
RAIRO-Oper. Res. 56 (2022) 3461–3470 RAIRO Operations Research
https://doi.org/10.1051/ro/2022154 www.rairo-ro.org

OPTIMAL STRATEGY FOR A PERIODIC REVIEW INVENTORY SYSTEM
WITH DISCOUNTED VARIABLE COST AND FINITE ORDERING CAPACITY

Chenbo Zhu1 , Baimei Yang2,* , Hongwei Ma2,
Chunyan Gao3 and Jiahao Chen4

Abstract. We study a periodic review inventory system with finite ordering capacity, and assume the
variable ordering cost would be discounted when the ordering quantity is the full capacity. Applying
the concept of strong 𝐶𝐾-concavity, we show that the optimal pricing and ordering strategy could be
partially characterized by an (𝑆, 𝑆′, 𝑝) strategy in four regions depending on the starting inventory level
per period. Numerical experiments verify the proposed strategy.
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1. Introduction

Limiting purchase quantity and providing discounted prices are two of the most common sales strategies. On
the one hand, when the products sell well, which indicates that demand exceeds supply, suppliers are likely to
sell goods by limiting purchase quantity. On the other hand, when the products are unsaleable, which indicates
that supply exceeds demand, suppliers are likely to stimulate sales by providing discounted prices. In traditional
business practices, suppliers will not adopt the two sales strategies simultaneously.

However, in the live streaming market, finite ordering capacity and price discounts have been perfectly unified.
On live streaming marketing platforms in China such as Taobao Live and Tik Tok Live, suppliers usually provide
limited quantity of products, aiming to promote products but not make profits, while live streaming stores in
China, especially popular ones, can often attract hundreds of thousands, millions or even tens of millions of
people watching the live stream at the same time. In order to promote their products to more audiences and
give more people the opportunity to buy the goods, suppliers often limit purchase quantity for each buyer. At
the same time, in order to show that the products sell well and many people are rushing to buy them, suppliers
always provide low prices, which are much lower than prices offered by physical stores as well as traditional
online stores. Moreover, many suppliers will provide quantity discounts in order to motivate each audience
member to buy as many goods as possible so as to enjoy the quantity discounts. For example, one product is
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sold by the following rule: buy one at the original price, the second at half price, the third at CNY 0.1, and the
fourth free. Sometimes, even if the quantity discount is given only when the buyers order up to the capacity
limit, products will still be sold out quickly (which is the case we investigate in this paper). Therefore, on these
live streaming marketing platforms, finite ordering capacity and price discounts can be unified.

Furthermore, we observe many other cases in the supply chain that finite ordering capacity and price dis-
counts coexist. On the one hand, suppliers usually set a quantity limit on an order due to production, inventory
or transportation capacity, or to avoid buyer dependence. On the other hand, the suppliers prefer large-volume
orders, and would like to give buyers a discount when they purchase more than a specified number of prod-
ucts. For example, Xiaoxmi, a famous mobile phone manufacturer in China, often adopts “hunger marketing”
strategies for its products; it restricts the upper bound of allocated quantity of products to every distributor,
and also offers quantity discounts to them. When considering both finite ordering capacity and price discounts,
for the buyer, is the classical (𝑠, 𝑆) policy still optimal? The answer is negative.

Several studies have been conducted to analyze and calculate the optimal procurement (inventory replen-
ishment) policy of an inventory system with price discounts and finite supply capacity. Both Manerba and
Mansini [1] and Tan and Alp [2] considered a procurement problem of a company that needs to purchase prod-
ucts from a set of capacitated suppliers. The suppliers offer total quantity discounts, which are independent
of the ordering capacity. These models only consider a single period, and do not theoretically construct the
optimal procurement strategy.

In this paper, we study a periodic review inventory system in which the ordering quantity is limited. We
assume the variable cost would be discounted if the order quantity is full. The objective is to maximize the
expected total discounted profit over the whole planning horizon. Supported by the concepts of strong 𝐶𝐾-
concavity, we point out that the optimal pricing and ordering strategy for the system is partially characterized
by an (𝑆, 𝑆′, 𝑝) policy in four regions of the starting inventory level per period separately.

