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A NOVEL DYNAMIC DATA ENVELOPMENT ANALYSIS APPROACH WITH
PARABOLIC FUZZY DATA: CASE STUDY IN THE INDIAN BANKING

SECTOR

Rajinder Kaur and Jolly Puri*

Abstract. Data envelopment analysis (DEA) is a non-parametric approach that measures the effi-
ciency of a decision-making unit (DMU) statically and requires crisp input-output data. However, as a
performance analysis tool, DEA overlooks the inter-relationship present among periods, and in many
real applications, it is challenging to define the information for variables like customer satisfaction,
service quality, etc. in precise form. To fix this, the present paper develops a novel parabolic fuzzy
dynamic DEA (PFDDEA) approach that not only measures the system and period fuzzy efficiencies of
DMUs by considering the inter-dependence among periods in the presence of undesirable resources but
also handles data as parabolic fuzzy numbers (PFNs). It evaluates fuzzy efficiencies in a dynamic envi-
ronment by distinguishing the role of links as inputs/outputs. In the proposed approach, system fuzzy
efficiencies are estimated by solving the proposed PFDDEA models based on the 𝛼-cut approach that
guarantees the shape of the membership function of the system fuzzy efficiencies obtained at different
𝛼-levels as PFNs. Further, an algorithmic approach for measuring period fuzzy efficiencies based on the
concept of 𝛼-cuts and Pareto’s efficiency is developed that leads to the estimation of the shapes of their
membership functions. Finally, a relationship has been derived between upper (lower) bound system
efficiency and upper (lower) bound period efficiencies at each 𝛼-level. To the best of our knowledge,
this is the first attempt that dynamically evaluates fuzzy efficiencies (system and period) of DMUs
when the data for the inputs/outputs/links are PFNs. To validate the applicability and robustness of
the proposed approach, it is applied to eleven Indian banks for two periods 2019-2020 and 2020-2021,
including loss due to non-performing assets (NPAs) as an undesirable output and unused assets as
a link between periods. Here, NPAs are the bad loans that cease to generate income for the banks.
The findings of the study (i) depict the system and period efficiencies as PFNs, (ii) conclude that the
Federal Bank (FB) is the most efficient and Punjab National Bank (PNB) is the least efficient bank in
the system and all periods, and (iii) provide implications that are highly valuable for bank experts to
consider the impact of NPAs and unused assets for improving underperformed banks. These findings
indicate that the proposed PFDDEA approach is highly useful for ranking/benchmarking in a dynamic
manner keeping in view the presence of uncertain data variables represented as PFNs.
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1. Introduction

Data envelopment analysis (DEA) is a widely used linear programming tool to measure the productivity of
homogenous decision-making units (DMUs) that consume multiple inputs to yield multiple outputs. Charnes
et al. [4] introduced DEA as a non-parametric tool to investigate the efficiency of DMUs utilizing similar
types of inputs to produce similar types of outputs. Later, Banker et al. [2] developed a model that considered
variable returns to scale in DEA, and Tone [39] presented a slacks-based DEA model to measure efficiency
by dealing with input excesses and output shortfalls. The dispersal of methods to assess the efficiency and to
assist managerial decision-making has been mainly motivated by the development of DEA [26], and it is largely
employed technique to estimate efficacy in profit/non-profit organizations like the educational sector, health
care sector, financial sector, etc. DEA is valuable compared to other frontier techniques as it does not entail the
predetermined weights attached to each input and output. Despite many advantages, DEA possesses two major
limitations: (i) it measures the performance of entities statically, i.e., it evaluates efficiency over a particular
time and ignores the inter-relationship of periods among each other that leads to misleading efficiency results,
and (ii) it necessitates precisely defined input-output data; however, the data for variables like environment
pollution, customer satisfaction [50], service quality, social responsibility, and hospital reputation [15], etc. is
not always available in a precise form for many real applications.

To deal with the first limitation, DEA was extended to dynamic DEA that incorporates the effect of time
while evaluating the efficiency of a DMU. In dynamic DEA, inter-relations between consecutive periods are
considered, and the efficiency of a DMU is estimated dynamically to assess intertemporal performance. Färe and
Grosskopf [9] introduced dynamic DEA models to measure the intertemporal efficiency of DMUs by considering
the presence of intermediates in two consecutive periods. Nemoto and Goto [27] incorporated two types of inputs
(variable and quasi-fixed inputs) into dynamic DEA. Tone and Tsutsui [40] developed dynamic DEA models to
evaluate intertemporal efficiency in the presence of carry-overs. Kao [21] introduced a relational dynamic DEA
model to measure system and period efficiencies in a dynamic environment by assigning the same weights to
the intermediates despite the fact whether they are being used as input or output in that particular period.
Emrouznejad and Thanassoulis [6] introduced the concept of input-output paths mapped out by operating units
over time. Later, it was utilized by Yen and Chiou [47] and Zeinodin and Ghobadi [48] to assess the efficiency of
DMUs in the presence of intertemporal input-output dependence. Wanke et al. [42] investigated the efficiency of
MENA banking structure in a dynamic environment by introducing an input-oriented dynamic network DEA
model. The extensive literature on the evolution of dynamic DEA models can be seen in Fallah-Fini et al. [8],
Ghobadi [12], Soleimani-damaneh [36], Sueyoshi and Sekitani [38], and Mariz et al. [26].

To deal with the second limitation, Sengupta [35] introduced the concept of fuzziness in DEA. Zerafat Angiz
et al. [49] presented a fuzzy DEA approach for performance evaluation by maximizing the membership functions
of inputs/outputs that retained the fuzziness of the model. Fuzzy DEA models were initially classified into four
groups by Hatami-Marbini et al. [16] and later been expanded to six groups by Emroujnezad et al. [7] which
are (i) tolerance approach, (ii) 𝛼-cut approach, (iii) fuzzy ranking approach, (iv) possibility approach, (v) fuzzy
arithmetic approach, and (vi) fuzzy random/type-2 fuzzy set approach. Kao and Liu [22] presented fuzzy DEA
models to evaluate efficiency with the help of the 𝛼-cut approach and also estimated membership functions
of the fuzzy efficiencies. Peykani et al. [30] utilized possibility, necessity and credibility measures to develop
an adjustable fuzzy DEA model which can consider the different optimistic-pessimistic attitudes of a decision-
maker. Sahil et al. [34] presented a fuzzy DEA model to evaluate efficiency in the presence of parabolic fuzzy
inputs and outputs by using the 𝛼-cut approach. The other studies on fuzzy DEA can be seen in Gholizadeh
and Fazlollahtabar [12], Gholizadeh et al. [14], Puri and Yadav [32], and Wang and Chin [41].

The notion of imprecision in the form of fuzzy data has also been introduced in dynamic DEA by Gholizadeh
et al. [13]. They designed a dynamic DEA model, an analytical-descriptive research method for measuring the
dynamic efficiencies of 27 investment corporations in the Tehran stock exchange during 2004-2008. They first
utilized the fuzzy DEA model to evaluate the efficiency of each corporation when input-output data are in terms
of LR fuzzy numbers. Further, as a dynamic framework, the efficiency of a firm was measured 24 times each 3
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months to analyze the performance of a decision-making unit (DMU) in different time periods. This is dynamic
efficiency measurement as it includes time entity as a variant. The dynamic efficiency discussed in Gholizadeh
et al. [13] is based on window analysis, which measures efficiency that changes over time. It is apparent that the
window analysis considers the time effect; however, it ignores intertemporal elements like carry-over activities
between consecutive periods that are mostly present in the production process of a DMU in practical situations.
In the same notion, Kordrostami and Noveiri [25] and Peykani et al. [31] have developed fuzzy dynamic DEA
approaches based on window analysis and the Malmquist DEA index to measure efficiency that too ignore the
carry-overs. Ghobadi et al. [11] developed fuzzy dynamic DEA models to measure performance when data are
available in the form of LR fuzzy numbers. Olfat et al. [29] presented fuzzy dynamic DEA models to deal with
trapezoidal interval type-2 fuzzy data and evaluated the system and period efficiency of 28 Iranian airports over
two periods. Hasani and Mokhtari [15] developed a hybrid fuzzy DEA model to measure the system efficiency as
well as period efficiencies of Iranian hospitals in a dynamic environment comprising two periods in the presence
of undesirable inputs/outputs. Zhou et al. [50] evaluated the system and period efficiencies of 20 suppliers over
three periods in the dynamic environment with customer satisfaction (desirable output) as a triangular fuzzy
number. Some other extensions of fuzzy dynamic DEA models are Jafarian-Moghaddam and Ghoseiri [19],
Khodaparasti and Reza Maleki [23], Olfat and Pishdar [28], Soltanzadeh and Omrani [37], Yaghoubi and Amiri
[46], and Yen and Chiou [47].

Moreover, in the production process of many real applications, resources (inputs/outputs) might be undesir-
able (bad) [17] that need to be minimized in a dynamic environment. For example, CO2 emissions in electric
power industries [44], non-performing loans (NPLs) in the banking sector [3], etc. The extensive literature on
dynamic DEA models dealing with undesirable resources can be found in studies like Amowine et al. [1], Tone
and Tsutsui [40], Woo et al. [43], and Xie et al. [45].

Despite many extensions made in dynamic DEA, such as fuzzy dynamic DEA, the existing approaches still
possess some limitations/research gaps that need to be addressed to enhance their applicability in practical
situations. In particular, the existing literature on fuzzy dynamic DEA

– lacks in handling data for inputs/outputs/links as parabolic fuzzy numbers (PFNs) and fails to distinguish
between the role of links as inputs or outputs by assigning similar weights to links that are used as input
and/or output.

– has not presented any methodology based on the 𝛼-cut approach and Pareto’s efficiency concept to estimate
system and period fuzzy efficiencies of a DMU when data is in terms of PFNs and to predict the shapes of
their membership functions.

– lacks in presenting any application with PFN data and analyzing the impact of undesirable output (e.g.,
loss due to NPAs in the banking sector) and good link (e.g., unused assets in the banking sector) on the
system and periods’ fuzzy efficiencies.

To overcome these research gaps, the present study is mainly focused on developing a novel parabolic fuzzy
dynamic DEA (PFDDEA) approach that (i) handles the data for inputs/outputs/links in the form of PFNs,
(ii) examines a dynamic structure connected through links in the presence of undesirable outputs, (iii) presents
an approach that distinguishes the role of links as inputs or outputs and uses different weights for links when
used as input or output, (iv) evaluates system interval efficiencies based on 𝛼-cut approach which are further
used to analyze the shape of the membership function of the system fuzzy efficiencies as PFN, (v) presents an
algorithmic approach to obtain period fuzzy efficiencies when data is in terms of PFNs and to estimate the shapes
of their membership functions, and (vi) derives a relationship between upper (lower) bound system efficiency
and upper (lower) bound period efficiencies at 𝛼-level, i.e., define some conditions under which upper (lower)
bound system efficiency can be expressed as a linear combination of upper (lower) bound period efficiencies at
level 𝛼. Further, to prove the applicability and effectiveness of the proposed PFDDEA approach, an application
to the Indian banking sector is presented, and implications are discussed to assist experts/decision-makers in
policy formulations.
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The present paper is systematized as follows. Section 2 presents some basic definitions of fuzzy set theory.
In Section 3, PFDDEA models are proposed to evaluate system fuzzy efficiency, followed by an algorithm
to measure period efficiencies at different 𝛼-levels. Section 4 presents a relationship between the system and
period efficiencies. Section 5 includes an application of the proposed approach to the Indian banking sector.
Section 6 provides theoretical, managerial and policy implications of the present study, and Section 7 concludes
the findings of the present study.

2. Preliminaries

This section presents some fundamental definitions of fuzzy set theory.

Definition 1. [51] Let 𝑋 be a universe of discourse. Then, a fuzzy set 𝐴 in 𝑋 is defined by 𝐴 = {(𝑥, 𝜇𝐴(𝑥)) :
𝑥 ∈ 𝑋}, where 𝜇𝐴 : 𝑋 → [0, 1] is the membership function of 𝐴 and 𝜇𝐴(𝑥) represents the membership degree
of 𝑥 being in 𝐴.

Definition 2. [51] Let 𝐴 = {(𝑥, 𝜇𝐴(𝑥)) : 𝑥 ∈ 𝑋} be a fuzzy set in universe of discourse 𝑋. Then, support of 𝐴

denoted by 𝑆(𝐴) is defined as
𝑆(𝐴) = {𝑥|𝜇𝐴(𝑥) ≥ 0}

Definition 3. [18, 24] An 𝛼-cut of a fuzzy set 𝐴 in 𝑋, denoted by 𝐴𝛼, is defined as 𝐴𝛼 = {𝑥 ∈ 𝑋|𝜇𝐴(𝑥) ≥ 𝛼}
where 𝛼 ∈ (0, 1], i.e., a crisp set containing all those 𝑥 ∈ 𝑋 whose membership degree is either greater than or
equal to 𝛼.

