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LINEAR PROGRAMMING WITH A FEASIBLE DIRECTION INTERIOR POINT
TECHNIQUE FOR SMOOTH OPTIMIZATION

Angélica Miluzca Victorio Celis1,* and José Herskovits Norman2,†

Abstract. We propose an adaptation of the Feasible Direction Interior Points Algorithm (FDIPA) of
J. Herskovits, for solving large-scale linear programs. At each step, the solution of two linear systems
with the same coefficient matrix is determined. This step involves a significant computational effort.
Reducing the solution time of linear systems is, therefore, a way to improve the performance of the
method. The linear systems to be solved are associated with definite positive symmetric matrices.
Therefore, we use Split Preconditioned Conjugate Gradient (SPCG) method to solve them, together
with an Incomplete Cholesky preconditioner using Matlab’s ICHOL function. We also propose to use
the first iteration of the conjugate gradient, and to presolve before applying the algorithm, in order
to reduce the computational cost. Following, we then provide mathematica proof that show that the
iterations approach Karush–Kuhn–Tucker points of the problem under reasonable assumptions. Finally,
numerical evidence show that the method not only works in theory but is also competitive with more
advanced methods.
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1. Introduction

Linear programming today is widely used in decision making in finance, economics, engineering, as well as a
tool for solving integer and nonlinear programming problems.

There are two kinds of methods to solve linear programming (LP) problems. One of the first proposed
algorithms is a simplex method proposed by Dantzig [1, 2]. This algorithm searches all the edge of the feasible
region (which is generated by the constraints). In the worst case, it tests all the polytop’s vertices and possesses
an exponential complexity. Later, to avoid this complexity, several researchers, such as Von Neumann [3], and
Hoffman et al. [4] proposed algorithms that traverse the interior of the viable region, but in practice they saw
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that it was not competitive with the simplex method because of the possibility of numerical instability in the
calculations and the expensive computational steps they require.

The second method is the interior point method that arises with the Karmarkar’s algorithm [5], which starts
from a strict interior point and applies repeated projective transformations on an inscribed sphere to create
a sequence of points that converges to the optimal solution with polynomial complexity. From the Karmarkar
algorithm, different types of interior point algorithms have been generated, depending on the type of transforms
and search directions to be used. For example, the affine scaling method studied by Dikin [6], Barnes [7], Cavalier
and Soyster [8], the path following method by Gonzaga [9, 10] and Ye potential reduction method [11]. For a
better understanding of interior point theory, reading the books [12,13] is suggested.

In this article, the Algorithm FDIPA proposed by Herskovits [14] for nonlinear programming problems will be
adapted to solve large-scale linear programming problems (FDIPA-LP) efficiently. Starting from a strictly feasi-
ble initial point, FDIPA performs a Newton-like iteration to solve the Karush–Kuhn–Tucker (KKT) optimality
condition. During this procedure a descent direction for the objective function is obtained. A perturbation is
introduced for the complementary condition so that a feasible descent direction is obtained. This algorithm
ensures the primary feasibility and updating the dual variable ensures its dual feasibility. This is relevant,
especially in engineering, economics or finance, where physically non-admissible solutions can not be accepted.

FDIPA has already been adapted to various types of problems, see e.g., [15–20] with various applications,
especially in mechanical engineering, aerodynamic and electromagnetism; proving to be an easy code to imple-
ment, strong and efficient.

FDIPA already has a first adaptation to solve LP in Tits and Zhou [21], where it has a resemblance to the
affine scaling method, demonstrating convergence using as search direction, the direction obtained by solving the
first FDIPA system (that is, it is a FDIPA without perturbation), and a step which guarantees strict viability.

We will see that both FDIPA-LP and the unperturbed FDIPA work well in theory. Computationally, FDIPA-
LP has to solve two linear systems, which implies a significant computational effort. To reduce the size of these
systems, before starting the algorithm, we will use a presolver [22] and scaling techniques. We will also use the
Split Preconditioned Conjugate Gradient (SPCG) method to solve them, along with an incomplete Cholesky
preconditioner using Matlab’s ICHOL function. It was observed, that the iterations generated by SPCG are
candidates to be search direction. Therefore, we use only the first iteration of the SPCG.

In the next section, we discuss and present the adaptation of FDIPA algorithm for LP case of inequality
constrained optimization. Section 3 studies the convergence, the implementation details are presents in Section 4.
In Section 5, we present the results of FDIPA-LP algorithm applied to the problems from NETLIB and we
compare the FDIPA performance with and without perturbations following [21]. Finally, in the last section, we
present some conclusions.

2. The feasible direction interior points algorithm for linear programming

We consider the linear programming problem with the inequality formulation:

minimize
𝜆∈𝑅𝑚

𝑏𝑇 𝜆

subject to 𝐴𝜆 ≤ 𝑐, (1)

where 𝐴 ∈ 𝑅𝑛×𝑚 is the constraint’s matrix, 𝑐 ∈ 𝑅𝑚 is the independent vector, 𝑏 ∈ 𝑅𝑛 is the cost vector and
𝜆 ∈ 𝑅𝑚 is the variables vector, with 𝑛 ≥ 𝑚 ≥ 1 and 𝑅𝑎𝑛𝑘(𝐴) = 𝑚.

Let 𝐼 = {1, . . . , 𝑛}, for 𝑖 ∈ 𝐼, let 𝑎𝑇
𝑖 denotes the 𝑖th row of 𝐴, 𝑐𝑖 is the 𝑖th component of 𝑐. The constraints

function 𝑔𝑖 is given by
𝑔𝑖(𝜆) = 𝑎𝑇

𝑖 𝜆− 𝑐𝑖.

