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THE EFFECTIVE BRKGA ALGORITHM FOR THE k-MEDOIDS CLUSTERING
PROBLEM

JOSE ANDRE BRITO"®, GUSTAVO SEMAAN?® AND AucUsSTO FADEL?

Abstract. This paper presents a biased random-key genetic algorithm for k-medoids clustering prob-
lem. A novel heuristic operator was implemented and combined with a parallelized local search proce-
dure. Experiments were carried out with fifty literature data sets with small, medium, and large sizes,
considering several numbers of clusters, showed that the proposed algorithm outperformed eight other
algorithms, for example, the classics PAM and CLARA algorithms. Furthermore, with the results of
a linear integer programming formulation, we found that our algorithm obtained the global optimal
solutions for most cases and, despite its stochastic nature, presented stability in terms of quality of
the solutions obtained and the number of generations required to produce such solutions. In addition,
considering the solutions (clusterings) produced by the algorithms, a relative validation index (average
silhouette) was applied, where, again, was observed that our method performed well, producing cluster
with a good structure.
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1. INTRODUCTION

Clustering Analysis (CA) is a tool commonly used in a wide range of applications [12,13], including Data
Reduction, Hypothesis Generation, Business Applications and Market Research, Biology and Bioinformatics,
and web mining. According to [13], CA is a multivariate analysis technique comprising a set of algorithms
applied to form clusters, based on a data set formed by n objects with f variables, aiming to produce clusters
with a high degree of similarity between objects in the same cluster (cohesion) and a low degree of similarity
among objects in different clusters (separation) [16].

According to [17], to define the clusters and evaluate the quality of the solutions obtained, an objective
function is used as a criterion, which is based in a distance metric, such as the Euclidean distance. The classic
clustering problem (CP) is NP-Hard, and obtaining the optimal global solution is a highly complex computa-
tional task [10,17].

Due to the complexity of CP and their varied applications, in recent decades, several algorithms have been
developed [1,26,30,37,44,51,52,56]. In particular, there is a set of heuristic algorithms of more general use in
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the literature, divided into two main categories: non-hierarchical and hierarchical [13,19]. Additionally, several
mathematical programming formulations for clustering problems are presented in the [17,28,29, 34].

About non-hierarchical approaches, there are two classical algorithms based on the prototype model:
k-means/k-medoids [13] and PAM (Partitioning Around Medoids) algorithms [20]. According to [15,20], medoids
correspond to the (k) most representative items of the given set of objects. Besides, medoid-based algorithms
tend to produce higher-quality clusters and more robust to the presence of outliers or noises, and are used in
databases whose objects have quantitative and qualitative attributes.

The goal of this article is to tackle the k-medoids clustering problem. Therefore, is proposed a heuristic
algorithm that combines concepts of the BRKGA metaheuristics [11,24] with a new crossover operator and a
local search procedure. The computational experiments were carried out by applying classic algorithms and the
proposed BRKGA-based algorithm to fifty literature data sets, considering six associated scenarios regarding
the number of clusters k € {2,3,4,5,6,7}. From these experiments, the proposed algorithm produced better
solutions to those produced by various algorithms in the literature, such as the classic PAM and CLARA
algorithms. In particular, the proposed algorithm produced a high percentage of global optimal solutions. The
main contributions of this paper are as follows:

— New algorithm based on the biased random-key genetic algorithms (BRKGA) is proposed to solve the k-
medoids clustering problem. It provides a new option for solving this hard clustering problem using BRKGA
concepts.

A novel heuristic operator was implemented and combined with a parallelized local search procedure.

The scalability and stability of the proposed algorithm observed from experiments carried out with fifty
literature data sets, considering different numbers of clusters.

— Analysis of solutions using statistical measures and relative validation index - silhouette.

The outline of this paper is as follows: the Section 2 describes the clustering problem with k-medoids.
Section 3 provides a review of the most relevant papers associated with this problem that can be found in
the literature. Section 4 presents a description of the BRKGA metaheuristic, and the details of the proposed
algorithm — BRKGA k-medoids clustering algorithm — BRKGAMED. Section 5 describes the data sets used
in the computational experiments reported in this work, in addition to a discussion on the calibration of the
parameters used in the BRKGAMED. In Section 6, results, and analyses from applying the proposed algorithm
show its effectiveness in comparison with eight related k-medoids clustering algorithms, in particular, PAM
and CLARA heuristics, and an integer programming formulation for the k-medoids clustering problem. Finally,
Section 7 contains our summary and discussion.

2. k-MEDOIDS CLUSTERING PROBLEM

Consider a set X formed by n objects X = {x1,...,2;,...,2,}, such that each z; is defined by a vector
xi = (z},22,... ,x{) with f variables. From X, k objects are selected to define medoids used to form k clusters

denoted by C1,Cs, ..., Cy , so that the following constraints are satisfied:

(i) |1Cr| =1, r=1,... k.
(i) UF_,C. = X.
i) C,NCy=0, r,l=1,...k,r#£L

The medoids are represented by a set M = {my,...,my,...,mi}(M C X), each element m, corresponding
to the index (i) of the x; object selected as the medoid of the respective cluster C,.. Additionally, set M is

defined so that the sum of the distances of each of the remaining (n — k) objects of X to its nearest medoid is
minimum, which is equivalent to minimizing the following objective function:

k
fobj:Z Z dmri- (21)

r=1Vz;eC,
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According to [25], the k-medoids clustering problem is NP-Hard. This characteristic motivates adopting
heuristic algorithms that, although they do not guarantee the global optima, tend to produce solutions corre-
sponding to local optima of reasonable quality, demanding low computational time [38]. The application of a
brute-force algorithm, which ensures global optima, is infeasible due to the size of the solution space S of this
problem, that is, the total subsets of k-medoids, given by:

ok — n!

