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AN TMPROVED PDE-CONSTRAINED OPTIMIZATION FLUID REGISTRATION
FOR IMAGE MULTI-FRAME SUPER RESOLUTION

AMINE LAGHRIB!, A1ssaM HADRI>*, MoAD HAKIM? AND HSSAINE OuMMI!

Abstract. The main idea of multi-frame super resolution (SR) algorithms is to recover a single
high-resolution image from a sequence of low resolution ones of the same object. The success of the
SR approaches is often related to a well registration and restoration steps. Therefore, we propose
a new approach based on a partial differential equation (PDE)-constrained optimization fluid image
registration and we use a fourth order PDE to treat both the registration and restoration steps that
guarantee the success of SR algorithms. Since the registration step is usually a variational ill-posed
model, a mathematical study is needed to check the existence of the solution to the regularized problem.
Thus, we prove the existence and of the well posed fluid image registration and assure also the existence
of the used second order PDE in the restoration step. The results show that the proposed method is
competitive with the existing methods.
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1. INTRODUCTION

Image super resolution represents an active research area in the imagery domain. The main principle of this
method is to recover a high-resolution (HR) image through a single image (Single-image SR) [23,43,47], or using
a serie of low-resolution (LR) ones that are down-sampled, ill-registered, blurred and usually noised (multi-frame
SR) [13,27,50]. SR intervenes in numerous domains, such as video surveillance and medical diagnostics [18].

The multi-frame and single SR, are both intensively studied in order to improve the resolution of an image.
In single SR technique, the missing information in the LR image is estimated from a large number of training.
Then its success depends on the availability of a convenient dictionary which is not ensured in large application
areas. While for the multi-frame SR the success is related to the approximation accuracy of the motion between
the LR images. Since multiframe SR is more complicated in the presence of different degradation operators,
Sina Farsiu et al [15] proposed the fast robust super resolution (RSR). The aim of this new technique is to break
down the SR method into two steps: looking for a degraded HR image from the estimated LR frames after a
registration procedure; then in a second step, restoring it [15].
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On another side, nonlinear PDEs have also been treated in the super-resolution context with pleasant results.
One of the consistent nonlinear PDEs was proposed by Maiseli et al. [35], which takes the advantages of Perona-
Malik equation and the TV norm. This adaptive diffusion-based PDE can efficiently preserve image features
but it suffers from the blurring effect. A more robust PDE was proposed by El Mourabit et al. [13,14] which
takes into consideration the coherence-enhancing property and avoids blur much better. However, when the blur
and noise levels are too high, the obtained HR image still contains some artefacts, in particular the blur. More
recently a fourth-order nonlinear PDE has been introduced with much more constrained diffusion that stops
the edges destruction and preserve the smooth areas and texture [30]. In contrast, the blur apparition problem
is still a remaining weakness of this PDE.

The first step of multiframe SR aim is to guess the motion between the LR frames to register all LR images
in a common way [51]. This stage is the key of the success of multiframe SR algorithms and without a good
estimation of the motion between the LR images, the super-resolution becomes very limited [7]. To overcome
the difficulties of the registration step, many works have been proposed. These methods include the projection
on a convex set (POCS) [46], the iterative back projection (IBP) [40], optical-flow [6]. However, these methods
suffer from the non-uniqueness of solutions, and the fact that they consider only translational and rotational
motion between the LR frames. More robust approaches are then proposed [41,50] to tackle the misregistration
errors. One of the most successful methods was the nonlocal-means proposed by Protter et al. [39] which
is applied to nonglobal motion. Otherwise, to treat nonparametric deformations between the LR images, an
elastic registration was proposed in [26], but it is specified to small deformations and does not tackle larger
ones. Other techniques use the maximum a posteriori (MAP) [2,17,38] with accurate spatial domain observation
model to reconstruct the HR image. More recently, other methods were proposed [5] but still suffering from the
misregistration errors.

In this paper, we follow the steps of the RSR method, while the registration approach and the second step
are improved. Indeed, we propose a fluid image registration in a well-posed functional framework to handle the
registration part of SR. In addition, to justify this choice, we show the existence and the uniqueness of the
solution using classical mathematical approaches [9]. However, since the problems of deblurring and denoising
are in most cases ill-posed, in the second step of SR, we have to obtain a related well-posed model based on
regularization. Among the most-used regularization techniques, we have the Tikhonov-type functions [20,47]
and also Total Variation (TV) priors [19,28,35]. Meanwhile, second and fourth order PDE’s have been proposed
to avoid the staircasing effect, during the denoising process [8,11]. Recently, a Combined first and second-order
approach has had a great success in denoising and deconvolution problems [37]. Thus, inspired by this work, we
use the resulting fourth-order-Euler-Lagrange equation to remove noise and blur, this increases the robustness
of the second step of the proposed SR algorithm.

This paper follows this configuration: Section 2 introduces the super resolution formulation. We introduce
then the fluid registration and how to define the warp operators in Section 3. In Section 4, we describe briefly
the proposed PDE and the main algorithm used in the deconvolution and denoising step. Finally, simulated and
real results with comparisons of the proposed SR method to some available methods are presented in Section 5.

2. PROBLEM FORMULATION

In the presence of many degradation factors, the acquired images are always in a non desired resolution. In
fact, the obtained images are decimated, noised and also blurred. We consider that the LR images are taken in
the same conditions with one sensor. The link between the HR image X (described by a vector of size [r2 N2 x 1]
where 7 is the enhancement factor) and the associated low resolution frames Y}, (represented by a vector of size
[N? x 1]), is given by

Y. =DF.HX + ¢y, Vk=1,2,...,n, (21)

where
H: the convolution operator describing the blur of size [r2N? x r2N?2].
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D: the decimation operator which is related to the desired resolution of the HR image of size [N? x r2N2].
Fy: are the motions or the warp matrix of size [r2N? x r2N?], representing random transformation between the
LR frames.
er, : is the additive Gaussian noise vector of size [N? x 1].

The aim of multi-frame super resolution is the recovery of an ideal HR image X. Due to the complexity of
the problem we split it in two procedure [15]:

1. Approximating the transformation matrix Fj between each couple of LR images and merge the HR image
B with noise and blur.
2. Computing the HR image X through the blurring and noisy one B.

