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AN INVENTORY MODEL WITH UNCERTAIN DEMAND UNDER
PRESERVATION STRATEGY FOR DETERIORATING ITEMS
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ASHOK KUMAR SHAW?® AND BISWAJIT SARKARY*

Abstract. The capacity of a firm to accomplish its goals is financially compromised by degeneration of
goods. A suitable preservation strategy to reduce degradation is a vital part of the managerial decisions.
This study employs preservation technologies under uncertain demand to frame a continuous review
inventory model with full back-ordering and the influence of promotional efforts. Survey of existing
research finds few models with synchronised optimization over this entire scenario with all factors.The
best values of the preservation cost and the two fractions of the cycle period when inventory is kept
against the backorder part are determined to lower the total average cost. A mathematical model is
built to incorporate these elements and numerical scenarios are presented to compare three possible
approaches. In both crisp and fuzzy contexts, the sensitivity of the solution and decision variables
concerning various inventory characteristics is investigated. Backorder duration is inversely proportional
to the presence of preservation. The coefficient of preservation has a tipping point below which accepting
the impact of undamped deterioration becomes more cost-effective. The total cost at the optimal point
is more elastic to a reduction in base deterioration rate and relatively inelastic to its increase. Finally,
this study proves that the preservation strategy converges over deterioration for the crisp case rather
than the fuzzy case. It is expected the fuzzy case can provide better results, however, the crisp case
provides lower total cost than the fuzzy case though it is slightly less efficient in per unit cost.
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1. INTRODUCTION

In the present scenario, limited-time procedures and showcasing are closely connected. In this pandemic
circumstance due to Coronavirus episode, special procedures forced immense changes in the stock framework.
The worldwide pandemic (COVID-19) has driven commercial entities towards revamping present and future
promotional activities to maintain a healthy flow of financial returns. Limited time exertion might zero in on
various objectives like further developed arrangements or make better thoughts among customers. Extension of
in-store traffic and a higher inspiration of the staff are likewise potential advantages. The goal is to clear extra
stock and make a higher income. Therefore, inventory management is critical for every modern, sophisticated
firm. Properly managed inventories pay out in a variety of ways, such as direct profits and customer loyalty.
In addition, the interwoven linkages among these diverse business aims maintain inventory management’s daz-
zling importance. The continuous review has attracted more attention than the periodic review because of its
mathematical approach and capacity to tackle a wide range of problems.

Disintegration is a character portrayed by deterioration, harm, decay, hurt or other change in item quality
because of natural issues during caching. A couple of examples are items like battery, semiconductor chips,
food assortments, unstable fluids, clinical things, i.e, blood face deterioration and gradually lose potential. A
huge issue in the stock framework is to control and stay aware of inventories of decaying merchandise. The
objective of stock administration is to further develop profit from the venture by diminishing stock waste and
the deteriorated items contribute negatively towards this target. The pace of decay of products can be seen as a
dependent variable, subject to control utilizing protection innovation. Organisations have understood that they
must strictly manage the deterioration losses. One of the common avenues of control is to improve and upgrade
storage processes. The retailers can decrease the pace of decay of items through viable capital input along these
avenues and thus keep away from superfluous waste, limit financial misfortunes, and upgrade business efficiency.
Such models concerning deterioration control have gotten a lot of consideration and have greater concurrence
with the actual inventory circumstances.

Perishable products especially require precise preservation and inventory control in today’s dynamic markets.
For example, the deterioration of food will damage the goodwill and reputation of the retailer. As a significant
reason for stock misfortune, weakening builds the association’s expense and this manner diminishes the benefit.
The weakening interaction brought about by activities of chemicals, oxidation and microorganisms often rely
upon ecological conditions, like temperature, stickiness, and environment. Temperature has a significant impact
on deterioration and must be controlled to maintain products quality. The protection innovation, for example,
temperature controlling gear and imaginative bundling, can influence the weakening rate and thus defer the
crumbling cycle.

When management launches a new product then, they have imperfect knowledge about the demand and other
factors related to the product. The management relies on experts’ analysis. When such counsel is imprecise
then demand or other factors related to the expert opinion can be modeled using fuzzy principles and the
corresponding environment is known as fuzzy environment.

A unique methodology to improve demand forecasting, which is a major difficulty of a continuous review
inventory model, is offered in this work. This study further examines the effect of fuzzy demand within an infinite
time horizon. An optimal operating strategy is sought for a continuous review inventory system to reduce the
total layout in a fuzzy setup. The mechanism of full-backordering is assumed to balance the component of loss
during absence of inventory. A continuous review inventory system is numerically solved for both crisp and fuzzy
instances, as well as an analysis of the best policy. The decision maker’s strategies under uncertain demand
can benefit strongly from the results obtained here and reduce the total inventory cost based on preservation
strategy.

The latest investigation is motivated by the fact that while there has been numerous research on each of
the features, the overall interaction has not been exhaustively investigated. Previous studies that regulated
deterioration by implementing functional forms of investment in maintenance techniques have ignored two
important aspects.
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— The maximum suitable investment in safety techniques ought to not be based totally on the fee of deterio-
ration. Techniques are mostly base on selling price (and therefore unit price) and degradation fee are more
feasible and are the strength of this paper.

— Protection time values synchronize with the unit of time are not sustainable in opposition to deterioration
for all sorts of goods. Preparations or meals require their personal packaging to lessen expiration. Others
can boost up the deterioration of numerous easy gadgets withinside the presence of big quantities of rather
oxidized products.

Practical considerations, such as attenuated deterioration, demand affected by both fuzzy base and pro-
motional up-scaling, complicate the approach. It has been proposed to consider analytical convexity without
approximating the deterioration factor. Because of the infinite time horizon, the continuous domain for cycle
length leads to continuous time duration variables. As a result, these aspects of inventory cost minimization
form a helpful aim that motivates to tackle this issue vis-a-vis the following research gap:

— For exponential dampening preservation, truncation error is introduced through polynomial approxima-
tion.This spills over into the accuracy and analysis of the optimal point. For promotional impact, detached
uncertainty in base demand is not modelled.

— Convexity is not examined in domain-wide analytical outcome. It is usually coordinate limited in process
and scope and has other parametric barriers which weaken the mathematical basis.

— Choice of time decision variables and arbitrary horizon is often less than ideal reducing managerial flexibility.
The analysis of the two phases of the cycle as impacted variously by deterioration, preservation, and demand
uncertainty is often not clearly reflected.

In light of these considerations, the originality and contribution of the current study is that it compares a
continuous review inventory model, which allows for full exponential depreciation attenuation analysis, to an
inventory model. The retention strategy is designed for a more realistic scheme in which demand uncertainty is
modeled with a trapezoidal fuzzy base and a term that scales with promotion efforts.

The decision process of a priori planning requires the forecasting of demand patterns on the retailer or
seller’s part. The comprehensive performance of the arrangement can be improved by flexibility in managing
resources and operations. The first model hereafter uses the pure deterministic scenario where exact demand
information is available to the decision-maker and it serves as a valuable mathematical prototype. The second
model incorporates the issue of deterioration control through variable preservation investment and its economic
ramifications, whereby this additional budgeting eventually leads to enhanced cost optimization. The third
model returns to the original contention of flexibility to tackle uncertainty, by using a fuzzy formulation for
the inexactly predicted demand. The three models together provide the researcher a clear and concise look into
the mathematical procedure and economic justification of incorporating preservation and fuzziness to cope with
deterioration and uncertainty respectively.