" (n— k)l (22)

For k < n this expression grows explosively with k, in general, even faster than a higher-order polynomial.
For example, for n = 200 and & = 5, the number of solutions is in the order of 10°.

Additionally, this problem can be formulated as an integer linear programming problem and solved by apply-
ing exact algorithms such as branch and cut or branch and bound [50]. However, due to the number of variables
(n? + n) and restrictions (n? + n + 1), the resolution might require significant computational time, producing,
in many cases, only a local optimum or a feasible solution within this time range.

(K-Medoids) Minimize

n

i=1 j=1

> my =1, j=1,...,n (2.4)
1=1

xij < Yi, i=1,....n,5=1,....n (2.5)
> yi=k (2.6)
1=1

vi, Ti; € {0,1}, ,j=1,...,n. (2.7)

In the formulation above, which was first proposed in [48], y; is a binary variable that assumes the value 1 if
object i (i =1,...,n) is defined as medoid, and zero otherwise; x;; is also a variable 0-1 that assumes the value
1 if object j is allocated to the cluster defined by medoid 4. The objective function in (2.3) aims to minimize the
distance of the objects regarding their medoid. Constraint (2.4) ensures that each object j must be associated
with a single medoid. Constraint (2.5) ensures that an object j can only be associated with object ¢ if the latter
is defined as a medoid. Constraint (2.6) ensures that the number of medoids of the partition is k. In (2.7) we
have the integrality constraints.

Additionally, it is important to emphasize that the k-medoids problem is similar to the p-Median problem
[5,22], an important optimization problem classified as NP-Hard. Initially addressed by Hakimi [14], this problem
corresponds to a classical location problem associated with several real applications. In the p-Median problem,
one must determine p facilities (usually called medians) among a set of n candidates to satisfy a specific demand
associated with a set of m clients to minimize transport costs and other logistical restrictions. When geographic
data are grouped by applying an algorithm to solve the k-medoids problem, this corresponds to solving a basic
p-Median problem, where the only objective is to minimize the distances between objects without considering
other logistic constraints such as, for example, capacity.

3. RELATED WORKS

A well-known and commonly used algorithm for this problem is the PAM (Partitioning Around Medoids),
proposed in [20]. It determines the k-medoids by applying two procedures called Build and Swap. The authors
also proposed another algorithm, called CLARA (Clustering Large Applications), which consists of combining
a simple random sampling procedure and the PAM algorithm. In addition to these two algorithms, the next
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references bring the most relevant works available in the literature that propose more sophisticated algorithms,
some focused on efficiency (speed) and others on effectiveness (quality of solutions). As examples, the algorithm
called grouping genetic algorithm (GGA) proposed in [8] and the article by Han and Ng [15], which proposes a
modified version of the CLARA algorithm, called CLARANS.

In [47], medoids are defined according to the silhouette maximization. To reduce the computational time
required by PAM algorithm and to produce good quality solutions, in [55] it was proposed an algorithm called
CLATIN (Clustering Large Applications with Triangular Irregular Network), that uses the concept of the
triangular irregular network in the swap procedure of PAM. In [4], PAM algorithm is revisited, and improvements
in its swap procedure are proposed. In [32], a fast algorithm that uses the k-means algorithm to define the initial
medoids is presented. In [27], Nascimento et al. is presented a Lagrangian heuristic for the k-medoids problem.

In [54], the similarity between objects, given by the Euclidean distance, is not used directly, but to order
them. Each pair of objects is assigned an integer between 1 and n, representing the order of similarity among
them. In each iteration, the medoids are updated to the most dissimilar object in relation to the other objects in
the cluster and, once the maximum number of iterations has been reached, each object is allocated to the cluster
with the most similar medoid. According to the authors, such strategy can find all gaussian-shaped clusters.

In a more recent study, Yu et al. [53] proposed an algorithm that uses a variance measure to determine
medoids and focuses on efficiency. In [41], it was proposed a novel parallel k-medoids algorithm, denominated
PAMAE, that can be applied to large data sets and achieves both good accuracy and efficiency. In [35, 36],
faster versions of the PAM, CLARA, and CLARANS algorithms are proposed, based on improvement of the
swap procedure used in PAM algorithm.

In [45,46], it was proposed a parallel heuristic for a k-medoids clustering problem with variable number of
clusters and provided a dual bound for the objective value, thus allowing one to ascertain the optimality of a
solution found. In [43], it was proposed a novel fuzzy kernel k-medoids clustering algorithm for uncertain objects
which works well on data sets with arbitrary-shaped clusters. In [49], the authors use an efficient method that
combines the PAM and CLARA algorithms for image segmentation. In [33], Punhani et al. is considered a
k-prototype algorithm to generate results like which product is popular among customers and generates more
revenue in a particular region. In [6], the authors proposed an algorithm to minimize the number of iterations
in k-medoids clustering, where the medoids value was determined by the purity value, and cluster validity was
measured with the Davies-Bouldin index.