We start by the approximation of the warp matrix Fj and also by ensuring the existence of the solution in a
suitable functional space [1,9,12,27].

3. THE CONSTRUCTION OF THE WARP MATRIX F},

To construct the operators Fj, we use a fluid registration algorithm. This approach is based on the resolution
of a variational minimization problem using fluid regularization term and an L? based data term to model the
optical flow constraint. For that, we used bicubic upsampled Yi of the LR sequence Y;. We then selected the
reference image between the upsampled images Y that is used for the super-resolution process as Yk (1 <k<n).
Through the image Yk, we compute the optical flow to all other input images (for ¢ # k). We then get n flow
vector fields u; : Q@ — R2. To simplify the notations we set Y (z) the pixel value corresponding to the kth
frame such as the coordinate z = (z1,23) € Q C R? (Q is the domain containing all the pixels). The image fluid
registration problem is formulated as

Y(x) = Yi(ve(x)) fork=2,...,n and VzeQ. (3.1)
Our goal is to find the velocity deformation vy that links each image to the reference one, where
v = Osug + Vug. vk, (3.2)

0y is the partial time derivative operator and uy are the deformations between each frame. Unfortunately, this
problem is ill-posed. We have therefore to choose an appropriate regularization operator S. Since we know the
success of the fluid registration to handle different problems in image registration [36], we propose to use it in
a well-posed functional framework. The image fluid registration problem is defined as

min T (uk, vi), (3.3)
upeT and vy € Uyg

where J (uk, vi) = D(Y, Vi, ug) + B(S1(ug) + S2(vk)), such that uy is a solution of

Opu, + Vug.v, =0, in Q x (0,7),
ug(z,t) =0, on 00 x (0,T), (3.4)
ug(z,0) = ug, in Qx(0,7),

where 7 represents the set of admissible transformations, while U, 4 is the set of admissible velocity deformations,

and (3 is the regularisation parameter.
D : is the squared difference measure defined by Lebesgue L? norm as

T
DY, Yi, up) = /0 /Q (Vi (un(@, ) — ¥ (2, 1))° dadt, (3.5)
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the registration regularisation is given as follow

T
Sl(uk):/ /|Vuk|2dxdt, (3.6)
0 Q

and the fluid regularisation is defined as
A
So(vg) = / p (traceV)? + 5 trace(V?)dz, (3.7)
Q

where V' is the Cauchy strain tensor (for ||Vug|| < 1) defined as V(vg) = (Vi + Vu,)/2, and g and A are the
Lamé parameters. To ensure the existence of a unique solution to the problem (3.4), we have to choose firstly
a functional framework. A natural choice of the functional space for every fixed vy € Uy,q is

Uga = {v € (L*((0,T) x ©))? such that:
vl (zoe 0,752 ()2 + [Vl 2200, 7:1 ()2 + 100l (L2(((0,7)x )2 < C
and div(v) =0 .a.e in 00} . (3.8)
For this reason, the existence of a unique solution is guaranteed in

T = L>(0,T; L*(%2)), (3.9)

which is presented in details in [32]. In the following, we present the main theorem of the existence of the
solution to the proposed fluid image registration.

Theorem 3.1. Let Q be a reqular bounded open subset of R2. The problem (3.3) admits at least a solution in
L2(0,T; HY(Q)) X Ung-

Proof. Let (ug n, vkn)n be a minimizing sequence of J such that (ug n, Vg n)n € L?(0,T, H}(Q)) X Uya, and

1' J nsy n - i f J 5 5
nb (tiin, Vi) (uk,vk)ELQ((}E’,Hl(Q))xuad (s, vk)
then we have
D(Y, Yi, tkn) + B(S1(urn) + S2(vkn)) < C (3.10)
which means
Huk,nHQL?(o,T;Hé(Q)) <C, (3.11)

we have to prove also that diuy, is bounded. From equation (3.4), we get

T T
\/ / Opug podadt| < |/ / Vi,n Vg n¢dzdt], (3.12)
0o Ja 0o Ja
since vy ,, is bounded in Uyq C (L*°((0,T) x Q))?, then

T
| / / Oyt mddzdt] < [|vpn
0 Q

| (oo (0,750 ()2 | VUuk (22 0,722 2)))2 | 0]l L2 (0,772 () - (3.13)

we obtain
||8tUk7n||L2(O’T;L2(Q)) <C. (3.14)

Now from the estimation (3.11) and estimation (3.14), we can extract a subsequence still denoted (ug y)n, such
that:
Ug., — up in L2(0,T; Hy(Q)), (3.15)

)
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Oyuk,n — Opujy, in L?(0,T; L*(R)). (3.16)

We have also U, is compact in (L?(0,T; L?(2)) by Aubin-Lions lemma [4], then we can extract a subsequence
still denoted (vg,p)n such that

Vkn | T vy in (L2(0,T; L*(Q)))% (3.17)
and
Vg — vy in L2(0,T; HY(Q)), (3.18)

We have to show the continuity of the solution for the direct problem, compared to the minimizing sequences
(Wkn, Vk,n)n- Which means we have to prove that (u},v;) verifies the system (3.4). Let’s prove that

T
/ /atuk’nqbdxdt / /&guk(bdxdt Vo € L*(0,T; L* (), (3.19)
0 Ja n—+0e0

and
/ /vk nVugpddrdt — / /kaukqbdxdt Yo € L*(0,T; L*()). (3.20)

For the convergence (3.19), it is obtained directly from (3.16). To show the convergence (3.20), we denote by

T
I= / /(ukmvukm —0iVu})edzdt, V¢ € L*(0,T;L*(Q)) = I + I,
0 Q

with T
L= / / Vi (Vg — Vup)edadt, Vo € L2(0,T; L* (),
0 Q

and

T
L= / / (ko — 0} Vg nodadt, Vg € L2(0,T5 L*()),
0 Q

Let’s prove that [; — 0 for i = 1,2. For the convergence of I;, we have v} in (L>((0,7) x 9))? and

n—-4oo
¢ € L?(0,T; L*(R)), which means that vi¢ in (L*(0,T; L*(2)))?. By using the convergence (3.15), we obtain
that I; — 0. For Iy, by using Holder inequality we have

n—-+oo

T T
B[] [ (o = o) dadt ¥ Vel razny < CL [ ((nn = vi)oPazan?.
0o Jo 0o Jo
From the convergence (3.17), we have

Vg — U in (L2(0 T, Lz(Q))) ,

n—-+4oo
which implies

Vg — v ae. in Qx (0,7),
7 n—4oo

and using the fact that vy, and v} are bounded in U,q C (L>((0,T) x 2))?, then
(0,0 — v3)¢l? < Clo|* € L1 x (0, 7).