Define 𝑓(𝜆) = 𝑏𝑇 𝜆, where 𝑓 is the objective function that is to be minimized.
The set of feasible points of (1), denoted by Ω, is defined

Ω = {𝜆| 𝑔𝑖(𝜆) ≤ 0, 𝑖 ∈ 𝐼}.
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By the interior set of Ω we mean

𝑖𝑛𝑡(Ω) = {𝜆| 𝑔𝑖(𝜆) < 0, 𝑖 ∈ 𝐼}. (2)

The Lagrangian of problem (1) is

𝐿(𝜆, 𝑥) = 𝑓(𝜆) +
𝑛∑︁

𝑖=1

𝑥𝑖𝑔𝑖(𝜆). (3)

With it gradient given by
∇𝜆𝐿(𝜆, 𝑥) = 𝑏 + 𝐴𝑇 𝑥. (4)

A point 𝜆 ∈ Ω is a stationary point of the problem (1) if there exists 𝑥 ∈ 𝑅𝑛 such that:

𝐴𝑇 𝑥 + 𝑏 = 0, (5)
𝐺(𝜆)𝑋 = 0, (6)

where 𝑋 denotes 𝑑𝑖𝑎𝑔(𝑥) and 𝐺(𝜆) denotes 𝑑𝑖𝑎𝑔(𝑔(𝜆)), we will refer to such 𝑥 as a multiplier vector associated
with 𝜆. If 𝑥 ≥ 0, then 𝜆 is a Karush–Kuhn–Tucker (KKT) point of problem (1).

Next, we adapt the basic ideas of the interior point method with feasible direction (FDIPA) developed by
Herskovits [14].

Let
Ωp = {𝜆 ∈ Ω| 𝑓(𝜆) ≤ p},

where p is a real number with the interior set 𝑖𝑛𝑡(Ωp) = {𝜆 ∈ 𝑖𝑛𝑡(Ω)| 𝑓(𝜆) < p}.
We now make the following assumptions:

Assumption 1. There exist a real number p such that Ωp is compact and has a nonempty interior 𝑖𝑛𝑡(Ωp).

Assumption 2. (Regularity condition) for all 𝜆 ∈ Ω the vectors ∇𝑔𝑖(𝜆) = 𝑎𝑖, for 𝑖 ∈ 𝐼, such that 𝑔𝑖(𝜆) = 0,
are linearly independent.

FDIPA algorithm looks for a feasible primal and dual solutions, applying a Newton-like iteration to KKT
equations in such a way that it has a sequence of strictly feasible points minimizing the objective function.

The Newton-like iteration that solves (5) and (6) is given by the following system[︂
0 𝐴𝑇

𝑋𝐴 𝐺(𝜆)

]︂[︂
𝜆𝛼 − 𝜆
𝑥𝛼 − 𝑥

]︂
= −

[︂
𝑏 + 𝐴𝑇 𝑥
𝐺(𝜆)𝑥

]︂
, (7)

where (𝜆, 𝑥) ∈ 𝑖𝑛𝑡(Ω)×R𝑛
++ is the current point, (𝜆𝛼, 𝑥𝛼) is the new estimated point. We denote the matrix of

the system (7) by 𝑊 (𝜆, 𝑥).
We define a direction 𝑑𝛼 = 𝜆𝛼 − 𝜆. So, we have:[︂

0 𝐴𝑇

𝑋𝐴 𝐺(𝜆)

]︂[︂
𝑑𝛼

𝑥𝛼

]︂
=

[︂
−𝑏
0

]︂
. (8)

We perturb on the right-hand side of the system (8) generating a new feasible direction that points to 𝑖𝑛𝑡(Ω),[︂
0 𝐴𝑇

𝑋𝐴 𝐺(𝜆)

]︂[︂
𝑑
𝑥̄

]︂
=

[︂
−𝑏
−𝜌𝑥

]︂
, (9)

where 𝜌 > 0 is an appropriate positive real number to ensure that 𝑑 is a descent direction, and 𝑥̄ is the new
estimate of 𝑥.
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On the other hand, the pair (𝑑, 𝑥̄) obtained by system (9) can be calculated by (8) and the following system[︂
0 𝐴𝑇

𝑋𝐴 𝐺(𝜆)

]︂[︂
𝑑𝛽

𝑥𝛽

]︂
=

[︂
0
−𝑥

]︂
, (10)

where,

𝑑 = 𝑑𝛼 + 𝜌𝑑𝛽 , (11)
𝑥̄ = 𝑥𝛼 + 𝜌𝑥𝛽 . (12)

Once we have computed a descent and feasible direction 𝑑, we can determine the next iterative.
A full step in this direction 𝑑 is generally not allowed, as it would violate (2). To avoid this difficulty, we

perform a linear search along the 𝑑 direction to get the feasibility 𝑔(𝜆 + 𝑡𝑑) < 0 and an appropriate objective
function reduction 𝑓(𝜆 + 𝑡𝑑) < 𝑓(𝜆) so that the new iteration is 𝜆 + 𝑡𝑑 for some line search parameter 𝑡 ∈ (0, 1],
guaranteeing that the sequence of points is 𝑖𝑛𝑡(Ω).

Evaluating 𝑓 at point 𝜆 + 𝑡𝑑,
𝑓(𝜆 + 𝑡𝑑) = 𝑓(𝜆) + 𝑡𝑑𝑇 𝑏, (13)

if 𝑑𝑇 𝑏 < 0, we obtain
𝑓(𝜆 + 𝑡𝑑) < 𝑓(𝜆) for all 𝑡 ∈ R. (14)

In the following section, we show the feasibility of this direction (𝑑𝑇 𝑏 < 0).
Evaluating 𝑔𝑖 at point 𝜆 + 𝑡𝑑, for all 𝑖 ∈ 𝐼,

𝑔𝑖(𝜆 + 𝑡𝑑) = 𝑔𝑖(𝜆) + 𝑡𝑑𝑇 𝑎𝑖, (15)

s We look at the possible values of 𝑑𝑇 𝑎𝑖:

– If 𝑑𝑇 𝑎𝑖 < 0 then 𝑔𝑖(𝜆 + 𝑡𝑑) < 𝑔𝑖(𝜆) for all 𝑡 ∈ R++.
– If 𝑑𝑇 𝑎𝑖 = 0 then 𝑔𝑖(𝜆 + 𝑡𝑑) = 𝑔𝑖(𝜆) for all 𝑡 ∈ R.
– If 𝑑𝑇 𝑎𝑖 > 0, to guarantee feasibility (𝑔𝑖(𝜆 + 𝑡𝑑) ≤ 0), then

𝑡 ≤ −𝑔𝑖(𝜆)
𝑑𝑇 𝑎𝑖

· (16)

The value of 𝑡 has to be the minimum

𝑡 = min
𝑖

{︂
−𝑔𝑖(𝜆)

𝑎𝑖𝑑
| 𝑑𝑇 𝑎𝑖 > 0

}︂
. (17)

2.1. The statement of the algorithm

The proposed FDIPA-LP is presented as follows.