In addition to these approaches, there are works based on the application of metaheuristics, such as the
genetic algorithm proposed by Lucasius et al. [23] for large data sets. In [39], a hybrid genetic algorithm
called HKA, that combines a crossover operator with a local search procedure based on k-means algorithm.
In another correlated study [40] proposed a variant of the genetic algorithm presented in 2004 that solves the
k-medoids problem without considering a fixed k value, using for such a combination of a crossover operator
with the Davies—Bouldin index. In [18], a hybrid algorithm is proposed that uses the CRO (Chemical Reaction
Optimization) algorithm, applied to expand the search for the optimal medoid.

4. BRKGA METAHEURISTIC AND PROPOSED ALGORITHM

The biased random-key genetic algorithms — BRKGA [11,24] is a metaheuristic that has been applied to
several optimization problems [2,7,9,21,30]. In a BRKGA, the population is composed by p chromosomes that
correspond to random key vectors with n real values, generated according to the uniform distribution [0, 1].
In each generation of BRKGA, a procedure called decoder, a selection procedure — that corresponds to an
elitism strategy, and crossover and mutation operators are applied to each vector of the current population.
The decoder is responsible for transforming each of the random key vectors into vectors corresponding to the
feasible solutions to the optimization problem. After applying the decoder, the value of the objective function is
calculated for the p feasible solutions, and such solutions are then ordered according to its corresponding value
(in ascending order, in case of a minimization problem).
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F1cURE 1. Application of BRKGA with the transition between two generations.

In order to apply the selection and crossover operators, the random key vectors associated with the population
of the current generation are divided into two sets, namely: an elite set C'p containing the random key vectors
corresponding to the p, best feasible solutions (as per the calculation of the objective function and corresponding
ordering of the solutions) and a non-elite set Cxg containing the p — p. remaining random keys vectors. The
elitism strategy consists of copying the vectors of Cg to the of the next generation, then the other vectors of
the next population are obtained by applying the crossover and mutation operators.

With regards to mutation, p,, random key vectors are generated analogously to the first generation, then
these vectors are inserted in the next generation population. Finally, in order to complement the population
of the next generation, p — p. — p,, random keys vectors are produced by applying the uniform crossover
proposed by Spears and Jong [42]. For such, it is used, at each crossover execution, a vector of Cg, a vector of
CnE and a crossover probability. Figure 1 illustrates two generations followed by the application of the BRKGA.

4.1. BRKGA algorithm for the k-medoids clustering problem

The proposed algorithm, called BRKGAMED, uses BRKGA metaheuristic concepts, but differs in terms of
representation and generation of population’s chromosomes and as regards the use of a new crossover operator.
Regarding the representation of chromosomes, p vectors v are generated to compose the first generation (initial
population), each vector v defined based on k values randomly selected between 1 and n (number of objects in
the data set). These values correspond to the medoids of set M, defined in Section 2, and are used to define the
allocation of the other (n — k) objects in data set X to the nearest medoid.

Once the allocation has been made, the objective function of equation (2.1) is calculated, then elite set Cg is
defined as the p, vectors associated with the medoids that produces the lowest values of the objective function,
and the remaining (p — pe) vectors from set Cng.

As in the case of a standard BRKGA, the vectors of set Cg are copied to the population of the next generation
and the (p — pe) remaining vectors are obtained from the application of the crossover and mutation operators.
In respect to mutation, p,, vectors are produced analogously to the generation of the initial population. After
crossover, the new population will consist of the p. vectors of set Cr and (p—p.) vectors produced from applying
the mutation and crossover operators described above. Algorithm 1 shows the pseudo-code of the BRKGAMED
algorithm. Algorithm 2 and Table 1 bring, respectively, the pseudo-code associated with the crossover operator
— which has the function of a local search, where the best improvement strategy is considered — and an example
of its application. In Table 1, the vector v, corresponds to a set of k medoids deriving from Cg, and vector vy
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corresponds to a set of k medoids deriving from Cyg. Table 1 shows an example of the application (lines 2-6) of
the crossover described in the Algorithm 2, considering k = 3 and the vectors v, = (2,5,10) and v, = (1, 3, 8).

Algorithm 1: Pseudo-code of BRKGAMED algoritm.

1 Generate p vectors v with k values between 1 and n (Initial Population)

2
3

® N o s

while stopping criteria are not satisfied do

crossover — Algorithm 2

Calculate fob; value for each vector applying equation (2.1)
Sort solutions (p vectors) by fitness (Eq. (2.1))
Classify solutions as elite and non-elite defining sets Cr and Cng
Copy to next population the p. vectors (medoids) of the set Cg
Generates p,, mutants vectors with k values between 1 and n and copy them to the next population
Combine elite and non-elite vector and generate (p — pm — pe) vectors to the next population applying

Algorithm 2: Crossover operator.

1
2

© 0w N o (S B ]

10
11

12
13
14
15

fbest «— +00;
for [ — 1 to k do

L Add M, to M and Add M, to M

for [ «+ 1 to 2k* do
vap — M]l,] (I-th vector of medoids)

for r — 1 to k do

if x; # vep[r] then vep[r] — z;
Calculate objective function fob;j(vas)
if fobj(Vab) < foest then

fbest — fobj (Uab)
Ve < Vab

M, <+ Combine each element of vy, with vg \ va[l]
My, — Combine each element of v, with vy \ vs[l]

Allocate (n — k) objects to the nearest medoid of v,; defining clusters Ci, . ..

