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SPECTRA OF CLOSENESS LAPLACIAN AND CLOSENESS SIGNLESS
LAPLACIAN OF GRAPHS

Lu Zheng and Bo Zhou*

Abstract. For a graph 𝐺 with vertex set 𝑉 (𝐺) and 𝑢, 𝑣 ∈ 𝑉 (𝐺), the distance between vertices 𝑢 and
𝑣 in 𝐺, denoted by 𝑑𝐺(𝑢, 𝑣), is the length of a shortest path connecting them and it is ∞ if there is no
such a path, and the closeness of vertex 𝑢 in 𝐺 is 𝑐𝐺(𝑢) =

∑︀
𝑤∈𝑉 (𝐺) 2−𝑑𝐺(𝑢,𝑤). Given a graph 𝐺 that is

not necessarily connected, for 𝑢, 𝑣 ∈ 𝑉 (𝐺), the closeness matrix of 𝐺 is the matrix whose (𝑢, 𝑣)-entry
is equal to 2−𝑑𝐺(𝑢,𝑣) if 𝑢 ̸= 𝑣 and 0 otherwise, the closeness Laplacian is the matrix whose (𝑢, 𝑣)-entry
is equal to

{︃
−2−𝑑𝐺(𝑢,𝑣) if 𝑢 ̸= 𝑣,

𝑐𝐺(𝑢) otherwise

and the closeness signless Laplacian is the matrix whose (𝑢, 𝑣)-entry is equal to

{︃
2−𝑑𝐺(𝑢,𝑣) if 𝑢 ̸= 𝑣,

𝑐𝐺(𝑢) otherwise.

We establish relations connecting the spectral properties of closeness Laplacian and closeness signless
Laplacian and the structural properties of graphs. We give tight upper bounds for all nontrivial closeness
Laplacian eigenvalues and characterize the extremal graphs, and determine all trees and unicyclic graphs
that maximize the second smallest closeness Laplacian eigenvalue. Also, we give tight upper bounds
for the closeness signless Laplacian eigenvalues and determine the trees whose largest closeness signless
Laplacian eigenvalues achieve the first two largest values.
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1. Introduction

We consider simple and undirected graphs. Let 𝐺 be a graph with vertex set 𝑉 (𝐺) and edge set 𝐸(𝐺). For
𝑢, 𝑣 ∈ 𝑉 (𝐺), the distance between 𝑢 and 𝑣 in 𝐺, denoted by 𝑑𝐺(𝑢, 𝑣), is the length of a shortest path from 𝑢 to
𝑣 in 𝐺. Particularly, 𝑑𝐺(𝑢, 𝑢) = 0 for any 𝑢 and 𝑑𝐺(𝑢, 𝑣) = ∞ if there is no path from 𝑢 to 𝑣 in 𝐺.
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For a graph 𝐺 that is not necessarily connected, the closeness matrix of 𝐺 is defined as [1] 𝐶(𝐺) =
(𝑐𝐺(𝑢, 𝑣))𝑢,𝑣∈𝑉 (𝐺), where

𝑐𝐺(𝑢, 𝑣) =

{︃
2−𝑑𝐺(𝑢,𝑣) if 𝑢 ̸= 𝑣,

0 otherwise.

A general version has been considered, which is called the exponential distance matrix in [2] and the 𝑞-distance
matrix in [3], where, for any real number 𝑞 ∈ (0, 1), the (𝑢, 𝑣)-entry of the general version is 𝑞𝑑𝐺(𝑢,𝑣) if 𝑢 ̸= 𝑣
and 0 otherwise. The closeness matrix of a graph deserves investigation because it combines some merits of the
adjacency matrix and the distance matrix. It behalves as the adjacency matrix as both spectra are the union
of the spectra of the corresponding matrices of the components of a graph. Moreover, it contains information
of distances between different vertices. Note that distance matrix means only for connected graphs. Another
motivation to consider the closeness matrix of a graph is the work of Dangalchev, who introduced in [4] the
closeness of a graph 𝐺, defined as 𝑐(𝐺) =

∑︀
𝑣∈𝑉 (𝐺) 𝑐𝐺(𝑣) with 𝑐𝐺(𝑣) =

∑︀
𝑤∈𝑉 (𝐺)∖{𝑣} 2−𝑑𝐺(𝑣,𝑤). Dangalchev

[5] Closeness is a measure of centrality, an important feature of communication and social networks. Rupnik
Poklukar and Žerovnik [6] discussed the connection between the closeness of a graph and the early studied
Hosoya polynomial (see also [7,8]), and they determined the graphs that minimize and maximize the closeness
among several classes of graphs including trees and cacti. It is evident that for a graph 𝐺, 𝐶(𝐺) is a symmetric
nonnegative matrix. Moreover, 𝐶(𝐺) is irreducible if and only if 𝐺 is connected. As 𝐶(𝐺) is symmetric, its
eigenvalues are all real. We call them the closeness eigenvalues of 𝐺. The largest closeness eigenvalue of a graph
is called the spectral closeness used as a measure for networks [1], and the extremal values (minimum and
maximum values) and the extremal graphs of spectral closeness have been determined there over various classes
of graphs. Properties of other closeness eigenvalues, especially the second largest and the smallest closeness
eigenvalues were explored in [9]. Some results on the spectral properties of exponential distance matrix have
been obtained in [10,11].

Let Dc(𝐺) be the diagonal matrix with (𝑢, 𝑢)-entry to be 𝑐𝐺(𝑢) for each 𝑢 ∈ 𝑉 (𝐺). Motivated by [12], the
closeness Laplacian is defined as the matrix L(𝐺) = Dc(𝐺) − 𝐶(𝐺), and the closeness signless Laplacian is
defined as the matrix Q(𝐺) = Dc(𝐺) + 𝐶(𝐺). That is, for 𝑢, 𝑣 ∈ 𝑉 (𝐺), the (𝑢, 𝑣)-entry of L(𝐺) is equal to{︃

−2−𝑑𝐺(𝑢,𝑣) if 𝑢 ̸= 𝑣,

𝑐𝐺(𝑢) otherwise

and the (𝑢, 𝑣)-entry of Q(𝐺) is equal to {︃
2−𝑑𝐺(𝑢,𝑣) if 𝑢 ̸= 𝑣,

𝑐𝐺(𝑢) otherwise.

Denote by 𝜌L
1 (𝐺) ≥ . . . ≥ 𝜌L

𝑛(𝐺) the eigenvalues of L(𝐺), which are called the closeness Laplacian eigenvalues
of 𝐺, and 𝜌Q

1 (𝐺) ≥ . . . ≥ 𝜌Q
𝑛(𝐺) the eigenvalues of Q(𝐺), which are called the closeness signless Laplacian

eigenvalues of 𝐺.
For 𝜌 ∈ {𝜌L

𝑛(𝐺), 𝜌Q
𝑛(𝐺)}, we have by the well known Geršgorin discs theorem (Thm. 6.1.1 in [13]) that

|𝜌 − 𝑐𝐺(𝑣)| ≤ 𝑐𝐺(𝑣) and so 𝜌 ≥ 0 for some 𝑣 ∈ 𝑉 (𝐺). That is, both L(𝐺) and Q(𝐺) are positive semi-definite.
Denote by 1𝑛 the 𝑛-dimensional column vector of all ones. Then L(𝐺)1𝑛 = 0, so 𝜌L

𝑛(𝐺) = 0.
If 𝑛 ≥ 2 and 𝐺 is connected, then each entry of L(𝐺) is not zero, so the matrix 𝐵 obtained from L(𝐺)

by the deletion of, say, the last row and the last column is strictly diagonally dominant, implying that zero
is not an eigenvalue of 𝐵, from which it follows that the multiplicity of 𝜌L

𝑛(𝐺) = 0 is one by the interlacing
theorem (Thm. 4.3.17 in [13]). So the number of 0 as a closeness Laplacian eigenvalue of a graph is equal to
the number of components of the graph. Consequently, a graph 𝐺 on 𝑛 ≥ 2 vertices is connected if and only
if 𝜌L

𝑛−1(𝐺) > 0. This fact shows that the second smallest closeness Laplacian eigenvalue may be viewed as a
distance-based ‘algebraic connectivity’ of a graph. Any closeness Laplacian eigenvalue that is not equal to zero
is called a nontrivial one.
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On the other hand, let x be a unit eigenvector of Q(𝐺) associated to 𝜌Q
𝑛(𝐺). Then 𝜌Q

𝑛(𝐺) =∑︀
{𝑢,𝑣}⊆𝑉 (𝐺) 𝑐𝐺(𝑢, 𝑣)(𝑥𝑢 + 𝑥𝑣)2. So 𝜌Q

𝑛(𝐺) = 0 if and only if 𝑛 = 1 or 𝑥𝑢 + 𝑥𝑣 = 0 for any {𝑢, 𝑣} in a
component of 𝐺 if 𝑛 ≥ 2, equivalently, 𝐺 has at least a component with one or two vertices. Thus, if 𝐺 is a
connected graph with 𝑛 ≥ 3 vertices, then 𝜌Q

𝑛(𝐺) > 0.
We establish some connections between the closeness Laplacian eigenvalues (closeness signless Laplacian

eigenvalues, respectively) and the structural properties of graphs. On one hand, we give tight upper bounds
for all nontrivial closeness Laplacian eigenvalues and characterize the extremal graphs and determine all trees
and unicyclic graphs that maximize the second smallest closeness Laplacian eigenvalue. On the other hand, we
give tight upper bounds for the closeness signless Laplacian eigenvalues and determine the trees whose largest
closeness signless Laplacian eigenvalues achieve the first two largest values.

