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THE EDGE-LABELED SURVIVABLE NETWORK DESIGN PROBLEM:
FORMULATIONS AND BRANCH-AND-CUT

MARIEM BEN SALEM!, RAOUIA TAKTAK?**® AND FATMAH ALMATHKOUR?

Abstract. In this paper, we study a variant of the survivable network design problem, that is the
survivable network design problem with labels (colors) on the edges. In particular, we address the Gen-
eralized Labeled Two Edge Connected Subgraph Problem (GLTECSP) that has many applications in
telecommunication and transportation. Given a connected undirected graph G such that with each edge
is associated a set of labels (colors), the GLTECSP consists in finding a two-edge connected spanning
subgraph of G with a minimum number of distinct labels. We propose two Integer Programming (IP)
formulations for the problem, a natural formulation using cuts on the edges, and a compact formulation
using color-cuts. We devise Branch-and-Cut algorithms to solve both formulations and compare them
on sets of randomly generated instances. Computational results show that the compact formulation
outperforms the natural one regarding the linear relaxation and the computational time. Moreover, the
compact formulation is able to solve to optimality several instances left unsolved within the time limit
by the natural formulation.
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1. INTRODUCTION

During recent years, designing survivable telecommunication networks has been of great interest. A telecom-
munication network is said to be survivable if it remains always connected even in the case of failure of one
or many links (or nodes). A telecommunication network can be modeled as an undirected graph G = (V, E),
where the vertices of V' represent telecommunication nodes, and the edges of E the possible links between
them. In order to have a minimum degree of survivability of this graph (network), one has to ensure that the
graph is 2-edge connected. That is to say between any two vertices of V' there exist at least two-edge-disjoint
paths. Recall that two paths are said to be edge-disjoint if they do not have any edge in common. Obviously,
a 2-edge connected graph remains connected in the case of one-link failure. Given an undirected weighted
graph G = (V, E,w) where w(.) is the weight vector on the edges, the Two Edge Connected Subgraph Problem
(TECSP) cousists in finding a minimum-cost 2-edge connected subgraph of G.
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FicurE 1. Hlustrative example for the LTECSP.

In this paper, we are interested in a variant of the TECSP. Assume that instead of weights, with each edge
of F is associated a set of colors, also called labels. Let L be the set of all labels of the graph, such that with
each edge e € F is associated a set of labels L, C L. The Generalized Labeled Two Edge Connected Subgraph
Problem (GLTECSP) consists in finding a minimum-label spanning 2-edge connected subgraph of G, that is
a labeled 2-edge connected subgraph with a minimum number of labels. In particular, if each edge e € FE is
associated with exactly one color (label), i.e., |L.|] = 1, the problem is then called the Labeled Two Edge
Connected Subgraph Problem (LTECSP). It is obvious that the GLTECSP is NP-hard. In fact, if with each
edge is associated a different single color, that is |L| = |E|, the GLTECSP is equivalent to the TECSP known
to be NP-hard [27].

In Figure la, we give an example of a graph with six vertices denoted from 1 to 6, and eleven edges denoted
ei, © = 1,2,...,11. There are four labels (colors) in the graph L = {red, blue, green, black}, and with each
edge e;,i € {1,2,...,11} is associated exactly one label from L. The objective of the LTECSP is to find a
two-edge connected subgraph with a minimum number of labels. Figure 1b illustrates an optimal solution for
this example. In fact, in this solution the obtained graph is clearly 2-edge connected, that is between each pair
of vertices there are two edge-disjoint paths. Moreover, we are using only two labels, which is obviously the
minimum number of labels that we may use in this configuration.

In Figure 2a is illustrated an example for the GLTECSP. It consists of a graph with six nodes, eleven edges
and four labels (as previously described). However, in this example, some edges may have more than one label.
In Figure 2b an optimal solution of this example is given. The obtained graph is 2-edge connected using two
labels, which is the minimum number of labels that can be used. Here, for edge es we may retain both labels
(blue and green) since this will not change the number of labels in the final solution.

Both the LTECSP and the GLTECSP have several applications in telecommunication networks, electric
networks, multimodal transportation networks, where one aims to ensure connectivity by means of homogeneous
connections that are generally managed by different and competing companies. This is the case, for example,
of telecommunication networks where the different colors can be seen as different operators or different types of
media. Recent applications in social networks are depicted in [31], vertices of the graph refers to people, edges
represent the relations between them, and different kinds of relationship are labeled with different colors..

