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THE EXISTENCE OF PATH-FACTOR UNIFORM GRAPHS WITH LARGE
CONNECTIVITY

SIZHONG ZHOU* AND QIUXIANG BIAN

Abstract. A path-factor is a spanning subgraph F' of G such that every component of F' is a path
with at least two vertices. Let £ > 2 be an integer. A P>y-factor of G means a path factor in which
each component is a path with at least k vertices. A graph G is a P>-factor covered graph if for any
e € E(G), G has a P>y-factor covering e. A graph G is called a P>g-factor uniform graph if for any
e1,e2 € E(G) with e1 # e2, G has a P> p-factor covering e; and avoiding e2. In other words, a graph
G is called a P>p-factor uniform graph if for any e € E(G), G — e is a P>p-factor covered graph. In
this paper, we present two sufficient conditions for graphs to be Ps3-factor uniform graphs depending
on binding number and degree conditions. Furthermore, we show that two results are best possible in
some sense.
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1. INTRODUCTION

In our daily life many physical structures can conveniently be simulated by networks. The core issue of
network security is the ruggedness and vulnerability of the network, which is also one of the key topics that
researchers must consider during the network designing phase. To study the properties of the network, we use
a graph to simulate the network. Vertices of the graph correspond nodes of the network and edges of the graph
represent links between the nodes of the network. In data transmission networks, the data transmission between
two nodes stands for a path between two corresponding vertices. Therefore, the availability of data transmission
in the network is equivalent to the existence of path-factor of the corresponding graph which is generated by
the network. Obviously, research on the existence of path-factors under specific network structures can help
scientists design and construct networks with high data transmission rates. Furthermore, the existence of a
path-factor uniform graph also plays a key role in data transmission of a network. If a link is assigned and a
link is damaged in the process of data transmission at the moment, the possibility of data transmission between
nodes is characterized by whether the corresponding graph of the network is a path-factor uniform graph.
We find that there are strong essential connection between some graphic parameters (for instance, degree and
binding number, and so on) and the existence of path-factors in graphs (or path-factor uniform graphs), and
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hence investigations on degree and binding number can yield theoretical guidance to meet data transmission
and network security requirements.

Throughout this paper we discuss only finite undirected graphs which admit neither loops nor multiple edges.
Let G be a graph with vertex set V(G) and edge set F(G). The degree of a vertex = in G, denoted by dg(z),
is the number of edges incident with x. The neighborhood of a vertex z in G, denoted by Ng(x), is the set of
vertices adjacent to z. We denote by xy an edge joining vertices & and y. The number of isolated vertices in G is
denoted by i(G) and the number of connected components of G is denoted by w(G). For a vertex subset X of G,
we write Ng(X) for (J,c x Na(7) and denote by G — X the subgraph derived from G by removing the vertices
in X together with the edges adjacent to vertices in X. A vertex subset X of G is said to be independent if
X N Ng(X) = 0. For an edge subset E’ of G, we denote by G — E’ the subgraph derived from G by removing
edges of E’. The binding number of G, denoted by bind(G), was first introduced by Woodall [14] and is defined
by
|NG (X))

RY

We use P, and K,, to denote the path and the complete graph of order n, respectively. Let G; and G2 be two
vertex-disjoint graphs. We denote the join and the union of G; and G5 by G1 V G2 and G U G4, respectively.
Let  be a real number. Recall that [r] is the smallest integer such that [r] > r.

A subgraph of a graph G is spanning if the subgraph includes all vertices of G. Let H be a family of connected
graphs. A spanning subgraph F' of a graph G is called an H-factor if each component of F' is isomorphic to an
element in H. A path-factor is a spanning subgraph F' of G such that every component of F' is a path with at
least two vertices. Let k > 2 be an integer. A P> p-factor of G means a path factor in which each component is
a path with at least k vertices.

A 1-factor of G is a spanning subgraph F' of G satisfying dp(z) = 1 for any « € V(G). A graph H is factor-
critical if H — x contains a 1-factor for any « € V(H). To characterize a graph with a P>g-factor, Kaneko [7]
introduced the concept of a sun. A sun is a graph derived from a factor-critical graph H by adding n new vertices
Z1,To,- -+ , Ty and n new edges Y121, Yoo, , Yn&n, where V(H) = {y1,y2, -+ ,Yn}. According to Kaneko, K
and K5 are also suns. A sun with at least six vertices is called a big sun. There is no sun with at most five
vertices except for K7 and Ks. A component of G is called a sun component if it is isomorphic to a sun. We
use sun(@) to denote the number of sun components of G.