By applying the Lebesgue convergence, we obtain

g : [ = sijorasagt — o
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which means I, — 0.
n—-+o0o

Now we prove that the functional J is lower semi-continuous. For this, we have uy, — uj in L2(Q X
n—-+oo

(0,7)) and Y} is continuous, then fOT Jo 1Ye(ugn) — Y[*dadt Rt fOT Jo [Ye(u) — Y]?dzdt. We have also the

convergence (3.15) and the convergence (3.18), we obtain then
Sh (UZ) + SQ(U;:.) < lim inf(51 (ukm) + Sg(vkm)).

which implies that J(u}, vy) < liminf J(uk, Vk,n). Thus

lim J(ukn,Vkn) = inf  J(ug,vg) = J(ug,vp).
n—00 (uk,vr)EUaa
Which concludes that the problem (3.3) admits at least a solution in L2((0,T), H3 () X Uga- O

To solve the minimisation problem (3.3), we use the BFGS algorithm [42]. For that, we have to obtain some
optimality conditions on the functional L.

4. NECESSARY OPTIMALITY CONDITIONS

In this section, we formally give the optimality conditions of the optimization problem, since we need them
to compute the BFGS Algorithm. Before showing the optimality conditions, we give briefly in the following the
gradient of S5.

Proposition 4.1. Let hy be a perturbation of vy such that vy + hy in Uyq, then we have the following results

T
dSs(v).hy = —/ / (nAvg, + (p+ A\)Vdiv(vy)).hy dadt. (4.1)
0 Ja
Proof. In the proof, we assume that div(vg) = (Vo + 9z, vk).n = 0 in Q. Then the derivative of Sy with
respect of vy in direction h; is given by:

So(vk, + 1h1) — So(vk)
T

dSQ (’Uk ) .hl = hI%

/ / (A + p)div(vg)div(hy) + MZ Vi, Vhy idadt

i=1

2
/ / A+ p)Vdiv(vg).hy + p Z Avy, ;hy jdxdt + / A+ p)div(vg)hon + p Z h1,; Vg, ;.ndzdt,
Q BQ P

/ / (A + p)Vdiv(vg).hy + pAvg.hydadt +/ / Miv(vg)hy.n + Zuhl i(Vug,; + Og,v).ndxdt,
o0

=1

since div(vg) = 0 and (Vug; + O, vk).n = 0 in 0f), we have:

dSa(vg).h / / pAvg, + (p+ A\ Vdiv(vg)).hy dadt.

Now we give the optimality conditions of the problem (3.3) in the following theorem.



AN IMPROVED PDE-CONSTRAINED OPTIMIZATION FLUID REGISTRATION 3053

Proposition 4.2. Let vy be a solution of the problem (3.3) with wy its associated state and py a Lagrange
multiplier, which are satisfying the following conditions:

Oruy + v Vuy
ug(0,x) — ug(z)
(Y(ur) = Yi(2))Y'(ur) — BAug — Oppr — div(vppr) | =
pk(Tv x)
—puAv, — (p+ AN)Vdiv(vg) + Vugpg

DO DO O

Proof. In order to compute the optimality conditions, we must define first the Lagrangian function, which is
given as follows:

T
L(ug, v pr) = D(Y, Yisug) + BS: (ur) + BSa(vx) + / / (Opuup + v Vg ppdladt,
0 Q

where py is a Lagrange multiplier. We know from the theorem 3.1 that the problem (3.3) has at least one
solution, this means that £ admits wuy, vy and py as saddle points, which give us the following iteration:

do L(ug, ., .).h1 =0, dy, L(.,vg,.).he =0 and dp, L(.,.,pr).hs =0, (4.2)

where h; (for i = 1,2,3) are the derivative direction for each argument of L. After developing derivation for
each argument of the Lagrangian function and using the proposition above, we find

T
dy, L(ug, ., .).h1 = 7/ / (nAvg + (p+ A\ Vdiv(vg)).hy 4+ hy Vugprdadt = 0 (4.3)
0 Jo
T

Ay L(.y Vg, ) ha = 2/ / (Y (ug) — Yi(2))Y" (ur) — BAug)ho + (8the + v Vho)prpdadt = 0, (4.4)

0o Ja

and
T
dpkﬁ(.7 .7pk).h3 = / / (aﬂlk + kauk)hgdxdt =0. (45)
0o Ja

We can deduce the following

Ovug, + v Vuy
ug(0,2) — up(x)
F(up,vg,pr) = | (Y(ug) = Yi(2))Y'(ur) — BAuy, — Oypr — div(vepr) | =
pk(Tv l')
—pAv, — (u+ N)Vdiv(vg) + Vugpg

OO O OO

5. ALGORITHM DETAILS

We now give the details of each step of the BFGS Algorithm 1 described previously.

We will now explain in detail the implementation of the operators D, Fy and H. We begin by the downsam-
pling operator D which transforms the ([r2N? x 1]) HR image to the ([N? x 1]) LR sequence, where 7 is the
decimation factor. For example, if r = 2, the decimation matrix D is given as follows

D=D; ® Dy, (5.1)
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Algorithm 1 The BFGS algorithm to compute uy, vr and py, respectively.

Require: Guess ug, vo and po.