Our model has a close relationship with the system in terms of setup cost and finite capacity. Several studies
have been conducted to analyze the optimal strategy of an inventory system with setup cost and finite capacity.
If there is no setup cost, Federgruen and Zipkin [3, 4] pointed out that the optimal strategy for the system
is regarded as the modified base-stock policy. However, when the setup cost is fixed, the optimal strategy is
very complicated. Chen and Lambrecht [5] and Chen [6] have shown that the optimal ordering policy could be
partially characterized in the form of 𝑋−𝑌 bands. Then Gallego and Scheller-Wolf [7] refined the policy between
the bands into four regions by two thresholds 𝑠 and 𝑠′. In Gallego and Toktay [8], the ordering quantity could
only be either zero or the maximum capacity. Chao et al. [9] considered a periodic review inventory system with
finite ordering capacity and setup cost.

Our research is also related to the studies on quantity-dependent variable costs, especially when the ordering
cost functions are concave. Porteus [10] analyzed inventory systems with concave ordering costs. Fox et al. [11]
studied a periodic review inventory system with two suppliers, one with a high variable cost but low fixed cost,
and the other with a low variable cost but high fixed cost. In Chao and Zipkin [12], if the order quantity is
greater than the contracted volume, the fixed cost could be incurred. Chen et al. [13] applied a new preservation
property of quasi-K-concavity to study single-product periodic review inventory models with concave ordering
cost. Caliskan-Demirag et al. [14] studied a periodic review inventory model in which the order quantity decides
the fixed setup cost.

Finally, our work is partly related to the problem of the coordination of pricing and inventory replenish-
ment. Whitin [15] was the first to study the newsvendor problem in which the demand depends on the price.
Petruzzi and Dada [16] conducted a further study on the basis of Whitin. Thomas [17] studied a periodic review
inventory system with finite horizon and fixed-ordering cost and assumed that the demand is price-dependent.
Pekelman [18] considered a joint pricing and production optimization model in which the demand is linear. On
the basis of Pekelman [18], Feichtinger and Hartl [19] extended the system into a model in which the demand
is non-linear. Federgruen and Heching [20] considered the optimal pricing and inventory strategy for both the
infinite and finite horizon problems, which could be considered as a base-stock list-price strategy. Polatoglu
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and Sahin [21] investigated a model which is similar to the one in Thomas [17], and Polatoglu and Sahin [21]
studied a lost-sales system.

The rest of this paper is organized as follows. In Section 2, we present our model. Then, we provide the
analytical results in Section 3. The numerical results are provided in Section 4. Finally, we present the conclusion.

2. Model

We study a periodic review inventory system, in which the ordering quantity per period cannot exceed 𝐶.
Assume there are 𝑁 periods, from period 1 to period 𝑁 . In each period, the variable ordering cost per unit is
𝑐 when the ordering quantity is less than 𝐶. Otherwise, the variable ordering cost per unit is 𝑐1, where 𝑐1 < 𝑐.
And we assume the ordering leadtime is zero, which implies that, before the demand is realized, an order placed
would be fulfilled immediately at the beginning of a period. We further assume that the random demand is
price-dependent, which indicates that 𝐷𝑛(𝑝𝑛) is determined by 𝑝𝑛. Similar to Petruzzi and Dada [16] and Chen
and Simchi-Levi [22], we consider the additive demand. Assume the selling price is 𝑝𝑛 in period 𝑛, the demand
in the same period is given as follows

𝐷𝑛(𝑝𝑛) = 𝑑(𝑝𝑛) + 𝜖𝑛,

where 𝜖𝑛 is a random variable, and the mean value of 𝜖𝑛 is zero. The selling price 𝑝𝑛 in period 𝑛 is defined over
[𝑝, 𝑝], and it is a decision variable. 𝑑(𝑝𝑛) is the average demand, which is decreasing in 𝑝𝑛. Therefore, when 𝑝𝑛

decreases from 𝑝 to 𝑝, 𝑑(𝑝𝑛) will increase from 𝑑(𝑝) to 𝑑(𝑝). For simplicity, let 𝑑 denote 𝑑(𝑝), 𝑑 denote 𝑑(𝑝), and
𝑝 = 𝑝(𝑑) denote the inverse function of 𝑑(𝑝), which indicates that 𝑝(𝑑) will decrease as 𝑑 increases. Then the
expected revenue is given as

𝑅(𝑑) = 𝑑 · 𝑝(𝑑).

