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ON 2-MATCHING COVERED GRAPHS AND 2-MATCHING DELETED
GRAPHS

GUOWEI DAT*

Abstract. For a family of connected graphs A, a spanning subgraph H of a graph G is called an
A-factor of G if each component of H is isomorphic to some graph in A. A graph G has a perfect
2-matching if G has a spanning subgraph H such that each component of H is either an edge or a
cycle, i.e., H is a {Pa,C;|i > 3}-factor of G. A graph G is said to be 2-matching covered if, for every
edge e € E(G), there is a perfect 2-matching M. of G such that e belongs to Me. A graph G is called
a 2-matching deleted graph if, for every edge ¢ € E(G), G — e possesses a perfect 2-matching. In
this paper, we first obtain respective new characterizations for 2-matching covered graphs in bipartite
and non-bipartite graphs by new proof technologies, distinct from Hetyei’s or Berge’s classical results.
Secondly, we give a necessary and sufficient condition for a graph to be a 2-matching deleted graph.
Thirdly, we we prove that planar graphs with minimum degree at least 4 and K .-free graphs (r > 3)
with minimum degree at least » + 1 are 2-matching deleted graphs, respectively.
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1. INTRODUCTION

All graphs in this paper are finite and simple. We refer to [5] for notation and terminologies not defined here.
Let G = (V(G), E(G)) be a graph with vertex set V(G) and edge set E(G). For v € V(G), we use dg(v) and
N¢(v) to denote the degree of v and the set of vertices adjacent to v in G, respectively. For S C V(G), we write
N¢g(S) = UyesNg(v). We use §(G) to denote the minimum degree of a graph G. We use w(G), i(G) to denote
the number of components and isolated vertices of a graph G, respectively.

For a connected graph G, its toughness, denoted by 7(G), was first introduced by Chvdtal [6] as follows. If
G is complete, then 7(G) = +00; otherwise,

5]

7(G) min{w<G_5) S CV(G),w(G-8) > 2}.

The binding number is introduced by Woodall [19] and defined as

bind(G) = min {W%f)' 04 S CV(G),Na(S) # V(G)} .
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The isolated toughness, denoted by I;(G), was first introduced by Yang, Ma and Liu [20] as follows. If G is
complete, then I;(G) = 4o00; otherwise,

I(G) = min{i(G!S|S) S CV(@),i(G—-S5) > 2}.

For X C V(G), let G[X] be the subgraph of G induced by X, and define G — X := G[V(G) — X]. For
convenience, we use G — x to denote the graph G — {z}. Let K; , denote the complete bipartite with partite
sets of size one and r. For an integer r > 3, a graph G is said to be K ,-free if G does not contain an induced
subgraph isomorphic to K ;.

Let A be a family of connected graphs. If G has a spanning subgraph H such that every component of H
is isomorphic to some graph in A, then H is said to be an A-factor of G. A graph G has a perfect 2-matching
if G has a spanning subgraph H such that each component of H is either an edge or a cycle, i.e., H is a
{P3,C;|i > 3}-factor of G. A graph G is said to be 2-matching covered if there is a perfect 2-matching of G
including any given edge e € F(G). A graph G is called a 2-matching deleted graph if G possesses a perfect
2-matching excluding any given edge e € E(G).

A spanning subgraph H of graph G is called 1-factor (perfect matching) if dy () = 1 holds for any = € V(G).
Since Tutte proposed the well known Tutte 1-factor theorem [17], there are many results on graph factors
[2,7-9,11-13, 18] and path-factors in claw-free graphs and cubic graphs [3,10, 14, 15]. More results on graph
factors can be found in the survey papers and books in [1,16, 21].

For matchings in bipartite graphs, Konig (1931) and Hall (1935) obtained the so-called Konig-Hall Theorem
(sometimes, known as Hall’s Theorem), respectively.

Theorem 1.1. (Konig-Hall [5]) Let G = (X,Y) be a connected bipartite graph such that |X| = |Y|. Then G
has a perfect matching if and only if |[Ng(S)| > |S| for any subset S C X.