1. Set k:=0.
2. Evaluate di == = | —do, L(.,ux,.) | = di
7dpk£(7 7pk) dz

3. While stopping criteria are violated do

~

dukﬁ(uk —+ tidi, ’Uk,pk)
Obtain step length ty = (t,t7,ts) satisfying < | dv, L(ur, v + tads,pr) | ,dx >=0
dpkﬁ(uk, Vk, Pk + t%dz)
5. Set ugy1 = ur + t,lcdi and vgy1 = vk + tidi and pr+1 := pr + tzdz.
_duk[’(uk+17 Ukapk)
6.  Set Mrt1:= | —dv, L(uk, Vit1,Dk)
dpy L(Uk, Vis Prt1)

. <M1t 1>
Determine step length Bg11 such as: By = ~ktlThi1”

7 <
Nk s Mk >
8 if < ng,di ><0 then
9. Set dy, := nk
10 end if
11. end while

where ® represents the Kronecker product, and the matrix D; represents the 1D low pass filtering given by

1100...00
0011...00

Di=1..... .. (5:2)
0000...11

To construct the operators Fy, we used the proposed fluid registration implementation (see Algorithm 1. For
that, we used bicubic upsamplings Yi of the LR sequence Y;. We then selected the reference image between
the upsamphngs images Y that is used for the super-resolution process as Yk (1 < k < n). Through the
image Yk, we compute the optical flow to all other input images (for ¢ # k). We get then n flow vector
fields u; : © — R2. Since in the studied super-resolution model (2.1), we formulate the optical flow as a
linear operator Fj : RN XN RrNxr®N? However, taking into account the large size of this operator
([r?N? x r2N?)), its storage is difficult and also its computation is not feasible. Therefore, we use directly the
fields u; to warp the HR image with respect to the input LR images using bicubic interpolation. Finally, to
compute the blurring operator H, we use a simple Gaussian kernel. The blur operator is then calculated using
the kernel size 30, where o is the standard deviation. We have now the necessary ingredients to implement the
Algorithm 1. For the fusion step, we use the algorithm in [25,48] to compute the blurred and noisy HR image
B = HX. After that, we carry out the last step of the SR algorithm, which is the restoration step.

6. RESTORATION STEP

Since the problem of restoration is ill-posed, we have to be careful in the choice of a suitable approach for
denoising and deconvolution step. The main purpose of this stage is to preserve image features and avoid the
blocky effect while reducing noise and blur. Since first order regularizers have always suffered from the blocky
effect [10], numerous approaches have been proposed to tackle this effect, namely, higher-order regularizations [8,
31,33,34]. Another successful approach in the super resolution framework was also proposed in [22] to preserve
the details of the obtained image. A more robust higher-order total variation model is proposed as an efficient
solution to the blocky effect, called total generalised variation (TGV) [44]. Even if this method avoids the
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staircasing effect, the computational time to reach the solution is very significant. An alternative way is to use a
combined approach of the first and second order regularizer proposed by Papafitsoros et al. [37] which eliminates
noise and blur, avoiding the block artifacts, in less time than the TGV. In the same esprit, we introduce a first-
order operator to preserve edges and a second-order one to remove noise in smooth areas. Let us describe
briefly the algorithm used in the proposed SR approach. In this paper, we use the gradient descent PDE with a
Neumann boundary condition on 92, associated to the variational model proposed in [37]. This PDE with the
initial condition X (0,2) = X, (where Xj is the obtained HR image calculated by the interpolation of the LR
image Y1) is given by

X = HTsign(HX — B) + v div 91|(|VVXX||)VX>

. LI V2X 6.1
+(1—7) div® <92|('V2X|”)V2X , (6.1)
8,X = 0, on 99,
where the divergence operator div : (R”N**1)2 — R™N*x1 defined as
divX.Y = X.VY, VX € (RN x1)2 'y ¢ RFNx1, (6.2)

Also, the two divergence operator div® : (RTQN 2X1)4 — RN 2X1, with the adjointness property, is defined
div? XY = X.V?Y, VX € (R™N)1 y ¢ RN (6.3)

g1 and g are linear growth increasing functions defined: R — R¥, and v : the controlled regularization param-
eters. The existence and uniqueness of solution to this PDE is demonstrated using the relaxation techniques

[3], based on the monotony of the operators div (gl(V';(X)VX) and div? (‘szX). To solve the PDE

above, we use a classical finite difference scheme.
Let X, ; the discrete version of the image X, such as X; ; = X(4,j),i=1...M,j=1... M, where M =rN.
We give briefly the discrete version of the operators V and div given by

(V%5 = {0 o ’ if i=M"’ (6.4)
Xl" ; — Xl" oif 7 < M
(VX)?, = {o J+1 j i G (6.5)
and
(div(p',p?))i; = (div(p', p?)); ; + (div(p', p*))7, (6.6)
where
. p}’j fpzlfl’j %f 1 <i< M
(div(p”, p ))zg = p},j if i=1 ) (6.7)
0 if i=M
L e P%,j _P?,j—l %f 1 <J<M
(div(p',p*))i; = P, if j=1 ' (6.8)
_pzz,j—l if j=M

Let us define the second order discrete differential operators noted V2 as

VX = (VeeX VayX Vo X VX)), (6.9)
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Xinv —2Xi1 + Xi2 if1<i<M, j=1,

vszi)j = Xi,j—l — 2Xi,j + Xi,j—i—l if1<i< M, 1< 7 < M,

Xiv—1—2Xgm+Xin if1<i<M,j=M,

Xp;—2X1,+Xo,;  ifi=1,1<j<M,

VyyXij =1 Xic1,; —2X;; + Xopq; ifl<i<M,1<j5<M,

and

VayXij =

Xnvo1j—2Xyj+ X1, ifi=M,1<j<M,

Xi,j — XiJrl)j — Xi,j+1 + Xi+17j+1 if 1 <1< ]\47 1< j < ]\47

Xiv — Xivpim — Xon + X1 if1<i<M, j=M,
X]\/I,j_Xl,j_XM7lj+l +X17j+1 le:M,1§j<M,
XM,M_XI,M_XM,1+X1,1 ifi=M, j=M.

In addition, for X = (X1, Xo, X3, X4) € (RM)4, we define the discrete div? operator as

(div? X)ij = Vaa X1, , + Vi Xo, , + VayXs, , + Vay Xu

where
and

VayXij =

i,37

X1 —Xom, — X1+ Xory Mo ifi=1,j=1,
X1 =X =Xy g+ X1 Hi=1,1<j< M,
Xit—Xicam, —Xican+Xiom, ifl1<i<M,j=1,

Xi,j — Xi7j_1 — Xi—l,j + Xi_17j_1 ifl<i< M, 1 <j< M.