We assume 𝑑(𝑝) is a concave continuous function with a continuous inverse, therefore, the expected revenue
𝑅(𝑑) is also concave. For example, if 𝑑(𝑝𝑛) is a linear decreasing function of 𝑝𝑛, then it is clear that 𝑅(𝑑) is
concave in 𝑑.

The sequence of events happening in one period is as follows: (1) review the inventory level; (2) release the
replenishment order; (3) the replenishment order arrives, (4) set the selling price; (5) the random demand is
realized, and (6) all costs are collected.

Suppose the inventory level on hand is 𝑥𝑛, and the inventory level on hand plus on order is 𝑦𝑛 at the beginning
of period 𝑛, and unsatisfied demands are fully backlogged. Because the ordering quantity is constrained, we
have

𝑥𝑛 ≤ 𝑦𝑛 ≤ 𝑥𝑛 + 𝐶.

At the end of each period, assume the inventory level is 𝑧, a cost 𝐺(𝑧) is generated, which is a convex function
of 𝑧, and would be the inventory holding cost when 𝑧 ≥ 0, and be the shortage cost when 𝑧 < 0. Given that the
expected demand for period 𝑛 is 𝐷𝑛, the expected holding and shortage cost in period 𝑛 is given as 𝐺(𝑦𝑛−𝐷𝑛).
Then in period 𝑛, the expected total cost can be written as

𝑐(𝑦𝑛 − 𝑥𝑛)1[𝑥𝑛 ≤ 𝑦𝑛 < 𝑥𝑛 + 𝐶] + 𝑐1𝐶1[𝑦𝑛 = 𝑥𝑛 + 𝐶] + 𝐸[𝐺(𝑦𝑛 −𝐷𝑛)],

where 1[𝐴] is the indicate function taking value 1 if statement A is true and 0 otherwise.
Let 𝑊𝑛(𝑥𝑛) be the maximum expected total discounted profit from period 𝑛 to the last period, when the

inventory level before the replenishment order is 𝑥𝑛. Assume 𝛼 be the discount factor per period, 𝛼 ∈ [0, 1].
The optimality equation is given as follows

𝑊𝑛(𝑥𝑛) = max
𝑥𝑛≤𝑦𝑛≤𝑥𝑛+𝐶

max
𝑑𝑛∈[𝑑,𝑑]

{𝑅(𝑑𝑛)− 𝑐(𝑦𝑛 − 𝑥𝑛)1[𝑥𝑛 ≤ 𝑦𝑛 < 𝑥𝑛 + 𝐶]

− 𝑐1𝐶1[𝑦𝑛 = 𝑥𝑛 + 𝐶]− 𝐸[𝐺(𝑦𝑛 − 𝑑𝑛 − 𝜖𝑛)] + 𝛼𝐸[𝑊𝑛+1(𝑦𝑛 − 𝑑𝑛 − 𝜖𝑛)]},

where the objective is to develop the optimal pricing and ordering strategy that maximizes the expected total
discounted profit within the planning horizon. The terminal condition is 𝑊𝑁+1(𝑥) ≡ 0.
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3. Analytical results

To find the optimal strategy, we need to make some new assumptions and notations firstly. Note that the unit
cost will be discounted if the order quantity is full, which means that the cost will be reduced by (𝑐−𝑐1)𝐶 when
the ordering quantity is the full capacity. For convenience, we assume (𝑐 − 𝑐1)𝐶 = 𝐾. Then, the optimization
equation 𝑊𝑛(𝑥𝑛) will change to:

𝑊𝑛(𝑥𝑛) = max
𝑥𝑛≤𝑦𝑛≤𝑥𝑛+𝐶

max
𝑑𝑛∈[𝑑,𝑑]

{𝑅(𝑑𝑛)−𝐾1[𝑦𝑛 < 𝑥𝑛 + 𝐶] + 𝐾 − 𝑐(𝑦𝑛 − 𝑥𝑛)

−𝐸[𝐺(𝑦𝑛 − 𝑑𝑛 − 𝜖𝑛)] + 𝛼𝐸[𝑊𝑛+1(𝑦𝑛 − 𝑑𝑛 − 𝜖𝑛)]}.