Definition 4. [51] A fuzzy set 𝐴 in universe of discourse 𝑋 is said to be convex if and only if

𝜇𝐴(𝜆𝑥′ + (1− 𝜆)𝑥′′) ≥ 𝑚𝑖𝑛(𝜇𝐴(𝑥′), 𝜇𝐴(𝑥′′)), for all 𝑥′, 𝑥′′ ∈ 𝑋 and 𝜆 ∈ [0, 1].

Definition 5. [51] Let 𝐴 be a fuzzy set in universe of discourse 𝑋. Then, it is said to be normal if 𝜇𝐴(𝑥′) = 1
for some 𝑥′ ∈ 𝑋.

Definition 6. [51] A fuzzy set 𝐴 is called a fuzzy number if it is both normal and convex.

Definition 7. [20] A fuzzy number 𝐴 = (𝑎1, 𝑎2, 𝑎3) is called PFN with its membership function 𝜇𝐴(𝑥) defined
as

𝜇𝐴(𝑥) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(︂
𝑥− 𝑎1

𝑎2 − 𝑎1

)︂2

, 𝑎1 ≤ 𝑥 < 𝑎2,

1, 𝑥 = 𝑎2,(︂
𝑎3 − 𝑥

𝑎3 − 𝑎2

)︂2

, 𝑎2 < 𝑥 ≤ 𝑎3,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(2.1)

Remark 1. [20] An 𝛼-cut (𝐴)𝛼 for a PFN 𝐴 = (𝑎1, 𝑎2, 𝑎3) is defined as an interval given by (𝐴)𝛼 = [𝑎1 +√
𝛼(𝑎2 − 𝑎1), 𝑎3 +

√
𝛼(𝑎2 − 𝑎3)].

3. Proposed parabolic fuzzy dynamic DEA model

Assume there are 𝑛 DMUs and each DMU consumes 𝑚 inputs to yield 𝑠 desirable outputs along with ℎ
undesirable outputs over 𝑇 number of periods, and two consecutive periods are connected through 𝑞 number
of links as shown in Figure 1. Let 𝑋̃𝑖𝑗 =

∑︀𝑇
𝑡=1 𝑋̃

(𝑡)
𝑖𝑗 be the 𝑖𝑡ℎ parabolic fuzzy input of a system, where 𝑋̃

(𝑡)
𝑖𝑗 =

(𝑋̃(𝑡)
1𝑗 , 𝑋̃

(𝑡)
2𝑗 , . . . , 𝑋̃

(𝑡)
𝑚𝑗) is a vector of fuzzy inputs in period 𝑡. Let 𝑌 𝑔

𝑟𝑗 =
∑︀𝑇

𝑡=1 𝑌
𝑔(𝑡)
𝑟𝑗 and 𝑌 𝑏

𝑓𝑗 =
∑︀𝑇

𝑡=1 𝑌
𝑏(𝑡)
𝑓𝑗 be the

𝑟𝑡ℎ desirable parabolic fuzzy output and 𝑓 𝑡ℎ undesirable parabolic fuzzy output of a system, respectively, where
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Figure 1. Dynamic structure of 𝐷𝑀𝑈𝑘 with parabolic fuzzy data over 𝑇 number of periods.

𝑌
𝑔(𝑡)
𝑟𝑗 = (𝑌 𝑔(𝑡)

1𝑗 , 𝑌
𝑔(𝑡)
2𝑗 , . . . , 𝑌

𝑔(𝑡)
𝑠𝑗 ), and 𝑌

𝑏(𝑡)
𝑓𝑗 = (𝑌 𝑏(𝑡)

1𝑗 , 𝑌
𝑏(𝑡)
2𝑗 , . . . , 𝑌

𝑏(𝑡)
ℎ𝑗 ) are the respective vectors of 𝑟𝑡ℎ desirable

parabolic fuzzy output and 𝑓 𝑡ℎ undesirable parabolic fuzzy output in period 𝑡. Let 𝑍
(𝑡)
𝑙𝑗 = (𝑍(𝑡)

1𝑗 , 𝑍
(𝑡)
2𝑗 , . . . , 𝑍

(𝑡)
𝑞𝑗 )

be a vector of fuzzy links produced in period 𝑡 and consumed by period 𝑡 + 1, i.e. acting as a link between
periods 𝑡 and 𝑡 + 1. Let 𝑣𝑖, 𝑢𝑟, 𝑤𝑓 be the weights associated with the 𝑖𝑡ℎ input, 𝑟𝑡ℎ desirable output and 𝑓 𝑡ℎ

undesirable output, respectively, and 𝛾𝑙, 𝛽𝑙 be the weights for 𝑙𝑡ℎ link when treated as an output and input,
respectively.

Then, for any 𝐷𝑀𝑈𝑗 , system fuzzy efficiency and 𝑡𝑡ℎ period fuzzy efficiency are respectively defined as

𝐸̃𝑗 =

𝑠∑︁

𝑟=1

𝑢𝑟𝑌
𝑔

𝑟𝑗 +

𝑞∑︁

𝑙=1

𝛾𝑙𝑍
(𝑇 )
𝑙𝑗 −

ℎ∑︁

𝑓=1

𝑤𝑓𝑌 𝑏
𝑓𝑗

𝑚∑︁

𝑖=1

𝑣𝑖𝑋̃𝑖𝑗 +

𝑞∑︁

𝑙=1

𝛽𝑙𝑍
(0)
𝑙𝑗

, ∀𝑗 (3.1)

𝐸̃
(𝑡)
𝑗 =

𝑠∑︁

𝑟=1

𝑢𝑟𝑌
(𝑡)

𝑟𝑗 +

𝑞∑︁

𝑙=1

𝛾𝑙𝑍
(𝑡)
𝑙𝑗 −

ℎ∑︁

𝑓=1

𝑤𝑓𝑌
𝑏(𝑡)

𝑓𝑗

𝑚∑︁

𝑖=1

𝑣𝑖𝑋̃
(𝑡)
𝑖𝑗 +

𝑞∑︁

𝑙=1

𝛽𝑙𝑍
(𝑡−1)
𝑙𝑗

, ∀𝑗, ∀𝑡. (3.2)

Using the above definitions of the system and period fuzzy efficiencies, the following parabolic fuzzy dynamic
DEA model is presented to evaluate the system fuzzy efficiency of 𝐷𝑀𝑈𝑘:

Model-1

max 𝐸̃𝑘 =

𝑠∑︁

𝑟=1

𝑢𝑟𝑌𝑟𝑘 +

𝑞∑︁

𝑙=1

𝛾𝑙𝑍
(𝑇 )
𝑙𝑘 −

ℎ∑︁

𝑓=1

𝑤𝑓𝑌 𝑏
𝑓𝑘

𝑚∑︁

𝑖=1

𝑣𝑖𝑋̃𝑖𝑘 +

𝑞∑︁

𝑙=1

𝛽𝑙𝑍
(0)
𝑙𝑘

s.t. 0 ≤

𝑠∑︁

𝑟=1

𝑢𝑟𝑌𝑟𝑗 +

𝑞∑︁

𝑙=1

𝛾𝑙𝑍
(𝑇 )
𝑙𝑗 −

ℎ∑︁

𝑓=1

𝑤𝑓𝑌 𝑏
𝑓𝑗

𝑚∑︁

𝑖=1

𝑣𝑖𝑋̃𝑖𝑗 +

𝑞∑︁

𝑙=1

𝛽𝑙𝑍
(0)
𝑙𝑗

≤ 1, 𝑗 = 1, 2, . . . , 𝑛,
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0 ≤

𝑠∑︁

𝑟=1

𝑢𝑟𝑌
(𝑡)

𝑟𝑗 +

𝑞∑︁

𝑙=1

𝛾𝑙𝑍
(𝑡)
𝑙𝑗 −

ℎ∑︁

𝑓=1

𝑤𝑓𝑌
𝑏(𝑡)

𝑓𝑗

𝑚∑︁

𝑖=1

𝑣𝑖𝑋̃
(𝑡)
𝑖𝑗 +

𝑞∑︁

𝑙=1

𝛽𝑙𝑍
(𝑡−1)
𝑙𝑗

≤ 1, 𝑗 = 1, 2, . . . , 𝑛, 𝑡 = 1, 2, . . . , 𝑇,

𝑢𝑟 ≥ 𝜖, 𝑣𝑖 ≥ 𝜖, 𝛾𝑙 ≥ 𝜖, 𝛽𝑙 ≥ 𝜖, 𝜖 > 0,

where 𝜖 is a non-Archimedean infinitesimal.
Model-1 maximizes the system efficiency of the 𝑘𝑡ℎ DMU subject to the condition that the system fuzzy

efficiency of every DMU lies between 0 and 1, and every 𝑡𝑡ℎ period fuzzy efficiency for all DMUs lies between 0
and 1.

The present problem is a fuzzy dynamic DEA problem where data is represented as a fuzzy number and can
be solved using a fuzzy ranking approach [7] which possesses a drawback that different fuzzy ranking methods
may result in different efficiency scores. Jafarian- Moghaddam and Ghoseiri [18, 19] suggested a fuzzy dynamic
multi-objective DEA approach that resulted in solving nonlinear programming problem, which is difficult to
solve for large data sets. Therefore, we have applied the 𝛼-cut approach to solve the fuzzy dynamic DEA model
in the present study which is the most popular approach that often provides a fuzzy efficiency score whose
membership function is constructed from 𝛼-cuts for each 𝛼 in [0,1]. By using Kao and Liu [22]’s concept of
transforming fuzzy DEA models into a family of crisp DEA models, Model-1 is transformed into two dynamic
DEA models given by Model-2 and Model-3 based on the 𝛼-cut approach, which is described as under:

If 𝑆(𝑋̃𝑖𝑗), 𝑆(𝑌 𝑔
𝑟𝑗), 𝑆(𝑌 𝑏

𝑓𝑗) and 𝑆(𝑍(𝑡)
𝑙𝑗 ) denote the support of the 𝑖𝑡ℎ input, 𝑟𝑡ℎ desirable output, 𝑓 𝑡ℎ undesirable

output and 𝑙𝑡ℎ link produced in period 𝑡 of 𝐷𝑀𝑈𝑗 respectively. Then, the 𝛼-cuts of 𝑋̃𝑖𝑗 , 𝑌 𝑔
𝑟𝑗 , 𝑌 𝑏

𝑓𝑗 and 𝑍
(𝑡)
𝑙𝑗 denoted

by (𝑋̃𝑖𝑗)𝛼 (∀𝑖, 𝑗), (𝑌 𝑔
𝑟𝑗)𝛼 (∀𝑟, 𝑗), (𝑌 𝑏

𝑓𝑗)𝛼 (∀𝑓, 𝑗), and (𝑍(𝑡)
𝑙𝑗 )𝛼 (∀𝑙, 𝑡, 𝑗), respectively, are defined as

(𝑋̃𝑖𝑗)𝛼 ={𝑋𝑖𝑗 ∈ 𝑆(𝑋̃𝑖𝑗)|𝜇𝑋̃𝑖𝑗
(𝑋𝑖𝑗) ≥ 𝛼} = [(𝑋𝑖𝑗)𝐿

𝛼, (𝑋𝑖𝑗)𝑈
𝛼 ]

=
[︂
min
𝑋𝑖𝑗

{𝑋𝑖𝑗 ∈ 𝑆(𝑋̃𝑖𝑗)|𝜇𝑋̃𝑖𝑗
(𝑋𝑖𝑗) ≥ 𝛼}, max

𝑋𝑖𝑗

{𝑋𝑖𝑗 ∈ 𝑆(𝑋̃𝑖𝑗)|𝜇𝑋̃𝑖𝑗
(𝑋𝑖𝑗) ≥ 𝛼}

]︂
, (3.3)

(𝑌 𝑔
𝑟𝑗)𝛼 ={𝑌 𝑔

𝑟𝑗 ∈ 𝑆(𝑌 𝑔
𝑟𝑗)|𝜇𝑌 𝑔

𝑟𝑗
(𝑌 𝑔

𝑟𝑗) ≥ 𝛼} = [(𝑌 𝑔
𝑟𝑗)𝐿

𝛼, (𝑌 𝑔
𝑟𝑗)𝑈

𝛼 ]