The paper is organized as follows. In the next section we overview some related works. We mainly distinguish
works that are related to network survivability and those that are related to labeled problems in graphs. In
Section 3, we propose Integer Programming (IP) formulations for the GLTECSP, a natural formulation based on
cuts on the edges, and a compact formulation based on cuts on the colors. In Section 4, we devise Branch-and-Cut
algorithms for both formulations and present experimental results held on randomly generated instances.
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F1GURE 2. Mlustrative example for the GLTECSP.

2. RELATED WORKS

2.1. Survivable network design problem

The TECSP is a classical well known problem in network design. Inspired from the telecommunication
context, survivable network design problems have been intensively studied for several years (see [27] for a
survey on the problem). Several resolution methods including heuristics, approximation algorithms as well as
exact algorithms have been developed to solve various variants of the problem. Consider an undirected graph
G = (V, E) representing a telecommunication network and a weight function which associates the weight w(e)
with every edge e € E. With each node v € V is associated an integer, denoted by r(v) and called connectivity
type of v, which can be seen as the minimum number of edges connecting v to the rest of the network. A subgraph
H = (U,F) of G where U C V and F C FE is said to satisfy the edge-connectivity (resp. node-connectivity)
requirement if for every pair of nodes (s,t) € V x V, there exist at least r(s,?) = min{r(s),r(¢)} edge-disjoint
(resp. node-disjoint) paths between s and ¢. Recall that two st-paths are edge-disjoint if they have no edge in
common, and they are node-disjoint if they have no internal node in common. The edge-connectivity (resp.
node-connectivity) condition ensures that the network remains functional (connected) when some equipments
fail. In fact, the traffic can still be routed between two nodes s and ¢ when at most r(s,¢) — 1 links, in case of
edge-connectivity, and at most r(s,t) — 1 nodes, in case of node-connectivity, fail. When r(u) = k, for every
u € V, the subgraph H is k-edge-connected (resp. k-node-connected). In [23], Grotschel et al. address the general
survivable network design problem that consists in finding a minimum-weight subgraph of G while satisfying
the connectivity requirements. In particular, the k-edge-connected subgraph problem, which consists in finding
a minimum-weight spanning subgraph of G that is k-edge-connected, has been extensively studied, especially
in the case of low connectivity requirement (k = 2, i.e., the TECSP). In fact, the 2-connectivity has shown
to be a very suitable topology for telecommunication networks. In [28], Mahjoub introduces a general class of
valid inequalities for the polytope associated with the TECSP, called F-partition inequalities. Boyd and Hao [4]
describe a class of valid inequalities for the TECSP polytope that are “comb”-like inequalities. In [2], Barahona
and Mahjoub characterize the TECSP’s polytope for the class of Halin graphs. An interesting variant of the
problem has also been studied, this is the case when r € {0,2}. The nodes with r(v) = 2 are called terminals
and those with r(v) = 0 are called Steiner nodes. The terminals need high degree of survivability. The Steiner
ones are optional nodes, they may be used if they contribute reducing the cost of the network. This problem
is known as the Steiner 2-edge connected subgraph problem (STECSP). In [1], Baiou and Mahjoub study the
STECSP’s polytope. In parallel, Coullard et al. study the node version [11,12]. In [11], a linear time algorithm
for the problem on some special classes of graphs is proposed. In [12], the authors describe the dominant of the
relaxed polytope in a special class of graphs.
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2.2. Classical labeled problems in graphs