Algorithm 2.1 (FDIPA-LP). Input parameters: 𝜉 ∈ (0, 1), 𝜙 > 0, 𝜇 > 0, 𝛾 > 0, 𝑥𝑠 > 0. Initial data:
𝜆 ∈ 𝑖𝑛𝑡(Ω) and 𝑥 ∈ 𝑅𝑛

++.

Step 1: Determination of the descent feasible direction.
(i) Solve the linear system (𝑑𝛼, 𝑥𝛼):

𝐴𝑇 𝑥𝛼 = −𝑏, (18)
𝑋𝐴𝑑𝛼 + 𝐺(𝜆)𝑥𝛼 = 0. (19)

If 𝑑𝛼 = 0, stop.
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(ii) Solve the linear system (𝑑𝛽 , 𝑥𝛽):

𝐴𝑇 𝑥𝛽 = 0, (20)
𝑋𝐴𝑑𝛽 + 𝐺(𝜆)𝑥𝛽 = −𝑥. (21)

(iii) Compute the positive scalar 𝜌: If 𝑑𝑇
𝛽 𝑏 > 0, then it is defined as

𝜌 = min
{︀
𝜙‖𝑑𝛼‖2; (𝜉 − 1)𝑑𝑇

𝛼𝑏/𝑑𝑇
𝛽 𝑏

}︀
, (22)

otherwise
𝜌 = 𝜙‖𝑑𝛼‖2. (23)

(iv) Compute the search direction d as

𝑑 = 𝑑𝛼 + 𝜌𝑑𝛽 , (24)
𝑥̄ = 𝑥𝛼 + 𝜌𝑥𝛽 . (25)

Step 2: Line search
(i) If 𝑎𝑖𝑑 > 0; 𝑖 = 1, . . . ,𝑚 compute

𝑡 = min
{︂
−𝑔𝑖(𝜆)

𝑎𝑖𝑑

}︂
, (26)

otherwise
𝑡 = ∞, (27)

set
𝑡 = min{max{𝛾𝑡, 𝑡− ‖𝑑‖}, 1}. (28)

Step 3: Update.
(i) Take

𝜆 := 𝜆 + 𝑡𝑑. (29)

(ii) Compute,
𝑥𝑖 := min

{︀
max

{︀
𝑥𝛼𝑖, 𝜇‖𝑑𝛼‖2

}︀
, 𝑥𝑠

}︀
, for all 𝑖 ∈ 𝐼. (30)

(iii) Go to step 1.

The algorithm performs iterations within the feasible region. In step 1(ii) we obtain the value of the deflection
𝜌 that guarantees a descent direction 𝑑. In step 2, 𝑡 is the maximum step that guarantees feasibility and with the
expression (28) we get a strict feasibility. In step 3(ii), we use the same rule for FDIPA nonlinear programming
to update Lagrange multipliers 𝑥.

3. Study of convergence

In this section, we will prove, under certain nondegeneracy assumptions, that for any starting point 𝜆0 ∈
𝑖𝑛𝑡(Ω) the sequence generated (𝜆𝑘, 𝑥𝑘

𝛼) by the algorithm is convergent to (𝜆*, 𝑥*𝛼) under the Assumptions 1 and
2, where 𝜆* is a KKT point.

First, let

𝑊 (𝜆, 𝑥) =
[︂

0 𝐴𝑇

𝑋𝐴 𝐺(𝜆)

]︂
, (31)

where 𝜆 ∈ Ω and 𝑥𝑖 > 0, for all 𝑖 ∈ 𝐼. The matrix 𝑊 is non-singular whenever Assumption 2 holds. Proof see
Lemma 3.1 of Tits and Zhou [21]. Consequently, 𝑑𝛼, 𝑥𝛼, 𝑑𝛽 𝑥𝛽 obtained in step 1 of the algorithm are well
defined.
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Note that, if the algorithm ends at iteration 𝑘 ∈ N, 𝑑𝑘
𝛼 = 0 then 𝜆𝑘 solves the equation (19). Now, looking

at equation (18), we have 𝑥𝑘
𝛼 = 0 and consequently 𝑏 = 0. Therefore, when 𝑏 ̸= 0, the algorithm generates an

infinite sequence of 𝑥𝑘
𝛼. From now on, we study the case 𝑑𝑘

𝛼 ̸= 0 at every iteration.
The iterations of the algorithm FDIPA-LP generate 𝜆𝑘 ∈ 𝑖𝑛𝑡(Ω) and 𝑋𝑘 > 0. The following lemma shows

that 𝑑 is a descent direction.