=

[︃
min
𝑌 𝑔

𝑟𝑗

{𝑌 𝑔
𝑟𝑗 ∈ 𝑆(𝑌 𝑔

𝑟𝑗)|𝜇𝑌 𝑔
𝑟𝑗

(𝑌 𝑔
𝑟𝑗) ≥ 𝛼}, max

𝑌 𝑔
𝑟𝑗

{𝑌 𝑔
𝑟𝑗 ∈ 𝑆(𝑌𝑟𝑗)|𝜇𝑌 𝑔

𝑟𝑗
(𝑌 𝑔

𝑟𝑗) ≥ 𝛼}

]︃
, (3.4)

(𝑌 𝑏
𝑓𝑗)𝛼 ={𝑌 𝑏

𝑓𝑗 ∈ 𝑆(𝑌 𝑏
𝑓𝑗)|𝜇𝑌 𝑏

𝑓𝑗
(𝑌 𝑏

𝑓𝑗) ≥ 𝛼} = [(𝑌 𝑏
𝑓𝑗)𝐿

𝛼, (𝑌 𝑏
𝑓𝑗)𝑈

𝛼 ]

=

[︃
min
𝑌 𝑏

𝑓𝑗

{𝑌 𝑏
𝑓𝑗 ∈ 𝑆(𝑌 𝑏

𝑓𝑗)|𝜇𝑌 𝑏
𝑓𝑗

(𝑌 𝑏
𝑓𝑗) ≥ 𝛼}, max

𝑌 𝑏
𝑓𝑗

{𝑌 𝑏
𝑓𝑗 ∈ 𝑆(𝑌 𝑏

𝑓𝑗)|𝜇𝑌 𝑏
𝑓𝑗

(𝑌 𝑏
𝑓𝑗) ≥ 𝛼}

]︃
, (3.5)

and (𝑍(𝑡)
𝑙𝑗 )𝛼 ={𝑍(𝑡)

𝑙𝑗 ∈ 𝑆(𝑍(𝑡)
𝑙𝑗 )|𝜇

𝑍
(𝑡)
𝑙𝑗

(𝑍(𝑡)
𝑙𝑗 ) ≥ 𝛼} = [(𝑍(𝑡)

𝑙𝑗 )𝐿
𝛼, (𝑍(𝑡)

𝑙𝑗 )𝑈
𝛼 ]

=

[︃
min
𝑍

(𝑡)
𝑙𝑗

{𝑍(𝑡)
𝑙𝑗 ∈ 𝑆(𝑍(𝑡)

𝑙𝑗 )|𝜇
𝑍

(𝑡)
𝑙𝑗

(𝑍(𝑡)
𝑙𝑗 ) ≥ 𝛼}, max

𝑍
(𝑡)
𝑙𝑗

{𝑍(𝑡)
𝑙𝑗 ∈ 𝑆(𝑍(𝑡)

𝑙𝑗 )|𝜇
𝑍

(𝑡)
𝑙𝑗

(𝑍(𝑡)
𝑙𝑗 ) ≥ 𝛼}

]︃
. (3.6)

Similarly, the 𝛼-cuts for fuzzy efficiency scores 𝐸̃𝑗 and 𝐸̃
(𝑡)
𝑗 are respectively defined as

(𝐸̃𝑗)𝛼 ={𝐸𝑗 ∈ 𝑆(𝐸̃𝑗)|𝜇𝐸̃𝑗
(𝐸𝑗) ≥ 𝛼} = [(𝐸𝑗)𝐿

𝛼, (𝐸𝑗)𝑈
𝛼 ]

=
[︂
min
𝐸𝑗

{𝐸𝑗 ∈ 𝑆(𝐸̃𝑗)|𝜇𝐸̃𝑗
(𝐸𝑗) ≥ 𝛼}, max

𝐸𝑗

{𝐸𝑗 ∈ 𝑆(𝐸̃𝑗)|𝜇𝐸̃𝑗
(𝐸𝑗) ≥ 𝛼}

]︂
, (3.7)

and (𝐸̃(𝑡)
𝑗 )𝛼 ={𝐸(𝑡)

𝑗 ∈ 𝑆(𝐸̃(𝑡)
𝑗 )|𝜇

𝐸̃
(𝑡)
𝑗

(𝐸(𝑡)
𝑗 ) ≥ 𝛼} = [(𝐸(𝑡)

𝑗 )𝐿
𝛼, (𝐸(𝑡)

𝑗 )𝑈
𝛼 ]
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=

[︃
min
𝐸

(𝑡)
𝑗

{𝐸(𝑡)
𝑗 ∈ 𝑆(𝐸̃(𝑡)

𝑗 )|𝜇
𝐸̃

(𝑡)
𝑗

(𝐸(𝑡)
𝑗 ) ≥ 𝛼}, max

𝐸
(𝑡)
𝑗

{𝐸(𝑡)
𝑗 ∈ 𝑆(𝐸̃(𝑡)

𝑗 )|𝜇
𝐸̃

(𝑡)
𝑗

(𝐸(𝑡)
𝑗 ) ≥ 𝛼}

]︃
. (3.8)

3.1. Proposed models to evaluate system efficiency

Using the 𝛼-cuts defined in equations (3.3)–(3.8) and 𝛼-cut approach, the following fractional problems are
presented to evaluate upper and lower bound of interval system efficiencies for 𝐷𝑀𝑈𝑘, where for 𝛼 in (0, 1], we
have

Model-2

(𝐸𝑘)𝑈
𝛼 = max

(𝑋𝑖𝑗)𝐿
𝛼
≤𝑋𝑖𝑗≤(𝑋𝑖𝑗)𝑈

𝛼

(𝑌
𝑔(𝑡)
𝑟𝑗 )

𝐿

𝛼
≤𝑌

𝑔(𝑡)
𝑟𝑗 ≤(𝑌

𝑔(𝑡)
𝑟𝑗 )

𝑈

𝛼

(𝑌
𝑏(𝑡)
𝑓𝑗

)
𝐿

𝛼
≤𝑌

𝑏(𝑡)
𝑓𝑗

≤(𝑌
𝑏(𝑡)
𝑓𝑗

)
𝑈

𝛼

(𝑍
(𝑡)
𝑙𝑗

)
𝐿

𝛼
≤𝑍

(𝑡)
𝑙𝑗
≤(𝑍

(𝑡)
𝑙𝑗

)
𝑈

𝛼

∀𝑖,𝑟,𝑞,𝑙,𝑗

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑚𝑎𝑥 𝐸𝑘 =

𝑠∑︁

𝑟=1

𝑢𝑟𝑌 𝑔
𝑟𝑘 +

𝑞∑︁

𝑙=1

𝛾𝑙𝑍
(𝑇 )
𝑙𝑘 −

ℎ∑︁

𝑓=1

𝑤𝑓 𝑌 𝑏
𝑓𝑘

𝑚∑︁

𝑖=1

𝑣𝑖𝑋𝑖𝑘 +

𝑞∑︁

𝑙=1

𝛽𝑙𝑍
(0)
𝑙𝑘

s.t. 0 ≤

𝑠∑︁

𝑟=1

𝑢𝑟𝑌 𝑔
𝑟𝑗 +

𝑞∑︁

𝑙=1

𝛾𝑙𝑍
(𝑇 )
𝑙𝑗 −

ℎ∑︁

𝑓=1

𝑤𝑓 𝑌 𝑏
𝑓𝑗

𝑚∑︁

𝑖=1

𝑣𝑖𝑋𝑖𝑗 +

𝑞∑︁

𝑙=1

𝛽𝑙𝑍
(0)
𝑙𝑗

≤ 1,∀𝑗,

0 ≤

𝑠∑︁

𝑟=1

𝑢𝑟𝑌
𝑔(𝑡)
𝑟𝑗 +

𝑞∑︁

𝑙=1

𝛾𝑙𝑍
(𝑡)
𝑙𝑗 −

ℎ∑︁

𝑓=1

𝑤𝑓 𝑌
𝑏(𝑡)
𝑓𝑗

𝑚∑︁

𝑖=1

𝑣𝑖𝑋
(𝑡)
𝑖𝑗 +

𝑞∑︁

𝑙=1

𝛽𝑙𝑍
(𝑡−1)
𝑙𝑗

≤ 1,∀𝑗, ∀𝑡,

𝑢𝑟 ≥ 𝜖 ∀𝑟, 𝑣𝑖 ≥ 𝜖 ∀𝑖, 𝛾𝑙 ≥ 𝜖 ∀𝑙, 𝛽𝑙 ≥ 𝜖 ∀𝑙, 𝜖 > 0.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Model-3

(𝐸𝑘)𝐿
𝛼 = min

(𝑋𝑖𝑗)𝐿
𝛼
≤𝑋𝑖𝑗≤(𝑋𝑖𝑗)𝑈

𝛼

(𝑌
𝑔(𝑡)
𝑟𝑗 )

𝐿

𝛼
≤𝑌

𝑔(𝑡)
𝑟𝑗 ≤(𝑌

𝑔(𝑡)
𝑟𝑗 )

𝑈

𝛼

(𝑌
𝑏(𝑡)
𝑓𝑗

)
𝐿

𝛼
≤𝑌

𝑏(𝑡)
𝑓𝑗

≤(𝑌
𝑏(𝑡)
𝑓𝑗

)
𝑈

𝛼

(𝑍
(𝑡)
𝑙𝑗

)
𝐿

𝛼
≤𝑍

(𝑡)
𝑙𝑗
≤(𝑍

(𝑡)
𝑙𝑗

)
𝑈

𝛼

∀𝑖,𝑟,𝑞,𝑙,𝑗

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑚𝑎𝑥 𝐸𝑘 =

𝑠∑︁

𝑟=1

𝑢𝑟𝑌 𝑔
𝑟𝑘 +

𝑞∑︁

𝑙=1

𝛾𝑙𝑍
(𝑇 )
𝑙𝑘 −

ℎ∑︁

𝑓=1

𝑤𝑓 𝑌 𝑏
𝑓𝑘

𝑚∑︁

𝑖=1

𝑣𝑖𝑋𝑖𝑘 +

𝑞∑︁

𝑙=1

𝛽𝑙𝑍
(0)
𝑙𝑘

s.t. 0 ≤

𝑠∑︁

𝑟=1

𝑢𝑟𝑌 𝑔
𝑟𝑗 +

𝑞∑︁

𝑙=1

𝛾𝑙𝑍
(𝑇 )
𝑙𝑗 −

ℎ∑︁

𝑓=1

𝑤𝑓 𝑌 𝑏
𝑓𝑗

𝑚∑︁

𝑖=1

𝑣𝑖𝑋𝑖𝑗 +

𝑞∑︁

𝑙=1

𝛽𝑙𝑍
(0)
𝑙𝑗

≤ 1,∀𝑗,

0 ≤

𝑠∑︁

𝑟=1

𝑢𝑟𝑌
𝑔(𝑡)
𝑟𝑗 +

𝑞∑︁

𝑙=1

𝛾𝑙𝑍
(𝑡)
𝑙𝑗 −

ℎ∑︁

𝑓=1

𝑤𝑓 𝑌
𝑏(𝑡)
𝑓𝑗

𝑚∑︁

𝑖=1

𝑣𝑖𝑋
(𝑡)
𝑖𝑗 +

𝑞∑︁

𝑙=1

𝛽𝑙𝑍
(𝑡−1)
𝑙𝑗

≤ 1,∀𝑗, ∀𝑡,

𝑢𝑟 ≥ 𝜖 ∀𝑟, 𝑣𝑖 ≥ 𝜖 ∀𝑖, 𝛾𝑙 ≥ 𝜖 ∀𝑙, 𝛽𝑙 ≥ 𝜖 ∀𝑙, 𝜖 > 0.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Further, Pareto’s efficiency concept has been used to convert Models-2 and 3 into single objective fractional
programming problems as suggested by Kao and Liu [22] in fuzzy DEA literature. To evaluate upper bound
system efficiency at 𝛼-level, lower bound inputs/undesirable outputs/links (as input) and upper bound desirable
outputs/links (as output) are used for the targeted DMU ((𝐸𝑘)𝑈

𝛼 ) whereas upper bound inputs/undesirable
outputs/links (as input) and lower bound desirable outputs/links (as output) are used for the other DMUs
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((𝐸𝑗)𝐿
𝛼,∀𝑗 ̸= 𝑘). A similar concept has been used for periods of targeted DMU and other DMUs, and Model-2

reduces to the following form:

Model-4

max (𝐸𝑘)𝑈
𝛼 =

𝑠∑︁

𝑟=1

𝑢𝑟(𝑌
𝑔

𝑟𝑘)𝑈
𝛼

+

𝑞∑︁

𝑙=1

𝛾𝑙(𝑍
(𝑇 )
𝑙𝑘 )

𝑈

𝛼
−

ℎ∑︁

𝑓=1

𝑤𝑓 (𝑌 𝑏
𝑓𝑘)

