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A NOTE ON THE DOUBLE DOMINATION NUMBER IN MAXIMAL
OUTERPLANAR AND PLANAR GRAPHS

Noor A’lawiah Abd Aziz1, Nader Jafari Rad2,* and Hailiza Kamarulhaili1

Abstract. In a graph, a vertex dominates itself and its neighbors. A subset 𝑆 of vertices of a graph 𝐺
is a double dominating set of 𝐺 if 𝑆 dominates every vertex of 𝐺 at least twice. The double domination
number 𝛾×2(𝐺) of 𝐺 is the minimum cardinality of a double dominating set of 𝐺. In this paper, we
prove that the double domination number of a maximal outerplanar graph 𝐺 of order 𝑛 is bounded
above by 𝑛+𝑘

2
, where 𝑘 is the number of pairs of consecutive vertices of degree two and with distance

at least 3 on the outer cycle. We also prove that 𝛾×2(𝐺) ≤ 5𝑛
8

for a Hamiltonian maximal planar graph
𝐺 of order 𝑛 ≥ 7.
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1. Introduction

For graph theory notation and terminology not given here we refer to [6]. We consider finite, undirected and
simple graphs 𝐺 with vertex set 𝑉 = 𝑉 (𝐺) and edge set 𝐸 = 𝐸(𝐺). The number of vertices of 𝐺 is called
the order of 𝐺 and is denoted by 𝑛 = 𝑛(𝐺). The open neighborhood of a vertex 𝑣 ∈ 𝑉 is 𝑁(𝑣) = 𝑁𝐺(𝑣) =
{𝑢 ∈ 𝑉 | 𝑢𝑣 ∈ 𝐸} and the closed neighborhood of 𝑣 is 𝑁 [𝑣] = 𝑁𝐺[𝑣] = 𝑁(𝑣) ∪ {𝑣}. The degree of a vertex 𝑣,
denoted by deg(𝑣) (or deg𝐺(𝑣) to refer to 𝐺), is the cardinality of its open neighborhood. We denote by 𝛿(𝐺)
and ∆(𝐺), the minimum and maximum degrees among all vertices of 𝐺, respectively. A plane graph 𝐺 is said
to be a triangulated disc if all of its faces except the infinite face are triangles. A graph 𝐺 is outerplanar if it
has an embedding in the plane such that all vertices belong to the boundary of its outer face. A planar (resp.
outerplanar) graph 𝐺 is maximal if 𝐺 + 𝑢𝑣 is not planar (resp. outerplanar) for any two nonadjacent vertices
𝑢 and 𝑣 of 𝐺. An inner face of a maximal outerplanar graph 𝐺 is said to be an internal triangle if it is not
adjacent to the outer face. A maximal outerplanar graph 𝐺 is called striped if it has no internal triangles. A
subset 𝑆 ⊆ 𝑉 is a dominating set of 𝐺 if every vertex in 𝑉 −𝑆 has a neighbor in 𝑆. The domination number 𝛾(𝐺)
is the minimum cardinality of a dominating set of 𝐺. For a comprehensive survey on the subject of domination
parameters in graphs the reader can refer to the two books [6, 7].

Harary and Haynes [5] defined a generalization of domination, namely 𝑘-tuple domination. For a positive
integer 𝑘, a subset 𝑆 of vertices of a graph 𝐺 is a 𝑘-tuple dominating set of 𝐺 if for every vertex 𝑣 ∈ 𝑉 (𝐺),

Keywords. Domination, double domination, maximal outerplanar graph, Hamiltonian maximal planar graph.