In 1953, Tutte proved the following characterization for the existence of perfect 2-matchings in a graph.

Theorem 1.2. (Tutte [17]) A graph G has a perfect 2-matching if and only if i(G — S) < |S| for any subset
S CV(G).

The equivalence as following is due mostly to Hetyei (see also Akiyama and Kano [1]).

Theorem 1.3. (Hetyei [1]) If G is a connected bipartite graph with partition (U, W), then each edge of G is
contained in a 1-factor if and only if |U| = |W| and |[Ng(X)| > | X| for any non-empty proper subset X C U.

A graph G is 2-matching covered if and only if G is “regularizable”, where a graph is regularizable if it can
be transformed into a regular multigraph by giving each edge some positive multiplicity. Regularizable graphs
were introduced and studied by Berge.

Theorem 1.4. (Berge [4]) For a connected graph G that is not a bipartite graph with partite sets of equal size,
the following conditions are equivalent:

(a) G is regularizable,

(b) for each edge e of G, there exists a perfect 2-matching of G covering e,

(c) for every non-empty independent set X of vertices, |[Na(X)| > | X|.

2. 2-MATCHING COVERED GRAPH

Lemma 2.1. Let G be a graph such that V(G) = X UY, X NY =0 and | X| =|Y|. If Y is an independent set
in G, then G has a I-factor if and only if i(G — S) < |S| for any S C X.
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Proof. Necessity: Let M be a 1-factor of G, then M is a perfect 2-matching of G obviously. It follows from
Theorem 1.2 that i(G — S) < |S| for any subset S C V(G). Hence, i(G — S) < |S] holds for any S C X.
Sufficiency: Choose S := ), then i(G) = i(G — S) < |S| =0. Let G’ = G — E(X), then there is no isolated
vertex in G’. Otherwise, there exists a isolated vertex v € V(G’) such that u € X. By choosing S := X \ {u}, it
follows that i(G — ) = [Y U{u}| = Y|+ 1=|X]|+1>|5], a contradiction. On the one hand, it is obviously
I(G — S) CI(G' — S). On the other hand, all the isolated vertices of G’ — S are in Y since i(G’) = i(G) = 0.
Note that every edge in E(X) is not adjacent to any vertex in Y. This together with I(G' — S) C Y implies
that I(G' — S) C I(G — S). Therefore, i(G' — S) =i(G — S) < |S| for any S C X. It follows immediately that
ING(T)| > |T| for any T C Y since N5 (T) C X and |T| <i(G — N;(T)) < |NL(T)|. By Theorem 1.1, G’ has a
1-factor. Hence, G has a 1-factor. O

Theorem 2.2. (i) A connected bipartite graph G = (X,Y) is 2-matching covered if and only if | X| = |Y| and
i(G—=1S) <|S|—1 for any non-empty proper subset S C X; (ii) A connected non-bipartite graph G is 2 matching
covered if and only if i(G — S) < |S| =1 for any non-empty proper subset S C V(G).

Proof. (i) Necessity: Let G = (X,Y) be a connected 2-matching covered bipartite graph. Then, by Theorem 1.3,
|X| = |Y| and |[Ng(T)| > |T| + 1 for any non-empty proper subset 7" C Y. For any non-empty proper subset
S C X, every isolated vertex of G — S belongs to Y, denoted by T' = I(G — S) C Y. On the one hand,
INa(T)| > |T| +1 =4(G — S) 4+ 1. On the other hand, |Ng(T)| < |S| since T' = I(G — S). Hence, i(G — S) <
[Na(T)| — 1 < |S| — 1 for any non-empty proper subset S C X.

Sufficiency: Let G = (X,Y) be a connected bipartite graph with | X| = |Y| such that i(G—S) < |S|—1 for any
non-empty proper subset S C X. Then we argue that |Ng(T')| > |T'|+1 for any non-empty proper subset 7' C Y.
Otherwise, there exists proper subset ) ## T C Y such that |Ng(T)| < |T|. Note that |Ng(T)| # 0 since G is
connected. Choose S := |Ng(T)|. As |[Ng(T)| < |T| < |Y| = | X|, we have that Ng(T') # X and thus @ # S C X.
It follows that (G — S) < |S] — 1. On the other hand, (G — S) = i(G — Ng(T)) > |T| > |Ng(T)| = |5], a
contradiction. Hence, |Ng(T)| > |T'| 4+ 1 for any non-empty proper subset T C Y. It follows from Theorem 1.3
that G is a 2-matching covered graph.