Several classical well-known problems in graphs have been studied within the labeled version. A particular
interest has been provided to the Minimum Labeled Spanning Tree Problem (MLSTP). The problem is proved
to be NP-hard with different reduction procedures by Chang and Leu [9], and in parallel by Broersma and
Li [5]. In [7], Cerruli et al. apply several metaheuristic approaches to solve the MLSTP. These metaheuristics
are able to improve over existing heuristics presented in the literature. They also provide optimal or close to
optimal solutions compared to the exact ones. In [6], Captivo et al. introduce some mixed Integer Program-
ming formulations for the MLSTP and compare the different linear relaxations. In [10], Consoli et al. propose
an intelligent-optimization algorithm to solve the MLSTP. This algorithm is obtained by combining the basic
Variable Neighbourhood Search heuristic with some features from machine learning, statistics and experimental
algorithmics. In [14], the authors study the Generalized MLSTP, that is when multiple labels can be assigned
to an edge. The authors propose a new compact integer programming formulation for the GMLSTP and study
the associated polytope. Several families of valid inequalities are identified and their facial aspect is investi-
gated. In [16], the authors introduce a new MIP-based metaheuristic for the MLSTP called the multi-start local
branching (MSLB). Computational experiments show that the MSLB outperforms the state-of-the-art meta-
heuristics with respect to optimality and processing times. In [30], Vaisman proposes a new method to solve
the MLSTP called the cross-entropy method, which relies on rigorous developments in the fields of information
theory and stochastic simulation. Experimentations indicate that the proposed algorithm can obtain optimal
or near-optimal solutions while using a reasonable computational time. Several other connectivity-related prob-
lems in edge-labeled graph have been also investigated. In [8], Cerulli et al. studied an extension of the MLSTP
where the vertices are divided into terminals and Steiner nodes, that is the Steiner Tree Problem with Minimum
number of Labels. The problem is solved using several metaheuristics, and numerical results are presented.

Along with the Spanning tree related problems, scientists have also addressed other labeled-graph problems.
In [32], the authors study the labeled TSP. They prove that the problem is NP-hard, and present a heuristic and
a genetic algorithm to solve the problem. In [26], the authors propose a mathematical model, valid inequalities
and polyhedral results for the minimum labeled Hamiltonian cycle problem. The authors also introduce two
variants of this problem and devise Branch-and-Cut algorithms for the different variants. In [3], the Minimum
Coloring Cut Problem (MCCP) is studied. The MCCP is defined as follows: given a connected graph G with
colored edges, find an edge cut E’ of G (a minimal set of edges whose removal disconnects the graph) such that
the number of colors used by the edges in E’ is minimum. The authors present two approaches based on Variable
Neighborhood Search to solve the problem. The presented algorithms are able to find all the optimal solutions
described in the literature. In [18], Faria et al. study the maximum labeled cut problem. Given an edge-labeled
graph and a parameter k, the question is whether or not G has a nontrivial edge cut using at least k labels
(colors). The problem of minimum colorful cut and related problems have also been addressed in [15,17,22].

In this work, we address the TECSP in labeled graphs. To the best of our knowledge, the problem has only
been initiated in [13,29], and no algorithmic implementations have been considered for it.

3. IP FORMULATIONS

In this section we propose two Integer Programming (IP) formulations for the GLTECSP. The first one is
based on edge-cuts and is called edge-cut formulation (ECut) or natural formulation. The second one uses color-
cuts and is called color-cut formulation (CCut) or compact formulation. In order to introduce these formulations,
we first give some definitions and notations.

3.1. Notations

Let G = (V, E, L) be an edge-labeled undirected graph, where L is a set of labels, such that with each edge
e € F is associated a subset of labels L, C L. For W C V and W # 0, let §(1W) denote the set of edges of
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G having one node in W and the other in W = V \ W. §(W) is called a cut or an edge-cut. When W = {w},
w €V, we will write §(w).

3.2. Natural formulation

We define three families of binary decision variables. For each label [ € L, let y; = 1 if label [ is selected in
the final solution, and 0 if not. For each edge e € F and each label [ € L., let z,; = 1 if edge e having label [
is retained in the final solution, and 0 if not. Finally, for each edge e € F, we let . = 1 if edge e is selected in
the final solution, and 0 if not. y will be called label variables, and = and z design variables.

The GLTECSP is equivalent to the following integer linear program.