1 School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM Penang, Malaysia
2 Department of Mathematics, Shahed University,Tehran, Iran.
*Corresponding author: n.jafarirad@gmail.com

c○ The authors. Published by EDP Sciences, ROADEF, SMAI 2022

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1051/ro/2022150
https://www.rairo-ro.org
mailto:n.jafarirad@gmail.com
https://creativecommons.org/licenses/by/4.0


3368 N.A. ABD AZIZ ET AL.

|𝑁 [𝑣] ∩ 𝑆| ≥ 𝑘. The 𝑘-tuple domination number 𝛾×𝑘(𝐺) is the minimum cardinality of a 𝑘-tuple dominating
set of 𝐺, if such a set exists. A 𝑘-tuple dominating set where 𝑘 = 2 is called a double dominating set. A double
dominating set of cardinality 𝛾×2(𝐺) is referred to as a 𝛾×2(𝐺)-set. The concept of double domination in graph
was further studied in, for example, [1,2,4,8]. Blidia et al. [1] showed that 𝛾×2(𝐺) ≤ 11𝑛

13 if 𝐺 is a graph of order
𝑛 with 𝛿(𝐺) ≥ 2. Henning [8] proved that 𝛾×2(𝐺) ≤ 3𝑛

4 provided that 𝐺 is not a 5-cycle.
Domination in maximal planar graphs and outer-planar graphs has recieved great attention and several

domination parameters for these classes of graph have been studied. See, for example, Dorfling et al. [3], Henning
and Kaemawichanurat [9], Lemanska et al. [11], Li et al. [12], King and Pelsmajer [10], Matheson and Tarjan
[14], Tokunaga [16] and Liu [13]. Recently, Zhuang [18] studied double domination in maximal outerplanar
graphs, and proved the following.

Theorem 1.1 (Zhuang [18]). Let 𝐺 be a maximal outerplanar graph of order 𝑛 ≥ 3. Then 𝛾×2(𝐺) ≤ ⌊ 2𝑛
3 ⌋.

Theorem 1.2 (Zhuang [18]). Let 𝐺 be a maximal outerplanar graph of order 𝑛 ≥ 3 and 𝑡 be the number of
vertices of degree 2 in 𝐺. Then 𝛾×2(𝐺) ≤ 𝑛+𝑡

2 ·

In this paper, we first improve Theorem 1.2 by showing that 𝛾×2(𝐺) ≤ 𝑛+𝑘
2 , where 𝑘 is the number of pairs of

consecutive vertices of degree two with distance at least 3 on the outer cycle. We also prove that 𝛾×2(𝐺) ≤ 5𝑛
8 for

a Hamiltonian maximal planar graph 𝐺 of order 𝑛 ≥ 7, which improves Theorem 1.1 and all previous bounds.
We follow the notations and method given in [12]. For a Hamiltonian maximal planar graph 𝐺 with a

Hamilton cycle 𝐶, let 𝐺𝐶
in be the maximal outerplanar graph consists of 𝐶 and all edges inside of 𝐶 and 𝐺𝐶

out

be the maximal outerplanar graph consists of 𝐶 and all edges outside of 𝐶. Let 𝑣1, . . . , 𝑣𝑡 be all the vertices of
degree 2 which appear in the clockwise direction on 𝐶. A vertex 𝑣𝑖 is called a bad vertex if the distance between
𝑣𝑖 and 𝑣𝑖+1 on 𝐶 is at least 3, for 𝑖 = 1, 2, . . . , 𝑡, where the subscript is taken modulo 𝑡. We make use of the
following.

Theorem 1.3 (Li et al. [12]). For a Hamiltonian maximal planar graph 𝐺 of order 𝑛, there exists a Hamilton
cycle 𝐶 of 𝐺 such that 𝐺𝐶

in or 𝐺𝐶
out has at most 𝑛

4 bad vertices.

Theorem 1.4 (Whitney [17]). Every 4-connected maximal planar graph is Hamiltonian.

2. Main results

Let 𝐺 be a maximal outerplanar graph. There is an embedding of 𝐺 in the plane such that all of its vertices
are on the outer cycle 𝐶 which is the boundary of the outer face and each inner face is a triangle. Let 𝑣1, . . . , 𝑣𝑡

be all the vertices of degree 2 which appear in the clockwise direction on 𝐶. We will prove the following.

Theorem 2.1. Let 𝐺 be a maximal outerplanar graph of order 𝑛 ≥ 4. If 𝐺 has 𝑘 ≥ 0 bad vertices, then
𝛾×2(𝐺) ≤ 𝑛+𝑘

2 ·

As a consequence of Theorems 2.1 and 1.3 we obtain the following.