2. Preliminaries

For 𝑆 ⊂ 𝑉 (𝐺), let 𝐺−𝑆 denote the graph obtained by removing each vertex of 𝑆 (and all associated incident
edges), and we write 𝐺− 𝑣 for 𝐺− {𝑣} for 𝑣 ∈ 𝑉 (𝐺). For 𝐸 ⊆ 𝐸(𝐺), 𝐺− 𝐸 denotes the graph obtained from
𝐺 by removing all edges of 𝐸, and we write 𝐺− 𝑒 for 𝐺− {𝑒} for 𝑒 ∈ 𝐸(𝐺). Denote by 𝐺 the complement of a
graph 𝐺. For a set 𝐸 ⊆ 𝐸(𝐺), 𝐺 + 𝐸 denotes the graph obtained from 𝐺 by adding all elements of 𝐸 as edges,
and we write 𝐺 + 𝑢𝑣 for 𝐺 + {𝑢𝑣} for 𝑢𝑣 /∈ 𝐸(𝐺).

For vertex disjoint graphs 𝐺1 and 𝐺2, let 𝐺1 ∪𝐺2 be the (vertex disjoint) union of 𝐺1 and 𝐺2, and 𝐺1 ∨𝐺2

the join of 𝐺1 and 𝐺2 with 𝐺1 ∨𝐺2 = (𝐺1 ∪𝐺2) + {𝑢𝑣 : 𝑢 ∈ 𝑉 (𝐺1), 𝑣 ∈ 𝑉 (𝐺2)}.
Let 𝐾𝑛 and 𝑃𝑛 be the 𝑛-vertex complete graph and path, respectively. Let 𝐾𝑛1,...,𝑛𝑘

be the complete 𝑘-partite
graph with 𝑛𝑖 vertices in the 𝑖th partite set for 𝑖 = 1, . . . , 𝑘, where 𝑘 ≥ 2 and 𝑛𝑖 ≥ 1. For positive integers 𝑛
and 𝑎 with 1 ≤ 𝑎 ≤ 𝑛−2

2 , let 𝐷𝑛,𝑎 be the tree on 𝑛 vertices obtained from a path on two vertices by attaching
𝑎 and 𝑛− 𝑎− 2 pendant vertices to its end vertices, respectively.

The degree of a vertex 𝑣 in a graph 𝐺 is the number of vertices that are adjacent to 𝑣 in 𝐺, denoted by 𝛿𝐺(𝑣).
A vertex 𝑣 is called a pendant vertex if 𝛿𝐺(𝑣) = 1. For a graph 𝐻 with 𝑢 ∈ 𝑉 (𝐻) and 𝑣 ̸∈ 𝑉 (𝐻), we say that
the graph 𝐺 with 𝑉 (𝐺) = 𝑉 (𝐻) ∪ {𝑣} and 𝐸(𝐺) = 𝐸(𝐻) ∪ {𝑢𝑣} is obtained from 𝐻 by attaching a pendant
vertex at 𝑢.

For an 𝑛 × 𝑛 matrix 𝑀 with 𝑛 real eigenvalues, we denote by 𝜌1(𝑀) ≥ . . . ≥ 𝜌𝑛(𝑀) the eigenvalues of 𝑀 .
So, for a graph 𝐺 on 𝑛 vertices and 𝑖 = 1, . . . , 𝑛,

𝜌L
𝑖 (𝐺) = 𝜌𝑖(L(𝐺)) and 𝜌Q

𝑖 (𝐺) = 𝜌𝑖(Q(𝐺)).

Proposition 2.1. Let 𝐺 be a connected graph on 𝑛 ≥ 3 vertices that is not complete. Suppose that 𝑢𝑣 /∈ 𝐸(𝐺)
for {𝑢, 𝑣} ⊂ 𝑉 (𝐺). Then

𝜌L
𝑖 (𝐺 + 𝑢𝑣) ≥ 𝜌L

𝑖 (𝐺) for 𝑖 = 1, . . . , 𝑛− 1

and
𝜌Q

𝑖 (𝐺 + 𝑢𝑣) ≥ 𝜌Q
𝑖 (𝐺) for 𝑖 = 1, . . . , 𝑛.

Moreover, 𝜌Q
1 (𝐺 + 𝑢𝑣) > 𝜌Q

1 (𝐺).

Proof. Let
𝑀 = L(𝐺 + 𝑢𝑣)− L(𝐺).

The diagonal entry 𝑀𝑤𝑤 of 𝑀 for 𝑤 ∈ 𝑉 (𝐺) is 𝑐𝐺+𝑢𝑣(𝑤)− 𝑐𝐺(𝑤) ≥ 0, and the sum of non-diagonal entries of
𝑀 corresponding to vertex 𝑤 is −𝑐𝐺+𝑢𝑣(𝑤) + 𝑐𝐺(𝑤). So 𝑀 is diagonally dominant with nonnegative diagonal
entries, so it is a positive semi-definite matrix. As 𝑀1𝑛 = 0, we have 𝜌𝑛(𝑀) = 0. So by the Weyl inequalities
(Thm. 4.3.1 in [13]), we have

𝜌L
𝑖 (𝐺 + 𝑢𝑣) = 𝜌𝑖(L(𝐺) + 𝑀) ≥ 𝜌𝑖(L(𝐺)) + 𝜌𝑛(𝑀) = 𝜌L

𝑖 (𝐺)
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for 𝑖 = 1, . . . , 𝑛 − 1. Similarly, we have 𝜌Q
𝑖 (𝐺 + 𝑢𝑣) ≥ 𝜌Q

𝑖 (𝐺) for 𝑖 = 1, . . . , 𝑛. As Q(𝐺 + 𝑢𝑣) − Q(𝐺) is
nonzero nonnegative and Q(𝐺) is irreducible, we have by the Perron-Frobenius theorem (Thm. 8.4.4 in [13])
that 𝜌Q

1 (𝐺 + 𝑢𝑣) > 𝜌Q
1 (𝐺). �

Usually, we use a multiset to denote the spectrum of some matrix, in which 𝑎[𝑘] means that the multiplicity
of 𝑎 is 𝑘.

Given a graph 𝐺, denote by Deg(𝐺) the vertex degree diagonal matrix of a graph 𝐺. The adjacency matrix of
𝐺 is the matrix 𝐴(𝐺) = (𝑎𝑢𝑣)𝑢,𝑣∈𝑉 (𝐺) with 𝑎𝑢𝑣 = 1 if 𝑢 and 𝑣 are adjacent and 0 otherwise. Then the Laplacian
of 𝐺 is the matrix 𝐿(𝐺) = Deg(𝐺) − 𝐴(𝐺) and the signless Laplacian of 𝐺 is 𝑄(𝐺) = Deg(𝐺) + 𝐴(𝐺). Both
Laplacians have been extensively studied [14].

For a graph 𝐺 with 𝑉 (𝐺) = {𝑣1, . . . , 𝑣𝑛}, a vector x = (𝑥𝑣1 , . . . , 𝑥𝑣𝑛)⊤ can be viewed as a function defined
on 𝑉 (𝐺) that maps 𝑣𝑖 to 𝑥𝑣𝑖

. In this case, 𝑥𝑢 is said to be the entry of x at 𝑢 ∈ 𝑉 (𝐺).

3. Closeness Laplacian eigenvalues

Firstly, we recall some facts on the Laplacian eigenvalues of a graph. Let 𝐺 be a connected graph on 𝑛 vertices.
Let 𝜆𝐿

1 (𝐺) ≥ . . . ≥ 𝜆𝐿
𝑛−1(𝐺) > 𝜆𝐿

𝑛(𝐺) = 0 be the Laplacian eigenvalues of 𝐺. Then the Laplacian eigenvalues of
𝐺 are 𝑛− 𝜆𝐿

𝑛−1(𝐺) ≥ . . . ≥ 𝑛− 𝜆𝐿
1 (𝐺) ≥ 𝜆𝐿

𝑛(𝐺) = 0. From this, it follows that 𝜆𝐿
1 (𝐺) ≤ 𝑛 with equality if and

only if 𝜆𝐿
𝑛−1(𝐺) = 0, i.e., 𝐺 is disconnected.

Proposition 3.1. Let 𝐺 be a connected graph on 𝑛 ≥ 2 vertices with diameter at most two. Let 𝜆𝐿
1 ≥ . . . ≥

𝜆𝐿
𝑛−1 > 𝜆𝐿

𝑛 = 0 be the Laplacian eigenvalues of 𝐺. Then the closeness Laplacian eigenvalues of 𝐺 are

1
4

(𝑛 + 𝜆𝐿
1 ) ≥ . . . ≥ 1

4
(𝑛 + 𝜆𝐿

𝑛−1) > 𝜆𝐿
𝑛 = 0.

Proof. If the diameter of 𝐺 is one, then 𝐺 ∼= 𝐾𝑛, 𝜆𝐿
1 = . . . = 𝜆𝐿

𝑛−1 = 𝑛 and L(𝐺) = 1
2𝐿(𝐾𝑛), so 𝜌L

1 (𝐺) = . . . =
𝜌L

𝑛−1(𝐺) = 𝑛
2 .

Suppose that the diameter of 𝐺 is two. Then 𝐶(𝐺) = 1
2𝐴(𝐺) + 1

4 (𝐽𝑛 − 𝐼𝑛 −𝐴(𝐺)) = 1
4 (𝐽𝑛 − 𝐼𝑛 + 𝐴(𝐺)) and

Dc(𝐺) = 𝑛−1
4 𝐼𝑛 + 1

4Deg(𝐺), so

L(𝐺) =
𝑛− 1

4
𝐼𝑛 +

1
4

Deg(𝐺)− 1
4

(𝐽𝑛 − 𝐼𝑛 + 𝐴(𝐺))

=
𝑛

4
𝐼𝑛 −

1
4
𝐽𝑛 +

1
4
𝐿(𝐺).

For any 𝑖 with 1 ≤ 𝑖 ≤ 𝑛− 1, assume that x𝑖 is an eigenvector of 𝐿(𝐺) associated to 𝜆𝐿
𝑖 . As 𝐿1𝑛 = 0, we have

1⊤𝑛 x𝑖 = 0, so 𝐽𝑛x𝑖 = 0. It follows that

L(𝐺)x𝑖 =
(︂

𝑛

4
𝐼𝑛 −

1
4
𝐽𝑛 +

1
4
𝐿(𝐺)

)︂
x𝑖

=
𝑛

4
x𝑖 +

1
4
𝜆𝐿

𝑖 x𝑖

=
1
4

(𝑛 + 𝜆𝐿
𝑖 )x𝑖.