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

(6.15)

To give a comprehensive form of this problem, we set the particular case where g1 (x) = go2(x) = x. As a result,

the algorithm related to solve numerically the proposed PDE is finally given in Algorithm 1.

Algorithm 2 The proposed algorithm.

Inputs: The blurred image B; the steepest descent parameter dt. the regularization parameter ~.
To avoid the derivative singularity when X is locally constant (in the special case where the denominator is equal to
zero), we introduce a small parameter ¢ > 0;

The procedure:

wn+l__gn
Xig =Xij

+dt(H;‘:]. Sing((HX)} ;=B ;))+dty div] ; (

(V)A()f,j >
VT2V )2 )% +e

— Voo X[
+dt (1-7) Vo — — —
V1 (Vaa X2 H(Vyy X722 42(Vay XT)

o Vyy X2
+dt (1—~) Vyy = 5 1,\] 2 = >
V1 (Vaa X2 H(Vyy X2 42(Vay XI7)

(V)?)zl,j )
VL D2 H(VR)Z )2 +e

+dty div?'j (

—_— Vay X7 .
+2dt (1—7) Vay — — — i,j=1,...,M
VI (Vo X2+ (T X1 )Z+2(Vay XI75)

Output: The restored HR image X
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(2) ()

@

F1GURE 1. Comparisons of different SR methods with different registration procedure of the
(MRI brain 1 image when the magnification factor is » = 3 using random motion vectors)
to perform the registration step. Note that the noise is considered with a standard deviation
o = 35. (a) First LR image. (b) 16th LR image. (c) 18th LR image. (d) 32th LR image. (e)
POF [16]. (f) SRCF [51]. (g) SRHE [29]. (h) SRDR [25]. (i) Our method.

7. EXPERIMENTS

In this part, our aim is to test the ability of the elaborated algorithm in the SR context. Many simulated and
also real results were used to test the performance of the proposed SR method. The first part is dedicated to the
evaluation of the registration part while the second and third parts concern the main proposed SR approach.

7.1. The effectiveness of the registration part

In the first experience, we construct 32 synthetic LR images from the original image of MRI Brain 1 such
that: each frame is deformed by random vector fields, blurred by a Gaussian low-pass filter with size 4 x 4
and a standard deviation of 2. Then the blurred frames are down-sampled in the two directions by a factor of
r = 3 and a Gaussian noise was added with a standard deviation ¢ = 20. In this test, we fix the deconvolution
and denoising part where we use the proposed combined first and second order regularizer. Then, we compare
our registration algorithm with other competitive registration methods in the SR context, such as: SR with
probabilistic optical flow (POF) [16], SR with hyper-elastic (SRHE) [29], SR with consistent flow (SRCF) [51]
and also SR with diffusion registration (SRDR) proposed in [25]. The obtained SR results are shown in Figure 1
to see the efficiency of the proposed registration part. We can deduce that the proposed registration method
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(h)

FIGURE 2. Comparisons of different SR methods with different registration procedure of the
(MRI brain 2 image when the magnification factor is 7 = 3 using random motion vectors)
to perform the registration step. Note that the noise is considered with a standard deviation
o = 35. (a) First LR image. (b) 16th LR image. (c) 18th LR image. (d) 32th LR image. (e)
POF [16]. (f) SRCF [51]. (g) SRHE [29]. (h) SRDR [25]. (i) Our method.

gives a slightly better result compared to the other methods. For the second experiment, we consider the MRI
Brain 1 following the same previous steps with more complicated random deformations between the LR images.
We increase also the decimation factor r = 4 and also the standard deviation ¢ = 35. The obtained HR
image is depicted in Figure 2, where comparison to other SR methods is done. Clearly the obtained HR image
outperforms the other ones and the registration process is better enhanced.

In the following tests, the first six experiments were simulated ones with known HR images, while the next
three experiments were real data experiments. In all simulated experiments, we measure the effectiveness of our
method by considering some comparisons with popular SR methods, such as bicubic interpolation, BTV [15],
SWTV SR method [49] and also the combined first order and BTV (T'V + BTV regularisation [24] using the
same data. In the following experiments, the motion model is assumed to be the global translational model for the
other methods while we use the fluid registration for our approach. In this paper, in the simulated experiments,
the peak-signal-to-noise ratio (PSNR) [21] and also the structural similarity (SSIM) [45] are computed to check
the quality of the recovered HR image.
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FIGURE 3. The original six images used in simulated tests. (a) Boat. (b) Gear. (c) Festival. (d)
Mosq. (e) Lena. (f) Car.

7.2. Simulated Experiments

In the simulated experiments, we choose six examples in Figure 3, with different size and texture, taken from
a tested benchmark images to illustrate the performance of the proposed SR method. To construct the simulated
images, we follow the degradation model (2.1). The HR image was first shifted with sub-pixel displacements to
produce N images, then, the sequence was convoluted with a PSF and finally, zero-mean Gaussian noise was
added to each frame of the sequence. For example, in the first experiment, we take the image of Boat 3a as an
original image of size 512 x 512, we construct then N = 50 input low-resolution frames by shifting the Figure 3a
in vertical and horizontal directions, sub-sampling with a decimation factor » = 4 and blurred using a Gaussian
density with kernel size 3 x 2. Finally, we add a white Gaussian noise ej, in each frame with a standard deviation
o = 10. We use the same thing for the Gear image, while we increase the blur kernel rate and ¢ noise for the
other tests. Indeed, we use a 5 x 5 Gaussian blur kernel and a white Gaussian noise with ¢ = 30 to construct
the sequence for the last four images. To increase the ability of the proposed equation to better detect edges,
we choose the so-called hypersurface minimal function [3] defined for both the functions g; and go by

g1(z) = g2(z) = V1+a2 (7.1)

The input HR image X° is built by a bicubic interpolation of the LR reference image Y;. Concerning the
choice of the parameters, the scalar weight 7 is chosen according to the better PSNR value for the proposed
and also for the other SR methods. For instance, we choose v = 0.6 for the Boat image. Concerning the
convergence of the proposed algorithm, we end the execution at the first iteration n with respect to the error
JXmH = Xy