The structure of the present article’s organization is as follows: the literature review is in Section 2, which
goes through earlier research work that helps to frame this work. Section 3 contains the research problem and
the assumptions that aid in the planning of the model’s outline. The notations used are tabulated. Section 4
discusses the modelling framework and solutions for the crisp and fuzzy environments. The applicability of this
paradigm in a real-world situation is clarified using numerical examples in the next Section 5. The inventory
system’s sensitivity analysis and administrative framework are found in Section 6. In Section 7, avenues for
furthering this research as well as its findings are discussed. Finally, in Appendix A, a short introduction to the
trapezoidal fuzzy numbers is laid out.

2. LITERATURE REVIEW

2.1. Promotional impact

Discounts, credit period, free goods, and after-sale services are some of the common promotional strategies.
Practitioners and researchers have investigated the importance of promotional policies. Taleizadeh et al. [49]
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formulated an inventory system by considering partial backlogging and delayed payment with shortages. Rajan
and Uthayakumar [48] considered a deterministic inventory model by considering full backorder and holding cost
that grow exponentially under permitted payment delays and promotional effort. Other researchers (Mahapatra
et al. [15], Soni and Suthar [47], Liao et al. [14]) had considered inventory systems with demand sensitive to
promotional strategies. Nouri et al. [20] analysed the benefit of investing for promotion in a supplier-retailer
chain model where demand was stochastic. Recently, Pal [23] established optimal pricing while offering incentive
decisions for a supply chain model. Zhou et al. [55] formulated an inventory system by calculating joint pricing
by considering a deep reinforcement learning algorithm. Mahapatra et al. [16] formulated three different types
of economic order quantity (EOQ) model by considering time-dependent deterioration rate, promotional effect,
preservation technology, and uncertainty learning. An inventory system’s promotional activities effects the whole
system’s sales volume, and hence on the earnings of other members. As a result, in the inventory model, it’s
important to organize promotional decisions.

2.2. Deterioration

Deterioration has been deeply explored in inventory management. Food spoilage through microbes or oxida-
tion is ubiquitous. Electronics goods storage must account for damage through electrostatic discharge, moisture,
and contaminants. Pervin et al. [24] determined EOQ model for perishable goods with demand varying with
stock level and holding costs that was time-dependent. Pervin et al. [25] designed a multi-item inventory model
that took into account trade credits, on-demand, and constant rate of deterioration. Barman et al. [1] anal-
ysed an economic production quantity (EPQ) model with shortages and inflation in a fuzzy environment using
fixed rate of deterioration and incorporating time-dependent demand. Roy et al. [30] developed a two ware-
house, two credit level, and probabilistic setup for deteriorating items. Roy et al. [31] proposed an imperfect
production system with partial backlog under a credit policy for a deteriorating product. In the practical sce-
nario, it is seen that variable deterioration rates better represent the rate of failure and the life span of various
goods. Many practitioners like (Ouyang et al. [22], Soni and Patel [46], Zhang et al. [54], Mishra et al. [18])
worked with this phenomenon but in different directions. By taking into account trade credit policy, partial
backlog, and preservation strategy, Shaikh et al. [44] developed an inventory control system for deteriorating
product by considering time-varying demand. Khan et al. [11] analysed a setup with constant deterioration
and variable demand pattern along with delayed payment. Recently, Shah et al. [43] investigated the case
where the goods deteriorate and their demand fluctuates with the selling price by considering the greening
effect.

2.3. Preservation investment

Financially, the weakening of items contrarily affects the accounts and brand image of a firm. High dete-
rioration rates are entitled to higher yearly expenses, deficiencies, and lost deals. On this record, business
associations are keen on appreciating the reasons for crumbling and creating ways to deal with save their deliv-
ered merchandise and increment benefit. Antimicrobial (e.g. sulfites in fruits) and antioxidant (e.g. butylated
hydroxytoluene in edible oils) agents are commonly employed in a wide range of biologically derived products.
Recent advances have employed hydrophilic and lipophilic nanosystems for edible preservative coating in food.
Clean-room paradigms are used to control deterioration in pharmaceuticals and electronics sectors.

Dye and Hsieh [5] applied preservation procedures to control the deterioration rate for stored goods. Jani et
al. [10] explored a production inventory system for lifetime-dependent products by using preservation tech-
nology. Pervin et al. [26] utilised an EPQ system with decaying products, stock preservation technology,
and demand that was sensitive to the selling price, with partial backlog. Both preservation and inspec-
tion policy are employed in Pervin et al. [27] to optimise a quadratic demand vendor-buyer model. Das et
al. [3] proposed a multi-period credit policy and stock and price varying demand for an item with non-
instantaneous spoilage with preservation. Shah et al. [42] formulated a model for optimum inventory under
stock-dependent rate of depletion with a constant degree of deterioration controlled by preservation investment.
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Priyamvada et al. [28] took into account the deterioration of products under the effect of cost and stock ward.
They limited deterioration using preservation processes. Priyamvada et al. [29] proposed a realistic preserva-
tion formulation that varies the investment with the unit price and inventory level. The impact of strategic
inventories on a supply chain was studied by Saha et al. [32] who took into account how two producers or a
common retailer and a manufacturer could collaborate through wholesale pricing in the supply chain. Shah
et al. [41] developed an EPQ model for deterioration products as price sensitive demand to reduce emissions
by using green technology and preservation investment. Sarkar et al. [34] considered a variable demand-based
supply chain model for sustainable manufacturing and investment for autonomation. Recently, Sarkar et al.
[38] presented a substitutable product manufacturing process through a dual-channel and ensure environmental
sustainability by using carbon tax along with carbon cap. Reducing waste and meeting emissions targets are
important goals for inventory systems. Sarkar et al. [37] introduced a multi-phase production system to regulate
defective products and reduce waste through a reworking process in order to optimize profit. Kumar et al. [13]
designed a supply chain model for manufacturers and consumers that was based on demand and the carbon
emissions process. Various sustainability measures were useful investments in keeping with the biodegradable
products without preservation philosophy as considered recently by Sarkar et al. [35].

2.4. Fuzzy modeling of uncertainty

Apart from promotional efforts, decaying commodities, and preservation technology, demand uncertainty
stems from the inventory model’s many unknown aspects. However, in real-world settings, the uncertain param-
eters like demand, various relevant expenses, lead time, preservation cost, may have a higher possibility of
deviating from the exact value, leading to a situation in which these uncertain parameters do not follow any
probability distribution. Initially, Zadeh [53] first developed the concept of fuzzy set. After that many pioneer’s
researchers like (Yao et al. [52], Glock et al. [7], Shah and Soni [39]) captured the impreciseness by developing
various fuzzy inventory models. The model analyzed by Garai et al. [6] had holding cost that scaled with time
and price dependent demand by considering trapezoidal fuzzy numbers. Shah and Patel [40] used preservation
technology and developed a model for inventory to reduce rate of spoilage under a cloud fuzzy prescription.
Yadav et al. [51] considered an flexible production system with a variable pollution control for a fuzzy environ-
ment. A learning environment for dense fuzzy demand was employed by De and Mahata [4] under the overlap of
order with rework batches. Time varying demand for decaying items was modeled by Kumar and Paikray [12]
in crisp and fuzzy formulations with three different scenarios under total backlogging. A multithreaded neural
network was efficiently employed by Sarkar et al. [36] to tackle a fuzzy inflationary model.

3. PROBLEM DEFINITION

3.1. Research problem

The proposed inventory model herein aims to determine the lowest total cost per unit time for the cases
of crisp and fuzzy demand by computing the most effective replenishment policy and optimal investment in
preservation technology for a deteriorating item. A model without preservation is used as a baseline formu-
lation to compare and contrast with the goal of the model. Figure 1 is an illustrative inventory profile of
the model. In the three models, most of the parameters are common while some are specific to the model as
required. The assumptions made are itemised below. The decision variables and other specifications are laid out
in Table 2.