That is, 1
4 (𝑛 + 𝜆𝐿

𝑖 ) is the 𝑖-th largest closeness Laplacian eigenvalue of 𝐺 for 𝑖 = 1, . . . , 𝑛− 1. �

Theorem 3.2. Let 𝐺 be a connected graph on 𝑛 ≥ 2 vertices. For 𝑖 = 1, . . . , 𝑛− 1,

𝜌L
𝑖 (𝐺) ≤ 𝑛

2

with equality for all 𝑖 = 1, . . . , 𝑟 with 𝑟 ≤ 𝑛− 1 if 𝐺 is a complete 𝑘-partite graph for any 𝑘 with 𝑟 + 1 ≤ 𝑘 ≤ 𝑛.
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Proof. By Proposition 2.1, we have 𝜌L
𝑖 (𝐺) ≤ 𝜌L

𝑖 (𝐾𝑛) = 𝑛
2 .

If 𝐺 is a complete 𝑘-partite graph, say 𝐺 = 𝐾𝑛1,...,𝑛𝑘
, then the Laplacian spectrum of 𝐺 = ∪𝑘

𝑖=1𝐾𝑛𝑖
is{︁

𝑛
[𝑛1−1]
1 , . . . , 𝑛

[𝑛𝑘−1]
𝑘 , 0[𝑘]

}︁
, so the Laplacian spectrum of 𝐺 is{︁

𝑛[𝑘−1], 𝑛− 𝑛
[𝑛1−1]
1 , . . . , 𝑛− 𝑛

[𝑛𝑘−1]
𝑘 , 0

}︁
,

which, together with Proposition 3.1, implies that the closeness Laplacian spectrum of 𝐺 is{︂
𝑛

2

[𝑘−1]
,
𝑛

2
− 𝑛1

4

[𝑛1−1]
, . . . ,

𝑛

2
− 𝑛𝑘

4

[𝑛𝑘−1]
, 0

}︂
.

This completes the proof. �

Lemma 3.3. Let 𝐺 be a connected graph on 𝑛 ≥ 2 vertices. Then there is a nonzero closeness Laplacian
eigenvalue with multiplicity 𝑛− 1 if and only if 𝐺 ∼= 𝐾𝑛.

Proof. If 𝐺 ∼= 𝐾𝑛, then it is obvious that 𝑛
2 is a nonzero closeness Laplacian eigenvalue with multiplicity 𝑛− 1.

Suppose that 𝑎 is a nonzero closeness Laplacian eigenvalue with multiplicity 𝑛−1. Then L(𝐺) has eigenvalues
𝑎 with multiplicity 𝑛− 1 and 0 with multiplicity one. So for some 𝑛× 𝑛 orthonormal matrix 𝑃 , 𝑃⊤L(𝐺)𝑃 is a
diagonal matrix with (𝑖, 𝑖)-entry to be 𝑎 for 𝑖 = 1, . . . , 𝑛 − 1 and 0 for 𝑖 = 𝑛. Let x = (𝑥1, . . . , 𝑥𝑛) be the last
row vector of 𝑃⊤. So

L(𝐺)− 𝑎𝐼𝑛 = −𝑎𝑃 (0, . . . , 0, 1)⊤(0, . . . , 0, 1)𝑃⊤ = −𝑎x⊤x.

That is, L(𝐺) = 𝑎𝐼𝑛 − 𝑎x⊤x. For 𝑖 = 1, . . . , 𝑛, considering the sum of entries of the 𝑖th row of L(𝐺), we have

𝑎𝑥𝑖

⎛⎝ 𝑛∑︁
𝑗=1

𝑥𝑗 − 𝑥𝑖

⎞⎠ = 𝑎(1− 𝑥2
𝑖 ),

so

𝑥𝑖

⎛⎝ 𝑛∑︁
𝑗=1

𝑥𝑗 − 𝑥𝑖

⎞⎠ = 1− 𝑥2
𝑖 ,

i.e.,

𝑥𝑖

𝑛∑︁
𝑗=1

𝑥𝑗 = 1,

implying that 𝑥1 = . . . = 𝑥𝑛 := 𝑐. This forces that the entries of L(𝐺) outside the main diagonal are all equal,
implying that 𝐺 ∼= 𝐾𝑛. �

By Theorem 3.2 and Lemma 3.3, we immediately have the following consequence.

Corollary 3.4. Let 𝐺 be a connected graph on 𝑛 ≥ 2 vertices. Then

𝜌L
𝑛−1(𝐺) ≤ 𝑛

2

with equality if and only if 𝐺 ∼= 𝐾𝑛.

Rupnik Poklukar and Žerovnik [6] noted that if 𝐺 is a tree on 𝑛 ≥ 2 vertices, then 𝑐(𝐺) ≤ 𝑐(𝐾1,𝑛−1) =
(𝑛−1)(𝑛+2)

4 with equality if and only if 𝐺 ∼= 𝐾1,𝑛−1.
For a graph 𝐺 with 𝑢 ∈ 𝑉 (𝐺), we denote by 𝑁𝐺(𝑢) the neighborhood of 𝑢 in 𝐺 (that is, the set of vertices

that are adjacent to 𝑢 in 𝐺). The following is Corollary 3.1 in [6].
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Figure 1. Graphs 𝐺 (left) and 𝐺𝑢𝑣 (right) in Lemma 3.5.

Figure 2. Graphs 𝐻𝑢,𝑣(𝑠, 𝑡) for 𝑠, 𝑡 > 0 (left) and 𝐻𝑢,𝑣(𝑠, 0) for 𝑠 > 0 (right).

Lemma 3.5. Let 𝐺 be a connected graph with a cut edge 𝑢𝑣. Suppose that 𝑢𝑣 is not a pendant edge. Let
𝐺𝑢𝑣 = 𝐺− {𝑣𝑤 : 𝑤 ∈ 𝑁𝐺(𝑣) ∖ {𝑢}}+ {𝑢𝑤 : 𝑤 ∈ 𝑁𝐺(𝑣) ∖ {𝑢}}, see Figure 1. Then 𝑐(𝐺𝑢𝑣) > 𝑐(𝐺).

Let 𝐻 be a nontrivial connected graph. Let 𝑢 and 𝑣 be two vertices of 𝐻. Let 𝐻𝑢,𝑣(𝑠, 𝑡) be the graph obtained
from 𝐻 by attaching 𝑠 pendant vertices at 𝑢 and 𝑡 pendant vertices at 𝑣, where 𝑠, 𝑡 ≥ 0, see Figure 2. Particularly,
𝐻𝑢,𝑣(0, 0) = 𝐻.

The following is Corollary 3.2 in [6].

Lemma 3.6. Let 𝐻 be a nontrivial connected graph. Let 𝑢 and 𝑣 be two vertices of 𝐻. For positive integers 𝑠
and 𝑡, 𝑐(𝐻𝑢,𝑣(𝑠 + 𝑡, 0)) > 𝑐(𝐻𝑢,𝑣(𝑠, 𝑡)) or 𝑐(𝐻𝑢,𝑣(0, 𝑠 + 𝑡)) > 𝑐(𝐻𝑢,𝑣(𝑠, 𝑡)).

Lemma 3.7. Suppose that 𝐺 is a tree on 𝑛 ≥ 4 vertices and 𝐺 � 𝐾1,𝑛−1. Then 𝑐(𝐺) ≤ 𝑛2+1
4 with equality

if and only if 𝐺 ∼= 𝐷𝑛,1. Moreover, if 𝐺 � 𝐷𝑛,1 with 𝑛 ≥ 6, then 𝑐(𝐺) ≤ 𝑛2−𝑛+6
4 with equality if and only if

𝐺 ∼= 𝐷𝑛,2.

Proof. Denote by 𝑑 the diameter of 𝐺. As 𝐺 � 𝐾1,𝑛−1, one has 𝑑 ≥ 3.
Suppose that 𝑑 = 3. Then 𝐺 ∼= 𝐷𝑛,𝑎 with 1 ≤ 𝑎 ≤ 𝑛−2

2 . Let 𝑏 = 𝑛− 2− 𝑎. It is easy to see that

1
2
𝑐(𝐺) =

1
2

(𝑛− 1) +
1
4

(︂(︂
𝑎 + 1

2

)︂
+

(︂
𝑏 + 1

2

)︂)︂
+

1
8
𝑎𝑏

=
𝑛− 1

2
+

(𝑛− 1)(𝑛− 2)
8

− 𝑎𝑏

8

≤ 𝑛− 1
2

+
(𝑛− 1)(𝑛− 2)

8
− 𝑛− 3

8

=
𝑛2 + 1

8
,

so 𝑐(𝐺) ≤ 𝑛2+1
4 with equality if and only if 𝑎 = 1 and 𝑏 = 𝑛− 3, that is 𝐺 ∼= 𝐷𝑛,1. Suppose that 𝐺 � 𝐷𝑛,1 with

𝑛 ≥ 6. Then
1
2
𝑐(𝐺) ≤ 𝑛− 1

2
+

(𝑛− 1)(𝑛− 2)
8

− 2(𝑛− 4)
8
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so 𝑐(𝐺) ≤ 𝑛2−𝑛+6
4 with equality if and only if 𝑎 = 2 and 𝑏 = 𝑛− 4, that is 𝐺 ∼= 𝐷𝑛,2.