Suppose 𝑢𝑛 = −𝑥𝑛 − 𝐶, 𝑣𝑛 = −𝑦𝑛 and 𝐿𝑛(𝑢𝑛) = 𝑊𝑛(−𝑢𝑛 − 𝐶). Then we will have

𝐿𝑛(𝑢𝑛) = 𝐾 − 𝑐(𝑢𝑛 + 𝐶) + max
𝑢𝑛≤𝑣𝑛≤𝑢𝑛+𝐶

max
𝑑𝑛∈[𝑑,𝑑]

{𝑅(𝑑𝑛)−𝐾1[𝑣𝑛 > 𝑢𝑛] + 𝑐𝑣𝑛

−𝐸[𝐺(−𝑣𝑛 − 𝑑𝑛 − 𝜖𝑛)] + 𝛼𝐸[𝐿𝑛+1(𝑣𝑛 − 𝐶 + 𝑑𝑛 + 𝜖𝑛)]}.

Then we will introduce the definition of strong 𝐶𝐾-concave which is crucial in finding the optimal strategy in
this inventory system (see [9] for detail).

Definition. A function 𝑔(.) : R → R is strong 𝐶𝐾-concave if, for all 𝑎 ≥ 0,𝑏 > 0 and 𝑧 ∈ [0, 𝐶], we have

𝑧

𝑏
𝑔(𝑦 − 𝑎) + 𝑔(𝑦) ≥ 𝑧

𝑏
𝑔(𝑦 − 𝑎− 𝑏) + 𝑔(𝑦 + 𝑧)−𝐾. (1)

According to Chao et al. [9], there are some properties on strong 𝐶𝐾-concave. E.g., 𝐾-concavity is a special case
of strong 𝐶𝐾-concavity when 𝐶 = ∞ and 𝑏 = 0. Concavity is also strong 𝐶𝐾-concavity for any nonnegative 𝐶
and 𝐾. If 𝐺 is a strong 𝐶𝐾-concave function, then it is also a strong 𝐷𝐿-concave function, if 0 ≤ 𝐷 ≤ 𝐶 and
𝐿 ≥ 𝐾. If 𝐺𝑖 is a strong 𝐶𝐾𝑖-concave function (𝑖 = 1, 2), then 𝛼𝐺1+𝛽𝐺2 is also a strong 𝐶(𝛼𝐾1+𝛽𝐾2)-concave
function, if 𝛼, 𝛽 ≥ 0. And if 𝐺 is a strong 𝐶𝐾-concave function, then 𝐸[𝐺(𝑦−𝑋)] is also a strong 𝐶𝐾-concave
function for any random variable 𝑋 such that the expectation exists.

Based on the definition of strong 𝐶𝐾-concave, Lemmas 1 and 2 in Chao et al. [9] show that if 𝑊𝑛(𝑦) is strong
𝐶𝐾-concave, then so is

𝑔(𝑦) = max
𝑑𝑛∈[𝑑,𝑑]

{𝑟𝑛(𝑑𝑛) + 𝑊𝑛(𝑦 − 𝑑𝑛)},

where 𝑟𝑛(𝑑) is concave. Furthermore, Theorem 1 in Chao et al. [9] shows that the optimality equation

𝑉𝑛(𝑥) = 𝑐𝑥 + max
𝑥≤𝑦≤𝑥+𝐶

{−𝐾1[𝑦 > 𝑥]− 𝑐𝑦}+ max
𝑑𝑛∈[𝑑,𝑑]

{𝑟(𝑑𝑛) + 𝑊𝑛(𝑦 − 𝑑𝑛)}

is also strong 𝐶𝐾-concave, and the structure of the optimal inventory and pricing policy for each period is
characterized by an (𝑠, 𝑠′, 𝑝) policy in four regions of the starting inventory level.

Based on Lemmas 1, 2 and Theorem 1 in Chao et al. [9], it is easy to obtain the following lemma.

Lemma 1. Given that 𝑅(𝑑𝑛) is concave in 𝑑𝑛, and 𝐺(𝑧) is convex in 𝑧, then 𝐿𝑛(𝑢𝑛) is 𝐶𝐾-concave, 𝑛 =
1, . . . , 𝑁 .