3.2. Notation

3.3. Assumptions

(1) The demand rate is D(p) = Dy + dip, where Dy is fixed base demand while d;p measures the effect of
promotional activity p with dy as a positive, constant scaling term. Here, in model-3 it is assumed that
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TABLE 1. Analysis of this model in comparison to prior models.

Authors Demand rate Deterioration rate Back- Preservation  Environment
ordering technology
type

Salameh et al. [33] Constant CN CN CN Crisp

Soni and Patel [46] Time and price Constant CN CN Crisp & fuzzy
dependent

Zhang et al. [54] Price & stock Constant CN CN Crisp
dependent

Das et al. [3] Selling price and stock  Three-parameter Partial Fully Crisp
level dependent Weibull  distribu-

tion dependent

Mahata and Goswami [17]  Constant CN Fully CN Fuzzy

Shah et al. [43] Price and stock green-  Constant CN CN Crisp
ing effect dependent

Mahapatra et al. [16] Time dependent and Time-dependent Fully Partially Crisp & fuzzy
uncertainty

Sarkar et al. [38] Price and cross- CN CN CN Crisp
elasticity dependent

Priyamvada et al. [29] Price-sensitive Constant CN Fully Crisp
demand

This study Uncertainty with pro- Constant Fully Fully Crisp & fuzzy

motional effort

Notes. CN: Contribution Not-Available relative to present analysis.

maximum inventory level

Q = order quantity

inventory level I(t)
M

N }mvenmxy Tost

2 Jto deterioration)

time (t)

ity g maximum
backorder \
Q-M= DTB

FI1GURE 1. Inventory model with backorder and deterioration.

Dy is a trapezoidal fuzzy number (TpFN) as follows: 170 = (Do — A2, Do — A1, Do + Ay, Do + Aya),
where 0 < Ajp < Ajp < Dp; 0 < Ay < Apo < Do and (A1 — Ajp + Apo — Ajg) > 0. The decision makers
determine All; Alg, Arl and ATQ.

(2) A single type of item is analyzed in this model, as well as shortages and full backlogs. When replenishment
occurs, backlogged demand is initially met.

(3) The constant deterioration rate is 6y (0 < 6y < 1). Deterioration is proportional to the inventory. Per unit
time, a percentage of goods in the inventory deteriorate. Repair or replenishment of such items does not
occur within a cycle.
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Parameters
Symbol Description
Q order quantity
D(p) demand rate per unit time
A ordering cost ($/per order)
h holding cost ($/per unit)
w deteriorating cost ($/per unit)
s shortage cost ($/per unit)
k promotional cost ($/per unit)
p promotional effort per unit time
6o constant rate at which items in inventory deteriorate (0 < 6y < 1)
m the scale parameter for promotion
a constant coefficient of preservation
0 effective deterioration rate, dampened by use of preservation strategy (6 = 6pe™ ")
M maximum positive “inventory level” at time ¢ = 0
U maximum preservation outlay ($/ per unit time)
1(t) level of inventory at time ¢
TAC(7.,78) total cost in absence of preservation (Model-1)($/per unit time)

TAC(1.,78,u)
TAC(1,,78,u)

total cost with preservation (Model-2) ($/per unit time)
total cost for fuzzy demand with preservation (Model-3) ($/per unit time)

Decision variables

T,
8

u

time duration for inventory level to fall to zero after replenishment
time between zero inventory and replenishment, during

which orders are fully backlogged (denoted by negative inventory level)
preservation investment as cost per unit time ($/per time)

(4) The promotional effort cost (PEC) is kp™ which collect from the leading results of the cost-of-promotion
function, where k& and m are constant. (Mahapatra et al. [15], Soni and Suthar [47])
The impact of preservation investment u per unit time is that it reduces the effective rate of deterioration
and is modeled by a term using a strictly monotonic increasing function, 8y(1 —e~**) for v > 0, where a =
positive constant. This ensures that there is no impact when © = 0 and as u increases, the effect increase
but is bounded by 6, i.e., the maximum impact as u — oo is 6y (Shah et al. [42]). Realistically, the decision
maker has budgetary limits for preservation investment and hence an upper bound u < U, is a necessary

()

(6)

(7) The lead time is negligible together with infinite replenishment rate and the order quantity is finite.

numerical constraint.

The effective deterioration rate after subtracting the impact of the preservation cost is 6y — 6p(1 —e™ ") =
Boe™ % d.e., 8 — 0y if uw— 0 (when without preservation) and § — 0 if u — oo (the limiting case where
deterioration fully reduced by preservation).

4. MATHEMATICAL MODEL

4.1. Model development

The models and their solution methodology are laid out in this section. The governing differential equations
are setup and solved to obtain the total cost function. Necessary and sufficient criterion for convexity and global
optimality are imposed on this objective function. Defuzzification is used when fuzzy parameters are employed.
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4.2. A Continuous review inventory model with crisp demand and constant deterioration
rate (Model-1)

A continuous review EOQ setup is constructed with the above assumptions. An instantaneous replenishment
starts the cycle at ¢ = 0 and the inventory level jumps to its maximum value, M = I(0). I(¢) reduces in time
interval [0,7,] as units are consumed to fulfill the demand while some are lost to deterioration. All units are
used up at t = 7, so I(r,) = 0. Backorders are kept during the period [7,, 7 + 7,] which are fully backlogged
to be satisfied from the next replenishment. In Model-1 there is no preservation investment (v = 0). Based on
these assumptions, the differential equations governing by the following cases:

Case 1 ( 0 <t < 7,): Consumption due to demand and loss due to deterioration depletes the inventory, hence
the equation governing the inventory level I(t) is
%Ef) +0I(t)=—-D, when 0<t<m,. (4.1)

The deterioration term 61(t) is proportional to the existing on-hand inventory and 6 = 6 is a constant in
Model-1. In the differential equation (4.1), the boundary condition I(7,) = 0 is applied to obtain the level of
inventory

_b
-7

Using equation (4.2) the highest inventory level M is at ¢t = 0 as follows:

I(t) (690@*” - 1) when 0<t<,. (4.2)

M = I(0) = e%(e"m - 1). (4.3)

Now, equation (4.3) is different compared to the case of no deterioration where M = Dr,. It is exactly this
difference which gives the amount of inventory lost due to deterioration, as in the buyer’s inventory model
considered in Wee et al. [50], given by

D
M = Dr, = o= (7 = 1= 07,). (4.4)
0o
Case 2 (1, <t < 73+ 7,): Consider shortages during the period, as well as backorders caused by a negative
inventory level I(¢). The only term is due to demand because orders are entirely backlogged. As a result, the
differential equations that follows

——==-D, when 7, <t<73+7,. (4.5)

Using the boundary condition I(7,) = 0; equation (4.5) leads to the following expression for the inventory
level
It)=-D(t—-7), in 7, <t <715+, (4.6)

This negative inventory level actually implies that the accumulated backorder at time ¢ (in 7, <t <7+ 7,)
is D(t —7,). Here I (13 +7,) = —D7g is the lowest inventory level and the maximum backorder is therefore
D7g. The ordered quantity () fulfills this backorder first and the remaining inventory provides the maximum
inventory level.

D
QfDTB:MéQ:DTng—(eGO“71). (4.7)
0o

In equation (4.7), the order quantity is larger than that in the classical backorder model without deterioration
D(7, + 73)], as it has to satisfy the demand together with the items lost to deterioration.
B
Therefore, the total inventory cost has the following constituents.
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(a) Ordering cost (OC) = A

(b) Holding cost (HC)

_ /OTL %Oh (eoouﬁt) _ 1) dt — L;gh (egOTL — 7, — 1).

