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SPECTRA OF CLOSENESS LAPLACIAN AND CLOSENESS SIGNLESS
LAPLACIAN OF GRAPHS

Lu ZHENG AND BO ZHOU*

Abstract. For a graph G with vertex set V(G) and u,v € V(G), the distance between vertices u and
v in G, denoted by dg(u,v), is the length of a shortest path connecting them and it is oo if there is no
such a path, and the closeness of vertex u in G is cg(u) = ZweV(G) 279¢(w ) Given a graph G that is

not necessarily connected, for u,v € V(G), the closeness matrix of G is the matrix whose (u,v)-entry
is equal to 279 (") if 4 £ v and 0 otherwise, the closeness Laplacian is the matrix whose (u,v)-entry
is equal to

{—2dG<“’”) if u# v,

ca(u) otherwise

and the closeness signless Laplacian is the matrix whose (u,v)-entry is equal to

{Z_dG(“’”) if u#w,

ca(u) otherwise.

We establish relations connecting the spectral properties of closeness Laplacian and closeness signless
Laplacian and the structural properties of graphs. We give tight upper bounds for all nontrivial closeness
Laplacian eigenvalues and characterize the extremal graphs, and determine all trees and unicyclic graphs
that maximize the second smallest closeness Laplacian eigenvalue. Also, we give tight upper bounds
for the closeness signless Laplacian eigenvalues and determine the trees whose largest closeness signless
Laplacian eigenvalues achieve the first two largest values.
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1. INTRODUCTION

We consider simple and undirected graphs. Let G be a graph with vertex set V(@) and edge set E(G). For
u,v € V(Q), the distance between u and v in G, denoted by dg(u,v), is the length of a shortest path from « to
v in G. Particularly, dg(u,u) = 0 for any v and dg(u,v) = co if there is no path from u to v in G.
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For a graph G that is not necessarily connected, the closeness matrix of G is defined as [1] C(G) =

(ca(u;v))uwev(a), Where
2-da (W) if 4 £,
calu,v) = {0 otherwise.

A general version has been considered, which is called the exponential distance matrix in [2] and the g-distance
matrix in [3], where, for any real number ¢ € (0,1), the (u,v)-entry of the general version is ¢%¢(“¥) if u # v
and 0 otherwise. The closeness matrix of a graph deserves investigation because it combines some merits of the
adjacency matrix and the distance matrix. It behalves as the adjacency matrix as both spectra are the union
of the spectra of the corresponding matrices of the components of a graph. Moreover, it contains information
of distances between different vertices. Note that distance matrix means only for connected graphs. Another
motivation to consider the closeness matrix of a graph is the work of Dangalchev, who introduced in [4] the
closeness of a graph G, defined as ¢(G) = }_,cy () ca(v) with ca(v) = X cv @) (o) 2-4(vw)  Dangalchev
[5] Closeness is a measure of centrality, an important feature of communication and social networks. Rupnik
Poklukar and Zerovnik [6] discussed the connection between the closeness of a graph and the early studied
Hosoya polynomial (see also [7,8]), and they determined the graphs that minimize and maximize the closeness
among several classes of graphs including trees and cacti. It is evident that for a graph G, C(G) is a symmetric
nonnegative matrix. Moreover, C(G) is irreducible if and only if G is connected. As C(G) is symmetric, its
eigenvalues are all real. We call them the closeness eigenvalues of G. The largest closeness eigenvalue of a graph
is called the spectral closeness used as a measure for networks [1], and the extremal values (minimum and
maximum values) and the extremal graphs of spectral closeness have been determined there over various classes
of graphs. Properties of other closeness eigenvalues, especially the second largest and the smallest closeness
eigenvalues were explored in [9]. Some results on the spectral properties of exponential distance matrix have
been obtained in [10,11].

Let Dc(G) be the diagonal matrix with (u,u)-entry to be cg(u) for each u € V(G). Motivated by [12], the
closeness Laplacian is defined as the matrix L(G) = Dc(G) — C(G), and the closeness signless Laplacian is
defined as the matrix Q(G) = D¢(G) + C(G). That is, for u,v € V(G), the (u,v)-entry of L(G) is equal to

{ZdG(“’”) if u # v,

ca(u) otherwise
and the (u,v)-entry of Q(G) is equal to

{ZdG(“’”) if u#£ v,

ca(u) otherwise.

Denote by p}(G) > ... > pk(G) the eigenvalues of L(G), which are called the closeness Laplacian eigenvalues
of G, and pY(G) > ... > p@(@) the eigenvalues of Q(G), which are called the closeness signless Laplacian
eigenvalues of G.

For p € {pk(G),p%(G)}, we have by the well known Gersgorin discs theorem (Thm. 6.1.1 in [13]) that
lp — ca(v)] < cg(v) and so p > 0 for some v € V(G). That is, both L(G) and Q(G) are positive semi-definite.
Denote by 1,, the n-dimensional column vector of all ones. Then L(G)1,, = 0, so p&%(G) = 0.

If n > 2 and G is connected, then each entry of IL(G) is not zero, so the matrix B obtained from L(G)
by the deletion of, say, the last row and the last column is strictly diagonally dominant, implying that zero
is not an eigenvalue of B, from which it follows that the multiplicity of p&(G) = 0 is one by the interlacing
theorem (Thm. 4.3.17 in [13]). So the number of 0 as a closeness Laplacian eigenvalue of a graph is equal to
the number of components of the graph. Consequently, a graph G on n > 2 vertices is connected if and only
if p%_,(G) > 0. This fact shows that the second smallest closeness Laplacian eigenvalue may be viewed as a
distance-based ‘algebraic connectivity’ of a graph. Any closeness Laplacian eigenvalue that is not equal to zero
is called a nontrivial one.
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On the other hand, let x be a unit eigenvector of Q(G) associated to p%(G). Then p%(G) =
2 (uorcv(c) e v) (@ + 7,)2%. So p¥(G) = 0 if and only if n = 1 or x, + 2, = 0 for any {u,v} in a
component of G if n > 2, equivalently, G has at least a component with one or two vertices. Thus, if G is a
connected graph with n > 3 vertices, then p(G) > 0.