Proof. Suppose 𝐿𝑛+1(𝑢𝑛+1) is strong 𝐶𝐾-concave, we can show that 𝐿𝑛(𝑢𝑛) is also strong 𝐶𝐾-concave. Note
that 𝑅(𝑑𝑛) is concave in 𝑑𝑛, and 𝐺(𝑧) is convex in 𝑧. Assume

𝐿′𝑛(𝑣𝑛) = max
𝑑𝑛∈[𝑑,𝑑]

{𝑅(𝑑𝑛)− 𝐸[𝐺(−𝑣𝑛 − 𝑑𝑛 − 𝜖𝑛)] + 𝛼𝐸[𝐿𝑛+1(𝑣𝑛 − 𝐶 + 𝑑𝑛 + 𝜖𝑛)]}.
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According to Lemmas 1 and 2 in Chao et al. [9], it is clear that 𝐿′𝑛(𝑣𝑛) is also strong 𝐶𝐾-concave. Note that,

𝐿𝑛(𝑢𝑛) = 𝐾 − 𝑐(𝑢𝑛 + 𝐶) + max
𝑢𝑛≤𝑣𝑛≤𝑢𝑛+𝐶

{−𝐾1[𝑣𝑛 > 𝑢𝑛] + 𝑐𝑣𝑛 + 𝐿′𝑛(𝑣𝑛)}.

Hence, based on the proof of Theorem 1 in Chao et al. [9], 𝐿𝑛(𝑢𝑛) is also strong 𝐶𝐾-concave. Because 𝑊𝑁+1(𝑥) ≡
0, it is obvious 𝐿𝑁+1(𝑢) ≡ 0, which indicates that 𝐿𝑁+1(𝑢𝑁+1) is strong 𝐶𝐾-concave. Therefore, 𝐿𝑛(𝑢𝑛) is
strong 𝐶𝐾-concave, where 𝑛 = 1, . . . , 𝑁 . �

We then characterize the optimal strategy of the system in the following theorem.

Theorem 1. Given that 𝐿𝑛(𝑢𝑛) is 𝐶𝐾-concave. Suppose 𝑥𝑛 is the inventory level on hand, and 𝑦𝑛 is the
inventory level on hand plus on order at the beginning of period 𝑛. The optimal pricing and ordering strategy of
𝑊𝑛(𝑥𝑛) is characterized by the optimal pricing 𝑝*𝑛(𝑦𝑛) and two threshholds 𝑆𝑛 and 𝑆′𝑛, 𝑝*𝑛(𝑦𝑛) depends on 𝑦𝑛

and 𝑆𝑛 ≥ 𝑆′𝑛 ≥ 0. If 𝑆′𝑛 + 𝐶 ≥ 𝑆𝑛, then the optimal ordering strategy is given as

(i) order nothing if 𝑥𝑛 > 𝑆′𝑛;
(ii) order at most up to 𝑆′𝑛 if 𝑆𝑛 − 𝐶 < 𝑥𝑛 ≤ 𝑆′𝑛;

(iii) order either capacity 𝐶 or at most up to 𝑆′𝑛 if 𝑆′𝑛 − 𝐶 < 𝑥𝑛 ≤ 𝑆𝑛 − 𝐶; and
(iv) order capacity 𝐶 if 𝑥𝑛 ≤ 𝑆′𝑛 − 𝐶.

Else if 𝑆′𝑛 + 𝐶 < 𝑆𝑛, then the optimal ordering strategy is given as

(i’) order nothing if 𝑥𝑛 > 𝑆𝑛 − 𝐶;
(ii’) order either capacity 𝐶 or nothing if 𝑆′𝑛 < 𝑥𝑛 ≤ 𝑆𝑛 − 𝐶;

(iii’) order either capacity 𝐶 or at most up to 𝑆′𝑛 if 𝑆′𝑛 − 𝐶 < 𝑥𝑛 ≤ 𝑆′𝑛; and
(iv’) order capacity 𝐶 if 𝑥𝑛 ≤ 𝑆′𝑛 − 𝐶.