(c) Shortage cost (SC) =

T3+T, T8+T, TEDS
/ (fI(t))sdt:/ D(t =) sdt = 2 —

v T,

(d) Promotional effort cost (PEC) = kp™, where k and m are positive parameters and p is the promotional effort.

(e) Cost due to the deteriorated items (w is the per unit deterioration cost) (DC)

Dw

=(M - Dr)w= 2 (e‘g‘m —O1, — 1).

0

As a result, by considering deterioration but not preservation costs, the total inventory cost per cycle is as
follows:

TAC(1,,73) = OC+ PEC+ HC+ DC + SC
A T3+ T,
A+kp™ D(h+06 el —fgr, — 1 Dst2
_ + kp + ( +2 Ow)( 0 ) + B (4.8)
T8+ T, 05 T8+ T, 2 +71,)

4.2.1. Optimization methodology (Model-1)

The classical optimization process yields the decision variable values for the least total cost ($/cycle). The
computational procedure has two parts.
Step 1: Obtain critical point (T* TE) satisfying

L

0T AC —0 and 0T AC —0
(971 87’5

Step 2: Verify the convexity of TAC(7,,73) by proving that (in the feasible region)

2
9’TAC

0t,073

P*TAC =0 and 0’TAC . O’°TAC B
37’5 or}? 87’5

The factors not containing the decision variables in equation (4.8) are collected and grouped for algebraic
convenience.

A Bit2 Oy (e —1— 6y,
TAC (1,,13) = : 4 44 (e o7, (4.9)
T8+ T, T3+ T, T3+ T,
where
D D(h+6
A1:A+kpm B1:78 01:%
0

The total cost per time unit varies continuously with the positive inventory time 7, and negative inventory
time 73. This objective function is minimized using the decision variables 7, and 73. From equation (4.9), the
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first order partial derivatives of TAC (7,,73) are

0T AC . 0,C1 (600‘“ — 1) B (TAC)

4.10
or, T8+ T, (8 + 1) (4.10)
OTAC _ 2B115 (TAC) (4.11)
073 s+71  (T8+T)
The second order partial derivatives of TAC (7,,73) are
O*TAC  2(TAC)  200Cy (e —1)  03C e (4.12)
or? (78 + TL)Q (75 + TL)Q T .
PTAC  2(TAC)  6C (eP™ —1) 2B175 (4.13)
oroms (1547 (15 +7.)° (5 +7.)" .
D’TAC 2(TAC 4B 2B
ic_ ( )2 _ 4B 25 (4.14)
975 (T8 + 1) (T8 +7) BT

As e —1—0y7, >0 V 67, > 0, hence equation (4.9) gives

Bng
TAC(t,,18) >

Y Og7, > 0.
T8+ T,

Using this inequality in equation (4.14), which becomes

92T AC 2By 73 2B, (1, — 2B, 72
— > e - 1 (7 Tf) - 17, >0 VY >0 (4.15)
aTﬂ (Tﬁ =+ TL) (Tﬁ =+ TL) (TB + TL)

The necessary condition for the objective function to attain minimum cost are that the first order partial
derivative must be zero (Step-1 above). when sufficient conditions (Step-2 above) are met; setting these partial

derivative equal to zero gives the best solution, that is 375# =0 and 85# =0.
] s

Further, to make certain optimality, the enough situation should be satisfied. Hence forth the corresponding
fundamental minors should be positive definite.
The Hessian determinant is

2

O*TAC
0t,073

O?TAC . O°TAC
or? 875

H(r,718) =

From equations (4.12), (4.13) and (4.14), we get
(18 + TL)4 H (1, 18) =24, (2B1 + 01902690T“)
+2C1By (7 (1= 67,)” + "7 —2)
+00°Cy % (€207 — 20g7,e%™ — 1) (4.16)
Simplifying e?™ (1 — GOTL)z + e — 2 and e2%7 — 20T,ef%T — 1.

4 2 for, 4 002°C1% (607"
(Tﬂ +7.) H(TL,Tﬁ) > 24, (231 + C160p°e ) + C1 By (6o7,)" + a1

= H(1,,73) >0V Oy, > 0. (4.17)



AN INVENTORY MODEL WITH UNCERTAIN DEMAND UNDER PRESERVATION STRATEGY 4261

0.250
0.225
0.200
0.175
0.150

025, 20 0125  Tg
0355 40 0.100
T, 045, o 0.075
~70.55 0.050

0.60

FIGURE 2. Objective function convexity (Model-1).

Equations (4.15) and (4.17) imply a positive definite Hessian. Therefore, the cost function TAC(r,,73) is

convex and this nature is again proved graphically in Figure 2.
From equation (4.10) and (4.11), it has a unique global minima in the feasible region at (

L

T Tg) satisfying

(critical point)

0oC, (efom — 1
8TAC _ (1195} (6 ) _ (TAC) _ 07 (4.18)
or, T8+ T, (8 + 1)
OTAC _ 2Bi15 (TAC) _o. (4.19)

073 s+7  (T8+T)

Comparing equation (4.18) and (4.19)

TAC (17, 75) = 6,C, (eeorz _ 1) = 2B, (4.20)
Hence, equations (4.9) and (4.20) give
*2 T* *
o= ALy B G L), 4.21)
S R 4T '
Simplifying equation (4.21), one can get
AL+ Cp (ol — 1 — Gyt
= \/TL*Q + 1+ C1 (6 5 07, ) _ TL*' (422)
1

Equation (4.20) implies
1 2317’5
+1b. (4.23)
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The iterative numerical solution of equation (4.22) and 4.23 yields the appropriate values of 75 and 7] for
optimization.
From equations (4.20) and (4.7), the minimum total cost per unit time and the economic order quantity are

* * * * * D (6007—: — 1)
TAC (TL B Tﬂ) = 2B]Tﬁ, Q = DTB + T (424)

From equation (4.4), effective rate of loss (deterioration per unit time averaged over a cycle) is

D (%7 —1 — 0y77) Q*

Oo(m53 + 7.) o T8+ T, B

4.3. A continuous review inventory model by considering deterioration items and
preservation effects (Model-2)

Proper maintenance strategies reduce the impact of inventory system degradation. As fewer items are lost,
this translates to savings. The less items you lose, the more you save. However, investments in such technologies
should be included in the overall cost. In this subsection, an optimal point is found between these two conflicting
economic effects.

In this model, preservation strategies cost is used by the retailer as an additional investment of u per unit
time and this reduces the rate at which items deteriorate by (1 — e~**), where the coefficient of preservation
is @ > 0 (as in Shah et al. [42]). This is a strictly monotonic increasing function of the preservation investment,
bounded above by 6y, and below by O.

The effective deterioration coefficient is (for u > 0)

0 =60y — 0 (1 — 67““) =fpe” ™ = 0<0<by<l. (425)

Now, Model-1 is extended to incorporate the preservation technology. This variable has two effects as the
preservation cost adds to the total cost, but dampens the deterioration through 6. Solving the differential
equations (4.1) and (4.5) for I(¢) using the boundary condition I(7,) = 0; the inventory level I(¢) with the
consideration of preservation investment are as follows:

D
1(t) = 5 (e"(ﬂ*“ - 1) n0<t<r, (4.26)
I(t)=-D(t—1,) int, <t<T3+T,. (4.27)
Equations (4.26) and (4.27) give the inventory at any point in the cycle (0 < ¢t < 753+7,). Maximum inventory
is at I(0) and maximum backorder is at I(75 + 7,).
D
M=1(0)= 5 (eeﬂ - 1)
and Q—M=—-I(r,+713) =D

D
Q=75 (e(’ﬂ - 1) + Dr. (4.28)
Over a complete cycle, number of items lost to deterioration is (as in equation (4.4))

M — Dr, = %(69” —1- GTL). (4.29)

The total cost per cycle in this inventory model now contains the preservation cost uw per unit time. Hence,
the preservation cost per cycle (PC) is (7, + 73)u.
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The other cost components are as defined in Model-1. Thus, the total inventory cost per cycle with additional
preservation cost and deterioration dampened by preservation is as follows:

TAC(7,,13,u) = Tﬁ%(Ordering cost+Holding cost+Shortage cost-+Promotional effect cost+Deterioration
cost+ Preservation cost),
i.e.,

A+kp™  D(h+w) (e?7 — 07, —1) Dstj

TAC(1,,73,u) = )
(72,7, u) = v+ T8+ T, 02 T8+ T, +2(Tg—|—ﬂ)

(4.30)

The total cost per cycle time varies continuously with the positive inventory time 7,, negative inventory time
78, and the preservation investment u. This is the objective function to be minimized using decision variables
T,, T, and u.