= < 1075. We set also e = 1073.
X"
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FIGURE 4. Super resolution of the Boat compared with different methods. (a) One LR image.
(b) Bicubic zoom. (¢) BTV reg. [15]. (d) SWTV method [49]. (e) TV + BTV reg. [24]. (f) The
proposed SR.

yyy '’ vn"('
B [ AN

(d) (e) ()"

FIGURE 5. Super resolution of the Gear compared with different methods. (a) One LR image.
(b) Bicubic zoom. (¢) BTV reg. [15]. (d) SWTV method [49]. (e) TV + BTV reg. [24]. (f) The
proposed SR.
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FIGURE 6. Super resolution of Festival compared with different methods. (a) One LR image.
(b) Bicubic zoom. (c) BTV reg. [15]. (d) SWTV method [49]. (e) TV + BTV reg. [24]. (f) The
proposed SR.
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(b)

(d)

FIGURE 7. Super resolution of Mosq compared with different methods. (a) One LR image. (b)
Bicubic zoom. (¢) BTV reg. [15]. (d) SWTV method [49]. (e) TV + BTV reg. [24]. (f) The
proposed SR.
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FIGURE 8. Super resolution of Lena compared with different methods. (a) One LR image. (b)
Bicubic zoom. (¢) BTV reg. [15]. (d) SWTV method [49]. (e) TV + BTV reg. [24]. (f) The
proposed SR.

The obtained results using the proposed SR are illustrated and compared with other approaches in the
Figures 4-9 for the tested image in Figure 3 respectively. Visually, we can see that the proposed model gives
better restoration than the others. The difference becomes more obvious when the ¢ noise and blur increase
which is the case in the Figures 6-9. The effectiveness of the proposed approach model can also be shown in
the color images in Figures 8 and 9, where the obtained HR image is more clean with fewer registration errors.
However, to approve the success of the proposed algorithm against noise and misregistration errors reducing, we
use the PSNR criterion in the Table 1 and the SSIM measure in the Table 2 for three o noise values. Knowing
that the best score is in bold number, we can clearly show the efficiency of our algorithm. Also, visually, we
can detect the performance of the proposed method in removing misregistration errors compared with the other

methods in the smooth area, however, in the edge area there is no distinct improvement compared to TV + BTV
and SWTV methods.

7.3. Real Experiments

In the real experiments, three real data sequences are used to approve the proposed algorithm, are presented.
We select the first ten frames in the three real data sets. The registration approach presented in [44] is used
as the registration estimation method for the other methods while we use the proposed fluid registration to
estimate the motion for our method. The reconstruction results of these sequences are, respectively, shown in

Figures 10-12. From these figures, it is shown that the proposed approach gives a better visual effect compared
to the other method.
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(e) )

FIGURE 9. Super resolution of Car compared with different methods. (a) One LR image. (b)
Bicubic zoom. (c) BTV reg. [15]. (d) SWTV method [49]. (e¢) TV + BTV reg. [24]. (f) The
proposed SR.

(a) (b) (c) (d)

FIGURE 10. Results on the ETA sequence. (a) First LR frame. (b) TV + BTV reg. [24]. (¢)
SWTV method [49]. (d) Our method.
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TABLE 1. The PSNR table.

Image Method c=10 o0=20 o0=30
Bicubic interpolation 21.46 20.02 19.88

BTV [15] 28.93 27.89 27.03

Boat SWTV [49] 29.53 28.78 28.01
TV 4+ BTV [24] 29.58 28.76 27.84

The Proposed approach  30.41  29.92 29.13
Bicubic interpolation 18.49 17.66 19.98

BTV [15] 31.98 3122 30.87
Gear SWTV [49] 3350 3318  32.81
TV + BTV [24] 3408 3359 3241

The Proposed approach  35.41  35.02 34.55
Bicubic interpolation 19.01 18.22 17.36

BTV [15] 31.22 3089  30.14
Festival SWTV [49] 32,02 3112 30.77
TV + BTV [24] 3208  31.72  31.06

The Proposed approach  33.15  32.87 32.24
Bicubic interpolation 19.96 19.06 18.71

BTV [15] 3022 29.72  29.08
Mosq SWTV [49] 3153 31.01  30.74
TV + BTV [24] 3118 30.69  30.02

The Proposed approach  32.88  32.42  32.01
Bicubic interpolation 21.06 20.68 20.03

BTV [15] 3122 30.95  30.18
Lena SWTV [49] 3244 3202 3175
TV + BTV [24] 3234 3204 3171

The Proposed approach  33.01  32.88  32.62
Bicubic interpolation 19.22 18.85 18.12

BTV [15] 29.66  29.15  28.76
Car SWTV [49] 30.99  30.75  30.36
TV + BTV [24] 31.03  30.76  30.22

The Proposed approach  32.14 31.89 31.46

FIGURE 11. Results on the Text sequence. (a) First LR frame. (b) TV + BTV reg. [24]. (c)
SWTV method [49]. (d) Our method.
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TABLE 2. The SSIM table.

Image Method c=10 o0=20 o=30
Bicubic interpolation 0.591 0.538 0.499

BTV [15] 0.822 0.795 0.748

Boat SWTV [49] 0.866 0.835 0.806
TV 4+ BTV [24] 0.861 0.830 0.809

The Proposed approach  0.921  0.895 0.863
Bicubic interpolation 0.602 0.581 0.521

BTV [15] 0.851  0.801  0.788
Gear SWTV [49] 0.903 0879  0.838
TV + BTV [24] 0917  0.889  0.840

The Proposed approach  0.959 0.919 0.894
Bicubic interpolation 0.685 0.638 0.601

BTV [15] 0877  0.839  0.808
Festival SWTV [49] 0927 0.899  0.875
TV + BTV [24] 0.923  0.897  0.870

The Proposed approach  0.968  0.931 0.908
Bicubic interpolation 0.607 0.591 0.542