Kaneko [7] showed a criterion for a graph with a Pss-factor. Kano et al. [8] put forward a simpler proof.

bind(G) = min{ 0 #£ X CV(G),Ng(X) # V(G)}.

Theorem 1.1 ([7,8]). A graph G has a P>3-factor if and only if
sun(G — X) < 2|X]|
for any vertex subset X of G.

Kancko [7] verified that a regular graph with degree at least 2 admits a P>3-factor. Bazgan et al. [1] posed a
sufficient condition for a graph to admit a Ps3-factor. Kano et al. [10] claimed that a graph with i(G—X) < 2| X]|
for any X C V(G) has a P>s-factor. Zhou et al. [18,23,24,27] investigated the existence of P>s-factors in graphs
with given properties. Gao et al. [4] obtained some results on the existence of P>g-factors in graphs. Wang and
Zhang [13] posed an isolated toughness condition for graphs to have P>s-factors. Kano et al. [9] proved that every
connected cubic bipartite graph with at least eight vertices admits a P>g-factor. Johnson et al. [6] presented a
sufficient condition for a graph having a path-factor. Egawa and Furuya [2] derived a result on path-factors in
graphs. Zhou et al. [16,19,20,25,28] and Wang and Zhang [12] established some relationships between degree
conditions and graph factors. Wang and Zhang [11] and Zhou [17] obtained some binding number conditions
for the existence of graph factors.

For a subgraph H and an edge e of G, we call that H covers e if e € E(H). Later, Zhang and Zhou [15]
defined a graph G to be a P>j-factor covered graph if for any e € E(G), G has a Psp-factor covering e, and
showed a criterion for a graph to be a P-3-factor covered graph.
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Theorem 1.2 ([15]). Let G be a connected graph. Then G is a P>s-factor covered graph if and only if
sun(G — X) < 2|X| —¢(X)
for any vertex subset X of G, where e(X) is defined by

2, if X is not an independent set;
e(X)=1<1, if X is a nonempty independent set and G — X admits a non-sun component;
0, otherwise.

More recently, Zhou and Sun [21] posed the concept of a Psj-factor uniform graph, that is, a graph G is
called a P>p-factor uniform graph if for any ey, e € E(G) with e; # e2, G has a Psy-factor covering e; and
avoiding es. In other words, a graph G is called a P>g-factor uniform graph if for any e € E(G), G —e is a
P -factor covered graph. Furthermore, they put forward a binding number condition for the existence of a
Ps 3-factor uniform graph.

Theorem 1.3 ([21]). A 2-edge-connected graph G is a Psz-factor uniform graph if its binding number
bind(G) > %.

Gao and Wang [3] improved the binding number condition in Theorem 1.3, and derived the following theorem.

Theorem 1.4 ([3]). A 2-edge-connected graph G is a P>3-factor uniform graph if its binding number bind(G) >
5

3
Some other results on P>s-factor uniform graphs can be found in Zhou et al. [22,26] and Hua [5]. In this

paper, we characterize P>3-factor uniform graphs with respect to the vertex degree or the binding number, and
obtain the following two results.

Theorem 1.5. Let G be a ({%W + 3)—connected graph of order n with n > 2t + 7, where t > 2 is an integer.

i
max{do (1), da(ra), -+ do ()} > o

for any independent set {x1, 22, , 2} of G, then G is a P>3-factor uniform graph.

Theorem 1.6. An (r + 1)-connected graph G is a P>g-factor uniform graph if its binding number bind(G) >

42’—“, where r > 1 is an integer.
T

2. THE PROOF OF THEOREM 1.5

Proof of Theorem 1.5. Suppose that there exists an edge e = zy in G such that G’ = G — e is not a P>3-factor
covered graph. Then from Theorem 1.2, there exists a vertex subset X of G’ such that

sun(G' — X) > 2|X| —e(X) + 1. (2.1)
In what follows, we verify two claims.
Claim 2.1. (G- X) <t—1.