4.8.1. Optimization methodology (Model-2)

In this study, the positive inventory time 7,, negative inventory time 73, and preservation investment u that
minimizes T'AC are found. This investment reduces the deterioration to a certain degree, but beyond the point
at which the benefits of the preservation outweigh the costs, the cost of preserving the investment might be
more than the savings from reducing the number of deteriorated items.

The model aims to strike a balance between the marginal cost of preservation investment and the deteriorated
quantity. This subsection chalks out the classical optimization pathway step by step for the projected scenario
to derive the optimal solution as follows:

Step 1: To achieve least total cost under this model, necessary conditions are to be satisfied, i.e, the first
order partial derivatives must vanish at the optimum point (7%, T u*).

0T AC JTAC JTAC
or, 07s ou

Step 2: Convexity of TAC(7,,73,u) in the feasible region is investigated at this step through the application of
the sufficient conditions involving the second order partial derivatives.

In TAC(7,, 73, u) there are two time duration variables and one preservation cost variable. First the convexity
of TAC(7,, 75 |u) is considered for any particular feasible value of the preservation cost and then the convexity
of TAC(u |1, 73) is considered for any particular feasible values of the time duration variables.

The process for checking convexity of TAC(7,, 75|u) is similar to the derivation in Model-1. Note that, here
0 = f0pe™ " contains the third decision variable u. For any particular given feasible value of u = u*, this cost
function is checked for convexity.

Hence, in the following analysis, equation (4.30) is rewritten and the compact algebraic form of TAC(7,, Tg|u*)

is as follows: ) .
A BT C T —1—0T,
TAC(1,,m8|u") = u* + Lo 18 i€ m). (4.31)
T3+ T, T8+ T, T8+ T,

* D (h 0 —au™ 2au™
Where 9 = 906—(111, = Cl — ‘D (h’ + 9’(1}) _ ( +w 062 ) e
02 62
D
and Ay = A+ kp™ By — 73

The first order partial derivatives of TAC(7,, 7g|u*) with respect to 7, and 73 from equation (4.31) are
OTAC  (u*—TAC) N 60 (e — 1)
or,  (3+7) T3+ T,
OTAC  (u*—TAC) 2By
ors  (15+7) T8+ T,
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The second order partial derivatives of TAC(7,, 75|u*) with respect to 7, and 73 are computed to check the
nature of the Hessian matrix for positive definiteness as follows.

O*TAC _ 2(TAC —u*) 20C; (' —1)  02°Cref™

_ 4.32
or? (5 +7.)° (5 +7.)° T8t e
OPTAC  2(TAC —w’) 0C (" —1)  2Biry (4.33)
0t,073 (7—5 +7—L)2 (13 +TL)2 (13 +TL)2 .
O*’TAC  2(TAC —u* 4B 2B
AC ( 1; ) 178 - 1 (4.34)
o7} (13 +7.) (s+7)" TBtT

It is interesting to note that the above equations imply

OTAC n OTAC (rs + )GQTAC
or, 07g T 0t,073

At the optimal point where the lhs terms are zero, the mixed second derivative with respect to 7,73 is
therefore zero.
In the feasible range, 1 — 07, + €™ > 0. Hence equation (4.31) implies
s B
TAC(7,, T8lu*) —u* > ——-
T8+ T,

Substituting this inequality in equation (4.34) shows

2(TA * 2B, 72
O C(TQL’TB'u ) > 17 >0 Yor, >0 (4.35)
87—5 (8 +7.)

The Hessian determinant of TAC(7,, 7g|u*) is

. PTAC (1, 5lu*)\ | O*TAC (7,,75/u*) O2TAC (7, m5lu)
H (7., 7p|u") = { or? } 87’5 B { 1,073 } '

Using the second order partial derivatives from equations (4.32), (4.33), and (4.34)

(3 + 1) H (7 malu”) = 201 By (€77 (1= 0m,)° + € — 2) + 241 (2B1 + C16%"™)
+6°Cy” (27 — 20m,e’™ — 1) (4.36)

In the feasible region, where 67, > 0, the terms e’™ (1- QTL)2 + e — 2 and €27 — 207, — 1 can be
simplified to obtain the following inequality from equation (4.36)

02C,2 (67,)"

(75 +7)" H (1., 75]u”) > 241 (2B1 + C16%€"™) + C1By (0m)" + ——

>0 V 0r,>0. (4.37)
Hence, from equation (4.35) and (4.37), it can be concluded that TAC(7,, 7g|u*) is convex in feasible range
of 7,, 73 for any particular feasible value of u = u*.
Similarly, the convexity of TAC(u|r,,73) for any particular feasible values of 7,75 is proved analytically.
Rearrange equation (4.30) for calculating the partial derivative of the function TAC(u|r,, 7g) with respect to w,
while noting that 6 = pe™" and 7, = 7, 78 = ;-

* * D h D w ¥ *
TAC (ulr!,75) = u+ Hy + [912 + 91} (e9 . —eq), (4.38)
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FIGURE 3. Objective function convexity (Model-2).

* 2
(At+kp™) Ds7™ Dh_ _ Dw _ _
TE_H,: + Z(TE'H-L*) - Hl ) TE+TL* - Dlh ) - D1w~

where TS

Computing second order partial derivative with respect to u of equation (4.38) (using chain rule) gives

O°TAC  a2Dy,
o2 82

{(027% = 30r +4) 7 — 077 — 4} + “2%{ (0272 —orr +1) " — 1} (4.39)

Simplifying (927';“2 — 307 +4) " — 01 — 4 and (027';"2 — 077 +1) e’ — 1 in equation (4.39) leads to

PTAC (uw’@) y a2Dyy, {0371*3 (027-;“2 N 1)} N a?D1,, {‘9371*3} >0 Vor>0. (4.40)

ou? 02 6 0

Hence TAC (U|TL*, TE) is convex in the feasible range of u for any particular feasible values of 7, = 7%, 75 = 75.

The convex nature of the objective function is further illustrated below which is shown in Figure 3.

These results prove the validity of the optimization process. Solving the equations obtained by setting the
first partial derivatives of equation (4.30) with respect to the three decision variables (7., 73 and u) to zero gives
the optimal values for a continuous review inventory model considering deterioration and preservation effects
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and crisp demand (Model-2).