7Ck

L Determine the z; € C, whose sum of distances to others (|Cr| — 1) objects of C) is minimal

TABLE 1. Crossover example.

i Medoids ¢ w Medoids
Va 2510 Vp 138
Vp 138 Va 2510

1 M, 1510 1 M, 238

3510 538
8510 103 8
2 M, 2110 2 M, 128
2310 158
2810 1108
3 M, 251 3 M, 132
253 135
258 1310

Upon analysis of the first loop (line 2 — Combination medoids) of Algorithm 2, each of the k elements of v,
is combined with all subsets of v, formed by (k — 1) elements (C,f_l) and vice versa. Therefore, each execution
of the procedure in this algorithm produces 2k? (2 x k x C{~*) new chromosomes, of which the one (vector v,)
with the lowest associated value of the objective function (lines 13-15) is selected.
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In order to determine the best set of medoids among the 2k? sets (M lines), that is, vector v, corresponding
to the lowest value of objective function, firstly the medoids of each M line are assigned to vector v, then
the remaining (n — k) X \ vgp objects are allocated to the nearest medoid of v,yp, thus defining the & clusters
Ch,...,Ch, ..., C (lines 6-8).

Then, it is evaluated for each of the clusters C, (r = 1,...,k), which object (z;) that, when defined as
medoid, has the lowest sum of distances to the other C, objects. If 3z; € C, such that Vz, € C, (zs # z;),
T, # Vap[r], where z = argmin, dxjms, x; will be the new medoid of cluster C). and the r-th position of v,y is
updated (lines 9-11). This implies testing |C,.| — 1 objects by cluster as possible medoids of the cluster.

5. DATA SETS AND PARAMETERS CALIBRATION

Experiments were carried out with 50 literature data sets to evaluate the performance of BRKGAMED
against algorithms from the literature and the formulation described in Section 2. Additionally, in these data
sets, the number of objects (n) ranges between 49 and 5000, and the number of variables (f) ranges between 1
and 1213, as shown in Table 2. For the purposes of comparability and reproducibility of the experiments, the
R function that implements BRKGAMED and all data sets are available in github.com/jambrito/BRKGAMED.

TABLE 2. Summary of data sets.

Data set n [ Data set n I
2-FACE 200 2 IONOSPHERE 351 34
200DATA* 200 2 IRIS 150 4
400P3C 400 2  MARONNA 200 2
Al 3000 2 MORESHAPES* 489 2
AGGREGATION 788 2 NEW-THYROID 215 5
BANKNOTE 1372 5 NORMAL300 300 2
BREASTB_N 49 1213 NUMBERS2 540 2
BROKEN-RING 800 2 OUTLIERS 131 2
BUPA 345 6 PARKINSONS 195 23
CHART* 600 60 PIB_MINAS 853 1
COMPOUND 399 2 PIB100 100 1
CONCRETE_DATA 1030 9 PRIMA_INDIANS 569 8
DBLCA 141 661 RUSPINI 75 2
DBLCB 180 661 SONAR 208 60
DOWJONES 750 4 SPHERICAL_4D3C 400 3
ECOLI 336 7 SPRDESP 645 2
FACE 296 2  SYNTHETIC_.CONTROL 600 51
FORESTFIRES 517 7 TRIPADVISOR 980 10
GAMMA400 500 3 UNIFORM400 400 2
GAUSS9* 900 2 UNIFORMT00 700 2
GLASS 214 9 VOWEL2 528 2
HABERMAN 306 3  WAVEFORM21 5000 21
HAYES-ROTH 132 6 WDBC* 569 30
INDIAN 583 9 WINE 178 13
INDOCHINA_COMBAT 72 4 YEAST 1484 7

Notes. *Data sets used in the calibration experiments.

A fundamental issue for any metaheuristic to have a reasonable performance concerns determining the values
associated with its set of parameters. In the case of the BRKGAMED algorithm, the values of the parameters
were defined using as reference the recommendations made in [11] and a preliminary calibration experiment
using parameters and values in Table 3.
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TABLE 3. BRKGAMED - parameters for calibration experiments.

Parameter Description Values

P Size of population 50, 75, 100

g Number of generations 25, 50, 100

Pe Size of elite population 0.1p, 0.2p, 0.3p

Pm Size of mutant population 0.6p, 0.7p, 0.8p

Pe Crossover probability 0.75, 0.80, 0.85, 0.90
ng Generations without improvement 0.25¢g, 0.30g, 0.35¢g

More specifically, five data sets have been selected (marked with an asterisk in Table 2 out of the 50 data
sets available, then BRKGAMED was applied 10 times in each data set to k € {3,4,5} and considering 972
combinations of the parameters p, g, pe, Dm, Pe; g — accounting to 145800 executions (number of data sets x k
values x combinations of parameters x 10).

Considering each combination of the six parameters above, data sets, and k values, it was calculated the
average of the objective function values (Eq. (2.1)) obtained in the 10 executions. Then, taking as the best
combination the one corresponding to the largest number of solutions with lowest average values (in all data
sets and k values), we have the following combination: p = 50, ¢ = 50, p. = 0.2 p = 10, p,, = 0.7 p = 35,
pe = 0.85 and ny = 0.35g.