Lemma 3.1. Let 𝜉 ∈ (0, 1), if 𝑑 ̸= 0 and 𝑑𝛼 ̸= 0, then

𝑑𝑇 𝑏 ≤ 𝜉𝑑𝑇
𝛼𝑏 < 0. (32)

Proof. From the algorithm, multiply (18) by 𝑑𝑇
𝛼

𝑑𝑇
𝛼𝐴𝑇 𝑥𝛼 = −𝑑𝑇

𝛼𝑏, (33)

given 𝑋 > 0, multiplying the equation (19) by 𝑥𝑇
𝛼𝑋−1 gives:

𝑥𝑇
𝛼𝐴𝑑𝛼 + 𝑥𝑇

𝛼𝑋−1𝐺(𝜆)𝑥𝛼 = 0. (34)

Substituting (33) into (34),
𝑑𝑇

𝛼𝑏 = 𝑥𝑇
𝛼𝑋−1𝐺(𝜆)𝑥𝛼. (35)

Clearly, 𝑋−1𝐺(𝜆) is a negative definite matrix. Thus, equation (35) for any 𝑥𝛼 ̸= 0 yields

𝑑𝑇
𝛼𝑏 < 0. (36)

Also, multiplying equation (24) by 𝑏, we have that

𝑑𝑇 𝑏 = 𝑑𝑇
𝛼𝑏 + 𝜌𝑑𝑇

𝛽 𝑏, (37)

by the algorithm in step 1(iii) to obtain 𝜌 > 0 in both cases, moreover
∙ If 𝑑𝑇

𝛽 𝑏 ≤ 0, from the equations (37) and (36) we have that

𝑑𝑇 𝑏 ≤ 𝑑𝑇
𝛼𝑏 < 0. (38)

∙ If 𝑑𝑇
𝛽 𝑏 > 0, from the equation (22) we have that

𝜌 ≤ (𝜉 − 1)
𝑑𝑇

𝛼𝑏

𝑑𝑇
𝛽 𝑏

,

𝑑𝑇
𝛼𝑏 + 𝜌𝑑𝑇

𝛽 𝑏 ≤ 𝜉𝑑𝑇
𝛼𝑏,

𝑑𝑇 𝑏 ≤ 𝜉𝑑𝑇
𝛼𝑏. (39)

Therefore, from the equations (36), (38) and (39),

𝑑𝑇 𝑏 ≤ 𝜉𝑑𝑇
𝛼𝑏 < 0. (40)

�

As a consequence of the previous lemma, 𝑓 is monotone decreasing, 𝑑𝛼 and 𝑑 are descent directions of 𝑓 ,
yielding

𝑓(𝜆 + 𝑡𝑑) = 𝑓(𝜆) + 𝑡𝑑𝑇 𝑏,

therefore,
𝑓(𝜆 + 𝑡𝑑) < 𝑓(𝜆),

by construction, 𝑡 ∈ (0, 1], and Lemma 3.1.
On the other hand, with the choice of 𝜌 in step 1 of the algorithm, we ensure that

0 < 𝜌 ≤ 𝜙‖𝑑𝛼‖2. (41)

Now we are going to show feasibility of 𝑑.
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Lemma 3.2. There exists 𝜏 > 0 such that at any Ωp and 𝑑 computed in Step 1 of the algorithm 1.1, we have
𝑔(𝜆 + 𝑡𝑑) ≤ 0 for all 𝑡 ∈ [0, 𝜏 ].

Proof. The step length 𝑡 is defined in the equation (28) of the algorithm. Since the constraints are linear, to
satisfy the line search condition the following inequalities must be true:

𝑔𝑖(𝜆 + 𝑡𝑑) = 𝑔𝑖(𝜆) + 𝑡𝑎𝑇
𝑖 𝑑 ≤ 0 (42)

for all 𝑖 ∈ 𝐼. If 𝑎𝑇
𝑖 𝑑 ≤ 0, the above inequality is satisfied with any 𝑡 > 0. Otherwise, it follows from (9) that

𝑔𝑖(𝜆)
(︂

1− 𝑡
𝑥̄𝑖

𝑥𝑖

)︂
− 𝑡𝜌 ≤ 0, (43)

Obviously 𝜌𝑡 > 0 and 𝑔(𝜆) < 0. Thus, the inequality is satisfied if

𝑡

(︂
𝑥̄𝑖

𝑥𝑖

)︂
≤ 1. (44)

Now, 𝑥 is bounded by (30) and, since 𝑥𝛼, 𝑥𝛽 and 𝜌 are bounded from above, also 𝑥̄ is bounded from
above. Thus, there exists 𝜏 > 0 such that 𝑥𝑖/𝑥̄𝑖 > 𝜏 . Therefore, for all 𝑖 ∈ 𝐼 and for all 𝑡 ∈ [0, 𝜏 ], we have
𝑔𝑖(𝜆 + 𝑡𝑑) ≤ 0. �

Considering 𝑓(𝜆0) = p, we note that, given a point 𝜆0 ∈ 𝑖𝑛𝑡(Ω) and a decreasing function 𝑓 , we have any
sequence {𝜆𝑘} generated by the algorithm is contained in Ωp. Then, since Assumption 1, {𝜆𝑘} has accumulation
point in Ωp.

Lemma 3.3. Every accumulation point of the sequence {𝜆𝑘}, generated by the algorithm, is a stationary point
of the problem. Besides that, (𝜆*, 𝑥*𝛼) is a stationary pair, where 𝑥*𝛼 is the unique multiplier vector associated
with 𝜆*.

Proof. Consider a sequence {𝜆𝑘}𝑘∈𝐾 , where 𝐾 ⊂ N, converging to 𝜆*.
By construction 𝑥𝑘

𝑖 ∈ [0, 𝑥𝑠], it follows from (41) that {𝑥𝑘} and {𝜌𝑘} are bounded, there exists 𝐾1 ⊂ 𝐾, such
that {︀

𝜆𝑘, 𝑥𝑘, 𝜌𝑘
}︀

𝑘∈𝐾1

converge to (𝜆*, 𝑥*, 𝜌*).
Since 𝑑𝑘 depends continuously on 𝜆𝑘, 𝑥𝑘, and 𝜌𝑘, we have that {𝑑𝑘}𝑘∈𝐾1 → 𝑑*, with 𝑑* = 𝑑(𝜆*, 𝑥*, 𝜌*).
Since 𝑡𝑘 ∈ (0, 1] for all 𝑘, it them follows from Lemma 3.1 that there exists 𝑡 > 0 such that

𝑓(𝜆𝑘+1) ≤ 𝑓(𝜆𝑘) + 𝑡𝑑𝑘𝑇 𝑏, for all 𝑘 ∈ 𝐾1

where we assume that 𝑘 ∈ 𝐾1 and 𝑘 + 1 do not necessarily belong to 𝐾1.