(ECut) minZyl (3.1)

leL
Z 2, >2 foral W CV, and W # 0, (3.2)
ces(W)
Te = Zzel for alle € F, (3.3)
leL
Zer <y foralle e Fandl € L., (3.4)
0<y <1 foralll € L, (3.5)
0<z.<1 for alle € E, (3.6)
0<z4<1 foralle € E, for alll € L., (3.7)
y € {0,1} for alll € L, (3.8)
z. € {0,1} for alle € E, (3.9)
ze1 € {0,1} foralle e E, for alll € L. (3.10)

By the objective function (3.1), the number of labels is minimized. Inequalities (3.2) are called edge-cut
inequalities. These ensure that every cut in the graph has a cardinality at least 2, which implies that the
solution is 2-edge connected. Note that inequalities (3.2) have an exponential number which means that solving
(ECut) to optimality requires their separation which will be detailed in Section 4. Constraints (3.3) are setting
the relationship between the design variables z. and z.;. Inequalities (3.4) are giving the relationship between
the design variables z.; and the label variables y;. Constraints (3.5)—(3.7) are the trivial constraints (3.8)—(3.10)
are the integrality constraints of the decision variables.

3.3. Compact formulation

In [13], the author propose a formulation for the k-edge connected subgraph problem and the 2-node connected
subgraph problem based on the so-called color-cut or colorful cut. In order to adapt this formulation to the
GLTECSP, we introduce some definitions and notations that will be useful in the sequel [13].

For a cut 6(W) let L(§(W)) = {L. : e € (W)} be the set of labels associated with the edges of §(W).
Denote by K (W) = L(6(W)) the cut on labels derived from the edge-cut 6(W). K(W) C L is called color-cut
or colorful cut. In the sequel, E({l}) will denote the set of edges that have label I € L. This will simply be
denoted by E(l) for | € L.

Figure 3a illustrates the concept of color-cuts. In this example, we have a graph with six vertices denoted from
1 to 6, and ten edges denoted e;, i = 1,2,...,10. There are four labels (colors) L = {red, blue, green, black} in
the graph, and with each edge e;,7 € {1,2,...,11} it is associated exactly one label. In Figure 3b, we illustrate
a cut separating W = {1,2} from V' \ W = {3,4,5,6}. The edge-cut induced by W is §(W) = {ea, €5, €7, €10}
and the corresponding color-cut is K(W) = {green, blue}. Note that at least one of the elements of K (W) =
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F1GURE 3. Illustrative example for color-cuts.

{green, blue} must be considered in the optimal solution, otherwise the resulting graph will be disconnected as

shown in Figure 3c.
The GLTECSP is equivalent to the following IP.

(CCut) minZyl (3.11)
leL

> min(2, [EQ)NSW))y =2  forall W CV, and W # 0, (3.12)
leK (W)

0<y <1 foralll € L, (3.13)

y € 40,1} for alll € L. (3.14)

The objective function (3.11) minimizes the number of labels. Inequalities (3.12) are called color-cut inequal-
ities. They ensure that the solution graph is 2-edge connected by requiring at least 2 edges for every cut in the
graph. Basically, the nonlinear term min(2, |[E(l) N 6(W)|) will take into consideration cuts where at least two
edges have the same label I € L. In this case |E(l) N §(W)| > 2. Constraints (3.13) are the trivial constraints,
and (3.14) are the integrality constraints of the decision variables.

Obviously, (CCut) has significantly less variables than (ECut), and that is why we will call it compact
formulation even though inequalities (3.12) are in exponential number and need to be separated. Note also that
(CCut) enables having more than one color per edge in the final solution, which is not the case for the (ECut)
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formulation due to constraints (3.3). This means that the solution space of (ECut) is included in the (CCut)
one. The optimal solution has though always the same number of labels. Moreover, (CCut) would clearly have
a better linear relaxation than (ECut), which will be proved by experimentations in the following section.

4. EXPERIMENTAL RESULTS

In this section, we devise Branch-and-Cut algorithms for the edge-cut formulation (ECut) and the color-cut
formulation (CCut) previously introduced for the GLTECSP. The Branch-and-Cut algorithms are implemented
in C+4 using CPLEX 12.10! as a linear solver. Computations are performed on an Intel-Core-i7 2.80 GHz with
16 GB of RAM, running under Linux (Ubuntu 21.0). Tests are computed on complete-graph instances that have
been randomly generated, and time limit is set to 1h.