Suppose that 𝑑 ≥ 4. It suffices to show that 𝑐(𝐺) < 𝑛2−𝑛+6
4 . By Lemma 3.5, there is a caterpillar 𝐺′ on 𝑛

vertices with diameter four so that 𝑐(𝐺) ≤ 𝑐(𝐺′) with equality if and only if 𝐺 ∼= 𝐺′. Let 𝑇 1
𝑛,4 be the caterpillar

on 𝑛 vertices of diameter four obtained from the path 𝑣1 . . . 𝑣5 by attaching 𝑛 − 5 pendant vertices at 𝑣3 and
𝑇 2

𝑛,4 be the caterpillar on 𝑛 vertices of diameter four obtained from the path 𝑣1 . . . 𝑣5 by attaching 𝑛−5 pendant
vertices at 𝑣4. By Lemma 3.6, 𝑐(𝐺′) ≤ 𝑐(𝑇 1

𝑛,4) or 𝑐(𝐺′) ≤ 𝑐(𝑇 2
𝑛,4). By an easy direct calculation, one has

1
2
𝑐(𝑇 1

𝑛,4) =
𝑛− 1

2
+

(︀
𝑛−5

2

)︀
+ 2(𝑛− 5) + 3

4
+

2(𝑛− 5) + 2
8

+
1
16

and
1
2
𝑐(𝑇 2

𝑛,4) =
𝑛− 1

2
+

(︀
𝑛−5

2

)︀
+ 2(𝑛− 5) + 3

4
+

(𝑛− 5) + 2
8

+
𝑛− 4

16
,

so 𝑐(𝑇 1
𝑛,4) = 2𝑛2−2𝑛+9

8 > 𝑐(𝑇 2
𝑛,4) = 2𝑛2−3𝑛+14

8 . Therefore, 𝑐(𝐺′) ≤ 𝑐(𝑇 1
𝑛,4) = 2𝑛2−2𝑛+9

8 . It follows that 𝑐(𝐺) ≤
2𝑛2−2𝑛+9

8 < 𝑛2−𝑛+6
4 , as desired. �

Theorem 3.8. Let 𝐺 be a tree on 𝑛 ≥ 3 vertices. Then

𝜌L
𝑛−1(𝐺) ≤ 𝑛 + 1

4

with equality if and only if 𝐺 ∼= 𝐾1,𝑛−1.

Proof. The result is trivial if 𝑛 = 3, and it follows easily if 𝑛 = 4 as 𝜌L
𝑛−1(𝑃4) = 11−

√
13

8 < 5
4 .

Suppose in the following that 𝑛 ≥ 5 and 𝐺 � 𝐾1,𝑛−1. As 𝜌L
𝑛−1(𝐾1,𝑛−1) = 𝑛+1

4 , it suffices to show that
𝜌L

𝑛−1(𝐺) < 𝑛+1
4 .

If 𝐺 � 𝐷𝑛,1, then, by Lemma 3.7, one has 𝑐(𝐺) ≤ 𝑛2−𝑛+6
4 . As 𝜌𝐿

𝑛(𝐺) = 0 and 𝐺 ̸∼= 𝐾𝑛, one has by Lemma 3.3
that

𝜌L
𝑛−1(𝐺) <

𝑐(𝐺)
𝑛− 1

≤ 𝑛2 − 𝑛 + 6
4(𝑛− 1)

≤ 𝑛 + 1
4

,

as desired.
Assume that 𝐺 = 𝐷𝑛,1. Label the vertices od 𝐷𝑛,1 so that 𝑣1𝑣2𝑣3𝑣𝑖 is a path for reach 𝑖 = 4, . . . , 𝑛. Denote

by x the eigenvector of L(𝐺) associated with 𝜌 = 𝜌L
𝑛−1(𝐺). Let 𝑥𝑖 = 𝑥𝑣𝑖 for 𝑖 = 1, . . . , 𝑛. Note that 𝜌 > 0 and

x⊤1𝑛 = 0, i.e., 𝑥1 + . . . + 𝑥𝑛 = 0. For each 𝑖 = 4, . . . , 𝑛, as 𝜌x = L(𝐺)x, we have

𝜌𝑥𝑖 = −1
8
𝑥1 −

1
4
𝑥2 −

1
2
𝑥3 +

2𝑛− 1
8

𝑥𝑖 −
1
4

⎛⎝ 𝑛∑︁
𝑗=4

𝑥𝑗 − 𝑥𝑖

⎞⎠ ,

i.e., (︂
𝜌− 2𝑛 + 1

8

)︂
𝑥𝑖 = −1

8
𝑥1 −

1
4
𝑥2 −

1
2
𝑥3 −

1
4

𝑛∑︁
𝑗=4

𝑥𝑗

= −1
8
𝑥1 −

1
4
𝑥2 −

1
2
𝑥3 +

1
4

(𝑥1 + 𝑥2 + 𝑥3)

=
1
8
𝑥1 −

1
4
𝑥3.

If 𝜌 = 2𝑛+1
8 , then 𝜌 < 𝑛+1

4 . Suppose that 𝜌 ̸= 2𝑛+1
8 . It then follows that 𝑥4 = . . . = 𝑥𝑛. Recall that 𝑥1+. . .+𝑥𝑛 =

0. From 𝜌x = L(𝐺)x, one has

𝜌𝑥1 =
𝑛 + 4

8
𝑥1 −

3
8
𝑥2 −

1
8
𝑥3,
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Figure 3. Graphs 𝑈𝑛,𝑟 (left) and 𝑈*𝑛,𝑟 (right).

Figure 4. Graphs 𝑆1
𝑛 (left), 𝑆2

𝑛 (middle) and 𝑆+
𝑛 (right).

𝜌𝑥2 = −1
4
𝑥1 +

𝑛 + 2
4

𝑥2 −
1
4
𝑥3

and

𝜌𝑥3 =
1
4
𝑥1 +

2𝑛− 1
4

𝑥3.

The above homogeneous linear system in the variables 𝑥1, 𝑥2, 𝑥3 has a nonzero solution. So the determinant of
its coefficient matrix is zero. That is,

det

⎛⎜⎜⎝
𝜌− 𝑛+4

8
3
8

1
8

1
4 𝜌− 𝑛+2

4
1
4

− 1
4 0 𝜌− 2𝑛−1

4

⎞⎟⎟⎠ = 0.

By a direct calculation, the above determinant is equal to 𝑓(𝜌), where

𝑓(𝜌) = 𝜌3 − 7𝑛 + 6
8

𝜌2 +
7𝑛2 + 19𝑛− 2

32
𝜌− 2𝑛3 + 11𝑛2 + 5𝑛

128
·

It thus follows that 𝜌 is the smallest root if 𝑓(𝑡) = 0. As 𝑓
(︀

𝑛+1
4

)︀
= 𝑛2−𝑛−6

128 > 0 and 𝑓
(︀

3𝑛
8

)︀
= −𝑛(𝑛−4)2

256 < 0,
we have 𝜌 < 𝑛+1

4 , as desired. �

Denote by 𝑈𝑛,𝑟 with 3 ≤ 𝑟 ≤ 𝑛 the unicyclic graph on 𝑛 vertices obtained from the cycle 𝐶𝑟 by attaching
𝑛−𝑟 pendant vertices at a vertex. Denote by 𝑈*𝑛,𝑟 with 3 ≤ 𝑟 ≤ 𝑛−2 the unicyclic graph on 𝑛 vertices obtained
from 𝑈𝑟+1,𝑟 by attaching 𝑛− 𝑟 − 1 pendant vertices at the pendant vertex, see Figure 3.

Let 𝑆1
𝑛 be the unicyclic graph with 𝑛 ≥ 5 vertices obtained from 𝑈𝑛−1,3 by attaching a pendant vertex at

a vertex of degree two. Let 𝑆2
𝑛 be the unicyclic graph with 𝑛 ≥ 7 vertices obtained from 𝑆1

𝑛−1 by attaching a
pendant vertex at the vertex of degree three. Let 𝑆+

𝑛 be the unicyclic graph with 𝑛 ≥ 5 vertices obtained from
𝑈𝑛−1,3 by attaching a pendant vertex at the vertex of degree one, see Figure 4.

Lemma 3.9. Among unicyclic graphs on 𝑛 vertices with girth three, 𝑈𝑛,3 with 𝑛 ≥ 4, 𝑆1
𝑛 with 𝑛 ≥ 5, 𝑆+

𝑛 and
𝑆2

𝑛 with 𝑛 ≥ 8 are the only ones that have the first, the second, the third and the fourth largest closeness, which
are equal to 𝑛2+𝑛

4 , 𝑛2+4
4 , 𝑛2+3

4 and 𝑛2−𝑛+10
4 , respectively.
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Proof. Let 𝒰(𝑛) be the set of unicyclic graphs on 𝑛 vertices with girth three.
The fact that 𝑈𝑛,3 is the only graph in 𝒰(𝑛) that has the largest closeness follows from Lemmas 3.5 and 3.6,

and by a direct calculation, 𝑐(𝑈𝑛,3) = 𝑛2+𝑛
4 .

Let 𝐺 ∈ 𝒰(𝑛) ∖ {𝑈𝑛,3}. By Lemmas 3.5 and 3.6, the maximum values of 𝑐(𝐺) is achieved only by one of 𝑆1
𝑛,

𝑆+
𝑛 and 𝑈*𝑛,3. By a direct calculation, we have

𝑐(𝑆1
𝑛) = 𝑛 +

1
2

(︂(︂
𝑛− 4

2

)︂
+ 2(𝑛− 4) + 2

)︂
+

1
4

(𝑛− 4) =
𝑛2 + 4

4
,

𝑐(𝑆+
𝑛 ) = 𝑛 +

1
2

(︂(︂
𝑛− 4

2

)︂
+ 2(𝑛− 4) + 1

)︂
+

1
4

(𝑛− 3) =
𝑛2 + 3

4

and

𝑐(𝑈*𝑛,3) = 𝑛 +
1
2

(︂(︂
𝑛− 4

2

)︂
+ (𝑛− 4) + 2

)︂
+

1
4

(2𝑛− 8) =
𝑛2 − 𝑛 + 8

4
·

So it is evident that 𝑆1
𝑛 with 𝑛 ≥ 5 is the only graph in 𝒰(𝑛) that has the second largest closeness, which is

equal to 𝑛2+4
4 ·

Next, let 𝐺 ∈ 𝒰(𝑛) ∖ {𝑈𝑛,3, 𝑆
1
𝑛} with 𝑛 ≥ 8. By Lemmas 3.5 and 3.6, the maximum values of 𝑐(𝐺) is achieved

only by one of 𝑆+
𝑛 , 𝑆2

𝑛 and 𝑈*𝑛,3. As

𝑐(𝑆2
𝑛) = 𝑛 +

1
2

(︂(︂
𝑛− 5

2

)︂
+ 1 + 2(𝑛− 5) + 4

)︂
+

1
2

(𝑛− 5)

=
𝑛2 − 𝑛 + 10

4

<
𝑛2 + 3

4

for 𝑛 ≥ 8, we see that 𝑆+
𝑛 with 𝑛 ≥ 8 is the only graph in 𝒰(𝑛) that has the third largest closeness, which is

equal to 𝑛2+3
4 .