(ii) Necessity: By way of contradiction, assume that there exists non-empty proper subset S C V(G) such that
i(G — S) > |S|. Since G is a 2-matching covered graph, G has a perfect 2-matching, and thus i(G — S") < ||
for any S’ C V(G). This together with (G — S) > |S| implies that i(G —S) = |S| > 0. As G is a nonbipartite
graph, F(S) # 0 or there exists a nontrivial component of G — S.

Case 1. E(S) # 0.
Suppose e = zy € E(S) such that z,y € S. There must exist a perfect 2-matching F' covering e since
G is a 2-matching covered graph. Denote the component of F' containing e by C. Note that every
component of F' is either an edge or a cycle by the definition of perfect 2-matchings.

— If C is an edge, then G’ = G — {,y} has a perfect 2-matching F — {z,y}. Choose S’ := S\ {z,y},
then i(G' — 8') = i(G - S) = |S| = |S'| + 2 > |S’|. By Theorem 1.2, G’ has no perfect 2-matching, a
contradiction.

— If C'is a cycle and |C| > 3, then G” = G — V(C) has a perfect 2-matching F' — V(C). As e € E(S), we
have that |SNV(C)| > |I(G — S)NV(C)|. Choose S := S —V(C), then

i(G" —8") > |I(G - S) — I(G — S) N V(C)]
= i(G—8) - |I(G - S)NV(O)|
> i(G—S)— [SNV(C)]
= |S|=1SNV(C)
=18"].

By Theorem 1.2, G” has no perfect 2-matching, a contradiction.
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Case 2.

G. DAI
E(S)=0.
In this case, G — S has a mnontrivial component D, and there exists an edge
e = wv connecting D and S such that w € D,v € S. Then G has a perfect

2-matching covering e’, denoted by F’, since G is a 2-matching covered graph. Denote the
component of F’ containing e’ by C’.

— If ¢V is an edge, then G; = G — {u, v} has a perfect 2-matching F’ — {u,v}. Choose S1 := S\ {u}, then
i(G1 — S1) > i(G = S) > |S| > |S1]- By Theorem 1.2, G; has no perfect 2-matching, a contradiction.

— If C' is a cycle and |C’| > 3, then G3 = G — V(C) has a perfect 2-matching F' — V(C"). As C’ is a cycle
containing e’, we have that |SNV(C")| > |[I(G — S) N V(C")|. Choose Sp := S — V(C"), then

i(Gy — S2) > [I(G = 8) = I(G — ) nV(C)|
=i(G-95)—|I(G-8)nV(C"|
>i(G—=9)—[SnV(C|
> S| = |SnV(C)
= |Sa|.

By Theorem 1.2, G5 has no perfect 2-matching, a contradiction.

Sufficiency: For any edge e = zy, G* := G—{z, y} has at most one isolated vertex since i(G*) = i(G—{z,y}) <
{z g} -1=1.

Case 1.

Case 2.

i(G*) =1

Let u be the isolated vertex of G*, and C4,Cs, ...,y be the other connected components of G*. We
first argue that C; has a perfect 2-matching F; for any 1 < ¢ < k. Otherwise, by Theorem 1.2, there
exists S; C V(C;) such that i(C; — S;) > |S;| + 1. Choose S := S; U {z,y}, then S is a non-empty
proper subset of G, and i(G — S) = [{u}| +i(C; — Si) > 1+ (|S;| + 1) = |S], a contradiction. It is
easy to find that there exists no pendant vertex in G since i(G — S) < |S| — 1 for any proper subset
) #S C V(G). Hence, u € Ng(z) N Ng(y), i.e., zuyz is a cycle in G. Then, zuyz U (Uf:1 F;) is a
perfect 2-matching of G containing e, i.e., G is a 2-matching covered graph.