𝑓
(︀
𝜆𝑘′)︀ < 𝑓

(︀
𝜆𝑘

)︀
+ 𝑡𝑑𝑘𝑇 𝑏 for all 𝑘′ ≥ 𝑘 + 1,

and taking limits on both sides for 𝑘 →∞,

𝑓(𝜆*) ≤ 𝑓(𝜆*) + 𝑡𝑑*𝑇 𝑏,

following that

0 ≤ 𝑑*𝑇 𝑏. (45)
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Considering now the result of Lemma 3.1 in the limit for 𝑘 →∞ we get

𝑑*𝑇 𝑏 = 0. (46)

It also follows from Lemma 3.1, yields 𝑑*𝑇𝛼 = 0.
Taking limits in (18) and (19), we have

𝐴𝑇 𝑥*𝛼 = −𝑏, (47)
𝐺(𝜆*)𝑥*𝛼 = 0. (48)

Thus, 𝜆* is stationary, with multiplier vector 𝑥*𝛼. From the equation (47) and the Assumption 2 we have the
uniqueness of 𝑥*. �

Lemma 3.4. Suppose {𝜆𝑘} is bounded. Let 𝐿 be the set of limit points of {𝜆𝑘}, then 𝐿 is connected compact
sets with the same active constraints.

Proof. It is analogous to the proof of Lemmas A.5 and 3.6 in Tits and Zhou [21]. Lemma A.5 proves that 𝐿 is
connected compact set, and Lemma 3.6 proves that 𝐿 possesses a unique 𝑥* associated with it. �

The Lemma 3.4 appears as a hypothesis in FDIPA for nonlinear programming [14], it helps in the proof of
the convergence of the sequence of points generated by the algorithm to a KKT point.

Next, a technical lemma to understand convergence.

Lemma 3.5. The direction 𝑑 computed by the Algorithm 1.1 satisfies

𝑑𝑇 𝑎𝑖 < 0, for each 𝑥̄𝑖 < 0. (49)

Proof. Rewriting the equations (19) and (21):

𝑋𝐴𝑇 𝑑𝛼 + 𝐺(𝜆)𝑥𝛼 = 0,

𝑋𝐴𝑇 𝑑𝛽 + 𝐺(𝜆)𝑥𝛽 = −𝑥,

and for all 𝑖 ∈ 𝐼 yield

𝑎𝑇
𝑖 𝑑𝛼 = −𝑥𝛼𝑖

𝑥𝑖
𝑔𝑖(𝜆), (50)

𝑎𝑇
𝑖 𝑑𝛽 = −𝑥𝛽𝑖

𝑥𝑖
𝑔𝑖(𝜆)− 1. (51)

multiplying equation (24) by 𝑎𝑇
𝑖

𝑎𝑇
𝑖 𝑑 = 𝑎𝑇

𝑖 𝑑𝛼 + 𝜌𝑎𝑇
𝑖 𝑑𝛽 . (52)

Substituting (50) and (51) into (52) gives

𝑎𝑇
𝑖 𝑑 = −𝑥𝛼𝑖

𝑥𝑖
𝑔𝑖(𝜆)− 𝜌

𝑥𝛽𝑖

𝑥𝑖
𝑔𝑖(𝜆)− 𝜌

= −𝑔𝑖(𝜆)
𝑥𝑖

(𝑥𝛼𝑖 + 𝜌𝑥𝛽𝑖)− 𝜌

= −𝑔𝑖(𝜆)
𝑥𝑖

𝑥̄𝑖 − 𝜌, (53)

in the equation (53), if 𝑥̄𝑖 < 0 then
𝑎𝑇

𝑖 𝑑 < 0. (54)

�



LINEAR PROGRAMMING WITH A FEASIBLE DIRECTION 3651

The constraint functions associated with estimated negative multipliers are decreasing functions (𝑔𝑖(𝜆+𝑡𝑑) <
𝑔𝑖(𝜆)). This ensures that stationary points that are not KKT points will be avoided.

Finally, Theorem 3.6 proves that the presented algorithm converges to the solution of the problem.

Theorem 3.6. Any accumulation point 𝜆* of any sequence generated by the algorithm {𝜆𝑘} is a Karush–Kuhn–
Tucker point of the problem.

Proof. As 𝜆* is a stationary point of the problem (1), it is only necessary to prove that the Lagrange multipliers
𝑥*𝛼 are nonnegative.

We have that 𝑑*𝛼 = 0 and 𝑑* = 0 at a stationary point. Then, it follows from (19) that

𝐺(𝜆*)𝑥*𝛼 = 0,

where 𝑥*𝛼𝑖 = 0 in the case when 𝑔𝑖(𝜆*) < 0.
Consider now a constraint 𝑔𝑗(𝜆*) = 0, yielding the following consequences. As the method is strictly feasible,

𝑔𝑗

(︀
𝜆𝑘

)︀
< 0 for all 𝑘 ∈ N.

Then, we can define a sequence {𝜆𝑘}𝑘∈𝐾 , 𝐾 ⊂ N, converging to 𝜆* such that

𝑔𝑗

(︀
𝜆𝑘

)︀
> 𝑔𝑗

(︀
𝜆𝑘−1

)︀
for any 𝑘 ∈ 𝐾.

Note that 𝑘 − 1 may not belong to 𝐾 and from of Lemma 3.1, we get 𝑥̄𝑘−1
𝑗 ≥ 0.

Now, we proceed by contradiction and assume that 𝑥*𝛼𝑗 < 0. It follows from (41) that 𝜌* = 0 and from (12)

𝑥* = 𝑥*𝛼 + 𝜌*𝑥*𝛽 ,

we have 𝑥̄*𝑗 < 0. Then, since Lemma 3.4 holds, there exists an open ball 𝐵(𝛾𝑗) ≡ {𝜆 | ‖𝜆−𝜆*‖ < 𝛾𝑗}, such that
𝑥̄𝑗 < 0 for any 𝜆 ∈ {𝑖𝑛𝑡(Ωp) ∩𝐵(𝛾𝑗)} and any 𝑥 and 𝜌 generated by the algorithm.