We establish some connections between the closeness Laplacian eigenvalues (closeness signless Laplacian
eigenvalues, respectively) and the structural properties of graphs. On one hand, we give tight upper bounds
for all nontrivial closeness Laplacian eigenvalues and characterize the extremal graphs and determine all trees
and unicyclic graphs that maximize the second smallest closeness Laplacian eigenvalue. On the other hand, we
give tight upper bounds for the closeness signless Laplacian eigenvalues and determine the trees whose largest
closeness signless Laplacian eigenvalues achieve the first two largest values.

2. PRELIMINARIES

For S C V(G), let G— S denote the graph obtained by removing each vertex of S (and all associated incident
edges), and we write G — v for G — {v} for v € V(G). For E C E(G), G — E denotes the graph obtained from
G by removing all edges of E, and we write G — e for G — {e} for e € E(G). Denote by G the complement of a
graph G. For a set E C E(G), G + E denotes the graph obtained from G by adding all elements of E as edges,
and we write G + uv for G + {uv} for uv ¢ E(G).

For vertex disjoint graphs G and Go, let G1 U G2 be the (vertex disjoint) union of G7 and Go, and G1 V Ga
the join of G; and Gy with G1 V Gy = (G1 UG2) + {uv : u € V(G1),v € V(G2)}.

Let K,, and P, be the n-vertex complete graph and path, respectively. Let K,,, .., be the complete k-partite
graph with n; vertices in the ith partite set for ¢ = 1,...,k, where k > 2 and n; > 1. For positive integers n
and a with 1 < a < %’2, let D, o be the tree on n vertices obtained from a path on two vertices by attaching
a and n — a — 2 pendant vertices to its end vertices, respectively.

The degree of a vertex v in a graph G is the number of vertices that are adjacent to v in G, denoted by dg(v).
A vertex v is called a pendant vertex if dg(v) = 1. For a graph H with v € V(H) and v € V(H), we say that
the graph G with V(G) = V(H) U {v} and E(G) = E(H) U {uv} is obtained from H by attaching a pendant
vertex at u.

For an n X n matrix M with n real eigenvalues, we denote by p1(M) > ... > p,(M) the eigenvalues of M.

So, for a graph G on n vertices and ¢t = 1,...,n, -
pi (G) = pi(L(G)) and p(G) = pi(Q(G))-

Proposition 2.1. Let G be a connected graph on n > 3 vertices that is not complete. Suppose that uv ¢ E(G)
for {u,v} C V(G). Then
P5 (G +uv) > pr(G) fori=1,...,n—1

and
p;Q(G—Fuv) > p(z@(G) fori=1,... ,n.

Moreover, p?(G + uv) > P?(G)'

Proof. Let
M =1L(G + uv) — L(G).

The diagonal entry My, of M for w € V(G) is cgiuw(w) — ce(w) > 0, and the sum of non-diagonal entries of
M corresponding to vertex w is —cgiur(w) + cg(w). So M is diagonally dominant with nonnegative diagonal
entries, so it is a positive semi-definite matrix. As M1,, = 0, we have p, (M) = 0. So by the Weyl inequalities
(Thm. 4.3.1 in [13]), we have

P7 (G +uv) = pi(L(G) + M) > pi(L(G)) + pu(M) = p; (G)
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for ¢ = 1,...,n — 1. Similarly, we have p?(G + uv) > p?(G) for i = 1,...,n. As Q(G + w) — Q(G) is
nonzero nonnegative and Q(G) is irreducible, we have by the Perron-Frobenius theorem (Thm. 8.4.4 in [13])
that p2(G +uv) > p¥(G). O

Usually, we use a multiset to denote the spectrum of some matrix, in which al*!

of a is k.

Given a graph G, denote by Deg(G) the vertex degree diagonal matrix of a graph G. The adjacency matrix of
G is the matrix A(G) = (Guv)uwev(q) With @y, = 1if u and v are adjacent and 0 otherwise. Then the Laplacian
of G is the matrix L(G) = Deg(G) — A(G) and the signless Laplacian of G is Q(G) = Deg(G) + A(G). Both
Laplacians have been extensively studied [14].

For a graph G with V(G) = {v1,...,v,}, a vector x = (Zy,,...,Ty,) can be viewed as a function defined
on V(G) that maps v; to x,,. In this case, z,, is said to be the entry of x at u € V(G).

means that the multiplicity

)T

3. CLOSENESS LAPLACIAN EIGENVALUES

Firstly, we recall some facts on the Laplacian eigenvalues of a graph. Let G be a connected graph on n vertices.
Let AF(G) > ... > AL_(G) > A2(G) = 0 be the Laplacian eigenvalues of G. Then the Laplacian eigenvalues of
Garen— A (G)>...>n—)M(G) > A\L(G) = 0. From this, it follows that \(G) < n with equality if and
only if A\L_|(G) =0, i.e., G is disconnected.