BTV [15] 0811  0.782  0.755
Mosq SWTV [49] 0863  0.840  0.817
TV + BTV [24] 0853  0.835  0.816

The Proposed approach 0.888 0.859 0.835
Bicubic interpolation 0.679 0.626 0.598

BTV [15] 0.869  0.841  0.813
Lena SWTV [49] 0893 0871  0.844
TV + BTV [24] 0896  0.877  0.842

The Proposed approach 0.918 0.898 0.871
Bicubic interpolation 0.603 0.582 0.553

BTV [15] 0.802  0.786  0.742
Car SWTV [49] 0.851 0818  0.803
TV + BTV [24] 0.856  0.811  0.799

The Proposed approach  0.911 0.885 0.829

FIGURE 12. Results on the EFmily sequence. (a) First LR frame. (b) TV + BTV reg. [24]. (c)
SWTV method [49]. (d) Our method.
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8. CONCLUSION

In this paper, a novel approach of the super resolution image reconstruction problem is introduced. We pre-
sented a bilevel fluid image registration and proved the existence and uniqueness of the solution using functional
analysis theory. In addition, to avoid the undesirable staircasing effect during the registration, denoising and
deconvolution steps, a fourth-order PDE is proposed. To show the robustness of this approach, a set of bench-
mark image have been performed, and the investigated SR approach has proven its success visually and also
quantitatively using two known metrics. A remaining question is about the treatment of other types of noise
and blur, such as Salt& paper and Poisson noise. Another interesting point is about the degrees of the efficiency
of the proposed approach with respect to the nature of the transformations between the LR frames.

Acknowledgements. The authors are very grateful to the reviewers for their suggestions and corrections.
Conflict of interest. The authors have no conflict of interest.

REFERENCES

[1] M. Alahyane, A. Hakim, A. Laghrib and S. Raghay, A fast approach of nonparametric elastic image registration problem.
Math. Methods Appl. Sci. 42 (2019) 7059-7075.

[2] J.P Ardila, V.A. Tolpekin, W. Bijker and A. Stein, Markov-random-field-based super-resolution mapping for identification of
urban trees in vhr images. ISPRS J. Photogramm. Remote Sens. 66 (2011) 762-775.

[3] G. Aubert and P. Kornprobst, Mathematical problems in image processing: partial differential equations and the calculus of
variations, Vol. 147. Springer Science & Business Media (2006).

[4] J.P. Aubin, Un théoréme de compacité. Acad. Sci. Paris 256 (1963) 5042-5044.

[5] R.M. Bahy, G.I. Salama and T.A. Mahmoud, Adaptive regularization-based super resolution reconstruction technique for
multi-focus low-resolution images. Signal Process. 103 (2014) 155-167.

[6] S. Baker and T. Kanade. Super-resolution optical flow. Carnegie Mellon University, The Robotics Institute (1999).

[7] S. Baker and T. Kanade, Limits on super-resolution and how to break them. IEEE Trans. Pattern Anal. Mach. Intell. 24
(2002) 1167-1183.

[8] M. Bergounioux and L. Piffet, A second-order model for image denoising. Set-Valued Var. Anal. 18 (2014) 277-306.

[9] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer (2011).

[10] A. Buades, B. Coll and J.-M. Morel, The staircasing effect in neighborhood filters and its solution. IEEE Trans. Image Process.
15 (2006) 1499-1505.

[11] A. Chambolle and P.-L. Lions, Image recovery via total variation minimization and related problems. Numer. Math. 76 (1997)
167-188.

[12] F. Demengel and G. Demengel, Espaces fonctionnels. Utilisation dans la résolution des équations aux dérivées partielles. CNRS
Editions (2007).

[13] I. El Mourabit, M. El Rhabi, A. Hakim, A. Laghrib and E. Moreau, A new denoising model for multi-frame super-resolution
image reconstruction. Signal Process. 132 (2017) 51-65.

[14] I. El Mourabit, A. Hakim and A. Laghrib, An anisotropic pde for multi-frame super-resolution image reconstruction. In
International Conference on Numerical Analysis and Optimization Days. Springer (2021) 29-41.

[15] S. Farsiu, M.D. Robinson, M. Elad and P. Milanfar, Fast and robust multiframe super resolution. IEEE Trans. Image Process.
13 (2004) 1327-1344.

[16] R. Fransens, C. Strecha and L. Van Gool, Optical flow based super-resolution: A probabilistic approach. Comput. Vis. Image
Underst. 106 (2007) 106-115.

[17] D. Ghosh, N. Kaabouch and W.-C. Hu, A robust iterative super-resolution mosaicking algorithm using an adaptive and
directional huber-markov regularization. J. Vis. Commun. Image Represent. 40 (2016) 98-110.

[18] H. Greenspan, G. Oz, N. Kiryati and S.L.B.G. Peled, Mri inter-slice reconstruction using super-resolution. Magn. Reson.
Imaging 20 (2002) 437-446.

[19] Y. Han, C. Xu, G. Baciu and X. Feng, Multiplicative noise removal combining a total variation regularizer and a nonconvex
regularizer. Int. J. Comput. Math. 91 (2014) 2243-2259.

[20] Y. He, K.-H. Yap, L. Chen and L.-P. Chau, A nonlinear least square technique for simultaneous image registration and
super-resolution. IEEE Trans. Image Process. 16 (2007) 2830—2841.

[21] Q. Huynh-Thu and M. Ghanbari, Scope of validity of psnr in image/video quality assessment. Electron. Lett. 44 (2008)
800-801.

[22] M. Jung, A. Marquina and L.A. Vese, Variational multiframe restoration of images degraded by noisy (stochastic) blur kernels.
J. Comput. Appl. Math. 240 (2013) 123-134.



3068 A. LAGHRIB ET AL.

[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30)
[31]
(32
[33]
(34
[35]

(36]
(37]

(38]
(39]
(40]
[41]
42]
[43]
44]
[45]

[46]

(47]
(48]
[49]

(50]

N. Kumar, R. Verma and A. Sethi, Convolutional neural networks for wavelet domain super resolution. Pattern Recognit. Lett.
90 (2017) 65-71.

A. Laghrib, A. Hakim and S. Raghay, A combined total variation and bilateral filter approach for image robust super resolution.
EURASIP J. Image Video Process. 2015 (2015) 1-10.

A. Laghrib, A. Ghazdali, A. Hakim and S. Raghay, A multi-frame super-resolution using diffusion registration and a nonlocal
variational image restoration. Comput. Math. Appl. 72 (2016) 2535-2548.

A. Laghrib, A. Ben-Loghfyry, A. Hadri and A. Hakim, A nonconvex fractional order variational model for multi-frame image
super-resolution. Signal Process. Image Commun. 67 (2018) 1-11.