𝐿

𝛼

𝑚∑︁

𝑖=1

𝑣𝑖(𝑋𝑖𝑘)𝐿
𝛼 +

𝑞∑︁

𝑙=1

𝛽𝑙(𝑍
(0)
𝑙𝑘 )

𝐿

𝛼

s.t. 0 ≤

𝑠∑︁

𝑟=1

𝑢𝑟(𝑌
𝑔

𝑟𝑘)𝑈
𝛼

+

𝑞∑︁

𝑙=1

𝛾𝑙(𝑍
(𝑇 )
𝑙𝑘 )

𝑈

𝛼
−

ℎ∑︁

𝑓=1

𝑤𝑓 (𝑌 𝑏
𝑓𝑘)

𝐿

𝛼

𝑚∑︁

𝑖=1

𝑣𝑖(𝑋𝑖𝑘)𝐿
𝛼 +

𝑞∑︁

𝑙=1

𝛽𝑙(𝑍
(0)
𝑙𝑘 )

𝐿

𝛼

≤ 1,

0 ≤

𝑠∑︁

𝑟=1

𝑢𝑟(𝑌
𝑔

𝑟𝑗)
𝐿

𝛼
+

𝑞∑︁

𝑙=1

𝛾𝑙(𝑍
(𝑇 )
𝑙𝑗 )

𝐿

𝛼
−

ℎ∑︁

𝑓=1

𝑤𝑓 (𝑌 𝑏
𝑓𝑗)

𝑈

𝛼

𝑚∑︁

𝑖=1

𝑣𝑖(𝑋𝑖𝑗)
𝑈

𝛼
+

𝑞∑︁

𝑙=1

𝛽𝑙(𝑍
(0)
𝑙𝑗 )

𝑈

𝛼

≤ 1, ∀𝑗 ̸= 𝑘,

0 ≤

𝑠∑︁

𝑟=1

𝑢𝑟(𝑌
𝑔(𝑡)

𝑟𝑘 )
𝑈

𝛼
+

𝑞∑︁

𝑙=1

𝛾𝑙(𝑍
(𝑡)
𝑙𝑘 )

𝑈

𝛼
−

ℎ∑︁

𝑓=1

𝑤𝑓 (𝑌
𝑏(𝑡)

𝑓𝑘 )
𝐿

𝛼

𝑚∑︁

𝑖=1

𝑣𝑖(𝑋
(𝑡)
𝑖𝑘 )

𝐿

𝛼
+

𝑞∑︁

𝑙=1

𝛽𝑙(𝑍
(𝑡−1)
𝑙𝑘 )

𝐿

𝛼

≤ 1, ∀𝑡,

0 ≤

𝑠∑︁

𝑟=1

𝑢𝑟(𝑌
𝑔(𝑡)

𝑟𝑗 )
𝐿

𝛼
+

𝑞∑︁

𝑙=1

𝛾𝑙(𝑍
(𝑡)
𝑙𝑗 )

𝐿

𝛼
−

ℎ∑︁

𝑓=1

𝑤𝑓 (𝑌
𝑏(𝑡)

𝑓𝑗 )
𝑈

𝛼

𝑚∑︁

𝑖=1

𝑣𝑖(𝑋
(𝑡)
𝑖𝑗 )

𝑈

𝛼
+

𝑞∑︁

𝑙=1

𝛽𝑙(𝑍
(𝑡−1)
𝑙𝑗 )

𝑈

𝛼

≤ 1, ∀𝑡, 𝑗 ̸= 𝑘,

𝑢𝑟 ≥ 𝜖 ∀𝑟, 𝑣𝑖 ≥ 𝜖 ∀𝑖, 𝛾𝑙 ≥ 𝜖 ∀𝑙, 𝛽𝑙 ≥ 𝜖 ∀𝑙, 𝜖 > 0.

Similarly, Model-5 is proposed to evaluate lower bound system efficiency at 𝛼-level in which targeted DMU’s
upper bound inputs/undesirable outputs/links (as input) and lower bound desirable outputs/links (as output)
are considered ((𝐸𝑘)𝐿

𝛼). In contrast, lower bound inputs/undesirable outputs/links (as input) and upper bound
desirable outputs/links (as output) are used for other DMUs ((𝐸𝑗)𝑈

𝛼 ,∀𝑗 ̸= 𝑘). A similar concept has been used
for periods of all DMUs.

Model-5

max (𝐸𝑘)𝐿
𝛼 =

𝑠∑︁

𝑟=1

𝑢𝑟(𝑌
𝑔

𝑟𝑘)𝐿
𝛼

+

𝑞∑︁

𝑙=1

𝛾𝑙(𝑍
(𝑇 )
𝑙𝑘 )

𝐿

𝛼
−

ℎ∑︁

𝑓=1

𝑤𝑓 (𝑌 𝑏
𝑓𝑘)

𝑈

𝛼

𝑚∑︁

𝑖=1

𝑣𝑖(𝑋𝑖𝑘)𝑈
𝛼 +

𝑞∑︁

𝑙=1

𝛽𝑙(𝑍
(0)
𝑙𝑘 )

𝑈

𝛼

s.t. 0 ≤

𝑠∑︁

𝑟=1

𝑢𝑟(𝑌
𝑔

𝑟𝑘)𝐿
𝛼

+

𝑞∑︁

𝑙=1

𝛾𝑙(𝑍
(𝑇 )
𝑙𝑘 )

𝐿

𝛼
−

ℎ∑︁

𝑓=1

𝑤𝑓 (𝑌 𝑏
𝑓𝑘)

𝑈

𝛼

𝑚∑︁

𝑖=1

𝑣𝑖(𝑋𝑖𝑘)𝑈
𝛼 +

𝑞∑︁

𝑙=1

𝛽𝑙(𝑍
(0)
𝑙𝑘 )

𝑈

𝛼

≤ 1,
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0 ≤

𝑠∑︁

𝑟=1

𝑢𝑟(𝑌
𝑔

𝑟𝑗)
𝑈

𝛼
+

𝑞∑︁

𝑙=1

𝛾𝑙(𝑍
(𝑇 )
𝑙𝑗 )

𝑈

𝛼
−

ℎ∑︁

𝑓=1

𝑤𝑓 (𝑌 𝑏
𝑓𝑗)

𝐿

𝛼

𝑚∑︁

𝑖=1

𝑣𝑖(𝑋𝑖𝑗)
𝐿

𝛼
+

𝑞∑︁

𝑙=1

𝛽𝑙(𝑍
(0)
𝑙𝑗 )

𝐿

𝛼

≤ 1, ∀𝑗 ̸= 𝑘,

0 ≤

𝑠∑︁

𝑟=1

𝑢𝑟(𝑌
𝑔(𝑡)

𝑟𝑘 )
𝐿

𝛼
+

𝑞∑︁

𝑙=1

𝛾𝑙(𝑍
(𝑡)
𝑙𝑘 )

𝐿

𝛼
−

ℎ∑︁

𝑓=1

𝑤𝑓 (𝑌
𝑏(𝑡)

𝑓𝑘 )
𝑈

𝛼

𝑚∑︁

𝑖=1

𝑣𝑖(𝑋
(𝑡)
𝑖𝑘 )

𝑈

𝛼
+

𝑞∑︁

𝑙=1

𝛽𝑙(𝑍
(𝑡−1)
𝑙𝑘 )

𝑈

𝛼

≤ 1, ∀𝑡,

0 ≤

𝑠∑︁

𝑟=1

𝑢𝑟(𝑌
𝑔(𝑡)

𝑟𝑗 )
𝑈

𝛼
+

𝑞∑︁

𝑙=1

𝛾𝑙(𝑍
(𝑡)
𝑙𝑗 )

𝑈

𝛼
−

ℎ∑︁

𝑓=1

𝑤𝑓 (𝑌
𝑏(𝑡)

𝑓𝑗 )
𝐿

𝛼

𝑚∑︁

𝑖=1

𝑣𝑖(𝑋
(𝑡)
𝑖𝑗 )

𝐿

𝛼
+

𝑞∑︁

𝑙=1

𝛽𝑙(𝑍
(𝑡−1)
𝑙𝑗 )

𝐿

𝛼

≤ 1, ∀𝑡, 𝑗 ̸= 𝑘,

𝑢𝑟 ≥ 𝜖 ∀𝑟, 𝑣𝑖 ≥ 𝜖 ∀𝑖, 𝛾𝑙 ≥ 𝜖 ∀𝑙, 𝛽𝑙 ≥ 𝜖 ∀𝑙, 𝜖 > 0.

By using Charnes-Cooper transformation [5], Models-4 and 5 can be reduced to the following linear problems
given by Models-6 and 7, respectively.

Model-6

max (𝐸𝑘)𝑈
𝛼 =

𝑠∑︁

𝑟=1

𝑢𝑟(𝑌
𝑔

𝑟𝑘)𝑈
𝛼

+

𝑞∑︁

𝑙=1

𝛾𝑙(𝑍
(𝑇 )
𝑙𝑘 )

𝑈

𝛼
−

ℎ∑︁

𝑓=1

𝑤𝑓 (𝑌 𝑏
𝑓𝑘)

𝐿

𝛼

s.t.

𝑚∑︁

𝑖=1

𝑣𝑖(𝑋𝑖𝑘)𝐿
𝛼 +

𝑞∑︁

𝑙=1

𝛽𝑙(𝑍
(0)
𝑙𝑘 )

𝐿

𝛼
= 1,

𝑠∑︁

𝑟=1

𝑢𝑟(𝑌
𝑔

𝑟𝑘)𝑈
𝛼

+

𝑞∑︁

𝑙=1

𝛾𝑙(𝑍
(𝑇 )
𝑙𝑘 )

𝑈

𝛼
−

ℎ∑︁

𝑓=1

𝑤𝑓 (𝑌 𝑏
𝑓𝑘)

𝐿

𝛼
≥ 0,

𝑠∑︁

𝑟=1

𝑢𝑟(𝑌
𝑔

𝑟𝑘)𝑈
𝛼

+

𝑞∑︁

𝑙=1

𝛾𝑙(𝑍
(𝑇 )
𝑙𝑘 )

𝑈

𝛼
−

ℎ∑︁

𝑓=1

𝑤𝑓 (𝑌 𝑏
𝑓𝑘)

𝐿

𝛼
−

𝑚∑︁

𝑖=1

𝑣𝑖(𝑋𝑖𝑘)𝐿
𝛼 −

𝑞∑︁

𝑙=1

𝛽𝑙(𝑍
(0)
𝑙𝑘 )

𝐿

𝛼
≤ 0,

𝑠∑︁

𝑟=1

𝑢𝑟(𝑌
𝑔

𝑟𝑗)
𝐿

𝛼
+

𝑞∑︁

𝑙=1

𝛾𝑙(𝑍
(𝑇 )
𝑙𝑗 )

𝐿

𝛼
−

ℎ∑︁

𝑓=1

𝑤𝑓 (𝑌 𝑏
𝑓𝑗)

𝑈

𝛼
≥ 0, ∀𝑗 ̸= 𝑘,

𝑠∑︁

𝑟=1

𝑢𝑟(𝑌
𝑔

𝑟𝑗)
𝐿

𝛼
+

𝑞∑︁

𝑙=1

𝛾𝑙(𝑍
(𝑇 )
𝑙𝑗 )

𝐿

𝛼
−

ℎ∑︁

𝑓=1

𝑤𝑓 (𝑌 𝑏
𝑓𝑗)

𝑈

𝛼
−

𝑚∑︁

𝑖=1

𝑣𝑖(𝑋𝑖𝑗)
𝑈
𝛼 +

𝑞∑︁

𝑙=1

𝛽𝑙(𝑍
(0)
𝑙𝑗 )

𝑈

𝛼
≤ 0, ∀𝑗 ̸= 𝑘,

𝑠∑︁

𝑟=1

𝑢𝑟(𝑌
𝑔(𝑡)

𝑟𝑘 )
𝑈

𝛼
+

𝑞∑︁

𝑙=1

𝛾𝑙(𝑍
(𝑡)
𝑙𝑘 )

𝑈

𝛼
−

ℎ∑︁

𝑓=1

𝑤𝑓 (𝑌
𝑏(𝑡)

𝑓𝑘 )
𝐿

𝛼
≥ 0, ∀𝑡,

𝑠∑︁

𝑟=1

𝑢𝑟(𝑌
𝑔(𝑡)

𝑟𝑘 )
𝑈

𝛼
+

𝑞∑︁

𝑙=1

𝛾𝑙(𝑍
(𝑡)
𝑙𝑘 )

𝑈

𝛼
−

ℎ∑︁

𝑓=1

𝑤𝑓 (𝑌
𝑏(𝑡)

