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AN IMPROVED PDE-CONSTRAINED OPTIMIZATION FLUID REGISTRATION
FOR IMAGE MULTI-FRAME SUPER RESOLUTION

Amine Laghrib1, Aissam Hadri2,*, Moad Hakim3 and Hssaine Oummi1

Abstract. The main idea of multi-frame super resolution (SR) algorithms is to recover a single
high-resolution image from a sequence of low resolution ones of the same object. The success of the
SR approaches is often related to a well registration and restoration steps. Therefore, we propose
a new approach based on a partial differential equation (PDE)-constrained optimization fluid image
registration and we use a fourth order PDE to treat both the registration and restoration steps that
guarantee the success of SR algorithms. Since the registration step is usually a variational ill-posed
model, a mathematical study is needed to check the existence of the solution to the regularized problem.
Thus, we prove the existence and of the well posed fluid image registration and assure also the existence
of the used second order PDE in the restoration step. The results show that the proposed method is
competitive with the existing methods.
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1. Introduction

Image super resolution represents an active research area in the imagery domain. The main principle of this
method is to recover a high-resolution (HR) image through a single image (Single-image SR) [23,43,47], or using
a serie of low-resolution (LR) ones that are down-sampled, ill-registered, blurred and usually noised (multi-frame
SR) [13,27,50]. SR intervenes in numerous domains, such as video surveillance and medical diagnostics [18].

The multi-frame and single SR are both intensively studied in order to improve the resolution of an image.
In single SR technique, the missing information in the LR image is estimated from a large number of training.
Then its success depends on the availability of a convenient dictionary which is not ensured in large application
areas. While for the multi-frame SR the success is related to the approximation accuracy of the motion between
the LR images. Since multiframe SR is more complicated in the presence of different degradation operators,
Sina Farsiu et al [15] proposed the fast robust super resolution (RSR). The aim of this new technique is to break
down the SR method into two steps: looking for a degraded HR image from the estimated LR frames after a
registration procedure; then in a second step, restoring it [15].
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On another side, nonlinear PDEs have also been treated in the super-resolution context with pleasant results.
One of the consistent nonlinear PDEs was proposed by Maiseli et al. [35], which takes the advantages of Perona-
Malik equation and the TV norm. This adaptive diffusion-based PDE can efficiently preserve image features
but it suffers from the blurring effect. A more robust PDE was proposed by El Mourabit et al. [13, 14] which
takes into consideration the coherence-enhancing property and avoids blur much better. However, when the blur
and noise levels are too high, the obtained HR image still contains some artefacts, in particular the blur. More
recently a fourth-order nonlinear PDE has been introduced with much more constrained diffusion that stops
the edges destruction and preserve the smooth areas and texture [30]. In contrast, the blur apparition problem
is still a remaining weakness of this PDE.

The first step of multiframe SR aim is to guess the motion between the LR frames to register all LR images
in a common way [51]. This stage is the key of the success of multiframe SR algorithms and without a good
estimation of the motion between the LR images, the super-resolution becomes very limited [7]. To overcome
the difficulties of the registration step, many works have been proposed. These methods include the projection
on a convex set (POCS) [46], the iterative back projection (IBP) [40], optical-flow [6]. However, these methods
suffer from the non-uniqueness of solutions, and the fact that they consider only translational and rotational
motion between the LR frames. More robust approaches are then proposed [41,50] to tackle the misregistration
errors. One of the most successful methods was the nonlocal-means proposed by Protter et al. [39] which
is applied to nonglobal motion. Otherwise, to treat nonparametric deformations between the LR images, an
elastic registration was proposed in [26], but it is specified to small deformations and does not tackle larger
ones. Other techniques use the maximum a posteriori (MAP) [2,17,38] with accurate spatial domain observation
model to reconstruct the HR image. More recently, other methods were proposed [5] but still suffering from the
misregistration errors.

In this paper, we follow the steps of the RSR method, while the registration approach and the second step
are improved. Indeed, we propose a fluid image registration in a well-posed functional framework to handle the
registration part of SR. In addition, to justify this choice, we show the existence and the uniqueness of the
solution using classical mathematical approaches [9]. However, since the problems of deblurring and denoising
are in most cases ill-posed, in the second step of SR, we have to obtain a related well-posed model based on
regularization. Among the most-used regularization techniques, we have the Tikhonov-type functions [20, 47]
and also Total Variation (TV) priors [19,28,35]. Meanwhile, second and fourth order PDE’s have been proposed
to avoid the staircasing effect, during the denoising process [8,11]. Recently, a Combined first and second-order
approach has had a great success in denoising and deconvolution problems [37]. Thus, inspired by this work, we
use the resulting fourth-order-Euler-Lagrange equation to remove noise and blur, this increases the robustness
of the second step of the proposed SR algorithm.

This paper follows this configuration: Section 2 introduces the super resolution formulation. We introduce
then the fluid registration and how to define the warp operators in Section 3. In Section 4, we describe briefly
the proposed PDE and the main algorithm used in the deconvolution and denoising step. Finally, simulated and
real results with comparisons of the proposed SR method to some available methods are presented in Section 5.

2. Problem formulation

In the presence of many degradation factors, the acquired images are always in a non desired resolution. In
fact, the obtained images are decimated, noised and also blurred. We consider that the LR images are taken in
the same conditions with one sensor. The link between the HR image 𝑋 (described by a vector of size [𝑟2𝑁2×1]
where 𝑟 is the enhancement factor) and the associated low resolution frames 𝑌𝑘 (represented by a vector of size
[𝑁2 × 1]), is given by

𝑌𝑘 = 𝐷𝐹𝑘𝐻𝑋 + 𝑒𝑘 ∀𝑘 = 1, 2, . . . , 𝑛, (2.1)

where
𝐻: the convolution operator describing the blur of size [𝑟2𝑁2 × 𝑟2𝑁2].
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𝐷: the decimation operator which is related to the desired resolution of the HR image of size [𝑁2 × 𝑟2𝑁2].
𝐹𝑘: are the motions or the warp matrix of size [𝑟2𝑁2× 𝑟2𝑁2], representing random transformation between the
LR frames.
𝑒𝑘 : is the additive Gaussian noise vector of size [𝑁2 × 1].

The aim of multi-frame super resolution is the recovery of an ideal HR image 𝑋. Due to the complexity of
the problem we split it in two procedure [15]:

1. Approximating the transformation matrix 𝐹𝑘 between each couple of LR images and merge the HR image
𝐵 with noise and blur.

2. Computing the HR image 𝑋 through the blurring and noisy one 𝐵.

We start by the approximation of the warp matrix 𝐹𝑘 and also by ensuring the existence of the solution in a
suitable functional space [1, 9, 12,27].