Proposition 3.1. Let G be a connected graph on n > 2 vertices with diameter at most two. Let A\l > ... >
AL > AL =0 be the Laplacian eigenvalues of G. Then the closeness Laplacian eigenvalues of G are

1 1

Z(n+A1L) > > Z(n+A5,1) > M\ =0.
Proof. 1f the diameter of G is one, then G = K,,, A\l = ... =A._; =n and L(G) = 3L(K,), so pf(G) = ... =
L n
pn—l(G) =3

Suppose that the diameter of G is two. Then C(G) = A(G) + +(J,, — I, — A(G)) = 1 (Jn — I, + A(G)) and
Dc(G) = 2711, + 1Deg(G), so

-1 1 1
L(G) = ”Tfn +1Deg(G) — 1 (Ju — L + A(G))
n 1 1

For any ¢ with 1 <4 <n — 1, assume that x; is an eigenvector of L(G) associated to )\f. As L1, = 0, we have
IIX,- =0, so J,x; = 0. It follows that

n 1 1

1
ZXi + ZAZ'LXi
1

That is, %(n + AL) is the i-th largest closeness Laplacian eigenvalue of G for i = 1,...,n — 1. ]

Theorem 3.2. Let G be a connected graph on n > 2 vertices. Fori=1,...,n—1,

L n
. < —
pi (G) < 9

with equality for alli=1,...,r withr <n—1if G is a complete k-partite graph for any k withr +1 <k < n.
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Proof. By Proposition 2.1, we have pi(G) < p(K,) = 5.
If G is a complete k-partite graph, say G = K, . n,, then the Laplacian spectrum of G = UF | K, is

{n[lm*l], ... ,nLnrl],O[k]}, so the Laplacian spectrum of G is

{n[k_l],n - n[lm_l], N nL"’“_l],O} ,

which, together with Proposition 3.1, implies that the closeness Laplacian spectrum of G is

E[kfl] n @[NrI] n %[mrl] 0
2 ) 4 9 4 ’ '

This completes the proof. O

Lemma 3.3. Let G be a connected graph on n > 2 vertices. Then there is a nonzero closeness Laplacian
eigenvalue with multiplicity n — 1 if and only if G = K,,.
Proof. If G = K, then it is obvious that % is a nonzero closeness Laplacian eigenvalue with multiplicity n — 1.

Suppose that a is a nonzero closeness Laplacian eigenvalue with multiplicity n— 1. Then L(G) has eigenvalues
a with multiplicity n — 1 and 0 with multiplicity one. So for some n x n orthonormal matrix P, PTIL(G)P is a
diagonal matrix with (4,4)-entry to be a for i = 1,...,n — 1 and 0 for i = n. Let x = (x1,...,x,) be the last
row vector of PT. So

L(G) — al, = —aP(0,...,0,1)7(0,...,0,1)PT = —ax"x.

That is, L(G) = al,, — ax'x. For i = 1,...,n, considering the sum of entries of the ith row of L.(G), we have

n
azx; Zacj —z; | =a(l —2?),
j=1

S0
n
T ij —x; | =1— 22,
j=1
i.€.,
n
T; Za:j =1,
j=1
implying that 1 = ... = x, := ¢. This forces that the entries of L(G) outside the main diagonal are all equal,
implying that G = K,,. (]

By Theorem 3.2 and Lemma 3.3, we immediately have the following consequence.

Corollary 3.4. Let G be a connected graph on n > 2 vertices. Then

pr_1(G) <

|3

with equality if and only if G =2 K,,.

Rupnik Poklukar and Zerovnik [6] noted that if G is a tree on n > 2 vertices, then ¢(G) < ¢(Kj,_1) =
(=D042) with equality if and only if G 2 K ,_1.
For a graph G with u € V(G), we denote by Ng(u) the neighborhood of w in G (that is, the set of vertices

that are adjacent to u in G). The following is Corollary 3.1 in [6].
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FIGURE 1. Graphs G (left) and G, (right) in Lemma 3.5.

FIGURE 2. Graphs H,, ,(s,t) for s,t > 0 (left) and H, (s, 0) for s > 0 (right).

Lemma 3.5. Let G be a connected graph with a cut edge wv. Suppose that uv is not a pendant edge. Let
Guw =G —{vw:w € Ng() \ {u}} + {vw : w € Ng(v) \ {u}}, see Figure 1. Then ¢(Guy) > ¢(G).

Let H be a nontrivial connected graph. Let u and v be two vertices of H. Let H,, ,(s,t) be the graph obtained
from H by attaching s pendant vertices at v and ¢ pendant vertices at v, where s,t > 0, see Figure 2. Particularly,
H,.,(0,0)=H.

The following is Corollary 3.2 in [6].

Lemma 3.6. Let H be a nontrivial connected graph. Let u and v be two vertices of H. For positive integers s
and t, C(Hu,v(s +1, O)) > C(Hu,v(sa t)) or C(Hu,v(07 s+ t)) > C(Hu,v(sv t))

Lemma 3.7. Suppose that G is a tree on n > 4 vertices and G 2% K1 n—1. Then (@) < "2+1 with equality
if and only if G = D,, 1. Moreover, if G 2 D, 1 with n > 6, then ¢(G) < n-n+6 " S with equalzty if and only if
G=Dys.

Proof. Denote by d the diameter of G. As G 2 K4 ,,_1, one has d > 3.
Suppose that d = 3. Then G = D,, , with 1 < a < ”;2. Let b=mn —2 — a. It is easy to see that

30 = 51+ (( ) (51)) =5

_n—l (n— ( ab
a 8
<n—1 (nfl)(n—Q)in—Zi
-2 8 8
_n?+1

==

so ¢(G) < ”%1 with equality if and only if a = 1 and b = n — 3, that is G = D,, ;. Suppose that G 2 D,, ; with

n > 6. Then
1 n—1 (n—-1)n-2) 2(n-4)
— < _
@) s 5=+ 8 8
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so ¢(GQ) < % with equality if and only if a = 2 and b = n — 4, that is G = D, ».