OTAC  (u—TAC) n D (h+ 6w) (™ — 1)

4.41
aTL 3 + 7 ¢ T8 +7 ( )
OTAC _ (u—TAC) n Dsg (4.42)
87’5 3 +7, 3 + T,
o _ 1 9r,
OTAC _ |  d |D(h+buw) (e m) | b (4.43)
du 9 62 s+, du

Equating the expressions from equations (4.41), (4.42) and (4.43) to zero and computing the optimal solutions

C D(h+6mw) (07— 1)

TAC(r),m5,u") —u" = o = Ds7} (4.44)
. (15 + 7.5)0** -
("7 —1—0*1")(2h +wb*) + 5 - (e’ T —1)(h+wb*) = 0. (4.45)
a
Using equation (4.30) and solving equation (4.44) gives
1 0*sT}

= log {1} 44

T B o (4.46)
204+ kpm)  2(h+60*w) (e? 7" — 1 —6*1))

g *2 L — . 44

8 \/TL + Ds + 562 T (447)

Equations (4.45), (4.46), and (4.47) provide the numerical values of 7%, 75, u* (where 6% = Boe= ") when
solved iteratively. The inventory system’s minimum total cost per unit time together with Q* is subsequently
calculated using equations (4.28) and (4.44) as

D
TAC* = u* +735Ds , Q =g (" = 1)+ Drj. (4.48)

As in Model-1, by equation (4.29), number of items lost due to deterioration per unit time at the optimal
point is

D (ee*ﬂ* —-1- 9*71*) Q*

9*(%k +77) - T+ TS B

4.4. A continuous review inventory model with fuzzy demand by considering
deterioration items and preservation effects (Model-3)

Incorporating the effect of the promotional effort, in the previous models the annual demand has been taken
in the form D (p) = Do + di1p . In this subsection, fuzzy demand is considered where Dy is a trapezoidal fuzzy
number, i.e, 136 =TpFN (Dy — Ajp, Do — A1, Do + A,q, Do + A,s). This enhances the flexibility in modelling
real scenarios.

In the present article, the function principle and signed distance defuzzification procedure (see Jaggi et al.
[9], Sharma and Govindaluri [45]) are considered.

Now, the membership function of 56 is as follows:

T— —A .
DAl in (Dg — Ap) <@ < (Do - Ay)
1 in (Do —Ap) <z < (Do+ Ap)
in (Dp4+A)<z<(Dy+A,s)
otherwise

Hp, (z) = (Do+A,0)—x (4.49)

(D0+A7‘2)—(D08Ar1)
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FIGURE 4. Fuzziness of demand parameter and objective function.

With this fuzzy demand, equation (4.30) is transformed to

2
)
2

(A+Fkp™)
T8+ T,

B bv()+d1p (h+6w) (™ — 1 —01,) N

TAC (TLvTﬁvu) = T84T, 92

+u

4267

(4.50)

Then by the function principle (Mahata and Goswami [17]), as the demand has a TpF' N base value, the

above expression reveals that the total cost per unit time becomes a TpF N as shown in Figure

4.

The parameters of this TpF' N are themselves real valued functions. For any feasible values of 7,, 73, u this

holds:

TACs (1,,73,u) < TACy1 (1,,73,u) < TAC,1 (1, 78,u) < TAC,2(7,,73,u)

TAC (7,,73,u) = TpFN (TAC)5, TACyy, TAC,1, TAC,5)  where

Dy — A h+6 07 1 —0r,) sT2 A m

TACZ2(TL77—57U) = ( 2 12) +d1p ( + w) (e 2 T) j ( +kp ) +U
T8+ T, 0 2 T3+ T,
Dy — A h+6 07 _ 1 —0r,) s72 A m

TACy (1,,75,u) = (Do = An) +dip | (h+ 0w) (e m) s At k) +u
T8+ T, 02 2 T8+ T,
Do+ A d h+6 oo _1—07,) s73 A+ kpm

TAC, (rmp) = (Lot An) g O 212 fn) oy (A ko)
T8+ T, (% 2 T3+ T,
Do+ A d h+0 oo 16 sT2 A+ kpm

TACrZ (TL,’TQ,U) = ( 0ot TZ) +hp ( U}) (6 2 TL) £ ( + Pf) +u
T8+ T, (% 2 T8+ T,

Applying the median formula, the total cost per time unit in Model-3 is estimated as

A 1
Median (TAC (TL,Tﬁ,u)) =1 TACs (1,,73,u) + TAC; (1,,78,u) + TAC,1 (7,, 78, u) + TAC 2 (TL7TH7U>]
R R E g | BRPES TN
N T@+7’L 62 2 TB+TL
Api—Ap 4+ A — A h+6 sT§
+( 1 11+ A l2)>< (+w)(€9n_1_9ﬂ)+7,@

92

4 (Tﬁ +7.)

(4.51)

Thus, the median estimate of the total cost per time unit for Model-3 (fuzzy demand with preservation) exists

as the sum of two parts. The first term is identical to the total cost per time unit for Model-2

(crisp demand
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with preservation).
Median (m (TL,TI@,U)) =TAC (1,,18,u) + FC (1,73, u)

where

(Ar1 — A+ Apa — Ap2)

(h+ 6w) (™ — 1 —07,) 87'5
+ 2.
4(r3+1,)

FC(TMTQ’U): 92 9

(4.52)

4.4.1. Optimization methodology (Model-3)

Lemma 4.1. The non-negative weighted sum of convex functions (over the same interval) is itself convez.
(Boyd and Vandenberghe [2]).
2
The convexity of FC(7,,75,u) as given by equation (4.52) is investigated. W and the Hessian of
FC(r,,m8u) are constructed. As in Model-2; the terms are grouped.
For any particular given feasible value of u = u* (hence § = fpe~**" below) in equation (4.52)

By73  Cy(—1—0r, + €7
FO(r ) = 20 G n ) (1.5
B8 L B L

where Ayer = (A1 — Ajp + Ao — Ajp) and

A'ua'rs Avar (h + ew)
== =g

From equation (4.53), the first order partial derivatives of FC(r,, 75|u*) with respect to 7, and 73 are

OFC —(FC) . 0Cy (e — 1)
oT, T3+ T, T8+ T,
OFC —(FQC) . 2B,7s .

07 8+T. T3+,
The second order partial derivatives of FC(r,, 73|u*) with respect to 7, and 75 then become

PFC _ 2(FC)  2005(e" —1)  §2Coe’™

= 4.54
ot? (tg +71,)2 (t8 +1,)? T8+ T, (4.54)
0?°FC 2(F0O) 0C (e — 1) 2Bs75
= — — (4.55)
01,013 (18 +7,)? (18 +71,)? (18 +7,)?
O*FC 2(FC 4B 2B
< ( )27 AL (4.56)
ot (8 +7,) (T8 +7.) T8+ T,
In equation (4.53), the inequality e’ — 67, —1 >0V 67, > 0 gives
Bo72 Cy (=1 — 07, + 7 By12
FC(r,glu*) = 2’8 4 2( T ) S 28,
T8+ T, 5+ T, 5+ T,
Substituting this in equation (4.56)
2F 2B,72 O (FC(r, *
ore > PN (FC(r, 7s]u”)) > 0. (4.57)

37’5 (8 +1)3 37’5
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The Hessian determinant of F'C(7,, 75|u*) is

O?FC(1,,75|u*) O?FC (1, m5|u*) O?FC(1,,75|u*) 2
H * — ) ) _ b .
(72, 7u") { or? } 5‘75 { 0t,073 }

Substituting the expressions for the second order partial derivatives from equations (4.54), (4.55), and (4.56)

(15 +7.)*H(1,, 75]u*) = 203 Ba(”™ (1 — 07,)% + €™ — 2) 4+ 62Cy% (2™ — 207,e"™ — 1). (4.58)
For any particular feasible value of u = u* this can be simplified as in equation (4.36).
02C5°(07,)*
(75 + 7.) H(1,, 75|u*) > CoBa(07,)* + & >0Vér, >0. (4.59)

Thus, from equations (4.57) and (4.59); FC(7,,75|u*) is convex in feasible range of 7,, 75 for any particular
feasible value of u = u*.
Consider FC(ul|r,,7g) for any particular feasible value of 7,, 75 in equation (4.52), for 7, = 7%, 73 = 75 let

D Doy, «
I e B G (1.60)
where Ayer = (Ar1 — A + Are — A2) and
A,uu ST*2 A arh A arW
(75 +7) (75 +77) (75 +77)

The first and second order partial derivatives of FC(u|7), s ) with respect to u are computed from equa-
tion (4.60) (where 6 = fpe™*").