𝑓𝑘 )
𝐿

𝛼
−

𝑚∑︁

𝑖=1

𝑣𝑖(𝑋
(𝑡)
𝑖𝑘 )

𝐿

𝛼
−

𝑞∑︁

𝑙=1

𝛽𝑙(𝑍
(𝑡−1)
𝑙𝑘 )

𝐿

𝛼
≤ 0, ∀𝑡,

𝑠∑︁

𝑟=1

𝑢𝑟(𝑌
(𝑡)

𝑟𝑗 )
𝐿

𝛼
+

𝑞∑︁

𝑙=1

𝛾𝑙(𝑍
(𝑡)
𝑙𝑗 )

𝐿

𝛼
−

ℎ∑︁

𝑓=1

𝑤𝑓 (𝑌
𝑏(𝑡)

𝑓𝑗 )
𝑈

𝛼
≥ 0, ∀𝑡, 𝑗 ̸= 𝑘,

𝑠∑︁

𝑟=1

𝑢𝑟(𝑌
(𝑡)

𝑟𝑗 )
𝐿

𝛼
+

𝑞∑︁

𝑙=1

𝛾𝑙(𝑍
(𝑡)
𝑙𝑗 )

𝐿

𝛼
−

ℎ∑︁

𝑓=1

𝑤𝑓 (𝑌
𝑏(𝑡)

𝑓𝑗 )
𝑈

𝛼
−

𝑚∑︁

𝑖=1

𝑣𝑖(𝑋
(𝑡)
𝑖𝑗 )

𝑈

𝛼
−

𝑞∑︁

𝑙=1

𝛽𝑙(𝑍
(𝑡−1)
𝑙𝑗 )

𝑈

𝛼
≤ 0, ∀𝑡, 𝑗 ̸= 𝑘,

𝑢𝑟 ≥ 𝜖 ∀𝑟, 𝑣𝑖 ≥ 𝜖 ∀𝑖, 𝛾𝑙 ≥ 𝜖 ∀𝑙, 𝛽𝑙 ≥ 𝜖 ∀𝑙, 𝜖 > 0.
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Model-7

max (𝐸𝑘)𝐿
𝛼 =

𝑠∑︁

𝑟=1

𝑢𝑟(𝑌
𝑔

𝑟𝑘)𝐿
𝛼

+

𝑞∑︁

𝑙=1

𝛾𝑙(𝑍
(𝑇 )
𝑙𝑘 )

𝐿

𝛼
−

ℎ∑︁

𝑓=1

𝑤𝑓 (𝑌 𝑏
𝑓𝑘)

𝑈

𝛼

s.t.

𝑚∑︁

𝑖=1

𝑣𝑖(𝑋𝑖𝑘)𝑈
𝛼 +

𝑞∑︁

𝑙=1

𝛽𝑙(𝑍
(0)
𝑙𝑘 )

𝑈

𝛼
= 1,

𝑠∑︁

𝑟=1

𝑢𝑟(𝑌
𝑔

𝑟𝑘)𝐿
𝛼

+

𝑞∑︁

𝑙=1

𝛾𝑙(𝑍
(𝑇 )
𝑙𝑘 )

𝐿

𝛼
−

ℎ∑︁

𝑓=1

𝑤𝑓 (𝑌 𝑏
𝑓𝑘)

𝑈

𝛼
≥ 0,

𝑠∑︁

𝑟=1

𝑢𝑟(𝑌
𝑔

𝑟𝑘)𝐿
𝛼

+

𝑞∑︁

𝑙=1

𝛾𝑙(𝑍
(𝑇 )
𝑙𝑘 )

𝐿

𝛼
−

ℎ∑︁

𝑓=1

𝑤𝑓 (𝑌 𝑏
𝑓𝑘)

𝑈

𝛼
−

𝑚∑︁

𝑖=1

𝑣𝑖(𝑋𝑖𝑘)𝑈
𝛼 −

𝑞∑︁

𝑙=1

𝛽𝑙(𝑍
(0)
𝑙𝑘 )

𝑈

𝛼
≤ 0,

𝑠∑︁

𝑟=1

𝑢𝑟(𝑌
𝑔

𝑟𝑗)
𝑈

𝛼
+

𝑞∑︁

𝑙=1

𝛾𝑙(𝑍
(𝑇 )
𝑙𝑗 )

𝑈

𝛼
−

ℎ∑︁

𝑓=1

𝑤𝑓 (𝑌 𝑏
𝑓𝑗)

𝐿

𝛼
≥ 0, ∀𝑗 ̸= 𝑘,

𝑠∑︁

𝑟=1

𝑢𝑟(𝑌
𝑔

𝑟𝑗)
𝑈

𝛼
+

𝑞∑︁

𝑙=1

𝛾𝑙(𝑍
(𝑇 )
𝑙𝑗 )

𝑈

𝛼
−

ℎ∑︁

𝑓=1

𝑤𝑓 (𝑌 𝑏
𝑓𝑗)

𝐿

𝛼
−

𝑚∑︁

𝑖=1

𝑣𝑖(𝑋𝑖𝑗)
𝐿
𝛼 +

𝑞∑︁

𝑙=1

𝛽𝑙(𝑍
(0)
𝑙𝑗 )

𝐿

𝛼
≤ 0, ∀𝑗 ̸= 𝑘,

𝑠∑︁

𝑟=1

𝑢𝑟(𝑌
𝑔(𝑡)

𝑟𝑘 )
𝐿

𝛼
+

𝑞∑︁

𝑙=1

𝛾𝑙(𝑍
(𝑡)
𝑙𝑘 )

𝐿

𝛼
−

ℎ∑︁

𝑓=1

𝑤𝑓 (𝑌
𝑏(𝑡)

𝑓𝑘 )
𝑈

𝛼
≥ 0, ∀𝑡,

𝑠∑︁

𝑟=1

𝑢𝑟(𝑌
𝑔(𝑡)

𝑟𝑘 )
𝐿

𝛼
+

𝑞∑︁

𝑙=1

𝛾𝑙(𝑍
(𝑡)
𝑙𝑘 )

𝐿

𝛼
−

ℎ∑︁

𝑓=1

𝑤𝑓 (𝑌
𝑏(𝑡)

𝑓𝑘 )
𝑈

𝛼
−

𝑚∑︁

𝑖=1

𝑣𝑖(𝑋
(𝑡)
𝑖𝑘 )

𝑈

𝛼
−

𝑞∑︁

𝑙=1

𝛽𝑙(𝑍
(𝑡−1)
𝑙𝑘 )

𝑈

𝛼
≤ 0, ∀𝑡,

𝑠∑︁

𝑟=1

𝑢𝑟(𝑌
(𝑡)

𝑟𝑗 )
𝑈

𝛼
+

𝑞∑︁

𝑙=1

𝛾𝑙(𝑍
(𝑡)
𝑙𝑗 )

𝑈

𝛼
−

ℎ∑︁

𝑓=1

𝑤𝑓 (𝑌
𝑏(𝑡)

𝑓𝑗 )
𝐿

𝛼
≥ 0, ∀𝑡, 𝑗 ̸= 𝑘,

𝑠∑︁

𝑟=1

𝑢𝑟(𝑌
(𝑡)

𝑟𝑗 )
𝑈

𝛼
+

𝑞∑︁

𝑙=1

𝛾𝑙(𝑍
(𝑡)
𝑙𝑗 )

𝑈

𝛼
−

ℎ∑︁

𝑓=1

𝑤𝑓 (𝑌
𝑏(𝑡)

𝑓𝑗 )
𝐿

𝛼
−

𝑚∑︁

𝑖=1

𝑣𝑖(𝑋
(𝑡)
𝑖𝑗 )

𝐿

𝛼
−

𝑞∑︁

𝑙=1

𝛽𝑙(𝑍
(𝑡−1)
𝑙𝑗 )

𝐿

𝛼
≤ 0, ∀𝑡, 𝑗 ̸= 𝑘,

𝑢𝑟 ≥ 𝜖 ∀𝑟, 𝑣𝑖 ≥ 𝜖 ∀𝑖, 𝛾𝑙 ≥ 𝜖 ∀𝑙, 𝛽𝑙 ≥ 𝜖 ∀𝑙, 𝜖 > 0.

The optimal objective function values of Models-6 and 7 are respectively known as upper bound ((𝐸𝑘)𝑈*

𝛼 ) and
lower bound ((𝐸𝑘)𝐿*

𝛼 ) system efficiency of 𝐷𝑀𝑈𝑘. The shape of the membership function of system efficiency
𝜇𝐸̃𝑘

is approximated by the set of intervals {[(𝐸𝑘)𝐿
𝛼, (𝐸𝑘)𝑈

𝛼 ]|𝛼 ∈ (0, 1]}. Since the data for inputs/outputs/links
are parabolic fuzzy numbers, so the membership function 𝜇𝐸̃𝑘

can be approximated by the parabolic fuzzy
numbers whose 𝛼-cut is defined by (𝐸̃𝑘)𝛼 = {[(𝐸𝑘)𝐿

𝛼, (𝐸𝑘)𝑈
𝛼 ]|𝛼 ∈ (0, 1]}.

3.2. Proposed algorithm to evaluate period efficiencies

Models-6 and 7 are linear programming problems that may possess alternative solutions. Therefore,
measuring upper and lower bound period efficiencies using non-unique weights obtained from these models may
lead to invalid intervals at some 𝛼 levels. However, there is a need to evaluate valid period interval efficiencies
at each 𝛼-level. So an algorithm is presented to assess interval period efficiencies of 𝐷𝑀𝑈𝑘 for the period 𝑝 at
level 𝛼 is summarized as below:

Algorithm to evaluate interval period efficiencies

Step 1. Evaluate upper bound ((𝐸𝑘)𝑈
𝛼 ) and lower bound ((𝐸𝑘)𝐿

𝛼) system efficiencies using Models-6 and 7,
respectively.
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Step 2. To solve Model-9(a) which is the linear form of Model-8(a) that maximizes the period efficiency of 𝑡𝑡ℎ

period of 𝐷𝑀𝑈𝑘 ((𝐸(𝑡)
𝑘 )𝑈

𝛼 ) at any given 𝛼-level while retaining the upper bound system efficiency derived
from Model-6 and and considers the 𝐷𝑀𝑈𝑘’s upper bounds of desirable outputs/links (as output) and lower
bounds of inputs/undesirable outputs/links (as input) for period 𝑝. For all other periods except period 𝑝
(∀𝑡 ̸= 𝑝) of 𝐷𝑀𝑈𝑘 and for all periods (∀𝑡) of 𝐷𝑀𝑈𝑗 , 𝑗 ̸= 𝑘, lower bounds of desirable outputs/links (as
output) and upper bounds of inputs/undesirable outputs/links (as input) are used.

Model-8(a)

max (𝐸(𝑝)
𝑘 )𝑈

𝛼 =

𝑠∑︁
𝑟=1

𝑢𝑟(𝑌 𝑔(𝑝)
𝑟𝑘 )

𝑈

𝛼
+

𝑞∑︁
𝑙=1

𝛾𝑙(𝑍
(𝑝)
𝑙𝑘 )

𝑈

𝛼
−

ℎ∑︁
𝑓=1

𝑤𝑝(𝑌 𝑏(𝑝)
𝑓𝑘 )

𝐿

𝛼

𝑚∑︁
𝑖=1

𝑣𝑖(𝑋
(𝑝)
𝑖𝑘 )

𝐿

𝛼
+

𝑞∑︁
𝑙=1

𝛽𝑙(𝑍
(𝑝−1)
𝑙𝑘 )

𝐿

𝛼

0 ≤

𝑠∑︁
𝑟=1

𝑢𝑟(𝑌 𝑔(𝑝)
𝑟𝑘 )

𝑈

𝛼
+

𝑞∑︁
𝑙=1

𝛾𝑙(𝑍
(𝑝)
𝑙𝑘 )

𝑈

𝛼
−

ℎ∑︁
𝑓=1

𝑤𝑓 (𝑌 𝑏(𝑝)
𝑓𝑘 )

𝐿

𝛼

𝑚∑︁
𝑖=1

𝑣𝑖(𝑋
(𝑝)
𝑖𝑘 )

𝐿

𝛼
+

𝑞∑︁
𝑙=1

𝛽𝑙(𝑍
(𝑝−1)
𝑙𝑘 )

𝐿

𝛼

≤ 1,

0 ≤

𝑠∑︁
𝑟=1

𝑢𝑟(𝑌 𝑔(𝑡)
𝑟𝑘 )

𝐿

𝛼
+

𝑞∑︁
𝑙=1

𝛾𝑙(𝑍
(𝑡)
𝑙𝑘 )

𝐿

𝛼
−

ℎ∑︁
𝑓=1

𝑤𝑓 (𝑌 𝑏(𝑡)
𝑓𝑘 )

