Hence, |𝐻| ≥ 𝑠 + 𝑠 + 1 = 2𝑠 + 1 ≥ 3 and |𝐸(𝐻)| ≥ 4× |𝑆′|+ 3 = 4𝑠 + 3.
On the other hand, according to the fact that a bipartite graph does not contain any odd cycles, Lemma 3.3
implies that |𝐸(𝐻)| ≤ 2|𝐻| − 4 = 2× (2𝑠 + 1)− 4 = 4𝑠− 2, a contradiction.

– If 𝜀(𝑆) = 2, then there is a component of 𝐺 − 𝑆 containing exactly two vertices, denoted by {𝑢, 𝑣}. It
follows that 𝑖(𝐺− 𝑆) ≥ |𝑆| − 𝜀(𝑆) + 1 ≥ |𝑆| − 1. Choose 𝑆 := 𝑆′′ ∪ {𝑢, 𝑣}, where 𝑆′′ ⊆ 𝐼(𝐺− 𝑆) such that
|𝑆′′| = 𝑠 − 1. For any 𝑥 ∈ 𝑆 and 𝑦 ∈ 𝑆, 𝑥𝑦 ∈ 𝐸(𝐻) if and only if 𝑥𝑦 ∈ 𝐸(𝐺). As 𝐺 is a connected planar
graph, it is easy to see that 𝐻 is also a connected planar graph. On the one hand, as 𝛿(𝐺) ≥ 4, it is clear that
|𝑁𝐻(𝑢)| ≥ 3, |𝑁𝐻(𝑣)| ≥ 3 and |𝑁𝐻(𝑦)| ≥ 4 holds for each 𝑦 ∈ 𝑆′′. Hence, |𝐻| ≥ 𝑠 + (𝑠− 1) + 2 = 2𝑠 + 1 ≥ 3
and |𝐸(𝐻)| ≥ 4×|𝑆′′|+3×2 = 4(𝑠−1)+6 = 4𝑠+2. On the other hand, according to the fact that a bipartite
graph does not contain any odd cycles, Lemma 3.3 implies that |𝐸(𝐻)| ≤ 2|𝐻|−4 = 2×(2𝑠+1)−4 = 4𝑠−2,
a contradiction.

(ii) Set |𝑆| = 𝑠 ≥ 1. Note that 𝛿(𝐺) ≥ 𝑟 + 1 ≥ 4. We denote by 𝐼(𝐺−𝑆) the set of isolated vertices in 𝐺−𝑆.

– If 𝜀(𝑆) ∈ {0, 1}, then 𝑖(𝐺 − 𝑆) ≥ |𝑆| − 𝜀(𝑆) + 1 ≥ |𝑆|. Then we construct a bipartite subgraph 𝐹 :=
𝐹 [𝑆, 𝐼(𝐺−𝑆)] of 𝐺 such that 𝑥𝑦 ∈ 𝐸(𝐹 ) if and only if 𝑥𝑦 ∈ 𝐸(𝐺) for any 𝑥 ∈ 𝑆, 𝑦 ∈ 𝐼(𝐺−𝑆). Note that for
any 𝑦 ∈ 𝐼(𝐺−𝑆), we have 𝑑𝐹 (𝑦) ≥ 𝛿(𝐺). Thus, |𝐸(𝐹 )| =

∑︀
𝑦∈𝐼(𝐺−𝑆) 𝑑𝐹 (𝑦) ≥ 𝛿(𝐺)× 𝑖(𝐺−𝑆) ≥ 𝛿(𝐺)×|𝑆|.

It follows immediately that |𝐸(𝐹 )|
|𝑆| ≥ 𝛿(𝐺)×|𝑆|

|𝑆| = 𝛿(𝐺) ≥ 𝑟 + 1 > 𝑟. This together with pigeonhole principle
implies that there exists 𝑥 ∈ 𝑆 such that 𝑑𝐹 (𝑥) ≥ 𝑟. Then 𝐺[{𝑥} ∪ 𝑁𝐹 (𝑥)] has a subgraph isomorphic to
𝐾1,𝑟, a contradiction.

– If 𝜀(𝑆) = 2, then there is a component of 𝐺−𝑆 containing exactly two vertices, denoted by {𝑢, 𝑣}. It follows
that |𝑆| ≥ |𝑁𝐺(𝑢)|−1 ≥ 𝛿(𝐺)−1 ≥ 𝑟 ≥ 3, and thus 𝑖(𝐺−𝑆) ≥ |𝑆|−𝜀(𝑆)+1 ≥ |𝑆|−1. Let 𝑆 := 𝐼(𝐺−𝑆)∪{𝑢}.
Then we construct a bipartite subgraph 𝐹 := 𝐹 [𝑆, 𝑆] of 𝐺 such that 𝑥𝑦 ∈ 𝐸(𝐹 ) if and only if 𝑥𝑦 ∈ 𝐸(𝐺) for
any 𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆. It is clear that |𝑁𝐹 (𝑢)| ≥ 𝛿(𝐺)− 1 and |𝑁𝐹 (𝑦)| ≥ 𝛿(𝐺) holds for each 𝑦 ∈ 𝐼(𝐺−𝑆). Thus,
|𝐸(𝐹 )| = 𝑑𝐹 (𝑢) +

∑︀
𝑦∈𝐼(𝐺−𝑆) 𝑑𝐹 (𝑦) ≥ (𝛿(𝐺)− 1) + 𝛿(𝐺)× 𝑖(𝐺−𝑆) ≥ 𝛿(𝐺)× |𝑆| − 1. It follows immediately

that |𝐸(𝐹 )|
|𝑆| ≥ 𝛿(𝐺)×|𝑆|−1

|𝑆| = 𝛿(𝐺) − 1
|𝑆| ≥ 𝑟 + 1 − 1

3 > 𝑟. This together with pigeonhole principle implies
that there exists 𝑥 ∈ 𝑆 such that 𝑑𝐹 (𝑥) ≥ 𝑟. Then 𝐺[{𝑥} ∪ 𝑁𝐹 (𝑥)] has a subgraph isomorphic to 𝐾1,𝑟, a
contradiction. �
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