4.1. Branch-and-cut algorithms

The IP formulations proposed for the GLTECSP are given with a huge number of edge-cut inequalities for the
(ECut) formulation (resp. color-cut inequalities for the (CCut) formulation). We first consider a restricted version
of the linear program corresponding to the (ECut) formuation (resp. the (CCut) formulation). A restricted
number of edge-cut inequalities (resp. color-cut inequalities) is generated in the first LP. For the (ECut), we
generate only edge-cut inequalities on the vertices. Similarly, only color-cut inequalities on the vertices are
generated for the (CCut) formulation. Therefore, the initial linear program for the (ECut) (resp. (CCut))
formulation denoted by LP(ECut) (resp. LP(CCut)) solved in the first step is given by inequalities (3.2) (resp.
inequalities (3.12)) written for W = {v} for each v € V.

Algorithm 1: Branch-And-Cut Algorithm for the (ECut) formulation.

Data: An edge-labeled undirected graph G = (V, E, L)

Result: Optimal solution for the GLTECSP

LP — LP(ECut);

Solve the linear program LP and denote by (Z, ¥, Z) the optimal solution of LP;
if edge-cut inequality (3.2) is violated by (T,v,Z) then

L go to §;
else

Add all possible violated inequalities by (Z,%,Zz) to LP;
L go to 2;

if (Z,7,Zz) is integer then
L (Z,7,%) is an optimal solution for the GLTECSP. Stop;
10 else
11 L Create two sub-problems by branching on a fractional variable.

© 0w N o owm W N

12 forall the open sub-problem do
13 L go to 2;

14 return the best optimal solution of all the sub-problems.

Denote by (Z,7,%) € R x R x REXF the solution of the linear relaxation LP(ECut). The obtained solution
(Z,7,Z) is optimal for the restricted LP if and only if it satisfies all the edge-cut inequalities (3.2). In general, this
is not the case. Therefore, violated edge-cut inequalities are added to the restricted LP by solving a subproblem
called separation problem (see Sect. 4.2 for details). The process is repeated until no more violated inequality
is found. The final solution is hence optimal for the linear relaxation LP(ECut). If the solution is integer, then

1https ://www.ibm.com/products/ilog-cplex-optimization-studio.
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it is optimal for the GLTECSP. If not, then we create new subproblems by branching on a fractional variable.
The separation routine is then considered at each node of the tree and the process continues. These steps are
summarized in Algorithm 1.

Similarly, denote by 7 € RY the optimal solution of the linear relaxation LP(CCut). For the (CCut) formu-
lation, as the color-cut inequalities (3.12) separation is an open question, we only choose to separate on integer
solutions (see Sect. 4.3). Consequently, if 7 is fractional then we branch on one of the fractional variables, creating
hence two subproblems. Otherwise, we solve the separation problem corresponding to the color-cut inequali-

ties (3.12) as it will be explained in Section 4.3. Algorithm 2 gives the Branch-and-Cut steps for formulation
(CCut).

Algorithm 2: Branch-And-Cut Algorithm for the (CCut) formulation.

Data: An edge-labeled undirected graph G = (V, E, L)
Result: Optimal solution for the GLTECSP
LP «— LP(CCut);
Solve the linear program LP and denote by ¥ the optimal solution of LP;
if ¥ is fractional then
L Create two sub-problems by branching on a fractional variable;

else if color-cut inequality is violated by y then
Add all possible violated inequalities by 7 to LP;
go to 2;

else
L 7 is an optimal solution for the GLTECSP. Stop;

10 forall the open sub-problem do
11 L go to 2;

© W N0 0 s W N

12 return the best optimal solution of all the sub-problems.

4.2. Separation of the edge-cut inequalities

The separation of inequalities (3.2) can be done in polynomial time. The problem is to find one or more cut
inequalities (3.2) that are violated by the current solution (7,7, Z). This can be done exactly using the algorithm
of Gomory—Hu [21]. This algorithm gives back the so-called Gomory—Hu tree having the property that between
two nodes s,t € V, the minimum cut separating s and ¢ in the graph G is nothing but the minimum cut separating
s and t in the cut tree. To compute Gomory—Hu tree, we use the efficient implementation of Gusfield [24, 25].
Recall that, for a graph G = (V, E), this implementation consists of |V| — 1 maximum flow problems in G.
By the maximum flow — minimum cut theorem [19], the minimum cut problem can be solved in polynomial
time. Thus, in our Branch-and-Cut algorithm, for all the problems of minimum cut (and hence maximum flow),
we use the algorithm of Goldberg and Tarjan [20], which is one of the most powerful implementations of this
problem. Note that the complexity of the separation is O(mn?log(£)) where n = |V| and m = |E].