i(G*) =0

Let C1,Cs,...,C,, be the connected components of G*, where m > 1. If every C; has a perfect 2-
matching F; for 1 < i < m, then {ay, F1, F3,..., F,} is a perfect 2-matching of G containing e, i.e.,
G is a 2-matching covered graph. If there exist C;,C;(1 < i # j < m) such that both C; and C;
has no perfect 2-matching, then, by Theorem 1.2, there exist S; C V(C;),S; € V(C;) respectively
such that i(C; — S;) > |S;| + 1 and i(C; — S;) > |S;| + 1. Choose S := S; US; U{z,y} which is a
non-empty proper subset of G, then i(G — S5) = i(C; — S;) +i(C; — S;) > [Si| +1+|S;|+1=15], a
contradiction. Thus, there is exactly one element of {C1, Cs, ..., Cy,} which has no perfect 2-matching.
Without of generality, assume C; has no perfect 2-matching and every C} has a perfect 2-matching F}
for 2 <t < m. Then it is sufficient to show that

C; = G[V(Cy) U {x,y}] has a perfect 2 — matching covering e. (1)

On the one hand, since C has no perfect 2-matching, by Theorem 1.2, there exists S C V(Cy) such
that i(C; — S) > |S’] + 1. On the other hand, if i(C; — S’) > |S'| + 2, then S := 5" U {z,y} is a
non-empty proper subset of G and i(G — S) =i(Cy — §') > |5'| + 2 = |S], a contradiction. Hence, we
have that ¢(C; — S’) = |S’| + 1. Note that S’ is a non-empty set since i(G*) = 0. We assume that S’
is a minimal barrier set of V(Cy), i.e., i(Cy — S”) < |S”| holds for any proper subset S” C 5.

Let W := {x1,z2,..., 24} be the set of isolated vertices of C; — S’, where d > 2. We argue that

Ng($> NW #0. (2)
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Otherwise, i(G — (5" U{y})) > i(C1 = 5") = |5’|+1 = |S"U{y}|, a contradiction. Similarly, we can obtain that
Ne(y) nW # 0. (3)

Moreover, we also argue that every nontrivial component Cf of i(Cy — 5’) has a perfect 2-matching Flj (j =
1,2,...,p). Otherwise, suppose Ci has no perfect 2-matching, then there exists S C V(C}) such that i(C] —
S1) > St + 1 by Theorem 1.2. Choose S := S' U S" U {x,y}, then S is a non-empty proper subset of G and
i(G—S)=i(Cy — 9" +i(CH = SY) > |9+ 1+ |8 +1=|S*US U {z,y}| = |9], a contradiction.

Claim 2.3. G := G[S' U{z,y} UW] has a perfect 2-matching containing e.

Proof. We first argue that for any 1 < i < d, G; :== G—{x,y,z;} has a 1-factor F}. Suppose there is no 1-factor in
G, then by Lemma 2.1, there exists S” C S’ such that i(G; —S”) > |S”|+1. On the one hand, by the arguments
similar to Lemma 2.1, we have that I(G; —S”) C I(Cy — §”), and thus i(C; — S”) > i(G; — 5§") > |5”|+ 1. On
the other hand, it is obviously S” is a proper subset of S/, then i(Cy — S”) < |S”| since S’ is a minimal barrier
set of V(C1), a contradiction. According to (2) and (3), we will distinguish two cases below to show that G has
perfect 2-matchings containing e.

— If there exists u € Ng(x) N Ng(y) "W, then without of generality, assume u = . Since G1 := G —{x,y, 71}
has a 1-factor I}, xz1yx U F) is a perfect 2-matching of G containing e.

— If Ng(z) N Ng(y) N W = 0, then we assume that 1 € Ng(z),2q4 € Ng(y). By the arguments similar
to Lemma 2.1, both F] and F); has no edge in E(G[S’]). Note that, due to structural properties of 1-
factors, there is an alternating path P from z; to x4 whose edges are alternately in E(F]) and E(F). Then
F/':= F{ -V (P) or F// = F; — V(P) is a 1-factor of G — {z,y} — V(P). Thus, zPyz U F}' or zPyx U FY is
a perfect 2-matching of G containing e.