𝑈

𝛼

𝑚∑︁
𝑖=1

𝑣𝑖(𝑋
(𝑡)
𝑖𝑘 )

𝑈

𝛼
+

𝑞∑︁
𝑙=1

𝛽𝑙(𝑍
(𝑡−1)
𝑙𝑘 )

𝑈

𝛼

≤ 1, 𝑡 ̸= 𝑝,

0 ≤

𝑠∑︁
𝑟=1

𝑢𝑟(𝑌 𝑔(𝑡)
𝑟𝑗 )

𝐿

𝛼
+

𝑞∑︁
𝑙=1

𝛾𝑙(𝑍
(𝑡)
𝑙𝑗 )

𝐿

𝛼
−

ℎ∑︁
𝑓=1

𝑤𝑓 (𝑌 𝑏(𝑡)
𝑓𝑗 )

𝑈

𝛼

𝑚∑︁
𝑖=1

𝑣𝑖(𝑋
(𝑡)
𝑖𝑗 )

𝑈

𝛼
+

𝑞∑︁
𝑙=1

𝛽𝑙(𝑍
(𝑡−1)
𝑙𝑗 )

𝑈

𝛼

≤ 1, ∀𝑡, 𝑗 ̸= 𝑘,

𝑠∑︁
𝑟=1

𝑢𝑟(𝑌 𝑔
𝑟𝑘)𝑈

𝛼
+

𝑞∑︁
𝑙=1

𝛾𝑙(𝑍
(𝑇 )
𝑙𝑘 )

𝑈

𝛼
−

ℎ∑︁
𝑓=1

𝑤𝑓 (𝑌 𝑏
𝑓𝑘)

𝐿

𝛼

𝑚∑︁
𝑖=1

𝑣𝑖(𝑋𝑖𝑘)𝐿
𝛼 +

𝑞∑︁
𝑙=1

𝛽𝑙(𝑍
(0)
𝑙𝑘 )

𝐿

𝛼

= (𝐸𝑘)𝑈*

𝛼 ,

𝑢𝑟 ≥ 𝜖 ∀𝑟, 𝑣𝑖 ≥ 𝜖 ∀𝑖, 𝛾𝑙 ≥ 𝜖 ∀𝑙, 𝛽𝑙 ≥ 𝜖 ∀𝑙, 𝜖 > 0.

By using Charnes-Cooper transformation [5], Model-8(a) is further reduced to the linear form given by Model-
9(a).

Model-9(a)

max (𝐸(𝑝)
𝑘 )𝑈

𝛼 =
𝑠∑︁

𝑟=1

𝑢𝑟(𝑌 𝑔(𝑝)
𝑟𝑘 )

𝑈

𝛼
+

𝑞∑︁
𝑙=1

𝛾𝑙(𝑍
(𝑝)
𝑙𝑘 )

𝑈

𝛼
−

ℎ∑︁
𝑓=1

𝑤𝑝(𝑌 𝑏(𝑝)
𝑓𝑘 )

𝐿

𝛼

s.t.
𝑚∑︁

𝑖=1

𝑣𝑖(𝑋
(𝑝)
𝑖𝑘 )

𝐿

𝛼
+

𝑞∑︁
𝑙=1

𝛽𝑙(𝑍
(𝑝−1)
𝑙𝑘 )

𝐿

𝛼
= 1,
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𝑠∑︁
𝑟=1

𝑢𝑟(𝑌 𝑔(𝑝)
𝑟𝑘 )

𝑈

𝛼
+

𝑞∑︁
𝑙=1

𝛾𝑙(𝑍
(𝑝)
𝑙𝑘 )

𝑈

𝛼
−

ℎ∑︁
𝑓=1

𝑤𝑓 (𝑌 𝑏(𝑝)
𝑓𝑘 )

𝐿

𝛼
≥ 0,

𝑠∑︁
𝑟=1

𝑢𝑟(𝑌 𝑔(𝑝)
𝑟𝑘 )

𝑈

𝛼
+

𝑞∑︁
𝑙=1

𝛾𝑙(𝑍
(𝑝)
𝑙𝑘 )

𝑈

𝛼
−

ℎ∑︁
𝑓=1

𝑤𝑓 (𝑌 𝑏(𝑝)
𝑓𝑘 )

𝐿

𝛼
−

𝑚∑︁
𝑖=1

𝑣𝑖(𝑋
(𝑝)
𝑖𝑘 )

𝐿

𝛼
−

𝑞∑︁
𝑙=1

𝛽𝑙(𝑍
(𝑝−1)
𝑙𝑘 )

𝐿

𝛼
≤ 0,

𝑠∑︁
𝑟=1

𝑢𝑟(𝑌 𝑔(𝑡)
𝑟𝑘 )

𝐿

𝛼
+

𝑞∑︁
𝑙=1

𝛾𝑙(𝑍
(𝑡)
𝑙𝑘 )

𝐿

𝛼
−

ℎ∑︁
𝑓=1

𝑤𝑓 (𝑌 𝑏(𝑡)
𝑓𝑘 )

𝑈

𝛼
≥ 0, ∀𝑡 ̸= 𝑝,

𝑠∑︁
𝑟=1

𝑢𝑟(𝑌 𝑔(𝑡)
𝑟𝑘 )

𝐿

𝛼
+

𝑞∑︁
𝑙=1

𝛾𝑙(𝑍
(𝑡)
𝑙𝑘 )

𝐿

𝛼
−

ℎ∑︁
𝑓=1

𝑤𝑓 (𝑌 𝑏(𝑡)
𝑓𝑘 )

𝑈

𝛼
−

𝑚∑︁
𝑖=1

𝑣𝑖(𝑋
(𝑡)
𝑖𝑘 )

𝑈

𝛼
−

𝑞∑︁
𝑙=1

𝛽𝑙(𝑍
(𝑡−1)
𝑙𝑘 )

𝑈

𝛼
≤ 0, ∀𝑡 ̸= 𝑝,

𝑠∑︁
𝑟=1

𝑢𝑟(𝑌 𝑔(𝑡)
𝑟𝑗 )

𝐿

𝛼
+

𝑞∑︁
𝑙=1

𝛾𝑙(𝑍
(𝑡)
𝑙𝑗 )

𝐿

𝛼
−

ℎ∑︁
𝑓=1

𝑤𝑓 (𝑌 𝑏(𝑡)
𝑓𝑗 )

𝑈

𝛼
≥ 0, ∀𝑡, 𝑗 ̸= 𝑘,

𝑠∑︁
𝑟=1

𝑢𝑟(𝑌 𝑔(𝑡)
𝑟𝑗 )

𝐿

𝛼
+

𝑞∑︁
𝑙=1

𝛾𝑙(𝑍
(𝑡)
𝑙𝑗 )

𝐿

𝛼
−

ℎ∑︁
𝑓=1

𝑤𝑓 (𝑌 𝑏(𝑡)
𝑓𝑗 )

𝑈

𝛼
−

𝑚∑︁
𝑖=1

𝑣𝑖(𝑋
(𝑡)
𝑖𝑗 )

𝑈

𝛼
−

𝑞∑︁
𝑙=1

𝛽𝑙(𝑍
(𝑡−1)
𝑙𝑗 )

𝑈

𝛼
≤ 0, ∀𝑡, 𝑗 ̸= 𝑘,

𝑠∑︁
𝑟=1

𝑢𝑟(𝑌 𝑔
𝑟𝑘)𝑈

𝛼
+

𝑞∑︁
𝑙=1

𝛾𝑙(𝑍
(𝑇 )
𝑙𝑘 )

𝑈

𝛼
−

ℎ∑︁
𝑓=1

𝑤𝑓 (𝑌 𝑏
𝑓𝑘)

𝐿

𝛼
− (𝐸𝑘)𝑈*

𝛼 *

(︃
𝑚∑︁

𝑖=1

𝑣𝑖(𝑋𝑖𝑘)𝐿
𝛼 +

𝑞∑︁
𝑙=1

𝛽𝑙(𝑍
(0)
𝑙𝑘 )

𝐿

𝛼

)︃
= 0,

𝑢𝑟 ≥ 𝜖 ∀𝑟, 𝑣𝑖 ≥ 𝜖 ∀𝑖, 𝛾𝑙 ≥ 𝜖 ∀𝑙, 𝛽𝑙 ≥ 𝜖 ∀𝑙, 𝜖 > 0.

The optimal objective function value of Model-9(a) is known as upper bound period efficiency ((𝐸(𝑝)
𝑘 )

𝑈*

𝛼
) at

𝛼-level of 𝐷𝑀𝑈𝑘 for period 𝑝.

Step 3. To evaluate lower bound period efficiency of period 𝑝 of 𝐷𝑀𝑈𝑘 ((𝐸(𝑝)
𝑘 )𝐿

𝛼) using Model-9(b) which is
reduced from Model-8(b) that minimizes (𝐸(𝑝)

𝑘 )𝐿
𝛼 at any given 𝛼-level and retains the lower bound system

efficiency ((𝐸𝑘)𝐿*

𝛼 ) obtained from Model-7 and considers the 𝐷𝑀𝑈𝑘’s lower bounds of desirable outputs/links
(as output) and upper bounds of inputs/undesirable outputs/links (as input) for period 𝑝. On contrary, for
all other periods except 𝑝 (∀𝑡 ̸= 𝑝) of 𝐷𝑀𝑈𝑘 and for all periods (∀𝑡) of 𝐷𝑀𝑈𝑗 , 𝑗 ̸= 𝑘, upper bounds of
desirable outputs/links (as output) and lower bounds of inputs/undesirable outputs/links (as input) are
used.

Model-8(b)

max (𝐸(𝑝)
𝑘 )𝐿

𝛼 =

𝑠∑︁
𝑟=1

𝑢𝑟(𝑌 𝑔(𝑝)
𝑟𝑘 )

𝐿

𝛼
+

𝑞∑︁
𝑙=1

𝛾𝑙(𝑍
(𝑝)
𝑙𝑘 )

𝐿

𝛼
−

ℎ∑︁
𝑓=1

𝑤𝑝(𝑌 𝑏(𝑝)
𝑓𝑘 )

𝑈

𝛼

𝑚∑︁
𝑖=1

𝑣𝑖(𝑋
(𝑝)
𝑖𝑘 )

𝑈

𝛼
+

𝑞∑︁
𝑙=1

𝛽𝑙(𝑍
(𝑝−1)
𝑙𝑘 )

𝑈

𝛼

0 ≤

𝑠∑︁
𝑟=1

𝑢𝑟(𝑌 𝑔(𝑝)
𝑟𝑘 )

𝐿

𝛼
+

𝑞∑︁
𝑙=1

𝛾𝑙(𝑍
(𝑝)
𝑙𝑘 )

𝐿

𝛼
−

ℎ∑︁
𝑓=1

𝑤𝑓 (𝑌 𝑏(𝑝)
𝑓𝑘 )

𝑈

𝛼

𝑚∑︁
𝑖=1

𝑣𝑖(𝑋
(𝑝)
𝑖𝑘 )

𝑈

𝛼
+

𝑞∑︁
𝑙=1

𝛽𝑙(𝑍
(𝑝−1)
𝑙𝑘 )

𝑈

𝛼

≤ 1,
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0 ≤

𝑠∑︁
𝑟=1

𝑢𝑟(𝑌 𝑔(𝑡)
𝑟𝑘 )

𝑈

𝛼
+

𝑞∑︁
𝑙=1

𝛾𝑙(𝑍
(𝑡)
𝑙𝑘 )

𝑈

𝛼
−

ℎ∑︁
𝑓=1

𝑤𝑓 (𝑌 𝑏(𝑡)
𝑓𝑘 )

𝐿

𝛼

𝑚∑︁
𝑖=1

𝑣𝑖(𝑋
(𝑡)
𝑖𝑘 )

𝐿

𝛼
+

𝑞∑︁
𝑙=1

𝛽𝑙(𝑍
(𝑡−1)
𝑙𝑘 )

𝐿

𝛼

≤ 1, 𝑡 ̸= 𝑝,

0 ≤

𝑠∑︁
𝑟=1

𝑢𝑟(𝑌 𝑔(𝑡)
𝑟𝑗 )

𝑈

𝛼
+

𝑞∑︁
𝑙=1

𝛾𝑙(𝑍
(𝑡)
𝑙𝑗 )

𝑈

𝛼
−

ℎ∑︁
𝑓=1

𝑤𝑓 (𝑌 𝑏(𝑡)
𝑓𝑗 )

𝐿

𝛼

𝑚∑︁
𝑖=1

𝑣𝑖(𝑋
(𝑡)
𝑖𝑗 )

𝐿

𝛼
+

𝑞∑︁
𝑙=1

𝛽𝑙(𝑍
(𝑡−1)
𝑙𝑗 )

𝐿

𝛼

≤ 1, ∀𝑡, 𝑗 ̸= 𝑘,

𝑠∑︁
𝑟=1

𝑢𝑟(𝑌 𝑔
𝑟𝑘)𝐿

𝛼
+

𝑞∑︁
𝑙=1

𝛾𝑙(𝑍
(𝑇 )
𝑙𝑘 )

𝐿

𝛼
−

ℎ∑︁
𝑓=1

𝑤𝑓 (𝑌 𝑏
𝑓𝑘)

𝑈

𝛼

𝑚∑︁
𝑖=1

𝑣𝑖(𝑋𝑖𝑘)𝑈
𝛼 +

𝑞∑︁
𝑙=1

𝛽𝑙(𝑍
(0)
𝑙𝑘 )

𝑈

𝛼

= (𝐸𝑘)𝐿*

𝛼 ,

𝑢𝑟 ≥ 𝜖 ∀𝑟, 𝑣𝑖 ≥ 𝜖 ∀𝑖, 𝛾𝑙 ≥ 𝜖 ∀𝑙, 𝛽𝑙 ≥ 𝜖 ∀𝑙, 𝜖 > 0.