4.3. Separation of the color-cut inequalities

For an optimal solution 7 € R¥, the separation of the color-cut inequalities (3.12) consists in finding a cut
violated by 7 or showing that such a cut does not exist. The complexity of this problem is an open question.
As a consequence, we choose to separate these inequalities using a heuristic approach. We first consider three
scenarios: (i) separating fractional and integer solutions only in the root node; (ii) separating fractional and
integer solutions for all the Branch-and-Cut tree’s nodes and (iii) separating only integer solutions for all the
Branch-and-Cut tree’s nodes. Experimentations show that the last scenario is the best regarding the number of
generated cuts, complexity and computational time. Consequently, in our Branch-and-Cut algorithm, we choose
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TABLE 1. Branch-and-Cut results for the GLTECSP (1).

\% L Optimal Sub-EC Gap-EC Cuts-EC Opt-EC CPU-EC Sub-CC Gap-CC Cuts-CC Opt-CC CPU-CC

20 20 2.6 23.2 38.22 0 5/5 0.126 14 29.78 0 5/5 0.009
20 30 3.2 36 32.26 0 5/5 0.207 21.4 28.30 0 5/5 0.009
20 40 4 30.2 28.71 0.6 5/5 0.196 16.6 27.85 0 5/5 0.007
20 50 4 45 22.04 1.2 5/5 0.280 19.2 20.64 0 5/5 0.006
20 60 4.8 38 19.87 4.6 5/5 0.261 14.2 18.74 0 5/5 0.005
20 70 4.8 26.4 16.89 3.8 5/5 0.173 15.2 15.73 0 5/5 0.005
20 80 5.2 35.8 15.13 3 5/5 0.237 17.6 14.23 21.2 5/5 0.008
20 90 5.8 27.4 15.83 6 5/5 0.194 21 15.23 24 5/5 0.009
20 100 6 30.6 16.71 7.4 5/5 0.224 314 16.63 46.6 5/5 0.009
30 50 3.8 83.4 36.17 0.2 5/5 1.840 33 32.69 0 5/5 0.020
30 100 6 127.2 27.64 1 5/5 2.720 54.6 26.14 0 5/5 0.018
30 200 7.8  233.8 19.01 4.8 5/5 7.343 58.8 18.80 107.2 5/5 0.038
30 300 8.8 226 12.35 7.6 5/5 7.266 124.2 12.05 53.2 5/5 0.067
30 400 10 215.2 11.00 13 5/5 8.137 105.4 10.92 83.2 5/5 0.079
40 100 5 202 32.16 0 5/5 17.538 158 30.62 0 5/5 0.080
40 200 7 T768.6 18.54 4.6 5/5  68.855 451.8 17.64 0 5/5 0.165
40 300 8.8 1325.4 18.03 12.4 5/5 142.348 321.6 17.90 0 5/5 0.138
40 400 9.8 2252 16.62 3.4 5/5 17.184 171.4 16.14 0 5/5 0.134
40 500 10.8 13728 16.29 20.8 5/5 139.203 186 16.25 143.8 5/5 0.120
40 600 11.6  1368.8 9.68 24.2 5/5 141.046 159.2 9.59 168.2 5/5 0.189
40 700 12.6  849.8 12.43 22.4 5/5  95.934 140.6 12.43 296.6 5/5 0.302
50 100 4.6  677.8 36.30 1 5/5 115.609 485 34.13 0 5/5 0.279
50 200 7T T768.2 26.31 1.4 5/5 190.203 1843.8 25.34 0 5/5 0.941
50 300 8.6 2620.8 22.56 4.2 5/5 530.595 1623.4 22.00 0 5/5 0.686
50 400 9.8 2279 20.04 12 5/5 521.228 567.4 19.77 245 5/5 0.362
50 500 10.8  3804.8 18.95 15.6 5/5 705.247 1364.2 18.79 132.6 5/5 0.731
50 600 11.2° 2996.8 16.77 20.4 5/5 743.684 675 16.81 239.4 5/5 0.541
50 700 12.6 5349.4 14.12 36.8 5/5 1064.751  3408.2 13.94 232.2 5/5 1.994
50 800 13 64414 14.38 41.2 5/5 1186.349 1767.4 13.19 0 5/5 1.256
50 900 13.8 6121.8 12.93 46.8 5/5 1201.532 2235.6 12.79 103.8 5/5 1.810
50 1000 14 8470.8 13.44 64.2 5/5 1836.224 1679.4 12.22 36.8 5/5 1.415

to apply separation only for integer solutions (see Algorithm 2). The separation procedure can be described
as follows. As 7, the obtained optimal solution for the LP(CCut), is integer, we will apply a maximum flow
algorithm to look for a violated cut. To this end, we use LEMON? to compute these minimum cuts.