3. The construction of the warp matrix 𝐹𝑘

To construct the operators 𝐹𝑘, we use a fluid registration algorithm. This approach is based on the resolution
of a variational minimization problem using fluid regularization term and an 𝐿2 based data term to model the
optical flow constraint. For that, we used bicubic upsampled ̂︀𝑌𝑖 of the LR sequence 𝑌𝑖. We then selected the
reference image between the upsampled images ̂︀𝑌𝑖 that is used for the super-resolution process as ̂︀𝑌𝑘 (1 ≤ 𝑘 ≤ 𝑛).
Through the image ̂︀𝑌𝑘, we compute the optical flow to all other input images (for 𝑖 ̸= 𝑘). We then get 𝑛 flow
vector fields 𝑢𝑖 : Ω −→ R2. To simplify the notations we set 𝑌𝑘(𝑥) the pixel value corresponding to the 𝑘th
frame such as the coordinate 𝑥 = (𝑥1, 𝑥2) ∈ Ω ⊂ R2 (Ω is the domain containing all the pixels). The image fluid
registration problem is formulated as

𝑌 (𝑥) = 𝑌𝑘(𝑣𝑘(𝑥)) for 𝑘 = 2, . . . , 𝑛 and ∀𝑥 ∈ Ω. (3.1)

Our goal is to find the velocity deformation 𝑣𝑘 that links each image to the reference one, where

𝑣𝑘 = 𝜕𝑡𝑢𝑘 +∇𝑢𝑘.𝑣𝑘, (3.2)

𝜕𝑡 is the partial time derivative operator and 𝑢𝑘 are the deformations between each frame. Unfortunately, this
problem is ill-posed. We have therefore to choose an appropriate regularization operator 𝑆. Since we know the
success of the fluid registration to handle different problems in image registration [36], we propose to use it in
a well-posed functional framework. The image fluid registration problem is defined as

min
𝑢𝑘∈𝒯 and 𝑣𝑘∈𝒰𝑎𝑑

𝒥 (𝑢𝑘, 𝑣𝑘), (3.3)

where 𝒥 (𝑢𝑘, 𝑣𝑘) = 𝒟(𝑌, 𝑌𝑘, 𝑢𝑘) + 𝛽(𝑆1(𝑢𝑘) + 𝑆2(𝑣𝑘)), such that 𝑢𝑘 is a solution of⎧⎪⎨⎪⎩
𝜕𝑡𝑢𝑘 +∇𝑢𝑘.𝑣𝑘 = 0, 𝑖𝑛 Ω× (0, 𝑇 ),
𝑢𝑘(𝑥, 𝑡) = 0, 𝑜𝑛 𝜕Ω× (0, 𝑇 ),
𝑢𝑘(𝑥, 0) = 𝑢0, 𝑖𝑛 Ω× (0, 𝑇 ),

(3.4)

where 𝒯 represents the set of admissible transformations, while 𝒰𝑎𝑑 is the set of admissible velocity deformations,
and 𝛽 is the regularisation parameter.
𝒟 : is the squared difference measure defined by Lebesgue L2 norm as

𝒟(𝑌, 𝑌𝑘, 𝑢𝑘) =
∫︁ 𝑇

0

∫︁
Ω

(𝑌𝑘(𝑢𝑘(𝑥, 𝑡))− 𝑌 (𝑥, 𝑡))2 d𝑥d𝑡, (3.5)
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the registration regularisation is given as follow

𝑆1(𝑢𝑘) =
∫︁ 𝑇

0

∫︁
Ω

|∇𝑢𝑘|2d𝑥d𝑡, (3.6)

and the fluid regularisation is defined as

𝑆2(𝑣𝑘) =
∫︁

Ω

𝜇 (trace𝑉 )2 +
𝜆

2
trace(𝑉 2)d𝑥, (3.7)

where 𝑉 is the Cauchy strain tensor (for ||∇𝑣𝑘|| ≤ 1) defined as 𝑉 (𝑣𝑘) = (∇𝑣𝑘 +∇𝑣𝑘)/2, and 𝜇 and 𝜆 are the
Lamé parameters. To ensure the existence of a unique solution to the problem (3.4), we have to choose firstly
a functional framework. A natural choice of the functional space for every fixed 𝑣𝑘 ∈ 𝒰𝑎𝑑 is

𝒰𝑎𝑑 =
{︀
𝑣 ∈ (𝐿2((0, 𝑇 )× Ω))2 such that:
‖𝑣‖(𝐿∞(0,𝑇 ;𝐿∞(Ω))2 + ‖𝑣‖(𝐿2(0,𝑇 ;𝐻1(Ω))2 + ‖𝜕𝑡𝑣‖(𝐿2(((0,𝑇 )×Ω))2 ≤ 𝐶

and 𝑑𝑖𝑣(𝑣) = 0 .a.e in 𝜕Ω} . (3.8)

For this reason, the existence of a unique solution is guaranteed in

𝒯 = 𝐿∞(0, 𝑇 ; 𝐿2(Ω)), (3.9)

which is presented in details in [32]. In the following, we present the main theorem of the existence of the
solution to the proposed fluid image registration.

Theorem 3.1. Let Ω be a regular bounded open subset of R2. The problem (3.3) admits at least a solution in
𝐿2(0, 𝑇 ; 𝐻1

0 (Ω))× 𝒰𝑎𝑑.

Proof. Let (𝑢𝑘,𝑛, 𝑣𝑘,𝑛)𝑛 be a minimizing sequence of 𝐽 such that (𝑢𝑘,𝑛, 𝑣𝑘,𝑛)𝑛 ∈ 𝐿2(0, 𝑇, 𝐻1
0 (Ω))× 𝒰𝑎𝑑, and

lim
𝑛→∞

𝐽(𝑢𝑘,𝑛, 𝑣𝑘,𝑛) = inf
(𝑢𝑘,𝑣𝑘)∈𝐿2(0,𝑇,𝐻1(Ω))×𝒰𝑎𝑑

𝐽(𝑢𝑘, 𝑣𝑘),

then we have
𝐷(𝑌, 𝑌𝑘, 𝑢𝑘,𝑛) + 𝛽(𝑆1(𝑢𝑘,𝑛) + 𝑆2(𝑣𝑘,𝑛)) ≤ 𝐶 (3.10)

which means
‖𝑢𝑘,𝑛‖2𝐿2(0,𝑇 ;𝐻1

0 (Ω)) ≤ 𝐶, (3.11)

we have to prove also that 𝜕𝑡𝑢𝑘,𝑛 is bounded. From equation (3.4), we get

|
∫︁ 𝑇

0

∫︁
Ω

𝜕𝑡𝑢𝑘,𝑛𝜑d𝑥d𝑡| ≤ |
∫︁ 𝑇

0

∫︁
Ω

𝑣𝑘,𝑛∇𝑢𝑘,𝑛𝜑d𝑥d𝑡|, (3.12)

since 𝑣𝑘,𝑛 is bounded in 𝒰𝑎𝑑 ⊂ (𝐿∞((0, 𝑇 )× Ω))2, then

|
∫︁ 𝑇

0

∫︁
Ω

𝜕𝑡𝑢𝑘,𝑛𝜑d𝑥d𝑡| ≤ ‖𝑣𝑘,𝑛‖(𝐿∞(0,𝑇 ;𝐿∞(Ω)))2‖∇𝑢𝑘,𝑛‖(𝐿2(0,𝑇 ;𝐿2(Ω)))2‖𝜑‖𝐿2(0,𝑇 ;𝐿2(Ω)). (3.13)

we obtain
‖𝜕𝑡𝑢𝑘,𝑛‖𝐿2(0,𝑇 ;𝐿2(Ω)) ≤ 𝐶. (3.14)

Now from the estimation (3.11) and estimation (3.14), we can extract a subsequence still denoted (𝑢𝑘,𝑛)𝑛, such
that:

𝑢𝑘,𝑛 ⇀ 𝑢*𝑘 in 𝐿2(0, 𝑇 ; 𝐻1
0 (Ω)), (3.15)
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𝜕𝑡𝑢𝑘,𝑛 ⇀ 𝜕𝑡𝑢
*
𝑘 in 𝐿2(0, 𝑇 ; 𝐿2(Ω)). (3.16)

We have also 𝒰𝑎𝑑 is compact in (𝐿2(0, 𝑇 ; 𝐿2(Ω)) by Aubin-Lions lemma [4], then we can extract a subsequence
still denoted (𝑣𝑘,𝑛)𝑛 such that

𝑣𝑘,𝑛 −→
𝑛→+∞

𝑣*𝑘 in (𝐿2(0, 𝑇 ; 𝐿2(Ω)))2. (3.17)

and
𝑣𝑘,𝑛 ⇀ 𝑣*𝑘 in 𝐿2(0, 𝑇 ; 𝐻1(Ω)), (3.18)