Theorem 2.2. Let 𝐺 be a Hamiltonian maximal planar graph of order 𝑛 ≥ 7. Then 𝛾×2(𝐺) ≤ 5𝑛
8 ·

As another immediate consequence of Theorems 2.2 and 1.4 we have the following.

Corollary 2.3. If 𝐺 is a 4-connected maximal planar graph of order 𝑛 ≥ 7, then 𝛾×2(𝐺) ≤ 5𝑛
8 ·
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Figure 1. Graphs 𝐻𝑖, 𝑖 = 1, 2, . . . , 7.

3. Proof of Theorem 2.1

The proof is by induction on 𝑛 + 𝑘. The result is obvious if 4 ≤ 𝑛 ≤ 5. Let 𝐻𝑖 be graphs shown in Figure 1
for 𝑖 = 1, 2, 3, 4, 5, 6, 7.

Assume that 𝑛 = 6. If 𝑘 = 0, then 𝐺 = 𝐻1 in which 𝛾×2(𝐺) = 3 = 6+0
2 . If 𝑘 = 1, then 𝐺 = 𝐻2 in which

𝛾×2(𝐺) = 3 < 6+1
2 . Thus assume that 𝑘 = 2. Then 𝐺 = 𝐻3 in which 𝛾×2(𝐺) = 4 = 6+2

2 . Next assume that
𝑛 = 7. Clearly 1 ≤ 𝑘 ≤ 2. If 𝑘 = 1, then 𝐺 ∈ {𝐻4, 𝐻5} in which 𝛾×2(𝐺) = 4 = 7+1

2 . Thus assume that 𝑘 = 2.
Then 𝐺 ∈ {𝐻6, 𝐻7} in which 𝛾×2(𝐺) = 4 < 7+2

2 . These are enough for the basic step of the induction. Assume
the result holds for all maximal outerplanar graphs of order 𝑛′ with 𝑘′ bad vertices, where 𝑛′ + 𝑘′ < 𝑛 + 𝑘.
Now consider the maximal outerplanar graph 𝐺 of order 𝑛 ≥ 7 and with 𝑘 bad vertices. If 𝑛 = 7 then either
𝑡 = 𝑘 = 2 or 𝑡 = 3 and 𝑘 = 1, and in both cases 𝛾×2(𝐺) = 4 ≤ 𝑛+𝑘

2 . Thus assume that 𝑛 ≥ 8. First assume that
𝑘 = 0. Let 𝐶 be the outer cycle of 𝐺 and 𝑣1, 𝑣2, . . . , 𝑣𝑡 be a cyclic clockwise order of its 𝑡 vertices of degree 2.
Since 𝐺 has no bad vertices, the distance between each 𝑣𝑖 and 𝑣𝑖+1 on 𝐶 is exactly two, for 𝑖 = 1, 2, . . . , 𝑡. Thus,
𝑛 = 2𝑡. Then 𝑉 (𝐺)− {𝑣1, . . . , 𝑣𝑡} is a double dominating set for 𝐺, implying that 𝛾×2(𝐺) ≤ 𝑛− 𝑡 = 𝑛

2 = 𝑛+0
2 .

Thus assume that 𝑘 > 0. Then there is an integer 𝑖 ∈ {1, 2, . . . , 𝑡} such that the distance between 𝑣𝑖 and 𝑣𝑖+1

on 𝐶 is at least 3. Let 𝐺1 = 𝐺 − {𝑣1, 𝑣2, . . . , 𝑣𝑡}. Clearly 𝐺1 is also a maximal outerplanar graph. Let 𝑢 be a
vertex of degree 2 in 𝐺1. Then 3 ≤ deg𝐺(𝑢) ≤ 4.