By using Charnes-Cooper transformation [5], Model-8(b) is reduced to the following linear model given by
Model-9(b).

Model-9(b)

max (𝐸(𝑝)
𝑘 )𝐿

𝛼 =
𝑠∑︁

𝑟=1

𝑢𝑟(𝑌 𝑔(𝑝)
𝑟𝑗 )

𝐿

𝛼
+

𝑞∑︁
𝑙=1

𝛾𝑙(𝑍
(𝑝)
𝑙𝑗 )

𝐿

𝛼
−

ℎ∑︁
𝑓=1

𝑤𝑝(𝑌 𝑏(𝑝)
𝑓𝑗 )

𝑈

𝛼

s.t.
𝑚∑︁

𝑖=1

𝑣𝑖(𝑋
(𝑝)
𝑖𝑗 )

𝑈

𝛼
+

𝑞∑︁
𝑙=1

𝛽𝑙(𝑍
(𝑝−1)
𝑙𝑗 )

𝑈

𝛼
= 1

𝑠∑︁
𝑟=1

𝑢𝑟(𝑌 𝑔(𝑝)
𝑟𝑘 )

𝐿

𝛼
+

𝑞∑︁
𝑙=1

𝛾𝑙(𝑍
(𝑝)
𝑙𝑘 )

𝐿

𝛼
−

ℎ∑︁
𝑓=1

𝑤𝑓 (𝑌 𝑏(𝑝)
𝑓𝑘 )

𝑈

𝛼
≥ 0,

𝑠∑︁
𝑟=1

𝑢𝑟(𝑌 𝑔(𝑝)
𝑟𝑘 )

𝐿

𝛼
+

𝑞∑︁
𝑙=1

𝛾𝑙(𝑍
(𝑝)
𝑙𝑘 )

𝐿

𝛼
−

ℎ∑︁
𝑓=1

𝑤𝑓 (𝑌 𝑏(𝑝)
𝑓𝑘 )

𝑈

𝛼
−

𝑚∑︁
𝑖=1

𝑣𝑖(𝑋
(𝑝)
𝑖𝑘 )

𝑈

𝛼
−

𝑞∑︁
𝑙=1

𝛽𝑙(𝑍
(𝑝−1)
𝑙𝑘 )

𝑈

𝛼
≤ 0,

𝑠∑︁
𝑟=1

𝑢𝑟(𝑌 𝑔(𝑡)
𝑟𝑘 )

𝑈

𝛼
+

𝑞∑︁
𝑙=1

𝛾𝑙(𝑍
(𝑡)
𝑙𝑘 )

𝑈

𝛼
−

ℎ∑︁
𝑓=1

𝑤𝑓 (𝑌 𝑏(𝑡)
𝑓𝑘 )

𝐿

𝛼
≥ 0, ∀𝑡 ̸= 𝑝,

𝑠∑︁
𝑟=1

𝑢𝑟(𝑌 𝑔(𝑡)
𝑟𝑘 )

𝑈

𝛼
+

𝑞∑︁
𝑙=1

𝛾𝑙(𝑍
(𝑡)
𝑙𝑘 )

𝑈

𝛼
−

ℎ∑︁
𝑓=1

𝑤𝑓 (𝑌 𝑏(𝑡)
𝑓𝑘 )

𝐿

𝛼
−

𝑚∑︁
𝑖=1

𝑣𝑖(𝑋
(𝑡)
𝑖𝑘 )

𝐿

𝛼
−

𝑞∑︁
𝑙=1

𝛽𝑙(𝑍
(𝑡−1)
𝑙𝑘 )

𝐿

𝛼
≤ 0, ∀𝑡 ̸= 𝑝,

𝑠∑︁
𝑟=1

𝑢𝑟(𝑌 𝑔(𝑡)
𝑟𝑗 )

𝑈

𝛼
+

𝑞∑︁
𝑙=1

𝛾𝑙(𝑍
(𝑡)
𝑙𝑗 )

𝑈

𝛼
−

ℎ∑︁
𝑓=1

𝑤𝑓 (𝑌 𝑏(𝑡)
𝑓𝑗 )

𝐿

𝛼
≥ 0, ∀𝑡, 𝑗 ̸= 𝑘,

𝑠∑︁
𝑟=1

𝑢𝑟(𝑌 𝑔(𝑡)
𝑟𝑗 )

𝑈

𝛼
+

𝑞∑︁
𝑙=1

𝛾𝑙(𝑍
(𝑡)
𝑙𝑗 )

𝑈

𝛼
−

ℎ∑︁
𝑓=1

𝑤𝑓 (𝑌 𝑏(𝑡)
𝑓𝑗 )

𝐿

𝛼
−

𝑚∑︁
𝑖=1

𝑣𝑖(𝑋
(𝑡)
𝑖𝑗 )

𝐿

𝛼
−

𝑞∑︁
𝑙=1

𝛽𝑙(𝑍
(𝑡−1)
𝑙𝑗 )

𝐿

𝛼
≤ 0, ∀𝑡, 𝑗 ̸= 𝑘,

𝑠∑︁
𝑟=1

𝑢𝑟(𝑌 𝑔
𝑟𝑘)𝐿

𝛼
+

𝑞∑︁
𝑙=1

𝛾𝑙(𝑍
(𝑇 )
𝑙𝑘 )

𝐿

𝛼
−

ℎ∑︁
𝑓=1

𝑤𝑓 (𝑌 𝑏
𝑓𝑘)

𝑈

𝛼
− (𝐸𝑘)𝐿*

𝛼 *

(︃
𝑚∑︁

𝑖=1

𝑣𝑖(𝑋𝑖𝑘)𝑈
𝛼 +

𝑞∑︁
𝑙=1

𝛽𝑙(𝑍
(0)
𝑙𝑘 )

𝑈

𝛼

)︃
= 0,
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𝑢𝑟 ≥ 𝜖 ∀𝑟, 𝑣𝑖 ≥ 𝜖 ∀𝑖, 𝛾𝑙 ≥ 𝜖 ∀𝑙, 𝛽𝑙 ≥ 𝜖 ∀𝑙, 𝜖 > 0.

The optimal objective function value of Model-9(b) is known as lower bound period efficiency ((𝐸(𝑝)
𝑘 )

𝐿*

𝛼
) of

𝐷𝑀𝑈𝑘 for period 𝑝. The shape of the membership function of period efficiency 𝜇
𝐸̃

(𝑝)
𝑘

of 𝐷𝑀𝑈𝑘 for period 𝑝

is approximated by the set of intervals {[(𝐸(𝑝)
𝑘 )𝐿

𝛼, (𝐸(𝑝)
𝑘 )𝑈

𝛼 ]|𝛼 ∈ (0, 1]}. It is further noted that the shape of
membership function at different 𝛼-levels may constitute a PFN.

3.3. Schematic view of the proposed PFDDEA approach

Figure 2 clearly depicts the schematic view of the proposed PFDDEA approach for measuring system and
period efficiencies of the DMUs when input-output data are available as PFNs.

4. Relationship between system and period efficiencies

This section presents a relationship between upper bound (lower bound) system efficiency and upper bound
(lower bound) period efficiencies.

4.1. Relationship between upper bound system and upper bound period efficiencies

Let (𝑢*𝑟 ∀𝑟; 𝑤*𝑓 ∀𝑓 ; 𝑣*𝑖 ∀𝑖; 𝛾*𝑙 ∀𝑙; 𝛽*𝑙 ∀𝑙) be the optimal weights derived from Model-9(a) at level 𝛼, 0 ≤ 𝛼 ≤ 1.
Since,

𝑇∑︁
𝑡=1

⎡⎣ 𝑠∑︁
𝑟=1

𝑢*𝑟(𝑌 𝑔(𝑡)
𝑟𝑘 )

𝑈

𝛼
+

𝑞∑︁
𝑙=1

𝛾*𝑙 (𝑍(𝑡)
𝑙𝑘 )

𝑈

𝛼
−

ℎ∑︁
𝑓=1

𝑤*𝑓 (𝑌 𝑏(𝑡)
𝑓𝑘 )

𝐿

𝛼
−

𝑚∑︁
𝑖=1

𝑣*𝑖 (𝑋(𝑡)
𝑖𝑘 )

𝐿

𝛼
−

𝑞∑︁
𝑙=1

𝛽*𝑙 (𝑍(𝑡−1)
𝑙𝑘 )

𝐿

𝛼

⎤⎦
=

𝑠∑︁
𝑟=1

𝑢*𝑟(𝑌 𝑔
𝑟𝑘)𝑈

𝛼
+

𝑇−1∑︁
𝑡=1

𝑞∑︁
𝑙=1

𝛾*𝑙 (𝑍(𝑡)
𝑙𝑘 )

𝑈

𝛼
+

𝑞∑︁
𝑙=1

𝛾*𝑙 (𝑍(𝑇 )
𝑙𝑘 )

𝑈

𝛼
−

ℎ∑︁
𝑓=1

𝑤*𝑓 (𝑌 𝑏
𝑓𝑘)

𝐿

𝛼
−

𝑚∑︁
𝑖=1

𝑣*𝑖 (𝑋𝑖𝑘)𝐿
𝛼−

𝑞∑︁
𝑙=1

𝛽*𝑙 (𝑍(0)
𝑙𝑘 )

𝐿

𝛼
−

𝑇∑︁
𝑡=2

𝑞∑︁
𝑙=1

𝛽*𝑙 (𝑍(𝑡−1)
𝑙𝑘 )

𝐿

𝛼

Dividing on both sides by
𝑚∑︁

𝑖=1

𝑣*𝑖 (𝑋𝑖𝑘)𝐿
𝛼 +

𝑞∑︁
𝑙=1

𝛽*𝑙 (𝑍(0)
𝑙𝑘 )

𝐿

𝛼
, we get

𝑇∑︁
𝑡=1

[︁(︁
(𝐸(𝑡)

𝑘 )𝑈*

𝛼 − 1
)︁

𝑊 (𝑡)𝑈
𝛼

]︁
=
(︁

(𝐸𝑘)𝑈*

𝛼 − 1
)︁

+ ∆𝑈
𝛼 (4.1)

where 𝑊 (𝑡)𝑈
𝛼 =

⎛⎜⎜⎜⎜⎝
𝑚∑︁

𝑖=1

𝑣*𝑖 (𝑋(𝑡)
𝑖𝑘 )

𝐿

𝛼
+

𝑞∑︁
𝑙=1

𝛽*𝑙 (𝑍(𝑡−1)
𝑙𝑘 )

𝐿

𝛼

𝑚∑︁
𝑖=1

𝑣*𝑖 (𝑋𝑖𝑘)𝐿
𝛼 +

𝑞∑︁
𝑙=1

𝛽*𝑙 (𝑍(0)
𝑙𝑘 )

𝐿

𝛼

⎞⎟⎟⎟⎟⎠ and ∆𝑈
𝛼 =

𝑇−1∑︁
𝑡=1

𝑞∑︁
𝑙=1

𝛾*𝑙 (𝑍(𝑡)
𝑙𝑘 )

𝑈

𝛼
−

𝑇∑︁
𝑡=2

𝑞∑︁
𝑙=1

𝛽*𝑙 (𝑍(𝑡)
𝑙𝑘 )

𝐿

𝛼

𝑚∑︁
𝑖=1

𝑣*𝑖 (𝑋𝑖𝑘)𝐿
𝛼 +

𝑞∑︁
𝑙=1

𝛽*𝑙 (𝑍(0)
𝑙𝑘 )

𝐿

𝛼

(4.2)