Suppose that d > 4. It suffices to show that ¢(G) < ”2’47”6. By Lemma 3.5, there is a caterpillar G’ on n
vertices with diameter four so that ¢(G) < ¢(G’) with equality if and only if G 2 G’. Let T, ; be the caterpillar
on n vertices of diameter four obtained from the path vy ...wvs by attaching n — 5 pendant vertices at vs3 and
Ti 4, be the caterpillar on n vertices of diameter four obtained from the path v; ... vs by attaching n —5 pendant
vertices at vy. By Lemma 3.6, ¢(G') < ¢(T,, ) or ¢(G') < ¢(T2 ;). By an easy direct calculation, one has

1 n-1 ("°)+2n-54+3 2(n-5+2 1
Ze(T ) = 2 —
) =5 F 4 T T
and ( 5) )
1 n—-1 ("3°)+2(n—-5+3 (n-5+2 n—4
Zel(T? ) = 2
) =5 F 4 TS T
so ¢(T, ;) = 2"2_# > (T ) = w. Therefore, ¢(G') < (T, 4) = 2"2_%. It follows that ¢(G) <
2 2
n 782"+9 < 74”+6, as desired. ]

Theorem 3.8. Let G be a tree on n > 3 vertices. Then

<

with equality if and only if G =2 K 5,—1.

Proof. The result is trivial if n = 3, and it follows easily if n = 4 as p% | (Py) = 1178\/ﬁ <2,
Suppose in the following that n > 5 and G 2 K; 1. As p%_l(Klm_l) = "T“ it suffices to show that
E(G) < npt
pnfl 4 )
If G # D, 1, then, by Lemma 3.7, one has ¢(G) < =45, As pZ(G) = 0 and G # K, one has by Lemma 3.3
that

)

L c(G) n? -n+6 _n+l
G < <
pn—l( )<n_1— 4(7’1—1) = 4 )
as desired.

Assume that G = D, ;. Label the vertices od D, 1 so that vivav3v; is a path for reach ¢ = 4,...,n. Denote
by x the eigenvector of L(G) associated with p = p&_,(G). Let z; = z,, for i = 1,...,n. Note that p > 0 and
x"1,=0,ie,2 +...+x, =0. Foreach i =4,...,n, as px = L(G)x, we have

1 1 1 2n —1 1 [
pTi = =gl = 4 T2 — §CE3+ g LTy ;xj —Zi|,
i.e.,
2n +1 1 1 1 1 &
(P— 3 )xz =gt P2 g o Z;%
1 1 1 n 1( Yzt )
=——x1—-2To— w3+ —(¥1+12+ T
U1 g2 gt g 2 3
11
= 83?1 45(}3.
Ifp= 2”;1 , then p < "T'H. Suppose that p # %. It then follows that x4 = ... = x,,. Recall that z1+...+xz, =

0. From px = L(G)x, one has

n+4x —§m —lx
S 1 ] 2 ] 35

prL =
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@ } n-r . } n-r-1

FIGURE 3. Graphs Uy, (left) and U; . (right).

- Ky

FIGURE 4. Graphs S} (left), S? (middle) and S, (right).

1 +n—|—2
pra = 4$1 1 T2 4963

and
1 +2n—1
T3 = —&
pPT3 41 1

The above homogeneous linear system in the variables z1, z2, 3 has a nonzero solution. So the determinant of
its coefficient matrix is zero. That is,

xIs.

3

+

N
W= 0ol
I

jan)

[

n—1

1
i 0 p="
By a direct calculation, the above determinant is equal to f(p), where

7n+62+7n2+19n—2 2n3 4+ 11n% + 5n

_ 3
flp)=p g7 % p 153

It thus follows that p is the smallest root if f(¢) = 0. As f (%) = "21_2%_6 >0and f(3) = —"(35_64)2 <0,

we have p < "TH, as desired.

Denote by U, , with 3 < r < n the unicyclic graph on n vertices obtained from the cycle C.. by attaching
n—r pendant vertices at a vertex. Denote by Uy, ;. with 3 <7 < n—2 the unicyclic graph on n vertices obtained
from U4, by attaching n —r — 1 pendant vertices at the pendant vertex, see Figure 3.

Let S! be the unicyclic graph with n > 5 vertices obtained from U,,_; 3 by attaching a pendant vertex at
a vertex of degree two. Let S2 be the unicyclic graph with n > 7 vertices obtained from S!_, by attaching a
pendant vertex at the vertex of degree three. Let S;" be the unicyclic graph with n > 5 vertices obtained from
U, —1,3 by attaching a pendant vertex at the vertex of degree one, see Figure 4.

Lemma 3.9. Among unicyclic graphs on n vertices with girth three, U, 3 with n > 4, S} with n > 5, S;7 and

S2 with n > 8 are the only ones that have the first, the second, the third and the fourth largest closeness, which

2 2 2 2
n Zrn n“+4 n“4+3 and n“—n+10

s 1, respectively.

are equal to
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Proof. Let U(n) be the set of unicyclic graphs on n vertices with girth three.

The fact that U, 3 is the only graph in U(n) that has the largest closeness follows from Lemmas 3.5 and 3.6,
and by a direct calculation, ¢(U, 3) = "QI”.