Assume first that deg𝐺(𝑢) = 3. Then there exists exactly one vertex 𝑣 ∈ 𝑁𝐺(𝑢) with deg𝐺(𝑣) = 2. Let
𝑁𝐺(𝑢) = {𝑣, 𝑢1, 𝑢2}, where 𝑢1 ∈ 𝑁𝐺(𝑣) ∩ 𝑁𝐺(𝑢). Since 𝐺 is a maximal outerplanar graph, from deg𝐺(𝑢) = 3
we obtain that 𝑢1𝑢2 ∈ 𝐸(𝐺). We may assume without loss of generality that 𝑢 is after 𝑣 in the cyclic clockwise
order on 𝐶. Thus 𝑣 is a bad vertex in 𝐺. Let 𝑢3 ∈ 𝑁𝐺(𝑢2)−{𝑢} be the vertex just after 𝑢2 in the cyclic clockwise
order on 𝐶.

Assume that deg𝐺(𝑢3) = 2. Let 𝐺′ = (𝐺− 𝑢) + 𝑣𝑢2. Then 𝐺′ is a maximal outerplanar graph of order 𝑛− 1
with the hamiltonian cycle (𝐶−{𝑢𝑢2, 𝑢𝑣})∪{𝑣𝑢2}. Note that 𝑣 is not a bad vertex of 𝐺′. Thus 𝐺′ has 𝑘′ = 𝑘−1
bad vertices. Applying the inductive hypothesis, 𝛾×2(𝐺′) ≤ 𝑛′+𝑘′

2 = 𝑛+𝑘−2
2 . Let 𝐷′ be a 𝛾×2(𝐺′)-set. If 𝑣 ̸∈ 𝐷′

then {𝑢1, 𝑢2} ⊆ 𝐷′ and so 𝐷′∪{𝑢} is a double dominating set for 𝐺, implying that 𝛾×2(𝐺) ≤ 𝑛+𝑘−2
2 +1 = 𝑛+𝑘

2 .
Thus assume that 𝑣 ∈ 𝐷′. Then clearly we may assume that |𝐷′ ∩ {𝑢1, 𝑢2}| = 1. Then (𝐷′ − {𝑣}) ∪ {𝑢, 𝑢1, 𝑢2}
is a double dominating set for 𝐺 of cardinality |𝐷′| + 1, implying that 𝛾×2(𝐺) ≤ 𝑛+𝑘−2

2 + 1 = 𝑛+𝑘
2 . Thus,

deg𝐺(𝑢3) ≥ 3.
Assume that 𝑢3𝑢1 ∈ 𝐸(𝐺). Let 𝑢4 ∈ 𝑁𝐺(𝑢3)−{𝑢1, 𝑢2} be the vertex just after 𝑢3 in the cyclic clockwise order

on 𝐶, and let 𝐺′ = (𝐺−{𝑢, 𝑢2})+𝑣𝑢3. Then 𝐺′ is a maximal outerplanar graph of order 𝑛−2 with the hamiltonian
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cycle (𝐶 − {𝑢2𝑢3, 𝑢𝑢2, 𝑢𝑣}) ∪ {𝑣𝑢3}. Note that 𝐺′ has 𝑘 − 1 bad vertices if deg𝐺(𝑢4) = 2 and 𝑘 bad vertices if
deg𝐺(𝑢4) > 2. Applying the inductive hypothesis, 𝛾×2(𝐺′) ≤ 𝑛′+𝑘′

2 = 𝑛+𝑘−2
2 . Let 𝐷′ be a 𝛾×2(𝐺′)-set. If 𝑣 ̸∈ 𝐷′

then {𝑢1, 𝑢3} ⊆ 𝐷′ and so 𝐷′∪{𝑢} is a double dominating set for 𝐺, implying that 𝛾×2(𝐺) ≤ 𝑛+𝑘−2
2 +1 = 𝑛+𝑘

2 .
Thus assume that 𝑣 ∈ 𝐷′. Then clearly we may assume that |𝐷′ ∩ {𝑢1, 𝑢3}| = 1. Then (𝐷′ − {𝑣}) ∪ {𝑢, 𝑢1, 𝑢3}
is a double dominating set for 𝐺 of cardinality |𝐷′| + 1, implying that 𝛾×2(𝐺) ≤ 𝑛+𝑘−2