We have to show the continuity of the solution for the direct problem, compared to the minimizing sequences
(𝑢𝑘,𝑛, 𝑣𝑘,𝑛)𝑛. Which means we have to prove that (𝑢*𝑘, 𝑣*𝑘) verifies the system (3.4). Let’s prove that∫︁ 𝑇

0

∫︁
Ω

𝜕𝑡𝑢𝑘,𝑛𝜑d𝑥d𝑡 −→
𝑛→+∞

∫︁ 𝑇

0

∫︁
Ω

𝜕𝑡𝑢
*
𝑘𝜑d𝑥d𝑡, ∀𝜑 ∈ 𝐿2(0, 𝑇 ; 𝐿2(Ω)), (3.19)

and ∫︁ 𝑇

0

∫︁
Ω

𝑣𝑘,𝑛∇𝑢𝑘,𝑛𝜑d𝑥d𝑡 −→
𝑛→+∞

∫︁ 𝑇

0

∫︁
Ω

𝑣*𝑘∇𝑢*𝑘𝜑d𝑥d𝑡, ∀𝜑 ∈ 𝐿2(0, 𝑇 ; 𝐿2(Ω)). (3.20)

For the convergence (3.19), it is obtained directly from (3.16). To show the convergence (3.20), we denote by

𝐼 =
∫︁ 𝑇

0

∫︁
Ω

(𝑣𝑘,𝑛∇𝑢𝑘,𝑛 − 𝑣*𝑘∇𝑢*𝑘)𝜑d𝑥d𝑡, ∀𝜑 ∈ 𝐿2(0, 𝑇 ; 𝐿2(Ω)) = 𝐼1 + 𝐼2,

with

𝐼1 =
∫︁ 𝑇

0

∫︁
Ω

𝑣*𝑘(∇𝑢𝑘,𝑛 −∇𝑢*𝑘)𝜑d𝑥d𝑡, ∀𝜑 ∈ 𝐿2(0, 𝑇 ; 𝐿2(Ω)),

and

𝐼2 =
∫︁ 𝑇

0

∫︁
Ω

(𝑣𝑘,𝑛 − 𝑣*𝑘)∇𝑢𝑘,𝑛𝜑d𝑥d𝑡, ∀𝜑 ∈ 𝐿2(0, 𝑇 ; 𝐿2(Ω)),

Let’s prove that 𝐼𝑖 −→
𝑛→+∞

0 for 𝑖 = 1, 2. For the convergence of 𝐼1, we have 𝑣*𝑘 in (𝐿∞((0, 𝑇 ) × Ω))2 and

𝜑 ∈ 𝐿2(0, 𝑇 ; 𝐿2(Ω)), which means that 𝑣*𝑘𝜑 in (𝐿2(0, 𝑇 ; 𝐿2(Ω)))2. By using the convergence (3.15), we obtain
that 𝐼1 −→

𝑛→+∞
0. For 𝐼2, by using Hölder inequality we have

|𝐼2| ≤ [
∫︁ 𝑇

0

∫︁
Ω

((𝑣𝑘,𝑛 − 𝑣*𝑘)𝜑)2d𝑥d𝑡]
1
2 ‖∇𝑢𝑘,𝑛‖(𝐿2(0,𝑇 ;𝐿2(Ω)))2 ≤ 𝐶[

∫︁ 𝑇

0

∫︁
Ω

((𝑣𝑘,𝑛 − 𝑣*𝑘)𝜑)2d𝑥d𝑡]
1
2 .

From the convergence (3.17), we have

𝑣𝑘,𝑛 −→
𝑛→+∞

𝑣*𝑘 in (𝐿2(0, 𝑇 ; 𝐿2(Ω)))2,

which implies
𝑣𝑘,𝑛 −→

𝑛→+∞
𝑣*𝑘 a.e. in Ω× (0, 𝑇 ),

and using the fact that 𝑣𝑘,𝑛 and 𝑣*𝑘 are bounded in 𝒰𝑎𝑑 ⊂ (𝐿∞((0, 𝑇 )× Ω))2, then

|(𝑣𝑘,𝑛 − 𝑣*𝑘)𝜑|2 ≤ 𝐶|𝜑|2 ∈ 𝐿1(Ω× (0, 𝑇 )).

By applying the Lebesgue convergence, we obtain

[
∫︁ 𝑇

0

∫︁
Ω

((𝑣𝑘,𝑛 − 𝑣*𝑘)𝜑)2d𝑥d𝑡]
1
2 −→

𝑛→+∞
0,
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which means 𝐼2 −→
𝑛→+∞

0.

Now we prove that the functional 𝐽 is lower semi-continuous. For this, we have 𝑢𝑘,𝑛 −→
𝑛→+∞

𝑢*𝑘 in 𝐿2(Ω ×

(0, 𝑇 )) and 𝑌𝑘 is continuous, then
∫︀ 𝑇

0

∫︀
Ω
|𝑌𝑘(𝑢𝑘,𝑛)− 𝑌 |2d𝑥d𝑡 −→

𝑛→+∞

∫︀ 𝑇

0

∫︀
Ω
|𝑌𝑘(𝑢*𝑘)− 𝑌 |2d𝑥d𝑡. We have also the

convergence (3.15) and the convergence (3.18), we obtain then

𝑆1(𝑢*𝑘) + 𝑆2(𝑣*𝑘) ≤ lim inf(𝑆1(𝑢𝑘,𝑛) + 𝑆2(𝑣𝑘,𝑛)).

which implies that 𝐽(𝑢*𝑘, 𝑣*𝑘) ≤ lim inf 𝐽(𝑢𝑘,𝑛, 𝑣𝑘,𝑛). Thus

lim
𝑛→∞

𝐽(𝑢𝑘,𝑛, 𝑣𝑘,𝑛) = inf
(𝑢𝑘,𝑣𝑘)∈𝒰𝑎𝑑

𝐽(𝑢𝑘, 𝑣𝑘) = 𝐽(𝑢*𝑘, 𝑣*𝑘).

Which concludes that the problem (3.3) admits at least a solution in 𝐿2((0, 𝑇 ), 𝐻1
0 (Ω))× 𝒰𝑎𝑑. �

To solve the minimisation problem (3.3), we use the BFGS algorithm [42]. For that, we have to obtain some
optimality conditions on the functional ℒ.

4. Necessary Optimality conditions

In this section, we formally give the optimality conditions of the optimization problem, since we need them
to compute the BFGS Algorithm. Before showing the optimality conditions, we give briefly in the following the
gradient of 𝑆2.

Proposition 4.1. Let ℎ1 be a perturbation of 𝑣𝑘 such that 𝑣𝑘 + ℎ1 in 𝒰𝑎𝑑, then we have the following results

𝑑𝑆2(𝑣𝑘).ℎ1 = −
∫︁ 𝑇

0

∫︁
Ω

(︀
𝜇∆𝑣𝑘 + (𝜇 + 𝜆)∇𝑑𝑖𝑣(𝑣𝑘)

)︀
.ℎ1 d𝑥d𝑡. (4.1)

Proof. In the proof, we assume that 𝑑𝑖𝑣(𝑣𝑘) = (∇𝑣𝑘,𝑖 + 𝜕𝑥𝑖𝑣𝑘).𝑛 = 0 𝑖𝑛 𝜕Ω. Then the derivative of 𝑆2 with
respect of 𝑣𝑘 in direction ℎ1 is given by:

𝑑𝑆2(𝑣𝑘).ℎ1 = lim
𝑟→0

𝑆2(𝑣𝑘 + 𝑟ℎ1)− 𝑆2(𝑣𝑘)
𝑟

=
∫︁ 𝑇

0

∫︁
Ω

(𝜆 + 𝜇)𝑑𝑖𝑣(𝑣𝑘)𝑑𝑖𝑣(ℎ1) + 𝜇

2∑︁
𝑖=1

∇𝑣𝑘,𝑖∇ℎ1,𝑖d𝑥d𝑡

= −
∫︁ 𝑇

0

∫︁
Ω

(𝜆 + 𝜇)∇𝑑𝑖𝑣(𝑣𝑘).ℎ1 + 𝜇

2∑︁
𝑖=1

∆𝑣𝑘,𝑖ℎ1,𝑖d𝑥d𝑡 +
∫︁ 𝑇

0

∫︁
𝜕Ω

(𝜆 + 𝜇)𝑑𝑖𝑣(𝑣𝑘)ℎ.𝑛 + 𝜇

2∑︁
𝑖=1

ℎ1,𝑖∇𝑣𝑘,𝑖.𝑛d𝑥d𝑡,

= −
∫︁ 𝑇

0

∫︁
Ω

(𝜆 + 𝜇)∇𝑑𝑖𝑣(𝑣𝑘).ℎ1 + 𝜇∆𝑣𝑘.ℎ1d𝑥d𝑡 +
∫︁ 𝑇

0

∫︁
𝜕Ω

𝜆𝑑𝑖𝑣(𝑣𝑘)ℎ1.𝑛 +
2∑︁

𝑖=1

𝜇ℎ1,𝑖(∇𝑣𝑘,𝑖 + 𝜕𝑥𝑖𝑣𝑘).𝑛d𝑥d𝑡,

since 𝑑𝑖𝑣(𝑣𝑘) = 0 and (∇𝑣𝑘,𝑖 + 𝜕𝑥𝑖
𝑣𝑘).𝑛 = 0 in 𝜕Ω, we have:

𝑑𝑆2(𝑣𝑘).ℎ = −
∫︁ 𝑇

0

∫︁
Ω

(︀
𝜇∆𝑣𝑘 + (𝜇 + 𝜆)∇𝑑𝑖𝑣(𝑣𝑘)

)︀
.ℎ1 d𝑥d𝑡.

�

Now we give the optimality conditions of the problem (3.3) in the following theorem.
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Proposition 4.2. Let 𝑣𝑘 be a solution of the problem (3.3) with 𝑢𝑘 its associated state and 𝑝𝑘 a Lagrange
multiplier, which are satisfying the following conditions:⎛⎜⎜⎜⎝

𝜕𝑡𝑢𝑘 + 𝑣𝑘∇𝑢𝑘

𝑢𝑘(0, 𝑥)− 𝑢0(𝑥)
(𝑌 (𝑢𝑘)− 𝑌𝑘(𝑥))𝑌 ′(𝑢𝑘)− 𝛽∆𝑢𝑘 − 𝜕𝑡𝑝𝑘 − 𝑑𝑖𝑣(𝑣𝑘𝑝𝑘)

𝑝𝑘(𝑇, 𝑥)
−𝜇∆𝑣𝑘 − (𝜇 + 𝜆)∇𝑑𝑖𝑣(𝑣𝑘) +∇𝑢𝑘𝑝𝑘

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
0
0
0
0
0

⎞⎟⎟⎟⎠ .

Proof. In order to compute the optimality conditions, we must define first the Lagrangian function, which is
given as follows:

ℒ(𝑢𝑘, 𝑣𝑘, 𝑝𝑘) = 𝐷(𝑌, 𝑌𝑘, 𝑢𝑘) + 𝛽𝑆1(𝑢𝑘) + 𝛽𝑆2(𝑣𝑘) +
∫︁ 𝑇

0

∫︁
Ω

(𝜕𝑡𝑢𝑘 + 𝑣𝑘∇𝑢𝑘)𝑝𝑘d𝑥d𝑡,

where 𝑝𝑘 is a Lagrange multiplier. We know from the theorem 3.1 that the problem (3.3) has at least one
solution, this means that ℒ admits 𝑢𝑘, 𝑣𝑘 and 𝑝𝑘 as saddle points, which give us the following iteration:

𝑑𝑣𝑘
ℒ(𝑢𝑘, ., .).ℎ1 = 0, 𝑑𝑢𝑘

ℒ(., 𝑣𝑘, .).ℎ2 = 0 and 𝑑𝑝𝑘
ℒ(., ., 𝑝𝑘).ℎ3 = 0, (4.2)

where ℎ𝑖 (for 𝑖 = 1, 2, 3) are the derivative direction for each argument of ℒ. After developing derivation for
each argument of the Lagrangian function and using the proposition above, we find

𝑑𝑣𝑘
ℒ(𝑢𝑘, ., .).ℎ1 = −

∫︁ 𝑇

0

∫︁
Ω

(︀
𝜇∆𝑣𝑘 + (𝜇 + 𝜆)∇𝑑𝑖𝑣(𝑣𝑘)

)︀
.ℎ1 + ℎ1∇𝑢𝑘𝑝𝑘d𝑥d𝑡 = 0 (4.3)

𝑑𝑢𝑘
ℒ(., 𝑣𝑘, .).ℎ2 = 2

∫︁ 𝑇

0

∫︁
Ω

((𝑌 (𝑢𝑘)− 𝑌𝑘(𝑥))𝑌 ′(𝑢𝑘)− 𝛽∆𝑢𝑘)ℎ2 + (𝜕𝑡ℎ2 + 𝑣𝑘∇ℎ2)𝑝𝑘d𝑥d𝑡 = 0, (4.4)

and

𝑑𝑝𝑘
ℒ(., ., 𝑝𝑘).ℎ3 =

∫︁ 𝑇

0

∫︁
Ω

(𝜕𝑡𝑢𝑘 + 𝑣𝑘∇𝑢𝑘)ℎ3d𝑥d𝑡 = 0. (4.5)

We can deduce the following

𝐹 (𝑢𝑘, 𝑣𝑘, 𝑝𝑘) =

⎛⎜⎜⎜⎝
𝜕𝑡𝑢𝑘 + 𝑣𝑘∇𝑢𝑘

𝑢𝑘(0, 𝑥)− 𝑢0(𝑥)
(𝑌 (𝑢𝑘)− 𝑌𝑘(𝑥))𝑌 ′(𝑢𝑘)− 𝛽∆𝑢𝑘 − 𝜕𝑡𝑝𝑘 − 𝑑𝑖𝑣(𝑣𝑘𝑝𝑘)

𝑝𝑘(𝑇, 𝑥)
−𝜇∆𝑣𝑘 − (𝜇 + 𝜆)∇𝑑𝑖𝑣(𝑣𝑘) +∇𝑢𝑘𝑝𝑘

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
0
0
0
0
0

⎞⎟⎟⎟⎠ .

�

5. Algorithm details

We now give the details of each step of the BFGS Algorithm 1 described previously.
We will now explain in detail the implementation of the operators 𝐷, 𝐹𝑘 and 𝐻. We begin by the downsam-

pling operator 𝐷 which transforms the ([𝑟2𝑁2 × 1]) HR image to the ([𝑁2 × 1]) LR sequence, where 𝑟 is the
decimation factor. For example, if 𝑟 = 2, the decimation matrix 𝐷 is given as follows

𝐷 = 𝐷1 ⊗𝐷1, (5.1)
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Algorithm 1 The BFGS algorithm to compute 𝑢𝑘, 𝑣𝑘 and 𝑝𝑘, respectively.
Require: Guess 𝑢0, 𝑣0 and 𝑝0.