Finally, let 𝐺 ∈ 𝒰(𝑛) ∖ {𝑈𝑛,3, 𝑆
1
𝑛, 𝑆+

𝑛 } with 𝑛 ≥ 8. By Lemmas 3.5 and 3.6, the maximum values of 𝑐(𝐺) is
achieved only by one of 𝑆2

𝑛, 𝑈*𝑛,3, 𝐺′ and 𝐺′′, where 𝐺′ is obtained from 𝑆+
𝑛−1 by attaching a pendant vertex at

the vertex with degree two that is adjacent to a pendant vertex, and 𝐺′′ is obtained from 𝑈*𝑛−1,3 by attaching
a pendant vertex at vertex of degree three on the triangle. Note that

𝑐(𝐺′) = 𝑛 +
1
2

(︂(︂
𝑛− 5

2

)︂
+ 2(𝑛− 5) + 3

)︂
+

1
4

(2𝑛− 8) =
𝑛2 − 𝑛 + 8

4

and

𝑐(𝐺′′) = 𝑛 +
1
2

(︂(︂
𝑛− 5

2

)︂
+ 𝑛

)︂
+

1
4

(3𝑛− 15) =
𝑛2 − 2𝑛 + 15

4
·

So 𝑆2
𝑛 with 𝑛 ≥ 8 is the only graph in 𝒰(𝑛) that has the fourth largest closeness, which is equal to 𝑛2−𝑛+10

4 .
�

Let 𝑈1
𝑛 (𝑈2

𝑛, respectively) be the graph obtained from 𝑈𝑛−1,4 by attaching a pendant vertex at a vertex of
degree 2 that is adjacent (not adjacent, respectively) to the vertex of degree 𝑛− 3, see Figure 5.

Lemma 3.10. Among unicyclic graphs on 𝑛 vertices with girth four, 𝑈𝑛,4 with 𝑛 ≥ 5 and 𝑈1
𝑛 or 𝑈*𝑛,4 with

𝑛 ≥ 6 are the only ones that have the first and the second largest closeness, which are equal to 𝑛2+4
4 , 𝑛2−𝑛+9

4 ,
respectively.
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Figure 5. Graphs 𝑈1
𝑛 (left), 𝑈2

𝑛 (middle) and 𝑈*𝑛,4 (right).

Proof. By Lemmas 3.5 and 3.6, 𝑈𝑛,4 is the only unicyclic graph on 𝑛 vertices with girth four that has the largest
closeness, and it is easy to see that 𝑐(𝑈𝑛,4) = 𝑛2+4

4 .
Let 𝐺 be a unicyclic graphs on 𝑛 ≥ 6 vertices and the girth is four such that 𝐺 � 𝑈𝑛,4. By Lemmas 3.5 and 3.6,

the maximum values of 𝑐(𝐺) is achieved only by one of 𝑈*𝑛,4, 𝑈1
𝑛, 𝐺′ and 𝑈2

𝑛, where 𝐺′ is obtained from 𝑈𝑛−1,4

by attaching a pendant vertex at some pendant vertex. Then by a direct calculation, we have

𝑐(𝑈1
𝑛) =

𝑛2 − 𝑛 + 9
4

,

𝑐(𝑈*𝑛,4) =
2𝑛2 − 5𝑛 + 33

8
<

𝑛2 − 𝑛 + 9
4

,

𝑐(𝐺′) =
2𝑛2 − 2𝑛 + 15

8
<

𝑛2 − 𝑛 + 9
4

and

𝑐(𝑈2
𝑛) =

2𝑛2 − 3𝑛 + 23
8

<
𝑛2 − 𝑛 + 9

4

for 𝑛 ≥ 6. So 𝑈1
𝑛 with 𝑛 ≥ 6 is the only unicyclic graph on 𝑛 vertices with girth four that have the second

largest closeness, which is equal to 𝑛2−𝑛+9
4 . �

Lemma 3.11. Let 𝐺 be a unicyclic graph on 𝑛 vertices. If 𝑛 ≥ 8 and 𝐺 ̸∼= 𝑈𝑛,3, 𝑈𝑛,4, 𝑆
1
𝑛, 𝑆+

𝑛 , then

𝑐(𝐺) ≤ 𝑛2 − 𝑛 + 10
4

with equality if and only if 𝐺 ∼= 𝑆2
𝑛, 𝑈𝑛,5. Moreover, we have

𝑐(𝑈𝑛,3) =
𝑛2 + 𝑛

4
,

𝑐(𝑆1
𝑛) = 𝑐(𝑈𝑛,4) =

𝑛2 + 4
4

and

𝑐(𝑆+
𝑛 ) =

𝑛2 + 3
4

.

Proof. Let 𝑟 be the girth of 𝐺. By Lemmas 3.5 and 3.6, 𝑐(𝐺) ≤ 𝑐(𝑈𝑛,𝑟) with equality if and only if 𝐺 ∼= 𝑈𝑛,𝑟.
Note that

𝑐(𝐶𝑟) =

{︃
2𝑟

(︁
1− 2−

𝑟−1
2

)︁
if 𝑟 is odd,

𝑟
(︀
2− 3 · 2− 𝑟

2
)︀

if 𝑟 is even.
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Let 𝑎 = 𝑐(𝐶𝑟)
𝑟 . Then

𝑐(𝑈𝑛,𝑟) = 𝑐(𝐶𝑟) + 2−1

(︂
𝑛− 𝑟

2

)︂
+ 2(𝑛− 𝑟)(2−1 + 2−1𝑎)

=
𝑛2 + 11𝑛 + 𝑟2 − 3𝑟 − 2𝑟𝑛

4
−

⎧⎨⎩2−
𝑟−3
2 𝑛 if 𝑟 is odd,

3 · 2− 𝑟
2 𝑛 if 𝑟 is even.

Suppose that 𝑟 + 1 ≤ 𝑛. Then

𝑐(𝑈𝑛,𝑟+1)− 𝑐(𝑈𝑛,𝑟) =
𝑟 − 1

2
+

⎧⎨⎩(2−
𝑟+1
2 − 2−1)𝑛 if 𝑟 is odd,

(2−
𝑟
2 − 2−1)𝑛 if 𝑟 is even.

Let 𝑔(𝑡) = −1 + 2−
𝑡
2 𝑡. As 𝑔′(𝑡) = 2−

𝑡
2 (1− 𝑡 log

√
2) < 0 for 𝑡 ≥ 4, 𝑔(𝑡) is strictly decreasing for 𝑡 ≥ 4. If 𝑟 is odd

with 𝑟 ≥ 5, then

𝑐(𝑈𝑛,𝑟+1)− 𝑐(𝑈𝑛,𝑟) =
𝑟 − 1

2
+ (2−

𝑟+1
2 − 2−1)𝑛

≤ 𝑟 − 1
2

+ (2−
𝑟+1
2 − 2−1)(𝑟 + 1)

= 𝑔(𝑟 + 1)
< 𝑔(4) = 0,

so 𝑐(𝑈𝑛,𝑟+1) < 𝑐(𝑈𝑛,𝑟). Suppose that 𝑟 is even with 𝑟 ≥ 6,

𝑐(𝑈𝑛,𝑟+1)− 𝑐(𝑈𝑛,𝑟) =
𝑟 − 1

2
+ (2−

𝑟
2 − 2−1)𝑛

≤ 𝑟 − 1
2

+ (2−
𝑟
2 − 2−1)(𝑟 + 1)

= 𝑔(𝑟) + 2−
𝑟
2

≤ 𝑔(6) + 2−
𝑟
2 = −2−2 + 2−

𝑟
2 < 0,

so 𝑐(𝑈𝑛,𝑟+1) < 𝑐(𝑈𝑛,𝑟). Thus, we conclude that among unicyclic graphs on 𝑛 vertices with girth at least
five, 𝑈𝑛,5 is the unique one with the largest closeness, which is equal to 𝑛2−𝑛+10

4 . Now the result follows by
Lemmas 3.9 and 3.10. �

Theorem 3.12. Let 𝐺 be a unicyclic graph on 𝑛 ≥ 11 vertices. Then

𝜌L
𝑛−1(𝐺) ≤ 𝑛 + 1

4

with equality if and only if 𝐺 ∼= 𝑈𝑛,3.

Proof. Suppose that 𝐺 � 𝑈𝑛,3, 𝑆
1
𝑛, 𝑈𝑛,4, 𝑆

+
𝑛 . By Lemma 3.11, 𝑐(𝐺) ≤ 𝑛2−𝑛+10

4 . As 𝑛 ≥ 11, 𝜌L
𝑛(𝐺) = 0 and

𝐺 ̸∼= 𝐾𝑛, one has by Lemma 3.3 that

𝜌L
𝑛−1(𝐺) <

𝑐(𝐺)
𝑛− 1

≤ 𝑛2 − 𝑛 + 10
4(𝑛− 1)

≤ 𝑛 + 1
4

.