A. Laghrib, M. Ezzaki, M. El Rhabi, A. Hakim, P. Monasse and S. Raghay, Simultaneous deconvolution and denoising using
a second order variational approach applied to image super resolution. Comput. Vis. Image Underst. 168 (2018) 50-63.

A. Laghrib, A. Hadri and A. Hakim, An edge preserving high-order pde for multiframe image super-resolution. J. Franklin
Inst. 356 (2019) 5834-5857.

A. Laghrib, A. Hadri, A. Hakim and S. Raghay, A new multiframe super-resolution based on nonlinear registration and a
spatially weighted regularization. Inf. Sci. 493 (2019) 34-56.

A. Laghrib, A. Chakib, A. Hadri and A. Hakim, A nonlinear fourth-order pde for multi-frame image super-resolution enhance-
ment. Discrete Contin. Dyn. Syst.-B 25 (2020) 415.

R. Lai, X.-C. Tai and T.F. Chan, A ridge and corner preserving model for surface restoration. SIAM J. Sci. Comput. 35 (2013)
A675-A695.

L.F. Lang, S. Neumayer, O. Oktem and C.-B. Schénlieb, Template-based image reconstruction from sparse tomographic data.
Appl. Math. Optim. (2019) 1-29.

S. Lefkimmiatis, A. Bourquard and M. Unser, Hessian-based norm regularization for image restoration with biomedical appli-
cations. IEEE Trans. Image Process. 21 (2012) 983-995.

M. Lysaker and X.-C. Tai, Iterative image restoration combining total variation minimization and a second-order functional.
Int. J. Comput. Vis. 66 (2006) 5-18.

B.J. Maiseli, N. Ally and H. Gao, A noise-suppressing and edge-preserving multiframe super-resolution image reconstruction
method. Signal Process. Image Commun. 34 (2015) 1-13.

J. Modersitzki, Numerical Methods for Image Registration. Oxford University Press, USA (2007).

K. Papafitsoros and C.-B. Schonlieb, A combined first and second order variational approach for image reconstruction. J.
Math. Imaging Vis. 48 (2014) 308-338.

M.K. Park and M.G. Kang, Regularized high-resolution reconstruction considering inaccurate motion information. Opt. Eng.
46 (2007) 117004.

M. Protter, M. Elad, H. Takeda and P. Milanfar, Generalizing the nonlocal-means to super-resolution reconstruction. IEEE
Trans. Image Process. 18 (2008) 36-51.

P. Rasti, H. Demirel and G. Anbarjafari, Improved iterative back projection for video super-resolution. In 2014 22nd Signal
Processing and Communications Applications Conference (SIU). IEEE (2014) 552-555.

M.D. Robinson, S.J. Chiu, C.A. Toth, J.A. Izatt, J.Y. Lo and S. Farsiu, New applications of super-resolution in medical
imaging. In Super-Resolution Imaging. CRC Press (2017) 401-430.

D.A. Sorrentino and A. Antoniou, Storage-efficient quasi-newton algorithms for image super-resolution. In 2009 16th Interna-
tional Conference on Digital Signal Processing. IEEE (2009) 1-6.

H. Su, N. Jiang, Y. Wu and J. Zhou, Single image super-resolution based on space structure learning. Pattern Recognit. Lett.
34 (2013) 2094-2101.

T. Valkonen, K. Bredies and F. Knoll, Total generalized variation in diffusion tensor imaging. SIAM J. Imaging Sci. 6 (2013)
487-525.

Z. Wang, A.C. Bovik, H.R. Sheikh and E.P. Simoncelli, Image quality assessment: from error visibility to structural similarity.
IEEE Trans. Image Process. 13 (2004) 600—-612.

F.W. Wheeler, R.T. Hoctor and E.B. Barrett, Super-resolution image synthesis using projections onto convex sets in
the frequency domain. In Vol. 5674 of Computational Imaging III. International Society for Optics and Photonics (2005)
479-490.

S. Yang, M. Wang, Y. Sun, F. Sun and L. Jiao, Compressive sampling based single-image super-resolution reconstruction by
dual-sparsity and non-local similarity regularizer. Pattern Recognit. Lett. 33 (2012) 1049-1059.

X. Yang and J. Yang, Efficient diffeomorphic metric image registration via stationary velocity. J. Comput. Sci. 30 (2019)
90-97.

Q. Yuan, L. Zhang and H. Shen, Multiframe super-resolution employing a spatially weighted total variation model. I[EEE
Trans. Circuits Syst. Video Technol. 22 (2012) 379-392.

L. Yue, H. Shen, J. Li, Q. Yuan, H. Zhang and L. Zhang, Image super-resolution: The techniques, applications, and future.
Signal Process. 128 (2016) 389-408.



AN IMPROVED PDE-CONSTRAINED OPTIMIZATION FLUID REGISTRATION 3069

[51] W. Zhao, H. Sawhney, M. Hansen and S. Samarasekera, Super-fusion: a super-resolution method based on fusion. In Vol. 2 of
Object recognition supported by user interaction for service robots. IEEE (2002) 269-272.

Subscribe to Open (S20)

A fair and sustainable open access model

This journal is currently published in open access under a Subscribe-to-Open model (S20). S20 is a transformative
model that aims to move subscription journals to open access. Open access is the free, immediate, online availability of
research articles combined with the rights to use these articles fully in the digital environment. We are thankful to our
subscribers and sponsors for making it possible to publish this journal in open access, free of charge for authors.

Please help to maintain this journal in open access!

Check that your library subscribes to the journal, or make a personal donation to the S20 programme, by contacting
subscribers@edpsciences.org

More information, including a list of sponsors and a financial transparency report, available at: https://www.
edpsciences.org/en/maths-s2o0-programme



mailto:subscribers@edpsciences.org
https://www.edpsciences.org/en/maths-s2o-programme
https://www.edpsciences.org/en/maths-s2o-programme

	Introduction
	Problem formulation
	The construction of the warp matrix Fk
	Necessary Optimality conditions
	Algorithm details
	Restoration step
	 Experiments
	The effectiveness of the registration part
	Simulated Experiments
	Real Experiments

	Conclusion
	References