Let G € U(n) \ {U,3}. By Lemmas 3.5 and 3.6, the maximum values of ¢(G) is achieved only by one of S},

St and U, 3- By a direct calculation, we have

1

n?+4
_4) =
(n-9=""2,

| =

c(S}l):n—&-;((ng4>+2(n—4)+2>+

c(SI)n+;(<n;4>+2(n4)+1)+i(n3)nzjs

and
1 n?—n+38

o ;73):71"‘2((ng4>+(n—4)+2>+i(2n—8): .

So it is evident that S} with n > 5 is the only graph in U(n) that has the second largest closeness, which is
equal to %~
Next, let G € U(n)\ {Up 3, St} with n > 8. By Lemmas 3.5 and 3.6, the maximum values of ¢(G) is achieved

only by one of S;f, S2 and Uy 5. As

c(Si)zn—l—;((n;5>+1+2(n—5)+4>+;(n—5)

n? —n+ 10
4

< n?+3

4

for n > 8, we see that S;7 with n > 8 is the only graph in U(n) that has the third largest closeness, which is
equal to #.

Finally, let G € U(n) \ {Un.3, 5%, S;7} with n > 8. By Lemmas 3.5 and 3.6, the maximum values of ¢(G) is
achieved only by one of S2, Uy 5, G’ and G, where G’ is obtained from ST | by attaching a pendant vertex at
the vertex with degree two that is adjacent to a pendant vertex, and G” is obtained from U, _1 3 by attaching

a pendant vertex at vertex of degree three on the triangle. Note that

C(G/)”*é((n;)ﬂ(n5)+3)+i(2n8)”247”8

and

1 n—>5 1 n? —2n+ 15
1!
= — — -1 - .
c(G") n+2<( 9 )+n)+4(3n 5) 1

So S2 with n > 8 is the only graph in ¢/(n) that has the fourth largest closeness, which is equal to ”2_%10.
O

Let U} (U2, respectively) be the graph obtained from U,_; 4 by attaching a pendant vertex at a vertex of
degree 2 that is adjacent (not adjacent, respectively) to the vertex of degree n — 3, see Figure 5.

Lemma 3.10. Among unicyclic graphs on n vertices with girth four, U, 4 with n > 5 and U} or Up 4 with

n > 6 are the only ones that have the first and the second largest closeness, which are equal to #, @,

respectively.
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FIGURE 5. Graphs U, (left), U2 (middle) and U ; (right).

Proof. By Lemmas 3.5 and 3.6, Uy, 4 is the only unicyclic graph on n vertices with girth four that has the largest
closeness, and it is easy to see that ¢c(Up4) = #.

Let G be a unicyclic graphs on n > 6 vertices and the girth is four such that G 2 U,, 4. By Lemmas 3.5 and 3.6,
the maximum values of ¢(G) is achieved only by one of Uy ,, U}, G’ and Uy}, where G’ is obtained from U,_1 4
by attaching a pendant vertex at some pendant vertex. Then by a direct calculation, we have

n2—n+9
Up)=———
c(Up) 1 )
o )72n2—5n+33<n27n+9
c n,4) — ) 4 ’
on? —2n+15 n2—n+9
G =
c(G") 3 < 1
and
2n? — 3n + 23 2_n+9
oU) = I <

for n > 6. So U}l with n > 6 is the only unicyclic graph on n vertices with girth four that have the second
largest closeness, which is equal to %_ .

Lemma 3.11. Let G be a unicyclic graph on n vertices. If n > 8 and G % U, 3,Up 4, S}, S5, then

2 _
c(G)gn ZJrlO

with equality if and only if G = S2 U, 5. Moreover, we have

n?+n

C(Un,S) = 4 )

2

4
() = e(Un) =
and

2

(st =12

Proof. Let r be the girth of G. By Lemmas 3.5 and 3.6, ¢(G) < ¢(U,,) with equality if and only if G = U, ,.
Note that

o(C _{27“(1—2_71) if r is odd,

B r(2—3-2_%) if r is even.
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Let a = oCr) Then

r

n—r

c(Upy) =c(Cr) + 21< 5

) +2(n—7r)(27t +27ta)

n2 4 1in4r?—3r—orn (27T 0 ifrisodd,
_ : B

- . .
3-272zn if r is even.

Suppose that » + 1 < n. Then

C(Un,rJrl) - C(Un,r) =

Let g(t) = —1+275t. As ¢/(t) = 272(1 — tlog v/2) < 0 for t > 4, g(t) is strictly decreasing for t > 4. If r is odd
with r > 5, then

—1 1
c(Unry1) — c(Uny) = ! B + (27 Eag 2*1)n
A D)
=g(r+1)
< g(4) =0,

50 ¢(Up,r41) < ¢(Uy,r). Suppose that r is even with r > 6,

r—1 -
C(Un,r+1) - C(Unﬂa) = + (2*5 _ 271),”

Tl i e )

g(r)+272
<g(6)+272=-2"242"2 <0,

IN

5o ¢(Upr41) < ¢(Un,). Thus, we conclude that among unicyclic graphs on n vertices with girth at least
five, Uy 5 is the unique one with the largest closeness, which is equal to W. Now the result follows by

Lemmas 3.9 and 3.10. O

Theorem 3.12. Let G be a unicyclic graph on n > 11 vertices. Then

n+1
4

Pra(G) <
with equality if and only if G = U, 3.