Proof. Because 𝐿𝑛(𝑢𝑛) is 𝐶𝐾 − 𝑐𝑜𝑛𝑐𝑎𝑣𝑒, according to Theorem 1 in Chao et al. [9], the optimal strategy of
𝐿𝑛(𝑢𝑛) is characterized by the optimal pricing 𝑝*𝑛(𝑣𝑛) and two threshholds 𝑠𝑛 and 𝑠′𝑛, such that 𝑝*𝑛(𝑣𝑛) depends
on the post-order inventory level 𝑣𝑛 and 𝑠𝑛 ≤ 𝑠′𝑛. If 𝑠′𝑛 − 𝐶 ≤ 𝑠𝑛, the optimal ordering strategy is

(i) place an order of a quantity of 𝐶 if 𝑢𝑛 < 𝑠′𝑛 − 𝐶;
(ii) place an order for an amount to bring the inventory level at least up to 𝑠′𝑛 if 𝑠′𝑛 − 𝐶 ≤ 𝑢𝑛 < 𝑠𝑛;

(iii) no order is placed or place an order for an amount to bring the inventory level at least up to 𝑠′𝑛 if
𝑠𝑛 ≤ 𝑢𝑛 < 𝑠′𝑛; and

(iv) no order is placed if 𝑢𝑛 ≥ 𝑠′𝑛.

Else if 𝑠′𝑛 − 𝐶 > 𝑠𝑛, then the optimal ordering strategy is

(i’) place an order of a quantity of 𝐶 if 𝑢𝑛 < 𝑠𝑛;
(ii’) no order is placed or place an order of a quantity of 𝐶 if 𝑠𝑛 ≤ 𝑢𝑛 < 𝑠′𝑛 − 𝐶;

(iii’) no order is placed or place an order for an amount to bring the inventory level at least up to 𝑠′𝑛 if
𝑠′𝑛 − 𝐶 ≤ 𝑢𝑛 < 𝑠′𝑛; and

(iv’) no order is placed if 𝑢𝑛 ≥ 𝑠′𝑛.

This theorem can be proved based on the optimal policy of 𝐿𝑛(𝑢𝑛). We only characterize the optimal strategy
of 𝑊𝑛(𝑥𝑛) in the scenario of 𝑆′𝑛 +𝐶 ≥ 𝑆𝑛 and 𝑥𝑛 > 𝑆′𝑛, and the proof is similar in other scenarios. If 𝑠′𝑛−𝐶 ≤ 𝑠𝑛

and 𝑢𝑛 < 𝑠′𝑛−𝐶, the optimal ordering strategy of 𝐿𝑛(𝑢𝑛) is to place an order of a quantity of 𝐶, which indicates
𝑣*𝑛 = 𝑢*𝑛 + 𝐶. Note that 𝑢𝑛 = −𝑥𝑛 − 𝐶 and 𝑣𝑛 = −𝑦𝑛, it implies that when −𝑥𝑛 − 𝐶 < 𝑠′𝑛 − 𝐶, the optimal
ordering strategy is −𝑦*𝑛 = −𝑥*𝑛, which means that the optimal ordering strategy is no order. Furthermore,
𝑢𝑛 < 𝑠′𝑛 − 𝐶 implies that 𝑥𝑛 > −𝑠′𝑛, therefore, when 𝑠′𝑛 − 𝐶 ≤ 𝑠𝑛 and 𝑥𝑛 > −𝑠′𝑛, the optimal ordering
strategy of 𝐿𝑛(𝑥𝑛) is no order. Moreover, the optimal pricing 𝑝*𝑛(𝑦𝑛) depends on 𝑦𝑛. For convenience, we assume
𝑆′𝑛 = −𝑠′𝑛 and 𝑆𝑛 = −𝑠𝑛. Therefore, the optimal ordering strategy of 𝑊𝑛(𝑥𝑛) is no order when 𝑆′𝑛 +𝐶 ≥ 𝑆𝑛 and
𝑥𝑛 > 𝑆′𝑛. �
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Figure 1. Maximum total expected discounted profit for different 𝑐1.

Figure 2. Optimal post-order inventory level 𝑦 for different 𝑐1.

4. Numerical experiments

In this section, we conduct several numerical experiments for this periodic review inventory system, where the
variable unit ordering cost is discounted when the ordering quantity is the full capacity. We further investigate
the effects of various parameters on the control strategy and the profit.