Hence, Claim 2.3 is true. O

Due to Claim 2.3, let F' be a perfect 2-matching of G containing e. Then FU({J!_, FY}) is a perfect 2-matching
of C{ containing e, i.e., the argument (1) holds. Thus, (Uj~, F;) U F U (U, F}) is a perfect 2-matching of G
containing e, i.e., G is a 2-matching covered graph. (Il

3. 2-MATCHING DELETED GRAPH

Theorem 3.1. Let G be a connected graph. Then G is a 2-matching deleted graph if and only if i(G — S) <
|S| —&(S) for all S C V(G), where £(S) is defined by

2 if there exists a component of G — S containing exactly two vertices;
e(S) =<1 if there exists a component C of G — S with pendant edges and |V (C)| > 3;
0 otherwise.

Proof. Necessity: Let G be a 2-matching deleted graph. Obviously, G has a perfect 2-matching. Then, by
Theorem 1.2, i(G — S) < |S| for any S C V(G). If i(G — S) < |S| — 2, then i(G — S) < |S| — &(S) by the
definition of £(S); If i(G — S) = |S| — 1, then we argue that £(S) < 1. Otherwise, (S) = 2, and G — S has a
component with exactly one edge, denoted by e. It follows that i(G—e—S) =i(G—-S)+2=|S|+1 > |S|, and
thus G — e has no perfect 2-matching, a contradiction. Hence, £(S) < 1 and (G — S) = |S| — 1 < |S]| — (5);
Now, we may assume that i(G — S) = |S|. We argue that ¢(S) = 0, otherwise (S) = 1,2, then G — S has a
component with pendant edges. It is easy to find that i(G —e —S5) > i(G —S) +1=|S] + 1, and thus G — e
has no perfect 2-matching, a contradiction. Hence, £(S) = 0 and i(G — S) = |S| < |S| — &(9).

Sufficiency: For any given S C V(G), i(G — S) < |S] — &(S). Now, it suffices to show that i(G —e —5) < |S|
for any edge e € E(G) by Theorem 1.2. If e belongs to some component of G — S containing exactly two vertices,
then £(S) = 2, and thus i(G—e—S) =i(G—95)+2 < |S| —e(5)+ 2 =|5]; If e is a pendant edge belongs to a
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component C of G—S such that |[C| > 3, then £(S) > 1, and thus i(G—e—S) = i(G—S)+1 < |S|—e(S)+1 < |S|;
Otherwise, i(G —e — S) = i(G — 5), and thus i(G —e — S) =i(G — 5) < |S| —e(S) < |S| by the definition
of ¢(5). Therefore, i(G — e — S) < |S| holds for any S C V(G) and e € E(G). This completes the proof of
Theorem 3.1. (]

Corollary 3.2. Let G be a connected graph of order n > 3. Then G is a 2-matching deleted graph if one of the
following statements holds: (i) T(G) > 1; (i) bind(G) > 3/2; (iii) I,(G) > 2.

Proof. Suppose, to the contrary, that G is not a 2-matching deleted graph. By Theorem 3.1, there exists
S C V(G) such that i(G — S) > |S| —(5). Due to the integrality, i(G — S) > |S| —e(S) + 1.

(i) If G has a pendant edge zy such that dg(y) = 1, then 7(G) < ‘g}L) < 1 acontradiction. Hence, G has no
pendant edge. We argue that S # ), otherwise we have that €(S) = 0, and thus i(G) = i(G—S5) > |S|—¢(S) =0,

a contradiction.

— It e(S) = 0, then i(G — S) > |S| —e(S)+1 = |S|+1 > 2. Then by the definition of 7(G), we obtain
7(G) < w(‘GS_‘S) < i(és_ls) < |S||SJ|rl < 1, a contradiction.

— Ife(S) € {1,2}, then there is a nontrivial component of G—S. It follows that i(G—S) > |S|—&(S)+1 > |S|-1

and w(G — S) > i(G — S)+ 1 > |S]|. Then by the definition of 7(G), we obtain 7(G) < w(Cl;'SlS) <BBl_-1a

contradiction.