2 + 1 = 𝑛+𝑘
2 . Thus

𝑢3𝑢1 ̸∈ 𝐸(𝐺).
Let 𝑢0 ∈ 𝑁𝐺(𝑢1) − {𝑣, 𝑢, 𝑢2} be the vertex just before 𝑢1 in the cyclic clockwise order on 𝐶, and let

𝐺′ = 𝐺 − {𝑢, 𝑣}. Then 𝐺′ is a maximal outerplanar graph of order 𝑛 − 2 with the hamiltonian cycle (𝐶 −
{𝑣𝑢1, 𝑢𝑣, 𝑢𝑢2})∪{𝑢1𝑢2}. Assume that deg𝐺(𝑢0) = 2. Then 𝐺′ has at most 𝑘 bad vertices. Applying the inductive
hypothesis, 𝛾×2(𝐺′) ≤ 𝑛′+𝑘′

2 = 𝑛+𝑘−2
2 . Let 𝐷′ be a 𝛾×2(𝐺′)-set. If 𝑢0 ̸∈ 𝐷′ then 𝑢1 ∈ 𝐷′ and so 𝐷′ ∪ {𝑢} is

a double dominating set for 𝐺, implying that 𝛾×2(𝐺) ≤ 𝑛+𝑘−2
2 + 1 = 𝑛+𝑘

2 . Thus assume that 𝑢0 ∈ 𝐷′. Then
clearly we may assume that |𝐷′∩𝑁𝐺(𝑢0)| = 1. Then (𝐷′−{𝑢0})∪𝑁𝐺(𝑢0)∪{𝑢} is a double dominating set for 𝐺
of cardinality |𝐷′|+1, implying that 𝛾×2(𝐺) ≤ 𝑛+𝑘−2

2 +1 = 𝑛+𝑘
2 . Thus we may assume that deg𝐺(𝑢0) ≥ 3. Note

that deg𝐺(𝑢1) ≥ 5. Let 𝐺′ be the graph obtained from 𝐺 by removing the vertices 𝑢 and 𝑣 and then contracting
the edge 𝑢1𝑢2. Then 𝐺′ has 𝑘 − 1 bad vertices. Let 𝑢* be the vertex in 𝐺′ forming by contracting the edge
𝑢1𝑢2. Applying the inductive hypothesis, 𝛾×2(𝐺′) ≤ 𝑛′+𝑘′

2 = 𝑛−3+𝑘−1
2 . Let 𝐷′ be a 𝛾×2(𝐺′)-set. If 𝑢* ∈ 𝐷′ then

(𝐷′ − {𝑢*}) ∪ {𝑢, 𝑢1, 𝑢2} is a double dominating set for 𝐺, implying that 𝛾×2(𝐺) ≤ 𝑛+𝑘−4
2 + 2 = 𝑛+𝑘

2 . Thus
assume that 𝑢* ̸∈ 𝐷′. Then each of 𝑢1 and 𝑢2 is dominated by a vertex of 𝐷′ in 𝐺, and so 𝐷′∪{𝑢, 𝑣} is a double
dominating set for 𝐺, implying that 𝛾×2(𝐺) ≤ 𝑛+𝑘−4

2 + 2 = 𝑛+𝑘
2 .

Next assume that deg𝐺(𝑢) = 4. Then there exist two vertices 𝑣1, 𝑣2 ∈ 𝑁𝐺(𝑢) such that deg𝐺(𝑣1) = deg𝐺(𝑣2) =
2. Let 𝑁𝐺(𝑢) = {𝑣1, 𝑣2, 𝑢1, 𝑢2}, where in the cyclic clockwise order on 𝐶, 𝑢1 is before than 𝑣1, 𝑣1 is before than
𝑢, 𝑢 is before than 𝑣2 and 𝑣2 is before than 𝑢2. By the choice of 𝑢, 𝑢1𝑢2 ∈ 𝐸(𝐺). Let 𝑢3 ∈ 𝑁𝐺(𝑢2) be the vertex
after 𝑢2 in the cyclic clockwise order on 𝐶.