To validate our analytical results, we consider a 4-period inventory problem, and set the discount factor 𝛼 to
0.9. In period 𝑛, the demand is given as 𝐷𝑛(𝑝𝑛) = 𝑑(𝑝𝑛)+𝜖𝑛, where 𝑑(𝑝𝑛) = 10−𝑝𝑛, and 𝜖𝑛 is a random variable,
with the probability mass function 𝑃{𝜖𝑛 = 1} = 𝑃{𝜖𝑛 = −1} = 0.5, 𝑛 = 1, . . . , 4. Therefore, 𝑅(𝑑) = 𝑑(10− 𝑑).
Other parameters are given as follows: the unit holding cost ℎ = 2, the unit shortage cost 𝑏 = 4, the ordering
capacity 𝐶 = 10, the variable unit ordering cost 𝑐 = 3 for the case when the ordering capacity is less than 𝐶,
and the variable unit ordering cost 𝑐1 = 2.5 for the case when the ordering capacity is equal to 𝐶.

4.1. Effects of the discounted variable ordering cost

In this subsection, we illustrate the optimal pricing and ordering strategy for different values of the discounted
variable unit ordering cost 𝑐1. The results are shown in Figures 1–3, where the 𝑥-axis is the initial inventory
level on hand 𝑥. Here, the value of 𝑥 increases from −10 to 15, with the increment of 1. In Figure 1, the 𝑦-axis
displays the maximum expected total discounted profit. In Figure 2, the 𝑦-axis displays the optimal post-order
inventory level 𝑦. In Figure 3, the 𝑦-axis displays the optimal average selling quantity 𝑑(𝑥).

In Figure 1, when the initial inventory level on hand 𝑥 is small, the maximum expected total discounted
profit is increasing in 𝑥. However, after the maximum expected total discounted profit reaches the maximum
value, it will decrease in 𝑥. Obviously, the profit is not concave in the initial inventory level 𝑥. In addition, when
𝑥 is large enough, the maximum total expected discounted profit will not change with respect to the discounted
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Figure 3. Optimal average selling quantity 𝑑(𝑥) for different 𝑐1.

variable ordering cost 𝑐1. That is because when 𝑥 is large enough, the optimal ordering quantity will be always
less than the full capacity. Therefore, 𝑐1 will not affect the profit.

In Figure 2, the optimal post-order inventory level 𝑦 is increasing in the initial inventory level on hand 𝑥 when
𝑥 is small. This is because when 𝑥 is small, the optimal ordering strategy is ordering the full capacity. Then 𝑦
will decrease when 𝑥 increases to 𝑆𝑛 − 𝐶 + 1, and the reason is that the optimal ordering strategy changes to
ordering at most up to 𝑆′𝑛. Then 𝑦 is still non-decreasing in 𝑥 when 𝑥 > 𝑆𝑛 − 𝐶, because the optimal ordering
strategy is ordering at most up to 𝑆′𝑛 when 𝑆𝑛 − 𝐶 < 𝑥 ≤ 𝑆′𝑛, and the optimal strategy is ordering nothing
when 𝑥 > 𝑆′𝑛.

In Figure 3, when the initial inventory level on hand 𝑥 ≤ 𝑆𝑛 − 𝐶, the optimal average selling quantity 𝑑(𝑥)
is increasing in 𝑥. However, 𝑑(𝑥) will decline when 𝑥 = 𝑆𝑛 − 𝐶 + 1. Then 𝑑(𝑥) keeps non-decreasing in 𝑥 again
when 𝑥 > 𝑆𝑛 − 𝐶. Furthermore, compared with Figure 2, we find that when the optimal post-order inventory
level 𝑦 keeps constant, 𝑑(𝑥) also keeps constant, the reason is that the optimal selling price 𝑝*𝑛(𝑦) depends on
both 𝑦 and 𝑑(𝑥).

In addition, from Figures 1 to 3, we could see that the maximum total expected discounted profit, the optimal
post-order inventory level 𝑦, and the optimal average selling quantity 𝑑(𝑥) are all non-increasing in 𝑐1. First, it
is obvious that the profit should be non-decreasing in the cost 𝑐1. Second, when ordering the full capacity, there
will be more cost saving if 𝑐1 is smaller, therefore, if the initial inventory level on hand is given, it is better
to order the full capacity when 𝑐1 is smaller. Third, the average selling quantity 𝑑(𝑥) is non-decreasing in 𝑦,
therefore, 𝑑(𝑥) is also non-increasing in 𝑐1.