Proof. Suppose that G 2 Uy, 3,S.,Up 4, S5 . By Lemma 3.11, ¢(G) < w. Asn > 11, p%(G) = 0 and
G # K, one has by Lemma 3.3 that

2 _
(G)<n n—|—10<n+1
1= 4n—1) — 4

¢
Py 1(G) < "

By Proposition 3.1, it is easy to see that pf_, (U, 3) = “tL. It suffices to show that p(G) < 2L if G is one
of S}, U,.4, S,
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Note that S} is the unicyclic graph with n > 5 vertices obtained from the cycle C3 := vjvov3 by attaching
n — 4 pendant vertices vs,...,v, at v; and a pendant vertex vy at ve. Denote by x an eigenvector of L(S})
associated with p = p%_(S1). Let #; = x,, for i = 1,...,n. Note that p > 0. As L(S}) is symmetric, we have
x'1, =0, that is, 21 4+ ...+ z, = 0. Note that for any i = 5,...,n,

n

1 1 1 1 2n—1 1
pxi:—fxl—fxg—fxg—fm—&-Txi—Z ;l‘j_xi ,

2 4 4 8
i.e.,
2n+1 1 n 1
— T, =—-x —x4.
P 3 il 3 4
If p= %, then pt_; = p < "TH, as desired. Suppose that p # 2”{%1. It then follows that x5 = ... = z,,. Note
that x1 + ...+ x, = 0. Then
2n — 1 L 1
ry = ——— —x
PT1 4 1 4 4,
n n—+3 1 1
T9g = ——T — Xy — —X3 — - X
pPT2 Vit 1 27 g ¥ T gt
1 1 n—+2
pr3 = —1961 - 1552 + 1 3
and
1 3 1 n+95
Ty = ——T1 — =& —x — 4.
PL4 3 1 3 2 3 3 3 4
So 2n—1 1
P =7 0 0 1
1 n+3 1 1
1 p— o3 1 1
det | ol 4n+2 : =0,
1 i Py 0
1 3 1 n45
B 8 s PT7®
1.€.,
f(p) =0,
where
In + 13 ™% +25n+9
t) =t — t3 t2
f(t) 3 + 16
In3 + 56n2 + 68n — 5t n 2nt + 1903 + 4512 4 18n
128 512 '
It follows that p is the smallest root of f(t) = 0. As f(2H) = —% < 0, we have p < FL as desired.
Note that U, 4 is the unicyclic graph with n > 5 vertices obtained from the cycle Cy := v1v2v3v4 by attaching
n —4 pendant vertices vs, ..., v, at v1. Denote by y an eigenvector of L(U,, 4) associated with p’ = P%,l(UnA)-

Let y; = yo, for i = 1,...,n. Then p’ > 0. As L(U, 4) is symmetric, we have y; + ...+ y, = 0. Note that for
any ¢ =5,...,n,
1 1 1 1 2n — 1 1<
/a). —_ - — - — — — - . — — ..
P Yi gY1 = qY2 T gYs — ¥ + 3 YTy j;r) Yi—Yi |

1.€.,

, 2n+1 o 1 +1
P 3 Yi = 4211 8y3~
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If ) = 2"8"‘1, then p%_ | (Una) = p/ < 2L, as desired. Suppose that p’ # 27%1' It then follows that y5 = ... = y,.
Note that y1 + ...+ y, = 0. Then
. -1 1
PYL= " + 193
1 n+2 1
/ —_— e — [ p—
PY2= =3 + g Y2 s
;o1 3 n +7 3
pPYs = 82/1 8?/2 3 Y3 82/4
and
, 1 1 n+ 2
PYL= =gyt = s + A
So p is the smallest root of g(t) = 0, where
2n—1 1
p-ml o9 1
1 n+2 1
1 p_nt2 1 0
_ 1 1 1
g(t) = det 1 3 4T 3
8 8 8 8
1 1 n+2
i 0 it
9n + 13 14n? +51n + 16
_ A 43 12
8 + 32
9n3 + 59n? + 62n — 4t n 2nt + 21n3 + 42n? + 16n
128 512 '
As g(2H) = % < 0, we have p' < 2H | as desired.

Label the vertices of S;f as follows: let vjvouzvy be the triangle and let vs, . .

., Un be the pendant vertices so

that vyv4, v4v5 are edges. Denote by z an eigenvector of IL(S;") associated with p” = pE_;(S}). Let z; = 2,, for
i=1,...,n. Note that p” >0and 21 +...+2, =0. Forany i =6,...,n,

n

a1 11 1+2n—1'1z' |
P zZi = 221 422 423 424 825 8 Z 4 = Z] Zi )
i.e.,
2n+1 1 1
(p”— S )Zi=—42’1—|—825.
If p" = 225 “then py;_,(S;7) = p” < 2L, as desired. Suppose that p” # 221, Tt then follows that z6 = ... = z,.
Thus
2n—1 1
Pz = — & + 175 (1)
1 2 3 1 1
Pz 1A n8+ Ak e (2)
1 1 2 3 1
pl'zs = VR n8—|— 23+ g%, (3)
1 n+2 1
/!
I L 4
p 24 421 + 1 Z4 420 (4)
and
1 3 n+4
p" 25 —gA T g g% (5)
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Subtracting (2) from (3) yields (p” — 2%5) (23 — 22) = 0. Suppose that p” = 225 Then (4) and (5) become

—§Z4 = izl + %25 and —%224 = %21 + HTHZ5, SO 21 = ”T*E’zt—,. From (1), we have z; = ﬁza It thus follows
that 25 = ﬁ, which is a contradiction. So p” # 242 and z; = z3. Now (2) becomes
1 2n+1 1

Pz = 4 + g 2 + 3% (6)

Combining (1), (6), (4) and (5), we have
p// 2n471 0 0 _%
i p// - 2n;1 0 7%
det 1 0 " n42 1 =0,

1 p 4 1

é 0 % p// _ n48r4
i.€.,

h(p") =0,
where
In+7 28n? + 57n + 2
h(t) = t* — t3 t2
®) 8 + 64
18n3 + 67n2 + 25n — 215 n 4n* 4 24n3 4 2102 + 5n
256 1024 ’

So p” is the smallest root of h(t) = 0. For n > 8, we have h (%) = % <0andh(2H) = "21_0’2‘4_6 > 0, so
p < 2L as desired. O

4. CLOSENESS SIGNLESS LAPLACIAN EIGENVALUES

Similarly to the proof of Proposition 3.1, we have the following result, where the graph is required to be
regular.