6. EXPERIMENTS

This section presents results related to the application of the BRKGAMED, the formulation described
in Section 2 and eight algorithms from the literature: PAM and CLARA proposed in [20], FASTPAM,
FASTCLARA, FASTCLARANS proposed in [35], HKA algorithm proposed in [39], PARK algorithm pro-
posed in [32] and RANK algorithm proposed in [54]. The authors implemented the BRKGAMED and HKA
algorithms using the R programming language, and the other algorithms are available in functions implemented
in three R packages, as shown in Table 4. The formulation was implemented using solver GUROBI (version
9.5.1) available in the gurobi package in R. Additionally, all experiments related to applying the nine algorithms
and the formulation were carried out on a computer with 16 GB of RAM and AMD FX-6300 six cores 3.50 GHz
processor.

TABLE 4. Algorithms and their packages.

Algorithm Package Function

PAM, CLARA cluster pam, clara

FASTPAM, FASTCLARA, FASTCLARANS fastkmedoids fastpam, fastclara, fastclarans
PARK, RANK kmed fastkmed, rankkmed

Considering the multicore architecture features of the computer used in the experiments, combined with
package parallel available in the R language, which has functions that allow to implement parallelism, the
crossover operator was parallelized in the BRKGAMED algorithm. Two experiments were carried to properly
present the results of the algorithm. In the first one, presented in Section 6.1, the purpose was to evaluate the
effectiveness of the algorithm in achieving reasonable quality solutions for the 50 data sets and different k values.
The second experiment, presented in Section 6.2, sought to evaluate the stability of BRKGAMED considering
repeated executions of the algorithm for a subset of data sets.
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6.1. Experiment I — Analysis of the performance of algorithms

In this experiment, BRKGAMED and eight algorithms from the literature were applied in the fifty literature
data sets, considering k ranging from 2 to 7 (300 solutions for each algorithm). The formulation (GUROBI solver)
was applied with a maximum running time of 3h, except for the WAVEFORM21 data set (5000 objects), in
which the solver presented an error.

As for choosing the value of k, given the number of data sets involved in the experiment, it would not be
feasible to carry out a detailed analysis for each case. An alternative would be to adopt a common practice in
the literature on clustering, in which k € {2,...,[v/n]} (see [3,31]), where n is the number of objects in the
data set. However, the experiment carried out sought to compare the performance of the methods, regarding
the stability and quality of the solutions, in terms of the silhouette index. Once data sets with the number of
objects varying between 49 and 5000 were considered and the adoption of an upper bound for k as a function
of n would not favor this objective, since there would be no comparability between all the solutions produced,
the upper bound for k& adopted in the experiment considered the smallest value of n among the data sets used,
that is, k € {2,...,[v/49]}, since, for two distinct data sets A and B, with the number of objects na and np
and being ny <npg,k € {2,...,[\/na]} meets the upper bound suggested in the literature for both data sets.

Besides, using the same k range and the maximum running time of 3 h for the GUROBI solver. The formulation
was applied to 49 data sets, except for the WAVEFORM21 data set, consisting of 5000 objects, in which the
solver presented an error (out of memory error when running the model). The parameters used in BRKGAMED
were defined in a calibration experiment. For the HKA algorithm, were adopted the parameter values defined in
[39]. In the algorithms from the literature were considered the default values of the parameters of the functions
presented in Table 4.

This experiment made possible to get the objective function values (Eq. (2.1)), the processing times and the
allocation of the objects to their respective clusters. The object function values were used to determine, by
number of clusters, the following results: (i) percentage of global optimal solutions produced by the algorithms,
based on the total of global optimal solutions produced by the formulation within the maximum time of 3h; (ii)
percentage of best solutions — best solution produced considering the nine algorithms and the formulation, not
necessarily corresponding to a global optima and (iii) summary statistics calculated based on the relative gaps
(Eq. (6.1)) obtained from the difference between the best solution (spest) and the solution produced by each
algorithm and the formulation (sqqf) — for the fifty data sets (for data set WAVEFORMI, the best solution
was considered to be that associated with at least one out of the nine algorithms) and k € {2,3,4,5,6,7}.

gap = 100 * (Sq1gf — Sbest)/ Sbest- (6.1)

It is possible to verify, upon analysis of Table 5, the efficacy of BRKGAMED against other algorithms, consid-
ering the percentage of global optimal solutions produced. For the number of clusters equal to 3, BRKGAMED
achieved the optimal in 100% of cases. Moreover, the lowest percentages of this algorithm, almost around 88%,
occurred for k = 6 clusters. Additionally, the PAM, PAMF, and HKA algorithms presented the closest percent-
ages of global optimal, with respect to BRKGAMED. The most favorable scenario for these three algorithms
occurred for k = 2, when the differences were, in percentage points, respectively, of 2.1% (HKA) and 14.6%
(PAM and PAMF). For k € {3,4,5,6, 7}, such differences varied between 29.2% (HKA, k = 3) and 72.9% (HKA,
k=T7).

Additionally, the worst results are associated with the CLARAF and CLARANSF algorithms, with percent-
ages of global optimal below 7% and even 0% k = 6 and k = 7. The RANK algorithm failed to produce the
global optimum for all data sets and number of clusters.

Upon analysis of Table 6, associated with gaps between the solutions (except for the maximum gap),
BRKGAMED algorithm generally produced gaps values of 0%. In this table, cells highlighted with shades
of gray (from the lightest to the darkest) and in italics/underline correspond, respectively, to gap values with
mean, median (Md) and 3rd quartile (Q3) within the following ranges [0,0.1%], (0.1%, 0.5%)], (0.5%, 1.0%] and
(1.0%, 5.0%)]. In particular, upon analysis of the mean gap, the worst BRKGAMED result was 0.5%, for k = 6.
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TABLE 5. Percentage of global optimum by algorithm and number of clusters.