% =al {Tj‘(l — ) {?922]1 + D;w} + (6975 —-1- GTL*) {253% + D;Qw}]

0?°FC  a?Dyy, a?Do,,

oz 62

The exponential terms in equation (4.61) are comparable to those in equation (4.39) and are simplified
similarly.

{777 = 307 + )" — o7y — 4} + (@77 —or7 41" —1}. (a61)

0

Therefore FC(ul7,73) is convex in feasible range of u for any particular feasible value of 7, = 77, 75 = 73.

OPFC(u|r}, 7} 2D g37*3 2Dow
éuL i) a 922” { g (0272 + 1)} L {937;"3} >0 Vor>0. (4.62)

Since, Median (m(ﬂ,m,u)) = TAC(r,18,u) + FC(7,73,u), hence the convexity of
Median (m(n, Tg,u)) can be determined from the convexity of TAC(7,, 73, u) and FC(7,, 73, u).

As  per the analysis of both TAC(r,73,u) and FC(r,73,u) shown in equa-
tions (4.37), (4.40), (4.59), and (4.62); from the above lemma it is concluded that in this model,

Median (Y%(Tb,m,u)) is itself convex and can be optimized under Model-3 by solving the following
equations for 7,, 73, and wu.

OMedian (m(n,rg,u)) _ OTAC(1,,75,u) n OFC(1,,73,u)

or, or, or, =0
OMedian (m(ﬂ, T8,u)) OTAC(7,,73,u) OFC(T,,T8,u)

(97'[3 87‘g ({97'[3
OMedian (TAC(7,,m5,u))  OTAC(7,,73,u) L OFC(r, ) _

ou ou ou
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The iteration scheme for optimization of M edian(m(n, 7g,u)) is obtained from these three equations as
follows

1 Gfogs
R 1.
S <h+9fw+ ) (4.63)
8(A + kp™) 2(h+ Opw) ("7 — 1~ Op7p,) |7

[ _ 1 (464
T = TRt s(4D + (Ap1 — A + Apz — Ap)) i 50 K o

_ log(6) — log(6y)
Uf = a

where

4<TfL +Tf5>9f2

— 0. (4.65)
a<4D + (Aﬂ —App+Apg — Al2)>

(2h + wa + ethfL) + [(efoL — 1)(9fw + h) — h} eefoL —

As in Model-2, using the optimal time duration values 5 . Tig and the optimal preservation cost per unit

time u} obtained from the above scheme (Eqgs. (4.63), (4.64), and (4.65)) with 07 = foe~ "7, gives the optimal
results for the Model-3. The optimal TAC' and @ for Model-3 are

A —Ap+ Ay — A 05T 1
Q=D+ =221 t A2~ D i+ e . (4.66)
4 0}
. A —Ap 4+ Ay — A
Median (TAC}) = u} + s7} (D 4ot Z 2 ”). (4.67)

5. NUMERICAL ANALYSIS

5.1. Input parameters

A numerical example is employed to illustrate the models developed here. A decision maker may extract
useful insights by analysing the results. Numerical values of the parameters used (Mahapatra et al. [15]) here
are given below: A =80, h = 0.4, Dy = 1000, d; =20,k =10,m =2, p=2.5,w =6,s =3, Ajp = 75, A;; = 50,
A =100, Ao = 150 and 6y = 0.15. The preservation technology investment (u) dampens the deterioration
rate as w(u) = fpe™**, where the positive parameter a is a coefficient measuring the dampening of deterioration
rate for every unit of such investment u. The value of a is considered as a = 0.02 in this study. The upper bound
of the preservation investment is U = 200 where u < U. The values of the decision variables: time duration
for inventory level to fall to zero after replenishment (7,), time between zero inventory and replenishment that
is fully backlogged, (73) and preservation cost (u) for Model-1, Model-2 and Model-3 and corresponding order
quantity and total cost at the optimal point are tabulated (Tab. 3).

The column — D gives the number of units lost per unit time over a cycle as a measure of the effective

!

rate of deterioration. In Table 3, the per unit cost per unit time at the optimal point is ng‘* = 0.907,0.587,0.585

for Models-1,2,3, respectively, which proves that the fuzzy formulation (Model-3) is the most efficient on a per
unit basis even though it has a slightly higher TAC* than Model-2.

Figure 5 shows the variation in TAC* for various cycle lengths (7, + 7';) It exhibits two distinct phases. In
the first phase, for very small cycle lengths, the impact of deterioration is not prominent and all three models
yield similar results.
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TABLE 3. Optimal solutions of Model-1, Model-2, and Model-3.

Model ' 75 u* Q" % —D TAC(r),75,u")(per cycle)
Model-1  0.37 0.17 - 578.18  20.73 524.40
Model-2 0.62 0.12 81.10 787.98 08.17 462.84
Model-3 0.62 0.12 82.03 801.47 08.17 468.46
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800
=t=N\odel-2
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FIGURE 5. Variation in optimum total cost with cycle length.

As cycle length increases, the impact of deterioration and the economy of preservation becomes clear. The
second phase has the total cost of Model-1 (without preservation) rising sharply beyond its global minima
(at 7 + T = 0.54) whereas the other two models attain lower global optimal costs at longer cycle lengths
(around 7 4+ 5 = 0.74). The change in TAC* is much more gentle in Model-2 and Model-3 as cycle length
continues to increase.

A substantial fraction of the total inventory cost goes into preservation investment in Model-2 and Model-3.
The percentage investment in preservation is shown in Figure 6. For longer cycle lengths, Model-3 has a slightly
lower fraction of the cost under this head.

6. SENSITIVITY ANALYSIS

6.0.1. Effect of unit shortage cost (s)

The length of the backorder phase 75 increases with the decrease in shortage cost s and there is a small saving
in TAC'. It becomes profitable to keep larger optimal backorder in a cycle. In Model-2, preservation technology
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FIGURE 6. Preservation investment percentage with respect to cycle length.

ensures that TAC is much less elastic. The fuzzy values mimic the movement of the crisp values. The fuzziness
of demand is balanced out by a small increase in EOQ without much impact on the TAC.

6.0.2. Impact of unit holding cost (h)

The reduction of holding cost has a proportionately greater impact than an increase of similar magnitude. In
sensitivity computation, h complements s as this time 7, is more affected. The preservation investment allows
greater variation in 7,, 78, and a much larger decrease in TAC and increases in EOQ when h is reduced as bigger
orders become optimal. The median fuzzy output shows a displacement in line with the crisp boundaries set by
the decision-maker.

6.0.3. Coefficient of preservation (a)

When the coefficient of preservation (a) increases, it leads to a higher EOQ and larger positive inventory time
(7,) while still reducing TAC. Model-3 uses a larger investment u to compensate for the fuzziness in demand.
There is a change of optimal pattern below a = 0.017. Here, u decreases as the system reach a different optimal
strategy with more items lost as preservation investment has a sharp reduction in efficiency towards dampening
deterioration.

6.0.4. Effect of unit deterioration cost (w)

The positive inventory time and EOQ both increase to take advantage of reduced w and even with more items
lost, the T'AC is reduced in Model-1. When preservation is included, the effect on TAC and EOQ is smaller. The
preservation investment fluctuates in parallel with w and almost completely shields the time duration variables
from its effects. Model-3 is marginally less affected in this case than Model-2.
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6.0.5. Effect of ordering cost (A)

The ordering cost A has a consistent impact across all three models. There is a small but significant increase
in the magnitude of change of positive inventory time and EOQ, but a decrease in the change of backorder time
73, and TAC when preservation is introduced. Both these movements are marginally less in Model-3.