1. Set 𝑘 := 0.

2. Evaluate 𝑑𝑘 := 𝜂𝑘 :=

⎛

⎝
−𝑑𝑢𝑘ℒ(𝑢𝑘, ., .)
−𝑑𝑣𝑘ℒ(., 𝑢𝑘, .)
−𝑑𝑝𝑘ℒ(., ., 𝑝𝑘)

⎞

⎠ =

⎛

⎝
𝑑1

𝑘

𝑑2
𝑘

𝑑3
𝑘

⎞

⎠

3. While stopping criteria are violated do

4. Obtain step length 𝑡𝑘 = (𝑡1𝑘, 𝑡2𝑘, 𝑡3𝑘) satisfying <

⎛

⎝
𝑑𝑢𝑘ℒ(𝑢𝑘 + 𝑡1𝑘𝑑1

𝑘, 𝑣𝑘, 𝑝𝑘)
𝑑𝑣𝑘ℒ(𝑢𝑘, 𝑣𝑘 + 𝑡2𝑘𝑑2

𝑘, 𝑝𝑘)
𝑑𝑝𝑘ℒ(𝑢𝑘, 𝑣𝑘, 𝑝𝑘 + 𝑡3𝑘𝑑3

𝑘)

⎞

⎠ , 𝑑𝑘 >= 0

5. Set 𝑢𝑘+1 := 𝑢𝑘 + 𝑡1𝑘𝑑1
𝑘 and 𝑣𝑘+1 := 𝑣𝑘 + 𝑡2𝑘𝑑2

𝑘 and 𝑝𝑘+1 := 𝑝𝑘 + 𝑡3𝑘𝑑3
𝑘.

6. Set 𝜂𝑘+1 :=

⎛

⎝
−𝑑𝑢𝑘ℒ(𝑢𝑘+1, 𝑣𝑘, 𝑝𝑘)
−𝑑𝑣𝑘ℒ(𝑢𝑘, 𝑣𝑘+1, 𝑝𝑘)
𝑑𝑝𝑘ℒ(𝑢𝑘, 𝑣𝑘, 𝑝𝑘+1)

⎞

⎠

7. Determine step length 𝛽𝑘+1 such as: 𝛽𝑘+1 :=
<𝜂𝑘+1,𝜂𝑘+1>

<𝜂𝑘,𝜂𝑘>

8. if < 𝜂𝑘, 𝑑𝑘 >≤ 0 then
9. Set 𝑑𝑘 := 𝜂𝑘

10. end if
11. end while

where ⊗ represents the Kronecker product, and the matrix 𝐷1 represents the 1D low pass filtering given by

𝐷1 =

⎡⎢⎢⎣
1 1 0 0 . . . 0 0
0 0 1 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 1 1

⎤⎥⎥⎦ . (5.2)

To construct the operators 𝐹𝑘, we used the proposed fluid registration implementation (see Algorithm 1. For
that, we used bicubic upsamplings ̂︀𝑌𝑖 of the LR sequence 𝑌𝑖. We then selected the reference image between
the upsamplings images ̂︀𝑌𝑖 that is used for the super-resolution process as ̂︀𝑌𝑘 (1 ≤ 𝑘 ≤ 𝑛). Through the
image ̂︀𝑌𝑘, we compute the optical flow to all other input images (for 𝑖 ̸= 𝑘). We get then 𝑛 flow vector
fields 𝑢𝑖 : Ω −→ R2. Since in the studied super-resolution model (2.1), we formulate the optical flow as a
linear operator 𝐹𝑖 : R𝑟2𝑁2×𝑟2𝑁2 −→ R𝑟2𝑁2×𝑟2𝑁2

. However, taking into account the large size of this operator
([𝑟2𝑁2 × 𝑟2𝑁2]), its storage is difficult and also its computation is not feasible. Therefore, we use directly the
fields 𝑢𝑖 to warp the HR image with respect to the input LR images using bicubic interpolation. Finally, to
compute the blurring operator 𝐻, we use a simple Gaussian kernel. The blur operator is then calculated using
the kernel size 3𝜎, where 𝜎 is the standard deviation. We have now the necessary ingredients to implement the
Algorithm 1. For the fusion step, we use the algorithm in [25, 48] to compute the blurred and noisy HR image
𝐵 = 𝐻𝑋. After that, we carry out the last step of the SR algorithm, which is the restoration step.

6. Restoration step

Since the problem of restoration is ill-posed, we have to be careful in the choice of a suitable approach for
denoising and deconvolution step. The main purpose of this stage is to preserve image features and avoid the
blocky effect while reducing noise and blur. Since first order regularizers have always suffered from the blocky
effect [10], numerous approaches have been proposed to tackle this effect, namely, higher-order regularizations [8,
31,33,34]. Another successful approach in the super resolution framework was also proposed in [22] to preserve
the details of the obtained image. A more robust higher-order total variation model is proposed as an efficient
solution to the blocky effect, called total generalised variation (TGV) [44]. Even if this method avoids the
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staircasing effect, the computational time to reach the solution is very significant. An alternative way is to use a
combined approach of the first and second order regularizer proposed by Papafitsoros et al. [37] which eliminates
noise and blur, avoiding the block artifacts, in less time than the TGV. In the same esprit, we introduce a first-
order operator to preserve edges and a second-order one to remove noise in smooth areas. Let us describe
briefly the algorithm used in the proposed SR approach. In this paper, we use the gradient descent PDE with a
Neumann boundary condition on 𝜕Ω, associated to the variational model proposed in [37]. This PDE with the
initial condition 𝑋(0, 𝑥) = 𝑋0 (where 𝑋0 is the obtained HR image calculated by the interpolation of the LR
image 𝑌1) is given by ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜕𝑡𝑋 = 𝐻ᵀ sign(𝐻𝑋 −𝐵) + 𝛾 div
(︂

𝑔
′
1(|∇𝑋|)
|∇𝑋| ∇𝑋

)︂
+(1− 𝛾) div2

(︂
𝑔
′
2(‖∇

2𝑋‖)
‖∇2𝑋‖ ∇2𝑋

)︂
,

𝜕𝑛𝑋 = 0, on 𝜕Ω,

(6.1)

where the divergence operator div : (R𝑟2𝑁2×1)2 −→ R𝑟2𝑁2×1, defined as

div 𝑋.𝑌 = 𝑋.∇𝑌, ∀𝑋 ∈ (R𝑟2𝑁2×1)2, 𝑌 ∈ R𝑟2𝑁2×1. (6.2)

Also, the two divergence operator div2 : (R𝑟2𝑁2×1)4 −→ R𝑟2𝑁2×1, with the adjointness property, is defined

div2 𝑋.𝑌 = 𝑋.∇2𝑌, ∀𝑋 ∈ (R𝑟2𝑁2×1)4, 𝑌 ∈ R𝑟2𝑁2×1, (6.3)

𝑔1 and 𝑔2 are linear growth increasing functions defined: R −→ R+, and 𝛾 : the controlled regularization param-
eters. The existence and uniqueness of solution to this PDE is demonstrated using the relaxation techniques

[3], based on the monotony of the operators div
(︂

𝑔
′
1(|∇𝑋|)
|∇𝑋| ∇𝑋

)︂
and div2

(︂
𝑔
′
2(‖∇

2𝑋‖)
‖∇2𝑋‖ ∇2𝑋

)︂
. To solve the PDE

above, we use a classical finite difference scheme.
Let 𝑋𝑖,𝑗 the discrete version of the image 𝑋, such as 𝑋𝑖,𝑗 = 𝑋(𝑖, 𝑗), 𝑖 = 1 . . . 𝑀 , 𝑗 = 1 . . . 𝑀 , where 𝑀 = 𝑟𝑁 .