Proposition 4.1. Let G be a reqular connected graph on n > 2 vertices with diameter at most two. Let /\i2 >
)\QQ > ... > A9 be the signless Laplacian eigenvalues of G. Then the closeness signless Laplacian eigenvalues of

G are o
n—1 X 1 Q 1
TS Zn=2429)>...>~(n—2+)\9).

Theorem 4.2. Let G be a connected graph on n > 2 vertices. Fori=1,...,n—1,

PEG) <n—1
with equality if and only if G = K,,. Moreover, fori=2,...,n,

n—2
AOEE—
with equality if G = K.

Proof. By Proposition 4.1, we have

o= ifi=2,...,n.

n—1 ifi=1,
2

So the result follows from Proposition 2.1. |
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Similarly to the proof of Lemma 3.3, we have
Lemma 4.3. Let G be a connected graph onn > 2 vertices. Then p2(G) = ... = p2(G) if and only if G = K,,.
By Theorem 4.2 and Lemma 4.3, we have

Corollary 4.4. Let G be a connected graph on n > 2 vertices. Then
n—2
p2(6) < =
with equality if and only if G =2 K.
If G is a connected graph, then Q(G) is irreducible, so the Perron-Frobenius theorem implies that corre-
sponding to p?(G), there is a unique unit positive eigenvector, which is called the Perron vector of Q(G). If x

is the Perron vector of Q(G) of a connected graph G, and ¢ is an automorphism of G, then, as in Lemma 2.1
of [1], p(u) = v implies that xz,, = z,. In this case, we say that x,, = 2, by symmetry.

Theorem 4.5. Let G be a connected graph with a cut edge uv. Suppose that uv is not a pendant edge. Let G,
be defined as in Lemma 3.5, see Figure 1. Then p2(G) > p%(G).

Proof. Let x be the Perron vector of Q(G).

Let Gy and G2 be the components of G — uv containing v and v, respectively. As we pass from G to G, the
distance between any vertex in V(Gs) \ {v} and any vertex in V(G;) is decreased by 1, the distance between
any vertex in V(Gz) \ {v} and v is increased by 1, and the distance between any other vertex pair remains
unchanged. So, by Rayleigh’s principle, we have

% ( ?(Guv) - P?(G)) > %XT (Q(Guw) —Q(G))x
= ¥ 3 (27<dc<w7y)71> _ Qfdc;(w,y)) (20 + )2
yEV(G2)\{v} weV(G1)
+ Y (2*((10(”79)+1) . Q*dc(vay)) (0 + 2)?
yeV(G2)\{v}
= Z Z 9—da(w,y) (20 + $y)2
yeV(G2)\{v} weV(G1)\{u}
+ Z 9 da(wy) (g 4 )% - Z 2~ (e +D) (g 4 ,)?
yeV(G2)\{v} yEV(G2)\{v}
= > S 2 (e, +ay)?
yeV(G2)\{v} weV(G1)\{u}
+ Z 27de W) (g — ) (2 + Ty + 2xy).
yEV(G2)\{v}
Let G' =G — {uw : w € Ng(u) \ {v}} + {vw : w € Ng(u)\ {v}}, i.e., G = Gyy. Similarly as above, we have
1

3 (P8(Gu) - A2G)) 2 3% (@Gw) - QUG)x

= Z Z Z_dc(w’y)(xw + xy)Q
yeV(G2)\{v} weV(Gi)\{u}
+ Z 2796 (2 — 2,) (T + Ty + 234).
weV (G1)\{u}

So, if x, > z,, then p(lQ(Guv) > p?(G), and otherwise, p?(Gm) > p(lQ(G). Note that Gy = Gyy. So p?(Guv) >
Q
Py (G). O
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Theorem 4.6. Let G be a tree on n > 3 wvertices. Then p(lQ(G) < % V=l with equality if and only if
G=Kipn.

Proof. Let d be the diameter of G. Then 2 < d < n — 1. Suppose that d > 3. Then there is an edge uv that is

not a pendant edge. By Theorem 4.7, p?(Guv) > p?(G). So, the tree with diameter two, K ,_1, is the unique

n-vertex tree that maximizes the closeness signless Laplcian spectral radius. By a direct calculation, we have
Q _ n—1++yvn—1

pr(Kip—1) = "=~ 0

Lemma 4.7. For integers { and n with 2 < ¢ < |%52], we have P2 (Dpy) < pY(Dpi-1).

Proof. Let x be the Perron vector of Q(D,, ) and let p = p?(Dn,g). Let u and v be two vertices in D,,; so
that the degree of u and v are £ + 1 and n — £ — 1, respectively. By symmetry, the entries of x at all pendant
neighbors of u (v, respectively) have the same value, which we denote by « (8, respectively).

By deleting a pendant edge at u and adding an edge between the resulted isolated vertex and v in D, o we
have a graph that is isomorphic to D, ¢—1. By Rayleigh’s principle, we have

5 (RO~ (Dn0)
>(-1) (é—i) (a—i—a)Q—l—(i—;) (+ 2,)?
7
+<;—i>(a+xv)2+(n—2—£)(i‘é)(a‘f‘ﬁ)? v
(-1 1 n-20-1

:T(i%a—&—ﬁ)(ﬁ—a)—l—z(xv—mu)(xv+xu+2a)—|— (a—&—ﬁ)z.