. k
Algorithms 5 3 1 £ 6 =
BRKGAMED 93.8 100.0 958 95.8 87.5 89.6
CLARA 8.3 2.1 4.2 2.1 4.2 2.1
CLARAF 22.9 188 63 63 00 00
CLARANSF 6.3 4.2 6.3 2.1 0.0 0.0
HKA 91.7 70.8 62.5 43.8 27.1 16.7
PAM 79.2 729 70.8 583 479 52.1
PAMF 79.2 70.8 70.8 54.2 479 521
PARK 33.3 14.6 14.6 6.3 2.1 0.0
RANK 0.0 00 00 00 0.0 00
Nglobal* 48 48 48 48 48 48

Notes. *Number of global optimal produced by the formulation — cpu time of 3 h, considering the 49 data sets. Global
optimum not obtained for Al data set and for the WAVEFORMZ21 data set, solver presented an error.

Algorithms

BRKGAMED
CLARA

BAIRY NN §

4 5
Number of Clusters

FIGURE 2. Percentage of best solutions by algorithms and number of clusters.

Based on such cells, PAM and PAMF algorithms present the closest gaps in relation to BRKGAMED (less than
1.0%), followed by the HKA algorithm with gaps of up to 1.0% for k between 2 and 5, and gaps of up to 2.0%
for k=6 and 7.

CLARA, CLARANSF, PARK, and RANK algorithms have the largest gaps. In particular, RANK algorithm
presented the worst results regardless of the number of clusters, with gaps varied between 29% and 47% in the
mean gap and between 20.6%, and 26.9% in the median gap.

To conclude the analyses associated with the solutions, Figure 2 shows the percentages of best solutions
produced by algorithm wversus number of clusters, where, once again, BRKGAMED algorithm significantly
outperformed the other ones, with percentages between 88% and 100%, followed by the PAM, PAMF and HKA
algorithms.
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TABLE 6. Relative gaps by algorithm and number of clusters.

Algorithms k=2 k=3
Min Q1 Md Mean Qs Max Min Q1 Md Mean Qs Max
BRKGAMED 0.0 0.0 0.0 00 00 01 00 00 00 0.0 00 00
CLARA 0.0 05 1.4 1.7 26 74 00 16 2.2 3.0 4. 15.6
CLARAF 00 00 [ 02 05 06N =29 00 0.1 [ 04 JNN0oosy 108
CLARANSF 00 04 1.2 1.4 20 45 00 07 15 2.8 25 182
HKA 0.0 0.0 00 0.0 00 1.3 00 00 00 0.1 0.1 1.7
PAM 0.0 0.0 00 03 00 96 00 00 00 02 00 1.6
PAMF 0.0 0.0 00 03 00 96 00 00 00 03 0.1 5.7
PARK 0.0 0.0 [ 04 25 1.9 425 00 01 1.1 85 38 365
RANK 0.2 10.8 206 29.0 369 1757 05 11.0 245 335 410 3165
k=4 k=5
BRKGAMED 0.0 00 0.0 0.0 00 15 0.0 00 00 0.1 00 5.0
CLARA 0.0 1.7 4.0 4.1 56 242 00 31 48 53 5.7 496
CLARAF 00 03 O8N 15 16 128 00 04 1.1 1.5 22 6.1
CLARANSF 00 07 1.9 8.0 35 272 00 16 25 3.9 5.8 348
HKA 0.0 0.0 00 03 02 36 00 00 01 05 265
PAM 0.0 0.0 00 03 02 35 00 00 00 03 03 1.6
PAMF 0.0 0.0 00 03 0.2 3500 00 00 03 0.2 3.4
PARK 00 04 18 59 4.9 781 00 15 47 76 74 760
RANK 2.2 128 232 365 48.6 146.8 22 143 269  47.0 66.0 289.0
k=6 k=17
BRKGAMED 0.0 0.0 0.0 05 00 231 00 00 00 04 00 188
CLARA 0.0 35 58 72 74 8.7 00 39 63 6.8 89 448
CLARAF 0.1 09 14 20 26 109 01 08 18 25 29 183
CLARANSF 0.1 20 3.2 4.5 4.8 414 02 13 28 5.0 4 3 63.9
HKA 00 0002 14 BEON 397 00 0205 2.0 1.8 50 9
PAM 0.0 0.0 00 04 05 27 00 00 00 0.5
PAMF 00 0.0 00 04 04 27 00 00 00 0.5 -
PARK 0.0 29 41 90 6.6 1285 02 32 62 136 96 162 5
RANK 2.3 138 264 436 617 1884 2.2 121 249  41.8 482 2817

Complementing the results produced by BRKGAMED, it was performed a comparative analysis of the pro-
cessing times required by BRKGAMED, HKA, and the mathematical formulation. It is noteworthy that both
algorithms are evolutionary [24], therefore, they work with populations (sets of solutions) and combination,
mutation, and elitism operators. Such approach requires intensive computation and requires more processing
time in the search for good quality solutions.