By Proposition 3.1, it is easy to see that 𝜌L
𝑛−1(𝑈𝑛,3) = 𝑛+1

4 . It suffices to show that 𝜌(𝐺) < 𝑛+1
4 if 𝐺 is one

of 𝑆1
𝑛, 𝑈𝑛,4, 𝑆

+
𝑛 .
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Note that 𝑆1
𝑛 is the unicyclic graph with 𝑛 ≥ 5 vertices obtained from the cycle 𝐶3 := 𝑣1𝑣2𝑣3 by attaching

𝑛 − 4 pendant vertices 𝑣5, . . . , 𝑣𝑛 at 𝑣1 and a pendant vertex 𝑣4 at 𝑣2. Denote by x an eigenvector of L(𝑆1
𝑛)

associated with 𝜌 = 𝜌L
𝑛−1(𝑆1

𝑛). Let 𝑥𝑖 = 𝑥𝑣𝑖 for 𝑖 = 1, . . . , 𝑛. Note that 𝜌 > 0. As L(𝑆1
𝑛) is symmetric, we have

x⊤1𝑛 = 0, that is, 𝑥1 + . . . + 𝑥𝑛 = 0. Note that for any 𝑖 = 5, . . . , 𝑛,

𝜌𝑥𝑖 = −1
2
𝑥1 −

1
4
𝑥2 −

1
4
𝑥3 −

1
8
𝑥4 +

2𝑛− 1
8

𝑥𝑖 −
1
4

⎛⎝ 𝑛∑︁
𝑗=5

𝑥𝑗 − 𝑥𝑖

⎞⎠ ,

i.e., (︂
𝜌− 2𝑛 + 1

8

)︂
𝑥𝑖 = −1

4
𝑥1 +

1
8
𝑥4.

If 𝜌 = 2𝑛+1
8 , then 𝜌L

𝑛−1 = 𝜌 < 𝑛+1
4 , as desired. Suppose that 𝜌 ̸= 2𝑛+1

8 . It then follows that 𝑥5 = . . . = 𝑥𝑛. Note
that 𝑥1 + . . . + 𝑥𝑛 = 0. Then

𝜌𝑥1 =
2𝑛− 1

4
𝑥1 +

1
4
𝑥4,

𝜌𝑥2 = −1
4
𝑥1 +

𝑛 + 3
4

𝑥2 −
1
4
𝑥3 −

1
4
𝑥4,

𝜌𝑥3 = −1
4
𝑥1 −

1
4
𝑥2 +

𝑛 + 2
4

𝑥3

and
𝜌𝑥4 = −1

8
𝑥1 −

3
8
𝑥2 −

1
8
𝑥3 +

𝑛 + 5
8

𝑥4.

So

det

⎛⎜⎜⎜⎜⎝
𝜌− 2𝑛−1

4 0 0 − 1
4

1
4 𝜌− 𝑛+3

4
1
4

1
4

1
4

1
4 𝜌− 𝑛+2

4 0
1
8

3
8

1
8 𝜌− 𝑛+5

8

⎞⎟⎟⎟⎟⎠ = 0,

i.e.,
𝑓(𝜌) = 0,

where

𝑓(𝑡) = 𝑡4 − 9𝑛 + 13
8

𝑡3 +
7𝑛2 + 25𝑛 + 9

16
𝑡2

− 9𝑛3 + 56𝑛2 + 68𝑛− 5
128

𝑡 +
2𝑛4 + 19𝑛3 + 45𝑛2 + 18𝑛

512
.

It follows that 𝜌 is the smallest root of 𝑓(𝑡) = 0. As 𝑓(𝑛+1
4 ) = − (𝑛+3)(𝑛−4)

512 < 0, we have 𝜌 < 𝑛+1
4 , as desired.

Note that 𝑈𝑛,4 is the unicyclic graph with 𝑛 ≥ 5 vertices obtained from the cycle 𝐶4 := 𝑣1𝑣2𝑣3𝑣4 by attaching
𝑛− 4 pendant vertices 𝑣5, . . . , 𝑣𝑛 at 𝑣1. Denote by y an eigenvector of L(𝑈𝑛,4) associated with 𝜌′ = 𝜌L

𝑛−1(𝑈𝑛,4).
Let 𝑦𝑖 = 𝑦𝑣𝑖 for 𝑖 = 1, . . . , 𝑛. Then 𝜌′ > 0. As L(𝑈𝑛,4) is symmetric, we have 𝑦1 + . . . + 𝑦𝑛 = 0. Note that for
any 𝑖 = 5, . . . , 𝑛,

𝜌′𝑦𝑖 = −1
2
𝑦1 −

1
4
𝑦2 −

1
8
𝑦3 −

1
4
𝑦4 +

2𝑛− 1
8

𝑦𝑖 −
1
4

⎛⎝ 𝑛∑︁
𝑗=5

𝑦𝑗 − 𝑦𝑖

⎞⎠ ,

i.e., (︂
𝜌′ − 2𝑛 + 1

8

)︂
𝑦𝑖 = −1

4
𝑦1 +

1
8
𝑦3.
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If 𝜌′ = 2𝑛+1
8 , then 𝜌L

𝑛−1(𝑈𝑛,4) = 𝜌′ < 𝑛+1
4 , as desired. Suppose that 𝜌′ ̸= 2𝑛+1

8 . It then follows that 𝑦5 = . . . = 𝑦𝑛.
Note that 𝑦1 + . . . + 𝑦𝑛 = 0. Then

𝜌′𝑦1 =
2𝑛− 1

4
𝑦1 +

1
4
𝑦3,

𝜌′𝑦2 = −1
4
𝑦1 +

𝑛 + 2
4

𝑦2 −
1
4
𝑦3,

𝜌′𝑦3 = −1
8
𝑦1 −

3
8
𝑦2 +

𝑛 + 7
8

𝑦3 −
3
8
𝑦4

and
𝜌′𝑦4 = −1

4
𝑦1 −

1
4
𝑦3 +

𝑛 + 2
4

𝑦4.

So 𝜌′ is the smallest root of 𝑔(𝑡) = 0, where

𝑔(𝑡) = det

⎛⎜⎜⎜⎜⎝
𝑡− 2𝑛−1

4 0 − 1
4 0

1
4 𝑡− 𝑛+2

4
1
4 0

1
8

3
8 𝑡− 𝑛+7

8
3
8

1
4 0 1

4 𝑡− 𝑛+2
4

⎞⎟⎟⎟⎟⎠
= 𝑡4 − 9𝑛 + 13

8
𝑡3 +

14𝑛2 + 51𝑛 + 16
32

𝑡2

− 9𝑛3 + 59𝑛2 + 62𝑛− 4
128

𝑡 +
2𝑛4 + 21𝑛3 + 42𝑛2 + 16𝑛

512
.

As 𝑔(𝑛+1
4 ) = −𝑛2+𝑛+9

512 < 0, we have 𝜌′ < 𝑛+1
4 , as desired.

Label the vertices of 𝑆+
𝑛 as follows: let 𝑣1𝑣2𝑣3𝑣1 be the triangle and let 𝑣5, . . . , 𝑣𝑛 be the pendant vertices so

that 𝑣1𝑣4, 𝑣4𝑣5 are edges. Denote by 𝑧 an eigenvector of L(𝑆+
𝑛 ) associated with 𝜌′′ = 𝜌L

𝑛−1(𝑆+
𝑛 ). Let 𝑧𝑖 = 𝑧𝑣𝑖

for
𝑖 = 1, . . . , 𝑛. Note that 𝜌′′ > 0 and 𝑧1 + . . . + 𝑧𝑛 = 0. For any 𝑖 = 6, . . . , 𝑛,

𝜌′′𝑧𝑖 = −1
2
𝑧1 −

1
4
𝑧2 −

1
4
𝑧3 −

1
4
𝑧4 −

1
8
𝑧5 +

2𝑛− 1
8

𝑧𝑖 −
1
4

⎛⎝ 𝑛∑︁
𝑗=6

𝑧𝑗 − 𝑧𝑖

⎞⎠ ,

i.e., (︂
𝜌′′ − 2𝑛 + 1

8

)︂
𝑧𝑖 = −1

4
𝑧1 +

1
8
𝑧5.

If 𝜌′′ = 2𝑛+1
8 , then 𝜌L

𝑛−1(𝑆+
𝑛 ) = 𝜌′′ < 𝑛+1

4 , as desired. Suppose that 𝜌′′ ̸= 2𝑛+1
8 . It then follows that 𝑧6 = . . . = 𝑧𝑛.

Thus

𝜌′′𝑧1 =
2𝑛− 1

4
𝑧1 +

1
4
𝑧5, (1)

𝜌′′𝑧2 = −1
4
𝑧1 +

2𝑛 + 3
8

𝑧2 −
1
4
𝑧3 +

1
8
𝑧5, (2)

𝜌′′𝑧3 = −1
4
𝑧1 −

1
4
𝑧2 +

2𝑛 + 3
8

𝑧3 +
1
8
𝑧5, (3)

𝜌′′𝑧4 = −1
4
𝑧1 +

𝑛 + 2
4

𝑧4 −
1
4
𝑧5 (4)

and

𝜌′′𝑧5 = −1
8
𝑧1 −

3
8
𝑧4 +

𝑛 + 4
8

𝑧5. (5)
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Subtracting (2) from (3) yields
(︀
𝜌′′ − 2𝑛+5

8

)︀
(𝑧3 − 𝑧2) = 0. Suppose that 𝜌′′ = 2𝑛+5

8 . Then (4) and (5) become
− 1

8𝑧4 = 1
4𝑧1 + 1

4𝑧5 and − 3
8𝑧4 = 1

8𝑧1 + 𝑛+1
8 𝑧5, so 𝑧1 = 𝑛−5

5 𝑧5. From (1), we have 𝑧1 = 2
−2𝑛+7𝑧5. It thus follows

that 𝑛−5
5 = 2

−2𝑛+7 , which is a contradiction. So 𝜌′′ ̸= 2𝑛+5
8 and 𝑧2 = 𝑧3. Now (2) becomes

𝜌′′𝑧2 = −1
4
𝑧1 +

2𝑛 + 1
8

𝑧2 +
1
8
𝑧5. (6)

Combining (1), (6), (4) and (5), we have

det

⎛⎜⎜⎜⎜⎝
𝜌′′ − 2𝑛−1

4 0 0 − 1
4

1
4 𝜌′′ − 2𝑛+1

8 0 − 1
8

1
4 0 𝜌′′ − 𝑛+2

4
1
4

1
8 0 3

8 𝜌′′ − 𝑛+4
8

⎞⎟⎟⎟⎟⎠ = 0,

i.e.,
ℎ(𝜌′′) = 0,

where

ℎ(𝑡) = 𝑡4 − 9𝑛 + 7
8

𝑡3 +
28𝑛2 + 57𝑛 + 2

64
𝑡2

− 18𝑛3 + 67𝑛2 + 25𝑛− 2
256

𝑡 +
4𝑛4 + 24𝑛3 + 21𝑛2 + 5𝑛

1024
.