Consider now the sequence {𝜆𝑘−1}𝑘∈𝐾 . As 𝑥̄𝑘−1
𝑗 ≥ 0, for any 𝑘 ∈ 𝐾, we have that 𝜆𝑘−1 ̸∈ 𝐵(𝛾𝑗). Thus,

{𝜆𝑘−1}𝑘∈𝐾 is in the compact set {Ωp−𝐵(𝛾𝑗)}, therefore this set processes an accumulation point. In consequence
of Lemma 3.3, this point is a stationary point of problem (1).

Let 𝜆̄ be one of these points and {𝜆𝑘−1}𝑘∈𝐾̄ , 𝐾̄ ⊂ 𝐾, a sequence convergent to 𝜆̄ therefore we have that
‖𝑑𝑘−1‖ → 0. Then, for 𝐼 large enough, ‖𝑑𝑘−1‖ < 𝛾𝑗 for any 𝑘 > 𝐼, 𝑘 ∈ 𝐾̄ and, in consequence of the line search,⃦⃦

𝜆𝑘 − 𝜆𝑘−1
⃦⃦

=
⃒⃒
𝑡𝑘−1

⃒⃒⃦⃦
𝑑𝑘−1

⃦⃦⃦⃦
𝜆* − 𝜆̄

⃦⃦
< 𝛾𝑗 .

This result is in contradiction with the fact that 𝜆̄ ̸∈ 𝐵(𝛾𝑗) proving the theorem. �

4. Implementation of interior points feasible directions for linear
programming

First, we will present the split preconditioned conjugate gradient method, necessary for solving the internal
linear systems.

4.1. Split preconditioned conjugate gradient method (SPCG)

The SPCG method is an algorithm for the numerical solution of systems of linear equations, such as those
whose matrices are symmetric and positive-definite.

The algorithm employs the use of preconditioned matrix 𝐿, when working with poorly conditioned matrices,
to guarantee the convergence of the method [23]

The algorithm to solve (𝑄𝑥 = 𝐵), with the incomplete Cholesky decomposition 𝐿 where 𝑀 = 𝐿𝐿𝑇 is a
symmetric positive definite.
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Algorithm 4.1 (SPCG). Data: 𝑄 ∈ 𝑅𝑛×𝑛 symmetric positive definite, 𝐵 ∈ 𝑅𝑛 and 𝑥0 ∈ 𝑅𝑛.

Step 1: Calculate

𝑟0 = 𝐵 −𝑄𝑥0,

𝑟0 = 𝐿−1𝑟0,

𝑝0 = 𝐿−𝑇 𝑟0.

Step 2: Compute for 𝑗 = 0, 1, . . . , until converge, do

𝛼𝑗 = (𝑟𝑗 , 𝑟𝑗)/(𝑄𝑝𝑗 , 𝑝𝑗),
𝑥𝑗+1 = 𝑥𝑗 + 𝛼𝑗𝑝𝑗 ,

𝛽𝑗 = (𝑟𝑗+1, 𝑟𝑗+1)/(𝑟𝑗 , 𝑟𝑗),

𝑝𝑗+1 = 𝐿−𝑇 𝑟𝑗+1 + 𝛽𝑗𝑝𝑗 ,

end.

Convergence criterion used here was ‖𝑟𝑗‖
𝑟0

< 𝜖. Also we compute 𝐿, an incomplete Cholesky preconditioner,
using Matlab’s ICHOL function.

4.2. Solving internal linear systems

The internal linear systems of FDIPA-LP can be solved by various numerical methods, which depend on the
form and characteristics that they obtain when manipulated.

From the equation (18) and (19) we get:

−𝐴𝑇 𝐺−1(𝜆)𝑋𝐴𝑑𝛼 = −𝑏, (55)
𝑥𝛼 = −𝐺−1(𝜆)𝑋𝐴𝑑𝛼. (56)

From the system (20) and (21) we get,

−𝐴𝑇 𝐺−1(𝜆)𝑋𝐴𝑑𝛽 = 𝐴𝑇 𝐺−1(𝜆)𝑋, (57)
𝑥𝛽 = −𝐺−1(𝜆)(𝑥 + 𝑋𝐴𝑑𝛽). (58)

The matrix 𝑄 = −𝐴𝑇 𝐺−1(𝜆)𝑋𝐴 is guaranteed symmetric and positive definite for all 𝑥 ∈ 𝑖𝑛𝑡(Ωp). Therefore,
SPCG method can be used to solve (55) and (57).

We observe, in the development of the FDIPA-LP algorithm, that the iterations generated by SPCG are
candidates to be a feasible descent direction. Therefore, we stop the SPCG method at an early iteration (SPCG-
T). It which represents an attractive and economic alternative for large-scale problems.

In Table 1, we will compare the number of iterations of SPCG (Iter SPCG) vs the number of SPCG with
truncated iteration (Iter SPCG-T), needed to solve the internal FDIPA-LP systems for tested problems from
the NETLIB [24] collection. The first column contains the name of the problem.

Noting that in both cases, we got the same number of FDIPA iterations to reach the target value. Then
we see that with SPCG-T the number of iterations to solve the internal systems is reduced since we stop the
process at the first iteration, which means that fewer numerical operations are performed to arrive at the target
value, reducing the computational cost.
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Table 1. Comparison of SPCG and SPCG-T iterations.

Problem Iter Iter
SPCG SPCG-T

Adlittle 92 46
Afiro 38 20
Agg 259 92
Agg2 141 54
Agg3 164 86

Table 2. Number of variables and constraints before presolve vs after presolve.