Proof. Tt i(G—X) > t, then there exist at least ¢ isolated vertices x1, xa,- -+ ,z; in G—X. Clearly, dg_x(z;) =0
for 1 <4 <t. Thus, we acquire
de(wi) < do—x (i) + [ X] = | X]| (22)

for 1 <i <t. It follows from (2.2) and the degree condition of Theorem 1.5 that

n+2

< max{dg(z1),da(z2), - ,da(xs)} <|X]. (2.3)
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According to (2.1), (2.3) and ¢(X) < 2, we infer

n+2

n>|X|+sun(G'— X) > | X|+2/X|—-e(X)+1>3|X|]-1>3- —1l=n+1,

which is a contradiction. We finish the proof of Claim 2.1. (]
Claim 2.2. |X|> [51] +2.

Proof. Let |X| < [4] + 1. Combining this with G being ([%51] 4 3)-connected, we easily see that G — X is
2-connected and G’ — X is connected. Hence, w(G' — X) = 1. Then by (1), |X| > 0 and £(X) < |X]|, we derive
l=w(G@ —X)>sun(G' - X) >2|X|—-e(X)+1>|X|+1>1

which implies that |X| = 0 and sun(G’) = 1. Therefore, G’ is a big sun by n > 2¢+7. Let H be the factor-critical
subgraph of G’. Then dg/(x) = 1 for any z € V(G’) \ V(H). Combining this with G’ = G —e and n > 2t + 7,
there exists an independent set {x1, 22, -+ ,2:} C V(G)\ V(H) of G such that dg(z;) =1 for 1 <i < +¢. Thus,
we obtain by n > 2t + 7

n+2
1 =max{dg(x1),dg(x2), -+ ,da(z)} > 5 > 1,
which is a contradiction. Claim 2.2 is proved. O
By virtue of (2.1), e(X) < 2 and Claim 2.2, we get

sun(G' — X) > 2|X| —e(X)+1>2|X| -1

sof P2t ho) m1=a T2 4
- 2 B 2
t—1
2223142,
and so
sun(G— X) > sun(G' = X)—2> (t+2)—2=t,

which implies that G — X admits at least ¢ sun components, denoted by Ry, R, -, R;. Choose x; € V(R;)
such that dg,(z;) <1 for 1 <4 < t. Obviously, {z1, 22, - ,2:} is an independent set of G. Hence, we admit

n+2

< max{dg(z1),da(x2), -+ ,da(z)}

< maX{de (xl)v dR2 (1’2), T ’th (xt)} + |X|
<1+|X],

that is,
n—1

3
According to (2.1), (2.4), Claim 2.1, e(X) <2,¢t>2,n>2t+ 7 and i{(G' — X) <i(G — X) + 2, we have

|X| > . (2.4)

n>|X|+2-sun(G' — X) —i(G' — X)
> X| 4+ 202/X| = e(X) + 1) — (G — X) =2
> |X| 4202/ X] = 1) — (G — X) —2
—5IX] — (G — X) —4

25'71—1

—(t—1)—4
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2n —5
=n+ 3~ t—3
N 2(2t+37)—5_t_3
=n+ -
>n,
which is a contradiction. This completes the proof of Theorem 1.5. O

Remark 2.3. In what follows, we show that

n 4+ 2
max{dg(z1),dg(22), - ,de(ze)} 2 —3
in Theorem 1.5 cannot be replaced by
n—+2
max{dg(z1),dg(z2), - ,da(xt)} > - 1.

Let t > 2 be an integer and r be a sufficiently large integer. We establish a graph G = K,V ((2rt—2) K, UK5>).
Then n = 3rt and

2
ma{dg (1), do(wz), -+ dalee)} =rt = 5 > 2= —1
for any independent set {x1,x2, -+, 2} C V((2rt —2)K7) of G. And so
2
max{dg (1), do(wz), -+ dalen)} 2t = 5 > 0= —1

for any independent set {xi,z2, -+ ,z:} of G. Write X = V(K,¢), and so ¢(X) = 2. Let G’ = G — e for
e € E(K3). Thus, we infer

sun(G' — X) = 2rt = 2| X| > 2|X| — 2 = 2| X| — e(X).
By virtue of Theorem 1.2, G’ is not a P>3-factor covered graph. Hence, G is not a Psg-factor uniform graph.