So 𝜌′′ is the smallest root of ℎ(𝑡) = 0. For 𝑛 ≥ 8, we have ℎ
(︀

𝑛
4

)︀
= −2𝑛2+7𝑛

1024 < 0 and ℎ
(︀

𝑛+1
4

)︀
= 𝑛2−𝑛−6

1024 > 0, so
𝜌′′ < 𝑛+1

4 , as desired. �

4. Closeness signless Laplacian eigenvalues

Similarly to the proof of Proposition 3.1, we have the following result, where the graph is required to be
regular.

Proposition 4.1. Let 𝐺 be a regular connected graph on 𝑛 ≥ 2 vertices with diameter at most two. Let 𝜆𝑄
1 >

𝜆𝑄
2 ≥ . . . ≥ 𝜆𝑄

𝑛 be the signless Laplacian eigenvalues of 𝐺. Then the closeness signless Laplacian eigenvalues of
𝐺 are

𝑛− 1
2

+
𝜆𝑄

1

4
>

1
4

(𝑛− 2 + 𝜆𝑄
2 ) ≥ . . . ≥ 1

4
(𝑛− 2 + 𝜆𝑄

𝑛 ).

Theorem 4.2. Let 𝐺 be a connected graph on 𝑛 ≥ 2 vertices. For 𝑖 = 1, . . . , 𝑛− 1,

𝜌Q
1 (𝐺) ≤ 𝑛− 1

with equality if and only if 𝐺 ∼= 𝐾𝑛. Moreover, for 𝑖 = 2, . . . , 𝑛,

𝜌Q
𝑖 (𝐺) ≤ 𝑛− 2

2

with equality if 𝐺 ∼= 𝐾𝑛.

Proof. By Proposition 4.1, we have

𝜌Q
𝑖 (𝐾𝑛) =

{︃
𝑛− 1 if 𝑖 = 1,
𝑛−2

2 if 𝑖 = 2, . . . , 𝑛.

So the result follows from Proposition 2.1. �
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Similarly to the proof of Lemma 3.3, we have

Lemma 4.3. Let 𝐺 be a connected graph on 𝑛 ≥ 2 vertices. Then 𝜌Q
2 (𝐺) = . . . = 𝜌Q

𝑛(𝐺) if and only if 𝐺 ∼= 𝐾𝑛.

By Theorem 4.2 and Lemma 4.3, we have

Corollary 4.4. Let 𝐺 be a connected graph on 𝑛 ≥ 2 vertices. Then

𝜌Q
𝑛(𝐺) ≤ 𝑛− 2

2
with equality if and only if 𝐺 ∼= 𝐾𝑛.

If 𝐺 is a connected graph, then Q(𝐺) is irreducible, so the Perron-Frobenius theorem implies that corre-
sponding to 𝜌Q

1 (𝐺), there is a unique unit positive eigenvector, which is called the Perron vector of Q(𝐺). If x
is the Perron vector of Q(𝐺) of a connected graph 𝐺, and 𝜙 is an automorphism of 𝐺, then, as in Lemma 2.1
of [1], 𝜙(𝑢) = 𝑣 implies that 𝑥𝑢 = 𝑥𝑣. In this case, we say that 𝑥𝑢 = 𝑥𝑣 by symmetry.

Theorem 4.5. Let 𝐺 be a connected graph with a cut edge 𝑢𝑣. Suppose that 𝑢𝑣 is not a pendant edge. Let 𝐺𝑢𝑣

be defined as in Lemma 3.5, see Figure 1. Then 𝜌Q
1 (𝐺𝑢𝑣) > 𝜌Q

1 (𝐺).

Proof. Let x be the Perron vector of Q(𝐺).
Let 𝐺1 and 𝐺2 be the components of 𝐺−𝑢𝑣 containing 𝑢 and 𝑣, respectively. As we pass from 𝐺 to 𝐺𝑢𝑣, the

distance between any vertex in 𝑉 (𝐺2) ∖ {𝑣} and any vertex in 𝑉 (𝐺1) is decreased by 1, the distance between
any vertex in 𝑉 (𝐺2) ∖ {𝑣} and 𝑣 is increased by 1, and the distance between any other vertex pair remains
unchanged. So, by Rayleigh’s principle, we have

1
2

(︁
𝜌Q
1 (𝐺𝑢𝑣)− 𝜌Q

1 (𝐺)
)︁
≥ 1

2
x⊤(Q(𝐺𝑢𝑣)−Q(𝐺))x

=
∑︁

𝑦∈𝑉 (𝐺2)∖{𝑣}

∑︁
𝑤∈𝑉 (𝐺1)

(︁
2−(𝑑𝐺(𝑤,𝑦)−1) − 2−𝑑𝐺(𝑤,𝑦)

)︁
(𝑥𝑤 + 𝑥𝑦)2

+
∑︁

𝑦∈𝑉 (𝐺2)∖{𝑣}

(︁
2−(𝑑𝐺(𝑣,𝑦)+1) − 2−𝑑𝐺(𝑣,𝑦)

)︁
(𝑥𝑣 + 𝑥𝑦)2

=
∑︁

𝑦∈𝑉 (𝐺2)∖{𝑣}

∑︁
𝑤∈𝑉 (𝐺1)∖{𝑢}

2−𝑑𝐺(𝑤,𝑦)(𝑥𝑤 + 𝑥𝑦)2

+
∑︁

𝑦∈𝑉 (𝐺2)∖{𝑣}

2−𝑑𝐺(𝑢,𝑦)(𝑥𝑢 + 𝑥𝑦)2 −
∑︁

𝑦∈𝑉 (𝐺2)∖{𝑣}

2−(𝑑𝐺(𝑣,𝑦)+1)(𝑥𝑣 + 𝑥𝑦)2

=
∑︁

𝑦∈𝑉 (𝐺2)∖{𝑣}

∑︁
𝑤∈𝑉 (𝐺1)∖{𝑢}

2−𝑑𝐺(𝑤,𝑦)(𝑥𝑤 + 𝑥𝑦)2

+
∑︁

𝑦∈𝑉 (𝐺2)∖{𝑣}

2−𝑑𝐺(𝑢,𝑦)(𝑥𝑢 − 𝑥𝑣)(𝑥𝑢 + 𝑥𝑣 + 2𝑥𝑦).

Let 𝐺′ = 𝐺− {𝑢𝑤 : 𝑤 ∈ 𝑁𝐺(𝑢) ∖ {𝑣}}+ {𝑣𝑤 : 𝑤 ∈ 𝑁𝐺(𝑢) ∖ {𝑣}}, i.e., 𝐺′ = 𝐺𝑣𝑢. Similarly as above, we have

1
2

(︁
𝜌Q
1 (𝐺𝑣𝑢)− 𝜌Q

1 (𝐺)
)︁
≥ 1

2
x⊤(Q(𝐺𝑣𝑢)−Q(𝐺))x

=
∑︁

𝑦∈𝑉 (𝐺2)∖{𝑣}

∑︁
𝑤∈𝑉 (𝐺1)∖{𝑢}

2−𝑑𝐺(𝑤,𝑦)(𝑥𝑤 + 𝑥𝑦)2

+
∑︁

𝑤∈𝑉 (𝐺1)∖{𝑢}

2−𝑑𝐺(𝑣,𝑤)(𝑥𝑣 − 𝑥𝑢)(𝑥𝑢 + 𝑥𝑣 + 2𝑥𝑤).

So, if 𝑥𝑢 ≥ 𝑥𝑣, then 𝜌Q
1 (𝐺𝑢𝑣) > 𝜌Q

1 (𝐺), and otherwise, 𝜌Q
1 (𝐺𝑣𝑢) > 𝜌Q

1 (𝐺). Note that 𝐺𝑢𝑣
∼= 𝐺𝑣𝑢. So 𝜌Q

1 (𝐺𝑢𝑣) >
𝜌Q
1 (𝐺). �
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Theorem 4.6. Let 𝐺 be a tree on 𝑛 ≥ 3 vertices. Then 𝜌Q
1 (𝐺) ≤ 𝑛−1+

√
𝑛−1

2 with equality if and only if
𝐺 ∼= 𝐾1,𝑛−1.

Proof. Let 𝑑 be the diameter of 𝐺. Then 2 ≤ 𝑑 ≤ 𝑛− 1. Suppose that 𝑑 ≥ 3. Then there is an edge 𝑢𝑣 that is
not a pendant edge. By Theorem 4.7, 𝜌Q

1 (𝐺𝑢𝑣) > 𝜌Q
1 (𝐺). So, the tree with diameter two, 𝐾1,𝑛−1, is the unique

𝑛-vertex tree that maximizes the closeness signless Laplcian spectral radius. By a direct calculation, we have
𝜌Q
1 (𝐾1,𝑛−1) = 𝑛−1+

√
𝑛−1

2 . �

Lemma 4.7. For integers ℓ and 𝑛 with 2 ≤ ℓ ≤ ⌊𝑛−2
2 ⌋, we have 𝜌Q

1 (𝐷𝑛,ℓ) < 𝜌Q
1 (𝐷𝑛,ℓ−1).

Proof. Let x be the Perron vector of Q(𝐷𝑛,ℓ) and let 𝜌 = 𝜌Q
1 (𝐷𝑛,ℓ). Let 𝑢 and 𝑣 be two vertices in 𝐷𝑛,ℓ so

that the degree of 𝑢 and 𝑣 are ℓ + 1 and 𝑛 − ℓ − 1, respectively. By symmetry, the entries of x at all pendant
neighbors of 𝑢 (𝑣, respectively) have the same value, which we denote by 𝛼 (𝛽, respectively).