We give briefly the discrete version of the operators ∇ and div given by

(∇𝑋)1𝑖,𝑗 =

{︃
𝑋𝑖+1,𝑗 −𝑋𝑖,𝑗 if 𝑖 < 𝑀

0 if 𝑖 = 𝑀
, (6.4)

(∇𝑋)2𝑖,𝑗 =

{︃
𝑋𝑖,𝑗+1 −𝑋𝑖,𝑗 if 𝑗 < 𝑀

0 if 𝑗 = 𝑀
, (6.5)

and
(div(𝑝1, 𝑝2))𝑖,𝑗 = (div(𝑝1, 𝑝2))1𝑖,𝑗 + (div(𝑝1, 𝑝2))2𝑖,𝑗 , (6.6)

where

(div(𝑝1, 𝑝2))1𝑖,𝑗 =

⎧⎪⎨⎪⎩
𝑝1

𝑖,𝑗 − 𝑝1
𝑖−1,𝑗 if 1 < 𝑖 < 𝑀

𝑝1
𝑖,𝑗 if 𝑖 = 1

0 if 𝑖 = 𝑀

, (6.7)

(div(𝑝1, 𝑝2))2𝑖,𝑗 =

⎧⎪⎨⎪⎩
𝑝2

𝑖,𝑗 − 𝑝2
𝑖,𝑗−1 if 1 < 𝑗 < 𝑀

𝑝2
𝑖,𝑗 if 𝑗 = 1
−𝑝2

𝑖,𝑗−1 if 𝑗 = 𝑀

. (6.8)

Let us define the second order discrete differential operators noted ∇2 as

∇2𝑋 =
(︀
∇𝑥𝑥𝑋 ∇𝑥𝑦𝑋 ∇𝑥𝑦𝑋 ∇𝑦𝑦𝑋

)︀
, (6.9)
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where

∇𝑥𝑥𝑋𝑖,𝑗 =

⎧⎪⎨⎪⎩
𝑋𝑖,𝑀 − 2𝑋𝑖,1 + 𝑋𝑖,2 if 1 ≤ 𝑖 ≤ 𝑀, 𝑗 = 1,

𝑋𝑖,𝑗−1 − 2𝑋𝑖,𝑗 + 𝑋𝑖,𝑗+1 if 1 ≤ 𝑖 ≤ 𝑀, 1 < 𝑗 < 𝑀,

𝑋𝑖,𝑀−1 − 2𝑋𝑖,𝑀 + 𝑋𝑖,1 if 1 ≤ 𝑖 ≤ 𝑀, 𝑗 = 𝑀,

(6.10)

∇𝑦𝑦𝑋𝑖,𝑗 =

⎧⎪⎨⎪⎩
𝑋𝑀,𝑗 − 2𝑋1,𝑗 + 𝑋2,𝑗 if 𝑖 = 1, 1 ≤ 𝑗 ≤ 𝑀,

𝑋𝑖−1,𝑗 − 2𝑋𝑖,𝑗 + 𝑋𝑖+1,𝑗 if 1 < 𝑖 < 𝑀, 1 ≤ 𝑗 ≤ 𝑀,

𝑋𝑀−1,𝑗 − 2𝑋𝑀,𝑗 + 𝑋1,𝑖 if 𝑖 = 𝑀, 1 ≤ 𝑗 ≤ 𝑀,

(6.11)

and

∇𝑥𝑦𝑋𝑖,𝑗 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑋𝑖,𝑗 −𝑋𝑖+1,𝑗 −𝑋𝑖,𝑗+1 + 𝑋𝑖+1,𝑗+1 if 1 ≤ 𝑖 < 𝑀, 1 ≤ 𝑗 < 𝑀,

𝑋𝑖,𝑀 −𝑋𝑖+1,𝑀 −𝑋𝑖,1 + 𝑋𝑖+1,1 if 1 ≤ 𝑖 < 𝑀, 𝑗 = 𝑀,

𝑋𝑀,𝑗 −𝑋1,𝑗 −𝑋𝑀,𝑗+1 + 𝑋1,𝑗+1 if 𝑖 = 𝑀, 1 ≤ 𝑗 < 𝑀,

𝑋𝑀,𝑀 −𝑋1,𝑀 −𝑋𝑀,1 + 𝑋1,1 if 𝑖 = 𝑀, 𝑗 = 𝑀.

(6.12)

In addition, for 𝑋 = (𝑋1, 𝑋2, 𝑋3, 𝑋4) ∈
(︀
R𝑀

)︀4, we define the discrete div2 operator as

(div2 𝑋)𝑖,𝑗 = ∇𝑥𝑥𝑋1𝑖,𝑗 +∇𝑦𝑦𝑋2𝑖,𝑗 +∇𝑥𝑦𝑋3𝑖,𝑗 +∇𝑥𝑦𝑋4𝑖,𝑗 , (6.13)

where
∇𝑥𝑥 = ∇𝑥𝑥, ∇𝑦𝑦 = ∇𝑦𝑦, (6.14)

and

∇𝑥𝑦𝑋𝑖,𝑗 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑋1,1 −𝑋1,𝑀2 −𝑋𝑀1,1 + 𝑋𝑀1,𝑀2 if 𝑖 = 1, 𝑗 = 1,

𝑋1,𝑗 −𝑋1,𝑗−1 −𝑋𝑀1,𝑗 + 𝑋𝑀1,𝑗−1 if 𝑖 = 1, 1 < 𝑗 ≤ 𝑀,

𝑋𝑖,1 −𝑋𝑖−1,𝑀2 −𝑋𝑖−1,1 + 𝑋𝑖−1,𝑀2 if 1 < 𝑖 ≤ 𝑀, 𝑗 = 1,

𝑋𝑖,𝑗 −𝑋𝑖,𝑗−1 −𝑋𝑖−1,𝑗 + 𝑋𝑖−1,𝑗−1 if 1 < 𝑖 ≤ 𝑀, 1 < 𝑗 ≤ 𝑀.

(6.15)

To give a comprehensive form of this problem, we set the particular case where 𝑔1(𝑥) = 𝑔2(𝑥) = 𝑥. As a result,
the algorithm related to solve numerically the proposed PDE is finally given in Algorithm 1.

Algorithm 2 The proposed algorithm.
Inputs: The blurred image 𝐵; the steepest descent parameter d𝑡. the regularization parameter 𝛾.
To avoid the derivative singularity when 𝑋 is locally constant (in the special case where the denominator is equal to
zero), we introduce a small parameter 𝜖 > 0;
The procedure:

̂︀𝑋𝑛+1
𝑖,𝑗 = ̂︀𝑋𝑛

𝑖,𝑗 +𝑑𝑡(𝐻
ᵀ
𝑖,𝑗sing((𝐻 ̂︀𝑋)𝑛

𝑖,𝑗−𝐵𝑖,𝑗))+𝑑𝑡𝛾 div1
𝑖,𝑗

⎛

⎝
(∇ ̂︀𝑋)1𝑖,𝑗√︀

((∇ ̂︀𝑋)1𝑖,𝑗)2+((∇ ̂︀𝑋)2𝑖,𝑗)2+𝜖

⎞

⎠

+𝑑𝑡𝛾 div2
𝑖,𝑗

⎛

⎝
(∇ ̂︀𝑋)2𝑖,𝑗√︀

((∇ ̂︀𝑋)1𝑖,𝑗)2+((∇ ̂︀𝑋)2𝑖,𝑗)2+𝜖

⎞

⎠

+𝑑𝑡 (1−𝛾)∇𝑥𝑥

⎛

⎝
∇𝑥𝑥

̂︀𝑋𝑛
𝑖,𝑗√︀

1+(∇𝑥𝑥
̂︀𝑋𝑛

𝑖,𝑗)2+(∇𝑦𝑦
̂︀𝑋𝑛

𝑖,𝑗)2+2(∇𝑥𝑦
̂︀𝑋𝑛

𝑖,𝑗)2

⎞

⎠

+𝑑𝑡 (1−𝛾)∇𝑦𝑦

⎛

⎝
∇𝑦𝑦

̂︀𝑋𝑛
𝑖,𝑗√︀

1+(∇𝑥𝑥
̂︀𝑋𝑛

𝑖,𝑗)2+(∇𝑦𝑦
̂︀𝑋𝑛

𝑖,𝑗)2+2(∇𝑥𝑦
̂︀𝑋𝑛

𝑖,𝑗)2

⎞

⎠

+2 𝑑𝑡 (1−𝛾)∇𝑥𝑦

⎛

⎝
∇𝑥𝑦

̂︀𝑋𝑛
𝑖,𝑗√︀

1+(∇𝑥𝑥
̂︀𝑋𝑛

𝑖,𝑗)2+(∇𝑦𝑦
̂︀𝑋𝑛

𝑖,𝑗)2+2(∇𝑥𝑦
̂︀𝑋𝑛

𝑖,𝑗)2

⎞

⎠ 𝑖,𝑗=1,...,𝑀

Output: The restored HR image ̂︀𝑋



AN IMPROVED PDE-CONSTRAINED OPTIMIZATION FLUID REGISTRATION 3057

Figure 1. Comparisons of different SR methods with different registration procedure of the
(MRI brain 1 image when the magnification factor is 𝑟 = 3 using random motion vectors)
to perform the registration step. Note that the noise is considered with a standard deviation
𝜎 = 35. (a) First LR image. (b) 16th LR image. (c) 18th LR image. (d) 32th LR image. (e)
POF [16]. (f) SRCF [51]. (g) SRHE [29]. (h) SRDR [25]. (i) Our method.