Finally, we find that 𝑆′1 is always equal to 𝑆1 in all these cases, and both 𝑆1 and 𝑆′1 are non-increasing in 𝑐1,
which is consistent with our intuition, and the more the discount is, the more we prefer to order. These findings
are shown in Figure 4.

4.2. Effects of the ordering capacity

In this subsection, we investigate the effects of ordering capacity 𝐶 on the optimal pricing and ordering
strategy. The results are shown in Figure 5–7, where the 𝑥-axis is the initial inventory level on hand 𝑥. Here,
the value of 𝑥 increases from −10 to 15, with the increment of 1. In Figure 5, the 𝑦-axis displays the maximum
expected total discounted profit. In Figure 6, the 𝑦-axis displays the optimal post-order inventory level 𝑦. In
Figure 7, the 𝑦-axis displays the optimal average selling quantity 𝑑(𝑥).

In Figure 5, the maximum total expected discounted profit is also increasing in the initial inventory level
𝑥 when 𝑥 is small. Then it is decreasing in 𝑥 after the maximum expected total discounted profit reaches its
largest value. This observation is similar to what is shown in Figure 1. However, different values of 𝐶 could
make different effects on the maximum expected total discounted profit when 𝑥 is small.

In Figure 6, when the initial inventory level on hand 𝑥 ≤ −𝑠𝑛 − 𝐶, the optimal post-order inventory level 𝑦
is increasing in 𝑥, because 𝑦 = 𝑥 + 𝐶 always holds in this case. When 𝑥 = −𝑠𝑛 −𝐶 + 1, the optimal post-order
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Figure 4. Optimal numbers 𝑆1 and 𝑆′1 for different 𝑐1.

Figure 5. Maximum total expected discounted profit for different 𝐶.

Figure 6. Optimal post-order inventory level 𝑦 for different 𝐶.

inventory level 𝑦 suddenly drops. After that 𝑦 starts to be non-decreasing in 𝑥 when 𝑥 > −𝑠𝑛 − 𝐶. And there
also exist some quantities that buyers will never order. These observations are also similar with what is shown
in Figure 2. However, different values of 𝐶 could also make different effects on the optimal post-order inventory
level 𝑦 when 𝑥 is small.

In Figure 7, when 𝐶 = 10 and 𝐶 = 12, the observations are similar as what it is shown in Figure 3. When
the initial inventory level on hand 𝑥 ≤ −𝑠𝑛 − 𝐶, the optimal average selling quantity 𝑑(𝑥) is increasing in 𝑥.
At the point when 𝑥 = −𝑠𝑛 − 𝐶 + 1, 𝑑(𝑥) suddenly drops. Then 𝑑(𝑥) starts to be non-decreasing in 𝑥 again
when 𝑥 > −𝑠𝑛 − 𝐶. When 𝐶 = 8, the observation has a little difference that the curve drops twice before
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Figure 7. Optimal average selling quantity 𝑑(𝑥) for different 𝐶.

Figure 8. Optimal numbers 𝑆1 and 𝑆′1 for different 𝐶.

it continues to be non-decreasing in 𝑥. Furthermore, compared with Figure 6, 𝑑(𝑥) keeps constant when the
optimal post-order inventory level 𝑦 keeps unchanged.

In this subsection, we also find that 𝑆′1 is always equal to 𝑆1 in all these cases. Both 𝑆1 and 𝑆′1 are non-
decreasing in 𝐶. Moreover, 𝑆′1−𝐶, the upper limit for the full capacity order, is decreasing in 𝐶, which indicates
that the more we have to order to enjoy the discount, the less we prefer to order the full capacity. These findings
are shown in Figure 8.

5. Conclusion

In this paper, we study a periodic review inventory system with finite ordering capacity. In addition, if
the system orders the full capacity, the variable ordering cost will be discounted, and both the price and the
ordering quantity are decision variables. The optimal pricing and ordering strategy is partially characterized
by an (𝑆, 𝑆′, 𝑝) strategy in four regions, which depends on the initial inventory level per period. We find that
𝑆 and 𝑆′ turn out to be the same in the numerical results. Moreover, both 𝑆 and 𝑆′ are increasing in 𝑐1 and
decreasing in 𝐶. Future research directions include designing effective algorithms to calculate values of 𝑆 and
𝑆′.
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