By deleting a pendant edge at 𝑢 and adding an edge between the resulted isolated vertex and 𝑣 in 𝐷𝑛,ℓ we
have a graph that is isomorphic to 𝐷𝑛,ℓ−1. By Rayleigh’s principle, we have

1
2

(︁
𝜌Q
1 (𝐷𝑛,ℓ−1)− 𝜌Q

1 (𝐷𝑛,ℓ)
)︁

≥ (ℓ− 1)
(︂

1
8
− 1

4

)︂
(𝛼 + 𝛼)2 +

(︂
1
4
− 1

2

)︂
(𝛼 + 𝑥𝑢)2

+
(︂

1
2
− 1

4

)︂
(𝛼 + 𝑥𝑣)2 + (𝑛− 2− ℓ)

(︂
1
4
− 1

8

)︂
(𝛼 + 𝛽)2

=
ℓ− 1

8
(3𝛼 + 𝛽)(𝛽 − 𝛼) +

1
4

(𝑥𝑣 − 𝑥𝑢)(𝑥𝑣 + 𝑥𝑢 + 2𝛼) +
𝑛− 2ℓ− 1

8
(𝛼 + 𝛽)2.

(7)

By deleting 𝑛− 2ℓ− 1 pendant edges at 𝑣 and adding edges between 𝑢 and the resulted isolated vertices, we
have a graph that is isomorphic to 𝐷𝑛,ℓ−1. Similarly as above, we have

1
2(𝑛− 2ℓ− 1)

(︁
𝜌Q
1 (𝐷𝑛,ℓ−1)− 𝜌Q

1 (𝐷𝑛,ℓ)
)︁

≥ ℓ

(︂
1
4
− 1

8

)︂
(𝛼 + 𝛽)2 +

(︂
1
2
− 1

4

)︂
(𝑥𝑢 + 𝛽)2

+
(︂

1
4
− 1

2

)︂
(𝑥𝑣 + 𝛽)2 + (ℓ− 1)

(︂
1
8
− 1

4

)︂
(𝛽 + 𝛽)2

=
1
4

(𝑥𝑢 − 𝑥𝑣)(𝑥𝑢 + 𝑥𝑣 + 2𝛽) +
ℓ− 1

8
(𝛼 + 3𝛽)(𝛼− 𝛽) +

1
8

(𝛼 + 𝛽)2

(8)

Case 1. 𝑥𝑣 ≥ 𝑥𝑢.
Considering the entries of 𝜌x = Q(𝐷𝑛,ℓ)x at 𝑢 and 𝑣, respectively, we have(︂

𝜌− 𝑛 + ℓ + 2
8

)︂
𝛼 =

ℓ− 1
4

𝛼 +
1
2
𝑥𝑢 +

1
4
𝑥𝑣 +

𝑛− ℓ− 2
8

𝛽

and (︂
𝜌− 2𝑛− ℓ

8

)︂
𝛽 =

ℓ

8
𝛼 +

1
4
𝑥𝑢 +

1
2
𝑥𝑣 +

𝑛− ℓ− 3
4

𝛽.

So (︂
𝜌− 𝑛 + 2ℓ

8

)︂
𝛼−

(︂
𝜌− 3𝑛− 2ℓ− 4

8

)︂
𝛽 =

1
4

(𝑥𝑢 − 𝑥𝑣) ≤ 0.
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Note that 3𝑛− 2ℓ− 4 ≥ 𝑛 + 2ℓ as 2 ≤ ℓ ≤ ⌊𝑛−2
2 ⌋. Then(︂

𝜌− 3𝑛− 2ℓ− 4
8

)︂
(𝛼− 𝛽) ≤ 0. (9)

By Interlacing theorem, we have 𝜌 ≥ 𝑐𝐷𝑛,ℓ
(𝑣) = 2𝑛−ℓ−2

4 > 3𝑛−2ℓ−4
8 . By (9), we have 𝛼 ≤ 𝛽. Now, by (7), we

have 𝜌Q
1 (𝐷𝑛,ℓ−1) > 𝜌Q

1 (𝐷𝑛,ℓ).
Case 2. 𝑥𝑢 > 𝑥𝑣.

From 𝜌x = Q(𝐷𝑛,ℓ)x at 𝑢 and 𝑣, we have(︂
𝜌− 𝑛 + ℓ

4

)︂
𝑥𝑢 =

ℓ

2
𝛼 +

1
2
𝑥𝑣 +

𝑛− ℓ− 2
4

𝛽

and (︂
𝜌− 2𝑛− ℓ− 2

4

)︂
𝑥𝑣 =

ℓ

4
𝛼 +

1
2
𝑥𝑢 +

𝑛− ℓ− 2
2

𝛽.

So (︂
𝜌− 𝑛 + ℓ− 2

4

)︂
𝑥𝑢 −

(︂
𝜌− 2𝑛− ℓ− 4

4

)︂
𝑥𝑣 =

ℓ

4
𝛼− 𝑛− ℓ− 2

4
𝛽.

Note that 𝑛− ℓ− 2 ≥ ℓ and 2𝑛− ℓ− 4 ≥ 𝑛 + ℓ− 2 as 2 ≤ ℓ ≤ ⌊𝑛−2
2 ⌋. Then(︂

𝜌− 2𝑛− ℓ− 4
4

)︂
(𝑥𝑢 − 𝑥𝑣) ≤ 𝑛− ℓ− 2

4
(𝛼− 𝛽). (10)

Note that 𝜌 ≥ 𝑐𝐷𝑛,ℓ
(𝑣) = 2𝑛−ℓ−2

4 > 2𝑛−ℓ−4
4 . By (10), we have 𝛼 ≥ 𝛽. Hence, by (8), we have 𝜌Q

1 (𝐷𝑛,ℓ−1) >

𝜌Q
1 (𝐷𝑛,ℓ). �

Theorem 4.8. Let 𝐺 be a tree on 𝑛 ≥ 3 vertices and 𝐺 ̸∼= 𝐾1,𝑛−1. Then 𝜌Q
1 (𝐺) ≤ 𝑟𝑛 with equality if and only

if 𝐺 ∼= 𝐷𝑛,1, where 𝑟𝑛 is the largest root of 𝑓(𝑡) = 0 with

𝑓(𝑡) = 𝑡4 − 11𝑛− 10
8

𝑡3 +
21𝑛2 − 39𝑛 + 6

32
𝑡2 − 16𝑛3 − 35𝑛2 − 47𝑛 + 128

128
𝑡

+
2𝑛4 − 3𝑛3 − 28𝑛2 + 85𝑛− 60

256
.

Proof. Suppose that 𝐺 is a tree on 𝑛 ≥ 3 vertices and 𝐺 ̸∼= 𝐾1,𝑛−1 that maximizes the closeness signless Laplcian
spectral radius. Let 𝑑 be the diameter of 𝐺. Then 3 ≤ 𝑑 ≤ 𝑛 − 1. By Theorem 4.7, 𝑑 = 3. So 𝐺 ∼= 𝐷𝑛,𝑎 with
1 ≤ 𝑎 ≤ 𝑛−2

2 . Then by Lemma 4.7, we have 𝐺 ∼= 𝐷𝑛,1.
In the following we compute 𝜌 = 𝜌Q

1 (𝐷𝑛,1). Let x be the Perron vector of Q(𝐷𝑛,1). Let 𝑣2 and 𝑣3 be the two
vertices so that the degree of 𝑣2 and 𝑣3 are 2 and 𝑛− 2, respectively. Label the pendant vertex at 𝑣2 by 𝑣1, and
the other pendant vertices labeled by 𝑣4, . . . , 𝑣𝑛, respectively. Let 𝑥𝑖 = 𝑥𝑣𝑖 for 𝑖 = 1, . . . , 𝑛. By symmetry, for
all 𝑛− 3 pendant vertices at 𝑣3, the corresponding entries in x are equal. Then(︂

𝜌− 𝑛 + 3
8

)︂
𝑥1 =

1
2
𝑥2 +

1
4
𝑥3 +

𝑛− 3
8

𝑥4,

(︂
𝜌− 𝑛 + 1

4

)︂
𝑥2 =

1
2
𝑥1 +

1
2
𝑥3 +

𝑛− 3
4

𝑥4,(︂
𝜌− 2𝑛− 3

4

)︂
𝑥3 =

1
4
𝑥1 +

1
2
𝑥2 +

𝑛− 3
2

𝑥4,
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and (︂
𝜌− 4𝑛− 9

8

)︂
𝑥4 =

1
8
𝑥1 +

1
4
𝑥2 +

1
2
𝑥3.

So

det

⎛⎜⎜⎜⎜⎝
𝜌− 𝑛+3

8 − 1
2 − 1

4 −𝑛−3
8

− 1
2 𝜌− 𝑛+1

4 − 1
2 −𝑛−3

4

− 1
4 − 1

2 𝜌− 2𝑛−3
4 −𝑛−3

2

− 1
8 − 1

4 − 1
2 𝜌− 4𝑛−9

8

⎞⎟⎟⎟⎟⎠ = 0.

By a direct calculation, this determinant is just equal to 𝑓(𝜌). It thus follows that 𝜌 is the largest root of
𝑓(𝑡) = 0. �

5. Concluding remarks

In [1], a number of results have been obtained to connect the spectral properties of the closeness matrix
and the structural properties of graphs. In this paper, various connections between the spectral properties of
closeness Laplacian (closeness signless Laplacian, respectively) and structural properties of graphs are estab-
lished, and extremal problems to minimize certain closeness Laplacian (closeness signless Laplacian, respectively)
eigenvalues are investigated. The two Laplacians based on closeness may be studied for any graphs, while the
distance versions applied only to connected graphs, see [12]. As compared to the ordinary Laplacian and signless
Laplacian based on adjacency, the versions considered in this article also have merits as distances should be
considered so as to reveal more elusive connections between spectral and structural properties. There are lots of
problems to further study. For example, one may consider more extremal problems for different graph classes,
and the corrections between the largest closeness Laplacian and closeness signless Laplacian eigenvalues and
other distance-based graph invariants such as radius, diameter, average distance, average eccentricity, remote-
ness and proximity, see, e.g. [15, 16]. As in [17], one may also merge the spectral properties of closeness matrix
and its signless Laplacian.

Acknowledgements. The authors thank the referees for constructive comments and suggestions. This work was supported
by the National Natural Science Foundation of China (No. 12071158).
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