(ii) If G has a pendant vertex u, then bind(G) < “\IZ{G(“‘)‘ = 1, a contradiction. Hence, G has no pendant
edge. We argue that S # (), otherwise we have that £(S) = 0, and thus i(G) = i(G — S) > |S| —¢(S) =0, a
contradiction.

— If £(S) € {0,1}, then i(G — S) > |S] —(S) + 1 > |S|. Note that I(G — S) # 0 and Ne({(G — S)) # V(G )
Let X := I(G — S). Then by the definition of bind(G), we obtain bind(G) < ‘N‘G)g)l()l < i((lfl 5 < L,
contradiction.

— If £(S) = 2, then there is a component C of G — S containing exactly two vertices. It follows that i(G —
S) > 1S —¢e(S)+1 =|5]—-1. Let Y := I(G — S) U V(C). By the definition of bind(G), we obtain

: |Ne (V) |SUV (O)| [S|+2 _ 1 3 ‘L
bind(G) < le < i (emvFuTe] < EEsi 1+ ES < 3, a contradiction.

iii) If G has a pendant edge zy such that dg(y) = 1, then I(G) < @ < 1, a contradiction. Hence, G
i(G—x)

has no pendant edge. We argue that S # (), otherwise we have that ¢(S) = 0, and thus i(G) = i(G — S) >
|S| —e(S) =0, a contradiction.

— If ¢(S) = 0, then i(G—S5) > |S| —e(S)+1 = |S|+ 1 > 2. Then by the definition of I;(G), we obtain
L(G) < % < \S‘I% < 1, a contradiction.

— If ¢(S) = 1, then (G — S) > |S| —(S) + 1 > |S|. Then by the definition of I;(G), we obtain I;(G) <
i(cl:éllS)

— If £(S) = 2, then there is a component of G — S containing exactly two vertices, denoted by {u,v}. It follows
that (G — S) > 1S —e(S)+1>|5—-1. Let S’ := S U {u}. Then by the definition of I;(G), we obtain

s’ S|+1 S|+1 S
IL(G) < (G‘ ‘S,) = i(G‘J;)+1 < | ‘|S| =1+ | I < 2, a contradiction. O

< 1, a contradiction.

Next, we study the relationship between planar graphs or K ,-free graphs and 2-matching deleted graphs,
and obtain a minimum degree condition for a planar graph or a K ,-free graph being a 2-matching deleted
graph, respectively. To prove our results, we will use an important lemma as following.

Lemma 3.3. [5] Let G be a connected planar graph with at least three vertices. If G does not contain triangles,
then |E(G)| < 2|G| —
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Corollary 3.4. Let G be a connected graph of order n > 3. Then G is a 2-matching deleted graph if G is one
of the following two special classes of graphs:

(i) planar graphs with §(G) > 4;

(ii) Ky r-free graphs with 6(G) > r + 1, where r > 3.

Proof. Suppose G is not a 2-matching deleted graph. By Theorem 3.1, there exists a subset S C V(&) such that
(G —8) > |S] —e(9). According to the integrality of i(G — S), we obtain that i(G — S) > |S| —e(5) + 1. It is
obviously that G has no pendant edge since 6(G) > 2. We argue that S # (), otherwise we have that £(S) = 0,
and thus i(G) = i(G — S) > |S| — (S) = 0, a contradiction.

(i) Set |S| = s > 1. We denote by I(G — S) the set of isolated vertices in G — S. Then we construct a simple
bipartite graph H := H|[S, S] as follows.

~ If e(S) = 0, then i(G — S) > |S| —&(S) +1 = |S| + 1. Choose S C I(G — S) such that |S| = s + 1. For
any v € Sand y € S, vy € E(H) if and only if 2y € E(G). As G is a connected planar graph, it is easy to
see that H is also a connected planar graph. On the one hand, as 6(G) > 4, it is clear that for each y € S,
we have [Ny (y)| > 4. Hence, |[H| > s+ (s +1) =2s+ 1> 3 and |E(H)| > 4 x |S| = 4s + 4. On the other
hand, according to the fact that a bipartite graph does not contain any odd cycles, Lemma 3.3 implies that
|[E(H)| <2|H|—4=2x(2s+1) — 4 = 4s — 2, a contradiction.