Problem Problem with presolve
Name Variables Constraints Variables Constraints

Adlittle 138 56 137 55
Afiro 51 27 51 27
Agg 615 488 478 390
Agg2 758 516 755 514
Agg3 758 516 755 514
Blend 114 74 111 71
Degen2 757 444 757 444
Degen3 2604 1503 2604 1503
Israel 316 174 316 174
Qap8 1632 912 1632 912
Qap12 8856 3192 8856 3192
Sc205 317 205 315 203
Sc50A 78 50 77 49
Sc50B 78 50 76 48
Scagr7 185 129 183 127
Scagr25 671 471 669 469
Scorpion 466 388 412 346
Sctap1 660 300 644 284
Sctap2 2500 1090 2443 1033
Sctap3 3340 1480 3268 1408
Share1b 253 117 248 112
Stocfor1 165 117 161 113

4.3. Presolve

The algorithm begins by trying to simplify the problem by eliminating redundancies and simplifying the
restrictions. With this, we managed to reduce the size of the problem and the execution time, the presolve
methods used are in [22].

In Table 2 we present some computational results clearly advocating for the use of an involved presolve
analysis. The columns variables and constraints show the number of rows and columns in 𝐴, respectively. The
following columns variables and constraints show the same numbers, but after presolve. The results collected
in Table 2 also show that there exist almost irreductible problems, for example, Afiro, Degen2, Degen3, Israel,
Qap8 and Qap12.

We also use stepping techniques since they improve the computational properties of LP problem. Scaling is
used before the application of FDIPA-LP algorithm to reduce the condition number of the constraint matrix,
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Table 3. Types of scaling techniques.

Number Scaling techniques

1 Arithmetic mean
2 Buchet for the case 𝑝 = 1
3 Buchet for the case 𝑝 = 2
4 Buchet for the case 𝑝 =∞
5 Entropy
6 Equilibration

improve the performance number of the algorithms, reduce the number of iterations required to solve LP, and
simplify the setting of tolerances.

In [22] present eleven scaling techniques used before the execution of an LP algorithm where a computational
study is carried out, comparing the execution time of the scaling techniques, and investigate the impact of
scaling before the application of LP algorithms. We will use 6 types of scaling techniques presented in Table 2.

For more details of its mathematical formulation, illu strative numerical example and implementation in
MATLAB of each type of scaling technique see [22].

4.4. Starting point

In the algorithm, we have assumed that we start from a starting point 𝜆0 feasible and interior. This point
will be found by solving the following problem:

minimize
𝜆,𝑧

𝑧

subject to 𝐴𝜆− 𝑐 ≤ 1𝑇 𝑧, (59)

we obtain a feasible point when 𝑧 < 0.

4.5. Stopping criteria

We must establish criteria to determine when the current point 𝜆𝑘 is close enough to 𝜆*.
Our criteria happens when the relative improvement in the objective function is small,⃒⃒

𝑏𝑇 𝜆𝑘 − 𝑏𝑇 𝜆𝑘+1
⃒⃒

1 + |𝑏𝑇 𝜆𝑘|
≤ 𝜖

and ‖𝑑𝛼‖ ≤ 𝜖.

4.6. Numerical results

In this section, we report experimental results from NETLIB [24] collection. This library brings together LP
problems from different areas.

Every primal linear programming problem has another associated problem called dual, where at the optimal
point each has the same objective value. Duality theory relates both problems [12, 25]. The dual problem fits
well to be solved with FDIPA-LP proposed in this article.

Our implementation was done in MATLAB environment. All computational experiments were performed on
a microcomputer with an Intel CORE i5 processor, 8 GB of RAM and 2.40 GHz of frequency running on the
Windows 10 platform.

The first step in solving a test problem was to perform a presolve described in Section 4.3, then apply a
kind of scaling technique from Table 3. Next, FDIPA-LP needs as input a point 𝜆0 within the feasible region,
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Table 4. Results for test instances.

Problem Objective value Objective value (dual) Iter Iter Iter Scaling

FDIPA FDIPA SPCG-T 𝑥0 techniques

Adlittle 2.2549496316E+05 2.2549496316E+05 20 40 5 3

Afiro −4.6475314286E+02 −4.6475314286E+02 11 22 1 6
Agg −3.5991767287E+07 −3.5991767287E+07 39 78 4 2

Agg2 −2.0239252356E+07 −2.0239252356E+07 30 60 2 1

Agg3 1.0312115935E+07 1.0312115935E+07 37 54 1 1
Bandm −1.5862801845E+02 −1.5862801845E+02 31 62 5 6

Beaconfd 3.3592485807E+04 3.3592485807E+04 24 48 2 6

Blend −3.0812149846E+01 −3.0812149846E+01 15 30 5 2
Degen2 −1.4351780000E+03 −1.4351780000E+03 19 38 2 1

Degen3 −9.8729400000E+02 −9.8729400004E+02 27 54 7 1
Fffff800 5.5567961165E+05 5.5567956482E+05 79 158 22 2

Israel −8.9664482186E+05 −8.9664482186E+05 23 46 6 6

Qap8 2.0350000000E+02 2.0349999989E+02 18 36 3 4
Qap12 5.2289435056E+02 5.2289435056E+02 34 68 2 1

Sc105 −5.2202061212E+01 −5.2202061212E+01 16 32 4 1

Sc205 −5.2202061212E+01 −5.2202061212E+01 18 36 9 1
Sc50A −6.4575077059E+01 −6.4575077059E+01 13 26 3 1

Sc50B −7.0000000000E+01 −70.000000000E+01 11 22 2 1

Scagr7 −2.3313892548E+06 −2.3313898243E+06 21 42 7 1
Scagr25 −1.4753433061E+07 −1.4753433061E+07 27 54 10 1

Scorpion 1.8781248227E+03 1.8781248227E+03 21 42 4 1

Scsd1 8.6666666743E+00 8.6666666743E+00 11 22 2 1
Scsd6 5.0500000078E+01 5.0500000075E+01 18 36 2 1

Scsd8 9.0499999993E+02 9.0499999993E+02 16 32 2 1
Sctap1 1.4122500000E+03 1.4122500000E+03 17 34 6 1

Sctap2 1.7248071429E+03 1.7248071429E+03 15 30 4 6

but the NETLIB library does not provide workable points for your problems. Therefore, a feasible solution is
sought 𝜆0 ∈ 𝑖𝑛𝑡(Ω). To strictly feasible initial point, FDIPA-LP is started to solve the auxiliary problem (59),
the optimization process is interrupted when the objective function reaches a negative value 𝑧0.