8

By deleting n — 2¢ — 1 pendant edges at v and adding edges between u and the resulted isolated vertices, we
have a graph that is isomorphic to D,, ,—;. Similarly as above, we have

1
2n—20—1)

2£<i;> (a+ﬁ)2+<;i> (24 + B)?
+(5-3) @ (3-1) @+ar

= (= T+ 20) + (@ 30) = ) + (o + B

(p?(Dn,f—l) - P?(Dn,fz»

e~ =

Case 1. z, > z,,.
Considering the entries of px = Q(D,, ¢)x at u and v, respectively, we have

n+l+2 /-1 1 1 n—40—2
(p‘g;>“—4a+2%+4%+8ﬁ
and
_2n—€ ﬂ—é +1 +1 +n—€—3ﬂ
Pm3 TRty TR
So

n -+ 2/ 3n—20—4 1
6’—, — < 0.
(p 8 >a <p 8 > 4(x“ 70) <0



SPECTRA OF CLOSENESS LAPLACIAN AND CLOSENESS SIGNLESS LAPLACIAN OF GRAPHS 3541

Note that 3n —20 —4>n+20 as2 < /¥ < L%J.Then

737172674
p 8

) <o )

By Interlacing theorem, we have p > cp, ,(v) = 2252 > 3n=2=4 By (9), we have a < 3. Now, by (7), we
have p3(Dp,e—1) > (D).
Case 2. x, > x,.

From px = Q(D,¢)x at u and v, we have

1 )
(P—n+€>$u=€a+xv+” Y

4 2 2 4
and
7271—6—2 I a+1x +n—£—2/8
p 4 v T gt 2
So
_n+€—2 o _2n—€—4 - _{a_n—E—Qﬁ
pm—g - Jr=qo-— 0
Notethatn—é—22€and2n—£—42n+€—2a82§€§L"T_Qj.Then
2n— {0 —4 n—~—2
(0= 25 - < 220 ), (10)

Note that p > cp, ,(v) = 22==2 > 2n==4 By (10), we have a > 3. Hence, by (8), we have p(l@(Dnj_l) >
ptl@(Dn,f)- O

Theorem 4.8. Let G be a tree on n > 3 vertices and G 22 K1 ,,—1. Then p?(G) < 1, with equality if and only
if G = D,, 1, where r,, is the largest root of f(t) =0 with

11n — 10 21n%2 —39n+6 16n3 — 35n2 — 47n + 128
t) =t — 3 2 — t
1) 8 + 32 128
N 2n* — 3n3 — 28n2% + 85n — 60
256 '

Proof. Suppose that G is a tree on n > 3 vertices and G 2 K ,,—; that maximizes the closeness signless Laplcian
spectral radius. Let d be the diameter of G. Then 3 < d < n — 1. By Theorem 4.7, d = 3. So G = D,, , with
1<a< ”T_Q Then by Lemma 4.7, we have G = D,, ;.

In the following we compute p = p?(Dn’l). Let x be the Perron vector of Q(D,, 1). Let v2 and vs be the two
vertices so that the degree of vy and v3 are 2 and n — 2, respectively. Label the pendant vertex at vy by vy, and
the other pendant vertices labeled by vy, ..., vy, respectively. Let z; = x,, for i = 1,...,n. By symmetry, for
all n — 3 pendant vertices at v, the corresponding entries in x are equal. Then

n+3 1 1 n—3
p— Ty = 5T2 + T3+ —— T4,

8 2 4 8
n+1 1 +1 +n—3
— To = =T —r3+ ———x
P 1 2 B) 1 B 3 4 4,

2n — 3 1 +1 +n—3
— r3 = —-T —x —=
14 1 3 1 1 B 2 B) 45
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and
in —9 1 n 1 n 1
— Ty = —-x1 + —x2 + —T3.
Pm73 PTRTI T T T g Te
So +3 1 1 3
n n—
P—73 2 T4 8
1 n+1 1 n—3
2 P T2 I
det 1 1 _2n—-3 _ n-3 =0.
i 2 P 7} o
1 1 1 4n—9
-5 1 —2 P
By a direct calculation, this determinant is just equal to f(p). It thus follows that p is the largest root of
f) =0. |

5. CONCLUDING REMARKS

In [1], a number of results have been obtained to connect the spectral properties of the closeness matrix
and the structural properties of graphs. In this paper, various connections between the spectral properties of
closeness Laplacian (closeness signless Laplacian, respectively) and structural properties of graphs are estab-
lished, and extremal problems to minimize certain closeness Laplacian (closeness signless Laplacian, respectively)
eigenvalues are investigated. The two Laplacians based on closeness may be studied for any graphs, while the
distance versions applied only to connected graphs, see [12]. As compared to the ordinary Laplacian and signless
Laplacian based on adjacency, the versions considered in this article also have merits as distances should be
considered so as to reveal more elusive connections between spectral and structural properties. There are lots of
problems to further study. For example, one may consider more extremal problems for different graph classes,
and the corrections between the largest closeness Laplacian and closeness signless Laplacian eigenvalues and
other distance-based graph invariants such as radius, diameter, average distance, average eccentricity, remote-
ness and proximity, see, e.g. [15,16]. As in [17], one may also merge the spectral properties of closeness matrix
and its signless Laplacian.

Acknowledgements. The authors thank the referees for constructive comments and suggestions. This work was supported
by the National Natural Science Foundation of China (No. 12071158).
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