3. THE PROOF OF THEOREM 1.6

Proof of Theorem 1.6. Theorem 1.6 holds for r = 1 by Theorem 1.4. In what follows, we assume that r» > 2.
We proceed by contradiction.
Suppose that there exists an edge e = zy in G such that G’ = G — e is not a P>3-factor covered graph. Then
it follows from Theorem 1.2 that
sun(G' — X) > 2|X| —e(X) +1 (3.1)

for some vertex subset X of G'.

Claim 3.1. |[X|>7r+ 1.

Proof. 1f 0 < |X| < r —1, then it follows from G being (r 4+ 1)-connected that G — X is 2-connected. And so
G’ — X is connected, that is, w(G’ — X) = 1. Combining this with (5) and £(X) < |X]|, we obtain

l=w(G@ —X)>sun(G' — X) >2|X|—e(X)+1>|X|+1>1,

which implies that |X| = 0 and sun(G’) = 1, and so G’ is a sun. Note that |V(G')| = [V(G)| > r+2 > 4.
Hence, G’ is a big sun, which implies that there exists v € V(G’) with dg(v) = 1. Thus, we deduce

dg(v) < dG/(U) +1=2<r,
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which contradicts that G is (r + 1)-connected.
If | X| = r, then by G being (r + 1)-connected, we have w(G — X) = 1. Thus, we obtain w(G' — X) =
w(G@—e—X) <w(G—X)+1=2. Combining this with (5), £(X) <2 and r > 2, we get

2>w(@ —X)>sun(G —X)>2|X|—e(X)+1>2|X|-1=2r—-12>3,
which is a contradiction. Hence, | X| > r + 1. We finish the proof of Claim 3.1.

Suppose that there exist a isolated vertices, b K»’s and ¢ big sun components Ry, Ra, - - - , R., where |V (R;)| >
6, in G’ — X. Thus, we obtain
sun(G' = X)=a+b+ec. (3.2)

In terms of (3.1), (3.2), e(X) <2, r > 2 and Claim 3.1, we get
a+b+c=sun(G' —X)>2|X|—-e(X)+1>2|X|-1>2(r+1)—1=2r+1>5. (3.3)
Write R= Ry URy U---UR.. Then |[V(R)| =Y_;_, [V(R;)| > 6c.
Claim 3.2. z ¢ V(aK;) and y ¢ V(aK3).

Proof. Suppose that z € V(aK;) or y € V(aK;). Without loss of generality, let x € V(aK7).
If y € V(aKy), then a > 2. Select Q = V(aK1) UV (bK3) UV(R) \ {z}. Then Q # 0 and Ng(Q) # V(G).

Thus, we admit
dr +1 [Na(@) _ X[ +2b+ [V(R)| +1

< bind(G) < ,
ind(G) < Q] = at2b+ V(R -1

which implies
3r|X| > (4r+1Da+ 2r+2)b+ (r+ 1)|V(R)| - 7r — 1. (3.4)

By virtue of (3.3), (3.4), a > 2 and |V(R)| > 6¢, we deduce

3rX|>M@r+1a+ 2r+2)b+ (r+1)|V(R)|—Tr—1
> Ar+1a+ (2r+2)b+ (2r+2)c—Tr—1
=2r+2)(a+b+c)+2r—1la—-Tr—1
>2r+2)2|X|-1)+2(2r—1)—7r—1
= (4r+4)|X| —5r — 5,
which implies
1X] < 5:+45 <r+1,

which contradicts Claim 3.1.
If y € V(bK2) UV(R), then @ > 1 and we choose @ = V(aK;) UV (bKs) UV(R)\ {y}. Then Q # () and
Ng(Q) # V(G). Thus, we derive

4r +1 . INc(Q)] X +2b+ [V(R)|
< < V(R)| —
3 <ban(G) > |Q| a—|—2b+| ( )l 1’

which implies
3r|X| > (4r+1a+ 2r+2)b+ (r + 1)|V(R)| — 4r — 1. (3.5)

It follows from (3.3), (3.5), a > 1 and |V(R)| > 6¢ that

3| X|>@r+1)a+ 2r+2)b+ (r+1)|[V(R)|—4r—1
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4r+1)a