In the Tables 4 and 5, presents 52 linear programming problems solved with FDIPA-LP. The seven columns
give, respectively, the name of the problem, the primal objective value, the dual objective value with FDIPA, the
number of iterations required for convergence, the sum of the number of SPCG Truncate iterations needed to
solve two systems, the number of iterations required to calculate the starting point and type of scaling technique.

4.7. Computational results FDIPA LP vs FDIPA without perturbation

Herskovits [14] stated that original FDIPA solves LP problems, using only system (8). In other words, it was
not necessary to carry out the perturbation (𝜌) to the complementarity condition.

Then Tits and Zhou [21], develop unperturbed FDIPA (where direction is 𝑑𝛼) for LP, showing the global
convergence and the rate of convergence. Already in Celis [26] some computational results are observed.

In theory, both algorithms work. let’s compare the efficiency of both. Table 6 shows the obtained compu-
tational results. In the test, the following parameter values were assumed 𝜉 = 0.7, 𝜙 = 1, 𝜇 = 10−3, 𝛾 =
0.9995, 𝑥𝑠 = 1015.

The first column of Table 6 contains the name of the problem. The next two columns show the number of
iterations that FDIPA-LP performs to obtain the solution, with its respective gap. Columns 4 and 5 contain
the iteration number of the FDIPA solving the first unperturbed system with its respective gap.
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Table 5. Results for test instances.

Problem Objective value Objective value(dual) Iter Iter Iter Scaling
FDIPA FDIPA CG-T 𝑥0 techniques

Sctap3 1.4240000000E+03 1.4240000000E+03 19 38 4 1
Share1b −7.6589318579E+04 −7.6589318579E+04 33 66 9 1
Share2b −4.1573224074E+02 −4.1573224074E+02 21 42 2 6
Ship04l 1.7933245380E+06 1.7933245380E+06 38 76 5 4
Ship04s −1.7987147004E+06 1.7987147004E+06 24 48 5 6
Stocfor1 −4.1131976219E+04 −4.1131976220E+04 14 28 17 6
Stocfor2 −3.9024408538E+04 −3.9024408538E+04 32 64 39 4
Bore3d 1.3730803942E+03 1.3730803942E+03 21 42 22 6
Ganges −1.0958636356E+05 −1.0958638221E+05 20 40 7 8
Gfrd-pnc 6.9022359995E+06 6.9022359957e+06 25 50 13 5
Grow7 −4.7787811815E+07 −4.7787811815E+07 21 42 1 8
Grow22 −1.6083433648E+08 −1.6083433648E+08 25 50 2 6
Grow15 −1.0687094129E+08 −1.0687094129E+08 25 50 4 4
Capri 2.6900129138E+03 2.6900129127E+03 51 102 21 6
Etamacro −7.5571521774E+02 −7.5571541174E+02 55 110 8 8
Fit1d −9.1463780924E+03 −9.1463780924E+03 21 42 7 6
Fit1p 9.1463780924E+03 9.1463780920E+03 45 90 8 2
Kb2 −1.7499001299E+03 −1.7499001299E+03 20 40 2 6
Gfrd-pnc 6.9022359995E+06 6.9022359957E+06 25 50 13 1
Standgub 1.2576995000E+03 1.2576995000E+03 20 40 9 1
Standmps 1.4060175000E+03 1.4060175000E+03 45 90 9 6
Standata 1.2576995000E+03 1.2576994988E+03 21 42 9 1
Czprob 2.1851966989E+06 2.1851966989E+06 118 236 4 8
D6cube 3.1549166667E+02 3.1549166404E+02 28 56 2 0
Pilot4 −2.5811392641E+03 −2.5811393097E+03 70 140 9 8
Pilotnov −4.4972761882E+03 −4.4972772003E+03 46 92 36 4

Table 6. Numerical tests iterations FDIPA.

Problem Iter Gap Iter Gap
𝑑 𝑑 𝑑𝛼 𝑑𝛼

Adlittle 23 0,00E+00 45 1,93E+01
Afiro 13 0,00E+00 88 2,27E− 04
Agg2 31 0,00E+00 58 1,50E − 02
Agg3 36 0,00E+00 721 4,71E+00
Blend 21 0,00E+00 63 8,06E − 06
Degen2 19 0,00E+00 18 4,83E − 01
Israel 32 8,29E − 03 34 1,59E − 02
Sc205 30 0,00E+00 235 9,35E − 05
Sc50A 13 0,00E+00 40 1,34E − 05
Sc50B 11 6,30E+02 42 1,50E − 05
Scagr7 22 5,78E − 01 111 6,10E − 01
Scagr25 32 9,00E − 03 55 9,00E − 03
Scorpion 34 3,00E − 07 82 2,72E − 02
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5. Conclusion

In this paper we proposed a feasible direction algorithm for linear programming FDIPA-LP, inspired from
iteration due to Herskovits. The method start by performing an iteration of Newton’s method to KKT conditions,
generating a system, then perturbs the complementarity conditions. The linear system solved at each iteration
is identical to that of the primal-dual logarithmic barrier method [27,28]. However, FDIPA-LP is not a penalty
or barrier method, the perturbs strategy of the new algorithm is drastically different.

Under assumptions a theoretical study proving convergence to a KKT point was presented. Also, important
aspects for efficient computational implementations were considered, such as use conjugate gradient method for
system internal solved, by stopping in an early stage to find the direction, also the use of presolver and some
kind of scaling, which presents an advantage to reduce the computational cost.

This algorithm was tested on 52 test problems, guarantee the good development of the algorithms and it
should be noted that the fact that all tests are solved with the same parameters shows that the algorithm is
robust, strong and efficient compared with alternative implementations.

Acknowledgements. The author gratefully acknowledges the many helpful suggestions of Grigori Chapiro during the
preparation of the paper. This work was supported by CNPq and COPPETEC.
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