4.4. Computational results

The experimental results are reported in Tables 1 and 2. Entries of the tables are averages values as follows:

V| : Number of vertices in G ranging from 20 to 100;

|L| : Number of labels ranging from 20 to 1000;

Optimal : Best found solution;

Sub-EC/Sub-CC : Number of nodes in the Branch-and-Cut tree (number
of treated subproblems) for (ECut)/(CCut);

Gap-EC/GapCC (%) . Relative error between the best upper bound and the
lower bound obtained at the root for (ECut)/(CCut);

EC-cuts/CC-cuts : Number of separated edge-cuts/color-cuts;

CPU-EC/CPU-CC (s) : Total time of execution in seconds for (ECut)/(CCut).

2https ://lemon.cs.elte.hu/trac/lemon.
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TABLE 2. Branch-and-Cut results for the GLTECSP (2).

%4 L Optimal Sub-EC Gap-EC Cuts-EC  Opt-EC  CPU-EC Sub-CC  Gap-CC Cuts-CC  Opt-CC CPU-CC
60 100 4 711.6 40.08 0.2 5/5 408.691 352 36.67 0 5/5 0.526
60 200 7 3307 33.29 1.6 5/5  1155.846 1997.2 32.23 0 5/5 0.988
60 300 8 1500.6 25.46 3.2 5/5 843.591 3697.6 24.86 156 5/5 2.328
60 400 94 5394.6 22.50 9 3/5  2014.688 3872.8 22.18 0 5/5 2.317
60 500 10.2 4575.8 17.87 22.2 3/5  1721.630 30711.4 17.74 319.8 5/5 22.747
70 100 4 726.2 47.41 0.2 5/5 534.214 186 43.68 0 5/5 0.352
70 200 6 2336.6 35.69 0.2 5/5  1963.173 2080.8 34.49 0 5/5 2.606
70 300 8 5149.6 29.50 1.2 1/5  3523.594 4534.8 28.75 0 5/5 3.794
70 400 9 4194.4 24.01 6.4 2/5  2671.340 26134.4 23.80 0 5/5 20.803
70 500 10.2 2786.4 22.97 3.6 3/5  2001.895 59357.2 22.59 0 5/5 45.603
80 100 4 2300.8 52.77 0 5/5  3072.642 767 48.37 0 5/5 1.410
80 200 6 2865 40.71 0.2 0/5 3600 7330.6 39.46 0 5/5 5.631
80 300 8 3007 34.57 0.2 0/5 3600 30843.8 33.78 0 5/5 20.033
80 400 9 3019 28.04 2 0/5 3600 670003.4 27.37 0 5/5 226.621
80 500 10 2943.8 25.62 2 0/5 3600 205048.4 25.16 0 5/5 183.336
90 100 3.4 1218 48.61 0.2 2/5  2836.722 1585 42.50 0 5/5 5.570
90 200 5.2 1191.4 37.42 0 2/5  2382.604 19792.8 35.69 0 5/5 22.439
90 300 7.4 1854.6 34.84 0.2 0/5 3600 196 019.4 33.92 0 5/5 124.167
90 400 8.6 1843 31.32 0.4 0/5 3600 173563.4 30.58 0 5/5 140.159
90 500 10 1920.8 29.50 0.2 0/5 3600 129278.4 29.08 0 5/5 89.523
100 100 3 1036.8 47.85 0 1/5 3038.317 766.6 40.29 0 5/5 11.589
100 200 5 1266.6 39.87 0 0/5 3600 87480.4 37.47 0 5/5 139.910
100 300 7 1222 36.11 0 0/5 3600 193825 34.92 0 5/5 203.539
100 400 8.2 1244.2 32.18 0.4 0/5 3600 796 982.4 31.38 547.2 5/5 840.724
100 500 9.8 1205.8 32.33 0 0/5 3600 984722 31.97 0 5/5 918.873
100 600 10.8 1272.2 30.45 0.4 0/5 3600 3069 592 30.02 0 5/5  1847.090
100 700 11.6 1309.4 28.51 1 0/5 3600 3933963.2 28.19 0 3/5  2655.668
100 800 12.6 1268.2 27.20 0.6 0/5 3600 8216310 26.88 0 2/5  2577.845
100 900 13 1193.4 25.50 0.4 0/5 3600 1373011 25.12 58.2 5/5 885.151
100 1000 13.8 1216 24.86 1.4 0/5 3600 3111876 24.61 449.8 3/5  2819.580