The other algorithms considered, such as PAM and CLARA, are fast (of the order of up to 5s per data
set), although they produced a smaller number of global optimal and best solutions when compared to the
BRKGA algorithm, as shown in Table 5, and Figure 2. Table 7 shows the mean and median associated with the
processing times (in seconds) required by BRKGAMED, HKA, and the formulation. In general, BRKGAMED
presented lower values than those demanded by HKA and the formulation. Compared to HKA, BRKGAMED
was up to 30 times faster (median and k = 4).

Another way to evaluate the quality of solutions produced by clustering algorithms generally concerns the
application of an index associated with the relative validation criterion. In this work, it was used the average
silhouette, which, according to [20], allows to evaluate how proper is the allocation of each object in its cluster,
regarding the distance to all other objects in the data set. Figure 3 shows the proportions of best average
silhouettes (in relation to the 50 data sets), by number of clusters and by algorithm, associated with the
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TABLE 7. Average and median computational time by number of clusters (seconds).

i Mean Median
BRKGAMED HKA Model BRKGAMED HKA Model
2 26 203 281 7 147 25
3 26 203 298 7 147 23
4 29 416 323 11 327 16
5 36 413 318 15 330 18
6 47 446 308 24 371 19
7 60 491 310 29 388 19
1-
09-
08-
0.7- Algorithms
B BRKGAMED
06- B ciAra
5 B cLAraF
§o_5 B cLARANSF
° B HKa
a 7 PAm
| PAMF
PARK
0.3- RANK
0.2- 14%  16%
19% o0, 19% 20%
0.1- 6% 9%
8% 0 5% 2% 6% 7%
0- 4% 2% 3% 1% g
2 3 4 5 6 7
Number of Clusters

FIGURE 3. Proportion of the Best Average Silhoutte produced by algorithms.

highest values of average silhouette. So, in terms of proportion, it is observed that BRKGAMED performed
reasonably.

6.2. Experiment 11 - BRKGAMED stability

To evaluate BRKGAMED stability, the algorithm with the highest percentages of best solutions, a second
experiment was carried out with a subset of the data sets in Table 1. More specifically, considering ten data
sets and k € {3,4,5,6} (a total of 40 scenarios), the algorithm was applied 50 times in each of the data sets
presented in Table 8 and, in each execution, both the objective function value associated with the best solution
and the total number of generations required to produce such solution were stored.
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TABLE 8. Statistics obtained from objective function values.

Data sets k=3 k=4

Sbest ~Min  Mean cv% Max  Spest Min Mean cv% Max
BANKNOTE 1.242 1.242 1.242 0.000 1.242 1.112 1.112 1.112 0.000 1.112
BROKEN-RING 0.804 0.804 0.804 0.000 0.804 0.609 0.609 0.609 0.000 0.609
BUPA 1.762 1.762 1.762 0.000 1.762 1.660 1.660 1.660 0.051 1.665
CONCRETE_DATA 2472 2472 2.472 0.000 2.472 2.299 2.299 2.300 0.018 2.301
FORESTFIRES 1.850 1.850 1.850 0.000 1.850 1.731 1.731 1.731 0.016 1.733
HABERMAN 1.127 1.127 1.127 0.000 1.127 0.985 0.985 0.985 0.000 0.985
IOSNOSPHERE 4.217 4.217 4.217 0.000 4.217 3.961 3.961 3.961 0.000 3.961
NEW-THYROID 1.214 1.214 1.214 0.000 1.214 1.077 1.077 1.077 0.000 1.077
NUMBERS2 0.780 0.780 0.780 0.023 0.781 0.602 0.602 0.602 0.000 0.602
WDBC 3.991  3.991 3.991 0.000 3.991 3.840 3.840 3.841 0.042 3.848

k=26 k=17

BANKNOTE 1.010 1.010 1.010 0.030 1.012 0.938 0.938 0.938 0.087 0.940
BROKEN-RING 0.515 0.515 0.515 0.000 0.515 0.468 0.468 0.468 0.018 0.469
BUPA 1.572 1.572 1.573 0.118 1.579 1.515 1.515 1.517 0.193 1.525
CONCRETE_DATA 2.176 2.176 2.176 0.069 2.186 2.061 2.061 2.061 0.049 2.066
FORESTFIRES 1.658 1.659 1.660 0.177 1.669 1.59 1.590 1.591 0.164 1.600
HABERMAN 0.890 0.890 0.890 0.043 0.892 0.831 0.831 0.831 0.064 0.834
IOSNOSPHERE 3.808  3.808 3.808 0.036 3.813 3.665 3.663 3.664 0.018 3.665
NEW-THYROID 0.984 0.984 0.984 0.000 0.984 0.925 0.926 0.926 0.048 0.928
NUMBERS2 0.525 0.525 0.525 0.006 0.526 0.448 0.448 0.448 0.000 0.448
WDBC 3.719 3.715 3.717 0.053 3.721 3.601 3.600 3.601 0.009 3.601

TABLE 9. Statistics associated with total generations.