— If ¢(S) = 1, then there is a nontrivial component C' of G — S with pendant vertex u and |C| > 3. It follows
that i(G — S) > |S| — &(S) + 1 = |S|. Choose S := S’ U {u}, where S’ C I(G — S) such that |S’| = s. For
any v € Sand y € S, vy € E(H) if and only if 2y € E(G). As G is a connected planar graph, it is easy to
see that H is also a connected planar graph. On the one hand, as 6(G) > 4, it is clear that [Ny (u)| > 3 and
|Nu(y)| > 4 holds for each y € §'. Hence, |[H| > s+s+1=2s+1>3and |[E(H)| >4x|5|+3=4s+3.
On the other hand, according to the fact that a bipartite graph does not contain any odd cycles, Lemma 3.3
implies that |E(H)| < 2|H| —4=2x (2s+1) — 4 = 4s — 2, a contradiction.

— If £(S) = 2, then there is a component of G — S containing exactly two vertices, denoted by {u,v}. It
follows that i(G — S) > |S| —&(S) +1 > |S| — 1. Choose S := S” U {u,v}, where S” C I(G — S) such that
|S”| =s—1.Forany z € S and y € S, vy € E(H) if and only if 2y € E(G). As G is a connected planar
graph, it is easy to see that H is also a connected planar graph. On the one hand, as 6(G) > 4, it is clear that
[Ng(u)| > 3, |Ng(v)] > 3 and |[Ng(y)| > 4 holds for each y € S”. Hence, |H| > s+ (s—1)+2=2s+1>3
and |[E(H)| > 4x|S"|+3x2 =4(s—1)46 = 4s+2. On the other hand, according to the fact that a bipartite
graph does not contain any odd cycles, Lemma 3.3 implies that |[E(H)| < 2|H| -4 =2%(2s+1)—4 =452,
a contradiction.

(ii) Set |S| = s > 1. Note that 6(G) > r +1 > 4. We denote by I(G — S) the set of isolated vertices in G — S.

— If ¢(S) € {0,1}, then i(G — S) > |S| —e(S) +1 > |S|. Then we construct a bipartite subgraph F :=
F[S,1(G—5)] of G such that a2y € E(F) if and only if zy € E(G) for any z € S,y € I(G —5). Note that for
any y € I(G —5), we have dp(y) > 6(G). Thus, |[E(F)| =3_ crc_s) dr(y) = 6(G) xi(G—S) = 6(G) x |S].

It follows immediately that ‘El(;)l > 6(G|)S>‘<‘S‘ =0(G) > r+ 1 > r. This together with pigeonhole principle

implies that there exists x € S such that dg(z) > r. Then G[{z} U Np(z)] has a subgraph isomorphic to
K r, a contradiction.

— If e(S) = 2, then there is a component of G — S containing exactly two vertices, denoted by {u,v}. It follows
that |S| > |[Ng(u)|—1 > §(G)—1 > r > 3, and thus i(G—S) > |S|—¢&(S)+1 > |S|—1. Let S := I(G—S)U{u}.
Then we construct a bipartite subgraph F := F[S, 5] of G such that zy € E(F) if and only if 2y € E(G) for
any x € S,y € S. It is clear that |[Np(u)| > §(G) — 1 and |[Ng(y)| > §(G) holds for each y € I(G — S). Thus,
|E(F)| = dr(u) + X ergos) dr(y) = (0(G) —1) +6(G) x i(G — S) = 6(G) x |S| — 1. It follows immediately
that ‘E‘(SIT” > 5(G)‘XS|‘S|71 = §(G) — ﬁ >r+1- % > r. This together with pigeonhole principle implies
that there exists € S such that dp(x) > r. Then G[{z} U Np(z)] has a subgraph isomorphic to K ,, a
contradiction. O
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