For each size of |V| and |L|, we generate 5 random instances. Consequently, each line of the tables reports the
average values over the 5 tested instances of the same size. Columns opt-EC (resp. opt-CC) report the number
of instances over 5 that have been solved to optimality within the time limit. Overall we tested 61 x 5 instances
(61 sizes/lines).

From the results, it is clear that the (CCut) formulation performs better than (ECut) formulation. In fact,
over the 61 sizes, the (CCut) formulation was able to solve 58 to optimality. That is to say for 58 lines of
the tables, all the 5/5 instances have been solved to optimality. However, the (ECut) formulation left 24 lines
incomplete, which means that for each size (line) among the 24, at least one instance could not be solved to
optimality within the time limit. And among these 24 lines, 16 have 0/5 solved instances, which says that for
all these sizes, the (ECut) formulation was unable to solve the generated instances to optimality.

Along with optimality, the (CCut) formulation outperforms the (ECut) formulation with respect to the
computational time. In fact, the results for 39 lines over the 61 show an average computational time less than
2 seconds. In addition, for some sizes where the (ECut) formulation was unable to solve any of the generated
instances, the (CCut) formulation provides 5/5 optimal solutions within only some seconds. This is mainly the
case of instances with |V| =80 and |L| > 200.

Now concerning the gaps to the root LP relaxation, one can clearly see that the (CCut) gap is slightly
better than the (ECut) gap for all the instances (except for line |V| = 50 and |L| = 600). However, for both
formulations the gaps are quite high. In fact, these reach an average value of 52% for the (ECut) formulation
(see line |V| = 80 and |L| = 100), and 48% for the (CCut) formulation (see line |V| = 80 and |L| = 100).
This can be explained by the fact that the average optimal values obtained for all the instances are quite small,
not exceeding 14 labels. At this stage, in order to improve the linear relaxations of both (Ecut) and (CCut)
formulations, one has to identify new valid inequalities for both, which may tighten the gap and improve the
resolution.
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We note also that, even having optimality for the majority of the instances, the (CCut) formulation spreads
through huge Branch-and-Cut trees compared to the (ECut) formulation. This is clearly depicted in column
“Sub-CC” that gives the number of explored subproblems reaching huge values particularly for the instances
with [V| € {90,100}. This is mainly due to the fact that the separation phase is ensured only for integer
solutions. This is also clear through the number of separated color-cuts that is equal to 0 for 41 out of 61 lines
of the tables. As a consequence, improving the separation phase mainly by devising efficient routines has to be
considered for future works.

5. CONCLUDING REMARKS

In this paper, we study the Generalized Labeled Two Edge Connected Subgraph Problem (GLTECSP) that
is a variant of the Two Edge Connected Subgraph Problem, a well-studied problem in network design. In this
variant, a set of labels (colors) is associated with each edge in the graph, and the objective is to look for a
minimum-label 2-edge connected subgraph. We propose two IP formulations for the GLTECSP, the first is
based on edge-cuts and the second uses color-cuts. We discuss the separation routines and devise Branch-and-
Cut algorithms for both formulations. The experimentations show that the color-cut formulation performs better
than the edge-cut one in terms of linear relaxation and computational time. Several instances that could not be
solved within the time limit by the edge-cut formulation were solved to optimality by the color-cut formulation
within some seconds. In the future, we aim at improving the linear relaxations for both formulations mainly by
adding valid inequalities. In fact, even if the formulations are able to solve the majority of the instances, the
value of the gaps to the root bounds is significantly large and needs to be reduced.
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