Assume that deg𝐺(𝑢3) = 2. Let 𝐺′ = 𝐺 − {𝑣1, 𝑣2}. Then 𝐺′ is a maximal outerplanar graph of order 𝑛 − 2
with the hamiltonian cycle (𝐶 −{𝑣2𝑢2, 𝑣2𝑢, 𝑢𝑣1, 𝑣1𝑢1})∪{𝑢1𝑢, 𝑢𝑢2}. Note that 𝐺′ has 𝑘 bad vertices. Applying
the inductive hypothesis, 𝛾×2(𝐺′) ≤ 𝑛′+𝑘′

2 = 𝑛+𝑘−2
2 . Let 𝐷′ be a 𝛾×2(𝐺′)-set. If 𝑢 ̸∈ 𝐷′ then 𝑢1, 𝑢2 ∈ 𝐷′ and

so 𝐷′ ∪ {𝑢} is a double dominating set for 𝐺, implying that 𝛾×2(𝐺) ≤ 𝑛+𝑘−2
2 + 1 = 𝑛+𝑘

2 . Thus assume that
𝑢 ∈ 𝐷′. Then we may assume that |𝐷′ ∩ {𝑢1, 𝑢2}| = 1. Then 𝐷′ ∪ {𝑢1, 𝑢2} is a double dominating set for 𝐺 of
cardinality |𝐷′|+ 1, implying that 𝛾×2(𝐺) ≤ 𝑛+𝑘−2

2 + 1 = 𝑛+𝑘
2 . Thus, deg𝐺(𝑢3) ≥ 3.

Thus 𝑣2 is a bad vertex of 𝐺. Let 𝐺′ = 𝐺− {𝑣1, 𝑣2}. Then 𝐺′ is a maximal outerplanar graph of order 𝑛− 2
with the hamiltonian cycle (𝐶 − {𝑣2𝑢2, 𝑣2𝑢, 𝑢𝑣1, 𝑣1𝑢1}) ∪ {𝑢1𝑢, 𝑢𝑢2}. Since 𝑣2 is a bad vertex of 𝐺, 𝑢 is a bad
vertex of 𝐺′, and 𝐺′ has 𝑘 bad vertices. Applying the inductive hypothesis, 𝛾×2(𝐺′) ≤ 𝑛′+𝑘′

2 = 𝑛+𝑘−2
2 . Let 𝐷′

be a 𝛾×2(𝐺′)-set. If 𝑢 ̸∈ 𝐷′ then 𝑢1, 𝑢2 ∈ 𝐷′ and so 𝐷′ ∪ {𝑢} is a double dominating set for 𝐺, implying that
𝛾×2(𝐺) ≤ 𝑛+𝑘−2

2 + 1 = 𝑛+𝑘
2 . Thus assume that 𝑢 ∈ 𝐷′. Then we may assume that |𝐷′ ∩ {𝑢1, 𝑢2}| = 1. Then

𝐷′∪{𝑢1, 𝑢2} is a double dominating set for 𝐺 of cardinality |𝐷′|+1, implying that 𝛾×2(𝐺) ≤ 𝑛+𝑘−2
2 +1 = 𝑛+𝑘

2 .
Thus, 𝑢1𝑢3 ̸∈ 𝐸(𝐺). Let 𝐺′ = 𝐺 − {𝑢, 𝑣2}. Then 𝐺′ has 𝑘 bad vertices. Applying the inductive hypothesis,
𝛾×2(𝐺′) ≤ 𝑛′+𝑘′

2 = 𝑛+𝑘−2
2 . Let 𝐷′ be a 𝛾×2(𝐺′)-set. Now as before, we obtain that 𝛾×2(𝐺) ≤ 𝑛+𝑘−2

2 + 1 = 𝑛+𝑘
2 .

4. Proof of Theorem 2.2

Let 𝐺 be a Hamiltonian maximal planar graph of order 𝑛 ≥ 7. Let 𝐶 be a Hamilton cycle of 𝐺, and without
loss of generality, assume that 𝐺𝐶

in has at most 𝑛
4 bad vertices according to Theorem 1.3. Then 𝑘 ≤ 𝑛

4 and by
Theorem 2.1, 𝛾×2(𝐺) ≤ 𝑛+𝑘

2 ≤ 5𝑛
8 .
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