6.0.6. Effect of constant deterioration rate (0p)

The T AC increases as 6y increases but the decrease is more pronounced as this parameter is reduced. The
same nature of change occurs in the preservation investment u and for the chosen example this nullifies the effect
on the time duration variables. In Model-1 (without this preservation variable), when deterioration increases it
is profitable to keep larger backorders, and for low deterioration, larger EOQ and 7, are optimal.

6.0.7. Effect of promotional effort (p)

A larger value of p (promotional effort) increases the TAC, EOQ, and all three decision variables as it
directly increases demand. Without preservation, backorder time duration 75 fluctuates marginally more but
with preservation, positive inventory duration changes by a larger margin. For increased demand and reasonably
effective preservation, it is optimal to order more and satisfy direct demand rather than keep bigger back orders.
The Model-3 shows marginally more stability on a point-to-point basis than Model-2.

The above analysis is graphically reinforced in Figure 7 which separately explores the sensitivity of each of the
decision variables 7,,73 (for Model-1 and Model-2), u (for Model-2), and the objective function (T'AC(7,,73)
and TAC(7,,73,u)). Each curve represents the effect of changing one of the parameters among unit short-
age cost (s), unit holding cost (h), coefficient of preservation (a), unit deterioration cost (w), ordering cost
(A), constant deterioration rate (), and promotional effort (p). The movement of the decision variables and
the objective function, as they attain new optimal values are shown when individual parameters change by
—50%, —25%, +25%, +50% about their values as specified in the numerical example above while other parame-
ters remain unchanged.

6.1. Managerial insights

Distilling the impact of parameter variation on decision variables and objective function (Tab. 3, Figs. 5, 6,
and 7) leads to comprehension of trends beyond the numerical results. The following points provide managerial
guidelines for the decision makers:

— In the absence of preservation (Model-1), promotional activities can help to mitigate adverse customer
impact during stockouts as it is profitable to keep larger backorders to balance deterioration.

— In the presence of preservation, the decision maker need not be conservative with the predicted cycle length
as the optimal cost only rises gradually beyond the global minima (Model-2, Model-3).

— Shorter cycle lengths are sometimes forced due to real-life limitations (storage constraints, erratic demand
patterns, supply limitations). This renders the preservation investment uneconomical.

— The fraction of total cost optimally invested in preservation does not remain constant. It appears to increase
in step with the cycle length, but then attains a maximum level around 22% beyond which it diminishes
very gradually. This observation may provide a budgetary clue for the decision makers.

— The preservation investment almost completely shields the time duration variables from the rate and cost
of deterioration. When the preservation investment is reasonably effective, decision makers can reduce the
total cost and it is optimal to order more and satisfy direct demand during positive inventory rather than
keep bigger backorders.

— There is a change of optimal pattern when preservation effectiveness falls below a threshold and here the
decision makers should reduce the preservation investment as the system reaches a different optimal strategy
despite more items lost to deterioration.
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7. CONCLUSIONS

This study expanded the existing models and solutions on EOQ with preservation cost to control deteriorating
inventory levels. The per unit time cost was considered with both the period of on-hand inventory and the time
with stockout condition in a reorder sequence to determine the best reorder size and cycle length, while the
expected total average cost was minimized against the preservation investment and the time duration variables in
the presence of promotional effort. The effect of deterioration increased the total cost as items were lost. Model-2
was expanded by modelling uncertainty in demand to generate Model-3. A useful formulation was developed
to obtain the ideal values for the reorder process and the cost of preservation technology where the decision
makers had imprecise information about the demand. This model illustrated the impact of preservation efforts
to control the spoilage and the decision makers could compute the optimal investment for this purpose. The
signed distance method was applied in the model with uncertain demand to defuzzify the fuzzy cost function.
In both Model-2 and Model-3, an algorithm emerged that identified the optimal solutions from the analytical
results presented therein.

A numerical setup was investigated to validate the developed models and examine their sensitivity against key

parameters to determine the specific effect on the model. In the classical inventory model, shortage and holding
costs had correlated effect on shortage time and positive inventory duration respectively. Analysis revealed that
the preservation investment skewed this variation in favour of positive inventory duration. Effective promotional
effort induced larger optimal order quantity without significant impact on costs thus economic benefits could be
obtained by boosting the promotional effort. The total cost showed higher sensitivity to decrease in deterioration
rate than to its increase.
The following aspects can be expanded for future work. Several avenues present themselves to augment this
study, e.g., replenishment that takes finite time, deteriorated items being reworked or substituted, uncertainty
and randomness in other facets, multi-item inventory and learning effects, and a deterioration rate depending on
the expiration date. The paradigm of renewable energy from the animal fat waste as deteriorated items (Habib
et al. [8]) may provide an alternative model to recoup some of the deterioration impact.

This model can be extended to consider measures to reduce emissions, such as carbon offsets and COq
quotas. Some of the cost parameters may be sensitive to carbon emissions levels. It is possible to study the
environmental impact of degradation and conservation technologies for sustainable supply chains through such
inclusions. Analysis of the effects of non-linearity and time dependent operating costs, the presence of incomplete
items, prepayments, trade credit, and economic policy inflation [31] are some of the possible generalizations of
the presented models.

APPENDIX A.

The preliminary mathematical ideas of trapezoidal fuzzy numbers are introduced. The signed distance process
of defuzzification is defined.

Fuzzy set P: a set of ordered pairs defined using a membership function pp I —[0,1] as P = {(x, pp(T)) :

x € II}. II is the universal set. For a trapezoidal fuzzy set P we use four crisp numbers, p; < p2 < p3 < pyg to
define the membership function.

o éf p1<§ :v<§p2
I p2>%>pP3

us(x) = — .
PEZ Y B e

otherwise

If po = p3, this becomes a triangular fuzzy set. B B
The arithmetical operations of two non-negative TpFN, P = TpF N (p1, p2, p3,p4) and N = TpF N (v1,v2, V3, 14)
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are defined by (Sharma and Govindaluri [45])

P& Q= (p1+v1,p2 + v2,p3 + V3, pa + va)
P © Q = (p1v1,p2Ve, p3v3, pals)
Po @ = (p1 —Va,p2 — V3,3 — Vo, D1 — V1)

ﬁ®©: (plap2ap3ap4);ylay27y3ay47é0
vy Vg Vo U7

k® Q = (K1, kvy, ks, k) if K> 0
K@ Q = (kvg, ks, kg, K1y ) if k<0 0.
In a fuzzy set, the a-cut is the crisp set of those elements whose membership value is not less than «. The

smallest and the largest elements of this set are denoted as the left a-cut and the right a-cut, respectively.
Where, a-cut = {(pup(x) > a:x € II)}, a €[0,1]. For P = TpFN(p1, p2,p3,ps) this implies

(a-cut) Py = [p1+ (p2 —p1)a, pa— (pa — p3)a] = [Pi(@), Pa(w)]
(left a-cut) Pi(a) = p1 + (p2 —p1)a (right a-cut) Py(a) = ps — (ps — p3)a.

This is shown in Figure A.1. B
Median(P), the defuzzified estimate of P is given by the signed distance, defined as

d (15, 0) = ;/01 [Pl(oz) + Pg(oz)} da = i(pl +p2+ps+pa) = Median(]s).
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Abbreviation

TpFN : Trapezoidal fuzzy number

EOQ : Economic order quantity

PEC : Promotional effort cost

OC : Ordering cost

HC :  Holding cost

SC : Shortage cost

DC : Cost due to the deteriorated items

PC . Preservation cost
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