7. Experiments

In this part, our aim is to test the ability of the elaborated algorithm in the SR context. Many simulated and
also real results were used to test the performance of the proposed SR method. The first part is dedicated to the
evaluation of the registration part while the second and third parts concern the main proposed SR approach.

7.1. The effectiveness of the registration part

In the first experience, we construct 32 synthetic LR images from the original image of MRI Brain 1 such
that: each frame is deformed by random vector fields, blurred by a Gaussian low-pass filter with size 4 × 4
and a standard deviation of 2. Then the blurred frames are down-sampled in the two directions by a factor of
𝑟 = 3 and a Gaussian noise was added with a standard deviation 𝜎 = 20. In this test, we fix the deconvolution
and denoising part where we use the proposed combined first and second order regularizer. Then, we compare
our registration algorithm with other competitive registration methods in the SR context, such as: SR with
probabilistic optical flow (POF) [16], SR with hyper-elastic (SRHE) [29], SR with consistent flow (SRCF) [51]
and also SR with diffusion registration (SRDR) proposed in [25]. The obtained SR results are shown in Figure 1
to see the efficiency of the proposed registration part. We can deduce that the proposed registration method
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Figure 2. Comparisons of different SR methods with different registration procedure of the
(MRI brain 2 image when the magnification factor is 𝑟 = 3 using random motion vectors)
to perform the registration step. Note that the noise is considered with a standard deviation
𝜎 = 35. (a) First LR image. (b) 16th LR image. (c) 18th LR image. (d) 32th LR image. (e)
POF [16]. (f) SRCF [51]. (g) SRHE [29]. (h) SRDR [25]. (i) Our method.

gives a slightly better result compared to the other methods. For the second experiment, we consider the MRI
Brain 1 following the same previous steps with more complicated random deformations between the LR images.
We increase also the decimation factor 𝑟 = 4 and also the standard deviation 𝜎 = 35. The obtained HR
image is depicted in Figure 2, where comparison to other SR methods is done. Clearly the obtained HR image
outperforms the other ones and the registration process is better enhanced.

In the following tests, the first six experiments were simulated ones with known HR images, while the next
three experiments were real data experiments. In all simulated experiments, we measure the effectiveness of our
method by considering some comparisons with popular SR methods, such as bicubic interpolation, 𝐵𝑇𝑉 [15],
𝑆𝑊𝑇𝑉 SR method [49] and also the combined first order and 𝐵𝑇𝑉 (𝑇𝑉 + 𝐵𝑇𝑉 ) regularisation [24] using the
same data. In the following experiments, the motion model is assumed to be the global translational model for the
other methods while we use the fluid registration for our approach. In this paper, in the simulated experiments,
the peak-signal-to-noise ratio (PSNR) [21] and also the structural similarity (SSIM) [45] are computed to check
the quality of the recovered HR image.
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Figure 3. The original six images used in simulated tests. (a) Boat. (b) Gear. (c) Festival. (d)
Mosq. (e) Lena. (f) Car.

7.2. Simulated Experiments

In the simulated experiments, we choose six examples in Figure 3, with different size and texture, taken from
a tested benchmark images to illustrate the performance of the proposed SR method. To construct the simulated
images, we follow the degradation model (2.1). The HR image was first shifted with sub-pixel displacements to
produce 𝑁 images, then, the sequence was convoluted with a PSF and finally, zero-mean Gaussian noise was
added to each frame of the sequence. For example, in the first experiment, we take the image of Boat 3a as an
original image of size 512×512, we construct then 𝑁 = 50 input low-resolution frames by shifting the Figure 3a
in vertical and horizontal directions, sub-sampling with a decimation factor 𝑟 = 4 and blurred using a Gaussian
density with kernel size 3×2. Finally, we add a white Gaussian noise 𝑒𝑘 in each frame with a standard deviation
𝜎 = 10. We use the same thing for the Gear image, while we increase the blur kernel rate and 𝜎 noise for the
other tests. Indeed, we use a 5 × 5 Gaussian blur kernel and a white Gaussian noise with 𝜎 = 30 to construct
the sequence for the last four images. To increase the ability of the proposed equation to better detect edges,
we choose the so-called hypersurface minimal function [3] defined for both the functions 𝑔1 and 𝑔2 by

𝑔1(𝑥) = 𝑔2(𝑥) =
√︀

1 + 𝑥2. (7.1)

The input HR image 𝑋0 is built by a bicubic interpolation of the LR reference image 𝑌1. Concerning the
choice of the parameters, the scalar weight 𝛾 is chosen according to the better PSNR value for the proposed
and also for the other SR methods. For instance, we choose 𝛾 = 0.6 for the Boat image. Concerning the
convergence of the proposed algorithm, we end the execution at the first iteration 𝑛 with respect to the error
‖ ̂︀𝑋𝑛+1 − ̂︀𝑋𝑛‖1

‖ ̂︀𝑋𝑛‖1
< 10−5. We set also 𝜖 = 10−3.
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Figure 4. Super resolution of the Boat compared with different methods. (a) One LR image.
(b) Bicubic zoom. (c) 𝐵𝑇𝑉 reg. [15]. (d) 𝑆𝑊𝑇𝑉 method [49]. (e) 𝑇𝑉 +𝐵𝑇𝑉 reg. [24]. (f) The
proposed SR.

Figure 5. Super resolution of the Gear compared with different methods. (a) One LR image.
(b) Bicubic zoom. (c) 𝐵𝑇𝑉 reg. [15]. (d) 𝑆𝑊𝑇𝑉 method [49]. (e) 𝑇𝑉 +𝐵𝑇𝑉 reg. [24]. (f) The
proposed SR.
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Figure 6. Super resolution of Festival compared with different methods. (a) One LR image.
(b) Bicubic zoom. (c) 𝐵𝑇𝑉 reg. [15]. (d) 𝑆𝑊𝑇𝑉 method [49]. (e) 𝑇𝑉 +𝐵𝑇𝑉 reg. [24]. (f) The
proposed SR.
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Figure 7. Super resolution of Mosq compared with different methods. (a) One LR image. (b)
Bicubic zoom. (c) 𝐵𝑇𝑉 reg. [15]. (d) 𝑆𝑊𝑇𝑉 method [49]. (e) 𝑇𝑉 + 𝐵𝑇𝑉 reg. [24]. (f) The
proposed SR.
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Figure 8. Super resolution of Lena compared with different methods. (a) One LR image. (b)
Bicubic zoom. (c) 𝐵𝑇𝑉 reg. [15]. (d) 𝑆𝑊𝑇𝑉 method [49]. (e) 𝑇𝑉 + 𝐵𝑇𝑉 reg. [24]. (f) The
proposed SR.