Data sets - k=3 - k=4

Min Mean Md Max Min Mean Md Max
BANKNOTE 2 6 5 14 3 11 10 41
BROKEN-RING 4 8 8 23 3 6 6 18
BUPA 2 6 6 14 2 12 10 47
CONCRETE_DATA 2 9 8 27 3 8 7 19
FORESTFIRES 2 4 4 9 3 8 7 27
HABERMAN 3 10 10 28 3 6 6 13
IOSNOSPHERE 2 4 4 13 3 9 8 23
NEW-THYROID 1 3 3 5 2 5 4 8
NUMBERS2 2 13 12 40 2 6 6 12
WDBC 2 6 5 19 2 8 7 23

k=5 k=6

BANKNOTE 4 9 8 32 4 9 9 25
BROKEN-RING 2 7 6 16 4 10 9 25
BUPA 3 14 13 36 3 15 14 36
CONCRETE_DATA 4 12 11 23 6 14 13 27
FORESTFIRES 3 11 10 36 5 17 17 45
HABERMAN 3 10 8 29 4 15 12 38
IOSNOSPHERE 3 8 7 30 3 7 6 23
NEW-THYROID 2 6 5 9 3 8 7 30
NUMBERS2 3 11 9 30 3 6 6 10
WDBC 4 16 12 43 4 14 14 31

Notes. *Results obtained from the 50 BRKGAMED executions.
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In Table 8, spest corresponds to the value of the objective function (according to equation (2.1) obtained
considering Experiment I and the other columns show the statistics associated with the values of objective func-
tion obtained from the 50 executions of BRKGAMED, namely: minimum (Min), mean (Mean), and maximum
(Maz), in addition to the coefficient of variation (cv) in percentage values. It is possible to verify, upon analysis
of said table that, in 35 out of the 40 scenarios evaluated (87.5%), the minimum value (Min) obtained for the
objective function was equal to the value of the solution produced by BRKGAMED in Experiment I (spest)-
In addition, the cv was equal to zero in 50% of the scenarios and was less than 0.20% in the remaining cases.
It means that, in most runs, the algorithm produced the same solution, which also corresponds to the best
solution, since the mean solution, in most cases, was equal to the minimum solution.

Complementing the analyses from this experiment, Table 9 presents, for the same scenarios, the minimum
(Min), mean (Mean), median (Md), and maximum (M ax) values obtained from the total number of generations
demanded by BRKGAMED to produce the best solution in each execution. Considering that the parameters
associated with the maximum number of generations (g) and the number of generations without improvement
(ng) were defined, respectively, as 50 and 18. It can be seen that, in most cases, it took a few generations
for BRKGAMED to produce good quality solutions. Considering the mean and median values — gray cells
(scenarios where the algorithm reached the best solution within 15 generations), it is possible to verify that, in
most scenarios, BRKGAMED required 30% of the total number of generations to achieve good quality solutions.
In addition, in about half of the cases, the maximum number of generations was around 25 (50% of the total
number of generations).

7. CONCLUSIONS AND FUTURE WORK

In this work, we presented an algorithm (BRKGAMED) to solve the k-medoids clustering problem, which is
NP-Hard. This algorithm combined BRKGA metaheuristics concepts with a new proposed crossover operator,
which incorporates a local search procedure. To evaluate the performance of this algorithm, we performed
several experiments with fifty data sets of varying sizes, comparing our algorithm with well-known PAM and
CLARA, its variants, and other clustering algorithms proposed for this same problem. Additionally, an integer
programming formulation was applied to solve this problem — which allowed the evaluation of the percentage
of global optimal solutions produced by the algorithm.

The BRKGAMED, the algorithms from the literature, and the formulation were applied to such data sets
to produce solutions with number of clusters ranging from 2 to 7, where were evaluated percentages of global
optimal solutions, percentages of best solutions, relative gaps, and average silhouette.

Regarding the global optimal solutions, BRKGAMED produced, in general, percentages above 90%. For
k = 3 it was obtained 100% global optimal solutions, and the lowest percentage observed was in the order of
88% (k = 6). Besides were observed percentages between 88% and 100% (Fig. 2), while evaluating the best
quality (or winning) solutions. In this sense, from the global optimal and the best solutions, the results obtained
in these experiments showed that BRKGAMED consistently outperformed other algorithms, including PAM
and HKA algorithms.

However, when evaluating the gaps in Table 6, it is observed that the BRKGA algorithm had, on average,
better performance than the other algorithms for k¥ < 5. But, for k = 6 and k = 7, the average gaps between
the BRKGA algorithm and the PAM algorithm are very close, with a slight superiority of the PAM algorithm
for £ = 6. Finally, BRKGAMED produced average silhouettes of reasonable quality when compared to other
algorithms, as shown in Figure 3.

In the second experiment, where BRKGAMED was applied 50 times to a subset of 10 data sets, it was
possible to observe the algorithm stability regarding the quality of the solutions produced and the number of
generations required to produce such solutions. This statement is corroborated by the mean and the low values
of the coeflicient of variation of the objective function values (Tab. 8). Thus, based on the results presented in
this article, considering experiments involving data sets of varying size, it was possible to verify the efficacy of
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BRKGAMED against other algorithms found in the literature, which indicates that this algorithm is a relevant
alternative to be considered when solving the problem of k-medoids.

As future work, we plan to develop a new crossover operator incorporating a local search procedure, based on
the VNS metaheuristic and Path Relinking procedure, to produce reasonable quality solutions, demanding less
processing time. Another possibility is to solve the k-medoids problem without previously defining, the number
of clusters, which characterizes the automatic clustering problem. To attain this goal, BRKGAMED can be
adapted using the average silhouette combined with the objective function, so as to define the ideal number of
clusters.

Acknowledgements. The researchers were partly funded by the CNPq grant number 405044/2021-6, and PROPPI/UFF
(FOPESQ).
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