> ( +2r+2)b+ 2r+2)c—4r—1
=2r+2

> (

=(

(a+b+c)+(2r—1a—4r—1
CX|-1)+2r—-1)—4r-1
| X| — 4r — 4,

2r+2
4r +4

\/\/\/\/

which implies
(r+4)|X| < 4r + 4. (3.6)

According to Claim 3.1, we deduce
(r+4)|X|> (r+4)(r+1)=r>+5r +4 > 4r +4,

which contradicts (3.6).
If y e V(G)\ (V(aK;) UV (bK2) UV (R)), then a > 1 and we select Q = V(aK1) UV (bK3) UV (R). Then
Q # 0 and Ng(Q) # V(G). Thus, we admit

4r + 1 ) IN¢(@)] _ |X|+20+|V(R)|+1
bind(G) < < 7
<bind(G) £ = o S T T T IV R))

which implies
3r|X| > (4r+1)a+ (2r+2)b+ (r + 1)|V(R)| — 3r. (3.7)

By means of (3.3), (3.7), a > 1, [V(R)| > 6¢ and Claim 3.1, we infer

3r|X| > @r+Da+ 2r+2)b+ (r+1)|V(R)| —3r

> r+1a+ (2r+2)b+ (2r +2)c—3r
=2r+2)(a+b+c)+ (2r—1)a—3r

>2r+2)2IX|-1)+2r—1)-3r
= (@r+4)[X]=3(r+1)
> (4r +4)|X| — 3|X|
= (4r + 1)|X|,

which is a contradiction. Claim 3.2 is proved. (]

Claim 3.3. a > 1.

Proof. If a = 0, then b+ ¢ > 5 by (3.3). Hence, there exist two vertices v and w in (bK3) U R such that the
degree of w in (bK3)UR is 1, vw € E((bK2)UR) and w ¢ {z,y}. Select Q@ = V(bK3) UV (R)\ {v}. Then Q # 0
and Ng(Q) # V(G). Thus, we get

ar+1 ING(Q)] _ |X]|+2b+ |V(R)]
bind(G) < <
g Uil S o S VR -1
namely,
0> 2r+2)b+ (r+1)|V(R)| —3r|X| —4r — 1. (3.8)

In light of (3.3), (3.8), a = 0, |V(R)| > 6¢ and Claim 3.1, we obtain

0> 2r+2)b+ (r+1)|V(R)|—3r/X|—4r -1
> (2r+2)b+ (2r+2)c—3r|X|—4r -1
=2r+2)(a+b+c)—3r|X|—4r—-1
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> (20 +2)(2|X| - 1) — 3| X| —4r — 1
(r+4)|X| — 6r — 3

>(r+4)(r+1)—6r—3
=r2—r4+1>0,
which is a contradiction. Hence, a > 1. This completes the proof of Claim 3.3. ]

Set @ = V(aK1) UV (bK5)UV(R). By Claims 3.2 and 3.3, we see that Q # () and Ng(Q) # V(G). Thus, we
derive

r+1 _ INa(Q)| _ [X[+20+ |V(R)[+1
< bind(G) < < ,
ndG) < 0T S e m s V@)
that is,
3r|X| > (4r+ 1a+ (2r+2)b+ (r + 1)|[V(R)| — 3r. (3.9)
Equation (3.9) is completely the same as equation (3.7), and so we can also deduce a contradiction. We finish
the proof of Theorem 1.6. (]

Remark 3.4. Next, we show that the condition bind(G) > #%tL in Theorem 1.6 cannot be placed by bind(G) >
4r+41
3r+1°

We construct a graph G = K11V (3"2"'2 Kg), where r = 2. Then we easily see that bind(G) = g:ﬁ > g:ﬁ

and G is (r + 1)-connected. For any e € E(242K,), we let G' = G —e. Write X = V(K,11). Then | X| =r+1
and €(X) = 2. Thus, we infer

sun(G’—X):%+2>2(r+1)—2:2|X|—5(X).

By virtue of Theorem 1.2, G’ is not a P>g-factor covered graph. Therefore, G is not a P>s-factor uniform graph.

Acknowledgements. The authors are indebted to the anonymous reviewers for their valuable comments and helpful
suggestions.
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