The obtained results using the proposed SR are illustrated and compared with other approaches in the
Figures 4–9 for the tested image in Figure 3 respectively. Visually, we can see that the proposed model gives
better restoration than the others. The difference becomes more obvious when the 𝜎 noise and blur increase
which is the case in the Figures 6–9. The effectiveness of the proposed approach model can also be shown in
the color images in Figures 8 and 9, where the obtained HR image is more clean with fewer registration errors.
However, to approve the success of the proposed algorithm against noise and misregistration errors reducing, we
use the PSNR criterion in the Table 1 and the SSIM measure in the Table 2 for three 𝜎 noise values. Knowing
that the best score is in bold number, we can clearly show the efficiency of our algorithm. Also, visually, we
can detect the performance of the proposed method in removing misregistration errors compared with the other
methods in the smooth area, however, in the edge area there is no distinct improvement compared to 𝑇𝑉 +𝐵𝑇𝑉
and 𝑆𝑊𝑇𝑉 methods.

7.3. Real Experiments

In the real experiments, three real data sequences are used to approve the proposed algorithm, are presented.
We select the first ten frames in the three real data sets. The registration approach presented in [44] is used
as the registration estimation method for the other methods while we use the proposed fluid registration to
estimate the motion for our method. The reconstruction results of these sequences are, respectively, shown in
Figures 10–12. From these figures, it is shown that the proposed approach gives a better visual effect compared
to the other method.



3064 A. LAGHRIB ET AL.

Figure 9. Super resolution of Car compared with different methods. (a) One LR image. (b)
Bicubic zoom. (c) 𝐵𝑇𝑉 reg. [15]. (d) 𝑆𝑊𝑇𝑉 method [49]. (e) 𝑇𝑉 + 𝐵𝑇𝑉 reg. [24]. (f) The
proposed SR.

Figure 10. Results on the EIA sequence. (a) First LR frame. (b) 𝑇𝑉 + 𝐵𝑇𝑉 reg. [24]. (c)
𝑆𝑊𝑇𝑉 method [49]. (d) Our method.
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Table 1. The PSNR table.

Image Method 𝜎 = 10 𝜎 = 20 𝜎 = 30

Bicubic interpolation 21.46 20.02 19.88
𝐵𝑇𝑉 [15] 28.93 27.89 27.03

Boat 𝑆𝑊𝑇𝑉 [49] 29.53 28.78 28.01
𝑇𝑉 + 𝐵𝑇𝑉 [24] 29.58 28.76 27.84

The Proposed approach 30.41 29.92 29.13

Bicubic interpolation 18.49 17.66 19.98
𝐵𝑇𝑉 [15] 31.98 31.22 30.87

Gear 𝑆𝑊𝑇𝑉 [49] 33.50 33.18 32.81
𝑇𝑉 + 𝐵𝑇𝑉 [24] 34.08 33.59 32.41

The Proposed approach 35.41 35.02 34.55

Bicubic interpolation 19.01 18.22 17.36
𝐵𝑇𝑉 [15] 31.22 30.89 30.14

Festival 𝑆𝑊𝑇𝑉 [49] 32.02 31.12 30.77
𝑇𝑉 + 𝐵𝑇𝑉 [24] 32.08 31.72 31.06

The Proposed approach 33.15 32.87 32.24

Bicubic interpolation 19.96 19.06 18.71
𝐵𝑇𝑉 [15] 30.22 29.72 29.08

Mosq 𝑆𝑊𝑇𝑉 [49] 31.53 31.01 30.74
𝑇𝑉 + 𝐵𝑇𝑉 [24] 31.18 30.69 30.02

The Proposed approach 32.88 32.42 32.01

Bicubic interpolation 21.06 20.68 20.03
𝐵𝑇𝑉 [15] 31.22 30.95 30.18

Lena 𝑆𝑊𝑇𝑉 [49] 32.44 32.02 31.75
𝑇𝑉 + 𝐵𝑇𝑉 [24] 32.34 32.04 31.71

The Proposed approach 33.01 32.88 32.62

Bicubic interpolation 19.22 18.85 18.12
𝐵𝑇𝑉 [15] 29.66 29.15 28.76

Car 𝑆𝑊𝑇𝑉 [49] 30.99 30.75 30.36
𝑇𝑉 + 𝐵𝑇𝑉 [24] 31.03 30.76 30.22

The Proposed approach 32.14 31.89 31.46

Figure 11. Results on the Text sequence. (a) First LR frame. (b) 𝑇𝑉 + 𝐵𝑇𝑉 reg. [24]. (c)
𝑆𝑊𝑇𝑉 method [49]. (d) Our method.
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Table 2. The SSIM table.

Image Method 𝜎 = 10 𝜎 = 20 𝜎 = 30

Bicubic interpolation 0.591 0.538 0.499
𝐵𝑇𝑉 [15] 0.822 0.795 0.748

Boat 𝑆𝑊𝑇𝑉 [49] 0.866 0.835 0.806
𝑇𝑉 + 𝐵𝑇𝑉 [24] 0.861 0.830 0.809

The Proposed approach 0.921 0.895 0.863

Bicubic interpolation 0.602 0.581 0.521
𝐵𝑇𝑉 [15] 0.851 0.801 0.788

Gear 𝑆𝑊𝑇𝑉 [49] 0.903 0.879 0.838
𝑇𝑉 + 𝐵𝑇𝑉 [24] 0.917 0.889 0.840

The Proposed approach 0.959 0.919 0.894

Bicubic interpolation 0.685 0.638 0.601
𝐵𝑇𝑉 [15] 0.877 0.839 0.808

Festival 𝑆𝑊𝑇𝑉 [49] 0.927 0.899 0.875
𝑇𝑉 + 𝐵𝑇𝑉 [24] 0.923 0.897 0.870

The Proposed approach 0.968 0.931 0.908

Bicubic interpolation 0.607 0.591 0.542
𝐵𝑇𝑉 [15] 0.811 0.782 0.755

Mosq 𝑆𝑊𝑇𝑉 [49] 0.863 0.840 0.817
𝑇𝑉 + 𝐵𝑇𝑉 [24] 0.853 0.835 0.816

The Proposed approach 0.888 0.859 0.835

Bicubic interpolation 0.679 0.626 0.598
𝐵𝑇𝑉 [15] 0.869 0.841 0.813

Lena 𝑆𝑊𝑇𝑉 [49] 0.893 0.871 0.844
𝑇𝑉 + 𝐵𝑇𝑉 [24] 0.896 0.877 0.842

The Proposed approach 0.918 0.898 0.871

Bicubic interpolation 0.603 0.582 0.553
𝐵𝑇𝑉 [15] 0.802 0.786 0.742

Car 𝑆𝑊𝑇𝑉 [49] 0.851 0.818 0.803
𝑇𝑉 + 𝐵𝑇𝑉 [24] 0.856 0.811 0.799

The Proposed approach 0.911 0.885 0.829

Figure 12. Results on the Emily sequence. (a) First LR frame. (b) 𝑇𝑉 + 𝐵𝑇𝑉 reg. [24]. (c)
𝑆𝑊𝑇𝑉 method [49]. (d) Our method.
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8. Conclusion

In this paper, a novel approach of the super resolution image reconstruction problem is introduced. We pre-
sented a bilevel fluid image registration and proved the existence and uniqueness of the solution using functional
analysis theory. In addition, to avoid the undesirable staircasing effect during the registration, denoising and
deconvolution steps, a fourth-order PDE is proposed. To show the robustness of this approach, a set of bench-
mark image have been performed, and the investigated SR approach has proven its success visually and also
quantitatively using two known metrics. A remaining question is about the treatment of other types of noise
and blur, such as Salt& paper and Poisson noise. Another interesting point is about the degrees of the efficiency
of the proposed approach with respect to the nature of the transformations between the LR frames.
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