Now,
𝑇∑︁

𝑡=1

𝑊 (𝑡)𝑈
𝛼 =

𝑇∑︁
𝑡=1

⎛⎜⎜⎜⎜⎝
𝑚∑︁

𝑖=1

𝑣*𝑖 (𝑋(𝑡)
𝑖𝑘 )

𝐿

𝛼
+

𝑞∑︁
𝑙=1

𝛽*𝑙 (𝑍(𝑡−1)
𝑙𝑘 )

𝐿

𝛼

𝑚∑︁
𝑖=1

𝑣*𝑖 (𝑋𝑖𝑘)𝐿
𝛼 +

𝑞∑︁
𝑙=1

𝛽*𝑙 (𝑍(0)
𝑙𝑘 )

𝐿

𝛼

⎞⎟⎟⎟⎟⎠ =

𝑚∑︁
𝑖=1

𝑣*𝑖 (𝑋𝑖𝑘)𝐿
𝛼 +

𝑇∑︁
𝑡=1

𝑞∑︁
𝑙=1

𝛽*𝑙 (𝑍(𝑡−1)
𝑙𝑘 )

𝐿

𝛼

𝑚∑︁
𝑖=1

𝑣*𝑖 (𝑋𝑖𝑘)𝐿
𝛼 +

𝑞∑︁
𝑙=1

𝛽*𝑙 (𝑍(0)
𝑙𝑘 )

𝐿

𝛼
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Figure 2. Schematic view of the proposed parabolic fuzzy dynamic DEA model.
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=

𝑚∑︁
𝑖=1

𝑣*𝑖 (𝑋𝑖𝑘)𝐿
𝛼 +

𝑞∑︁
𝑙=1

𝛽*𝑙 (𝑍(0)
𝑙𝑘 )

𝐿

𝛼
+

𝑇∑︁
𝑡=2

𝑞∑︁
𝑙=1

𝛽*𝑙 (𝑍(𝑡−1)
𝑙𝑘 )

𝐿

𝛼

𝑚∑︁
𝑖=1

𝑣*𝑖 (𝑋𝑖𝑘)𝐿
𝛼 +

𝑞∑︁
𝑙=1

𝛽*𝑙 (𝑍(0)
𝑙𝑘 )

𝐿

𝛼

= 1 +

𝑇∑︁
𝑡=2

𝑞∑︁
𝑙=1

𝛽*𝑙 (𝑍(𝑡−1)
𝑙𝑘 )

𝐿

𝛼

𝑚∑︁
𝑖=1

𝑣*𝑖 (𝑋𝑖𝑘)𝐿
𝛼 +

𝑞∑︁
𝑙=1

𝛽*𝑙 (𝑍(0)
𝑙𝑘 )

𝐿

𝛼

= 1 + ∆𝑈
1𝛼 (4.3)

If ∆𝑈
𝛼 = 0 and ∆𝑈

1𝛼 = 0, then by using the equations (4.1), (4.2), and (4.3), it is evident that complement of
upper bound system efficiency ((𝐸𝑘)𝑈*

𝛼 − 1) is linear combination of the complement of upper bound period
efficiencies ((𝐸(𝑡)

𝑘 )𝑈*

𝛼 − 1) at level 𝛼, 0 ≤ 𝛼 ≤ 1.

Remark 2. From equations (4.1)–(4.3), we have

𝑇∑︁
𝑡=1

(︁
(𝐸(𝑡)

𝑘 )𝑈*

𝛼

)︁
𝑊 (𝑡)𝑈

𝛼 = (𝐸𝑘)𝑈*

𝛼 + (∆𝑈
𝛼 − 1) +

𝑇∑︁
𝑡=1

𝑊 (𝑡)𝑈
𝛼 = (𝐸𝑘)𝑈*

𝛼 + ∆𝑈
𝛼 + ∆𝑈

1𝛼 = (𝐸𝑘)𝑈*

𝛼 + ∆𝑈
2𝛼

where, ∆𝑈
2𝛼 = ∆𝑈

𝛼 + ∆𝑈
1𝛼

=

𝑇−1∑︁
𝑡=1

𝑞∑︁
𝑙=1

𝛾*𝑙 (𝑍(𝑡)
𝑙𝑘 )

𝑈

𝛼
−

𝑇∑︁
𝑡=2

𝑞∑︁
𝑙=1

𝛽*𝑙 (𝑍(𝑡)
𝑙𝑘 )

𝐿

𝛼

𝑚∑︁
𝑖=1

𝑣*𝑖 (𝑋𝑖𝑘)𝐿
𝛼 +

𝑞∑︁
𝑙=1

𝛽*𝑙 (𝑍(0)
𝑙𝑘 )

𝐿

𝛼

+

𝑇∑︁
𝑡=2

𝑞∑︁
𝑙=1

𝛽*𝑙 (𝑍(𝑡−1)
𝑙𝑘 )

𝐿

𝛼

𝑚∑︁
𝑖=1

𝑣*𝑖 (𝑋𝑖𝑘)𝐿
𝛼 +

𝑞∑︁
𝑙=1

𝛽*𝑙 (𝑍(0)
𝑙𝑘 )

𝐿

𝛼

=

𝑇−1∑︁
𝑡=1

𝑞∑︁
𝑙=1

𝛾*𝑙 (𝑍(𝑡)
𝑙𝑘 )

𝑈

𝛼
−

𝑇∑︁
𝑡=2

𝑞∑︁
𝑙=1

𝛽*𝑙 (𝑍(𝑡)
𝑙𝑘 )

𝐿

𝛼
+

𝑇∑︁
𝑡=2

𝑞∑︁
𝑙=1

𝛽*𝑙 (𝑍(𝑡−1)
𝑙𝑘 )

𝐿

𝛼

𝑚∑︁
𝑖=1

𝑣*𝑖 (𝑋𝑖𝑘)𝐿
𝛼 +

𝑞∑︁
𝑙=1

𝛽*𝑙 (𝑍(0)
𝑙𝑘 )

𝐿

𝛼

=

𝑇−1∑︁
𝑡=1

𝑞∑︁
𝑙=1

𝛾*𝑙 (𝑍(𝑡)
𝑙𝑘 )

𝑈

𝛼

𝑚∑︁
𝑖=1

𝑣*𝑖 (𝑋𝑖𝑘)𝐿
𝛼 +

𝑞∑︁
𝑙=1

𝛽*𝑙 (𝑍(0)
𝑙𝑘 )

𝐿

𝛼

·

It implies that upper bound system efficiency ((𝐸𝑘)𝑈*

𝛼 ) is linear combination of upper bound period efficiencies
((𝐸(𝑡)

𝑘 )𝑈*

𝛼 ,∀𝑡) at level 𝛼 (0 ≤ 𝛼 ≤ 1), provided ∆𝑈
2𝛼 = 0. Also, if ∆𝑈

1𝛼 = 0 (& ∆𝑈
2𝛼 = 0), (𝐸𝑘)𝑈*

𝛼 can be expressed
as weighted average of (𝐸(𝑡)

𝑘 )𝑈*

𝛼 , (∀𝑡) at level 𝛼.

4.2. Relationship between lower bound system efficiency and lower bound period
efficiencies

Let (𝑢*𝑟 ∀𝑟; 𝑤*𝑓 ∀𝑓 ; 𝑣*𝑖 ∀𝑖; 𝛾*𝑙 ∀𝑙; 𝛽*𝑙 ∀𝑙) be the optimal weights derived from Model-9(b) at level
𝛼, 0 ≤ 𝛼 ≤ 1.
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Since,

𝑇∑︁
𝑡=1

⎡⎣ 𝑠∑︁
𝑟=1

𝑢*𝑟(𝑌 𝑔(𝑡)
𝑟𝑘 )

𝐿

𝛼
+

𝑞∑︁
𝑙=1

𝛾*𝑙 (𝑍(𝑡)
𝑙𝑘 )

𝐿

𝛼
−

ℎ∑︁
𝑓=1

𝑤*𝑓 (𝑌 𝑏(𝑡)
𝑓𝑘 )

𝑈

𝛼
−

𝑚∑︁
𝑖=1

𝑣*𝑖 (𝑋(𝑡)
𝑖𝑘 )

𝑈

𝛼
−

𝑞∑︁
𝑙=1

𝛽*𝑙 (𝑍(𝑡−1)
𝑙𝑘 )

𝑈

𝛼

⎤⎦
=

𝑠∑︁
𝑟=1

𝑢*𝑟(𝑌 𝑔
𝑟𝑘)𝐿

𝛼
+

𝑇−1∑︁
𝑡=1

𝑞∑︁
𝑙=1

𝛾*𝑙 (𝑍(𝑡)
𝑙𝑘 )

𝐿

𝛼
+

𝑞∑︁
𝑙=1

𝛾*𝑙 (𝑍(𝑇 )
𝑙𝑘 )

𝐿

𝛼
−

ℎ∑︁
𝑓=1

𝑤*𝑓 (𝑌 𝑏
𝑓𝑘)

𝑈

𝛼
−

𝑚∑︁
𝑖=1

𝑣*𝑖 (𝑋𝑖𝑘)𝑈
𝛼−

𝑞∑︁
𝑙=1

𝛽*𝑙 (𝑍(0)
𝑙𝑘 )

𝑈

𝛼
−

𝑇∑︁
𝑡=2

𝑞∑︁
𝑙=1

𝛽*𝑙 (𝑍(𝑡−1)
𝑙𝑘 )

𝑈

𝛼
.

Dividing on both sides by
𝑚∑︁

𝑖=1

𝑣*𝑖 (𝑋𝑖𝑘)𝑈
𝛼 +

𝑞∑︁
𝑙=1

𝛽*𝑙 (𝑍(0)
𝑙𝑘 )

𝑈

𝛼
, we get

𝑇∑︁
𝑡=1

[︁(︁
(𝐸(𝑡)

𝑘 )𝐿*

𝛼 − 1
)︁

𝑊 (𝑡)𝐿
𝛼

]︁
=
(︁

(𝐸𝑘)𝐿*

𝛼 − 1
)︁

+ ∆𝐿
𝛼 (4.4)

where 𝑊 (𝑡)𝐿
𝛼 =

⎛⎜⎜⎜⎜⎝
𝑚∑︁

𝑖=1

𝑣*𝑖 (𝑋(𝑡)
𝑖𝑘 )

𝑈

𝛼
+

𝑞∑︁
𝑙=1

𝛽*𝑙 (𝑍(𝑡−1)
𝑙𝑘 )

𝑈

𝛼

𝑚∑︁
𝑖=1

𝑣*𝑖 (𝑋𝑖𝑘)𝑈
𝛼 +

𝑞∑︁
𝑙=1

𝛽*𝑙 (𝑍(0)
𝑙𝑘 )

𝑈

𝛼

⎞⎟⎟⎟⎟⎠ and ∆𝐿
𝛼 =

𝑇−1∑︁
𝑡=1

𝑞∑︁
𝑙=1

𝛾*𝑙 (𝑍(𝑡)
𝑙𝑘 )

𝐿

𝛼
−

𝑇∑︁
𝑡=2

𝑞∑︁
𝑙=1

𝛽*𝑙 (𝑍(𝑡)
𝑙𝑘 )

𝑈

𝛼

𝑚∑︁
𝑖=1

𝑣*𝑖 (𝑋𝑖𝑘)𝑈
𝛼 +

𝑞∑︁
𝑙=1

𝛽*𝑙 (𝑍(0)
𝑙𝑘 )

𝑈

𝛼

(4.5)

Now,
𝑇∑︁

𝑡=1

𝑊 (𝑡)𝐿
𝛼 =

𝑇∑︁
𝑡=1

⎛⎜⎜⎜⎜⎝
𝑚∑︁

𝑖=1

𝑣*𝑖 (𝑋(𝑡)
𝑖𝑘 )

𝑈

𝛼
+

𝑞∑︁
𝑙=1

𝛽*𝑙 (𝑍(𝑡−1)
𝑙𝑘 )

𝑈

𝛼

𝑚∑︁
𝑖=1

𝑣*𝑖 (𝑋𝑖𝑘)𝑈
𝛼 +

𝑞∑︁
𝑙=1

𝛽*𝑙 (𝑍(0)
𝑙𝑘 )

𝑈

𝛼

⎞⎟⎟⎟⎟⎠ =

𝑚∑︁
𝑖=1

𝑣*𝑖 (𝑋𝑖𝑘)𝑈
𝛼 +

𝑇∑︁
𝑡=1

𝑞∑︁
𝑙=1

𝛽*𝑙 (𝑍(𝑡−1)
𝑙𝑘 )

𝑈

𝛼

𝑚∑︁
𝑖=1

𝑣*𝑖 (𝑋𝑖𝑘)𝑈
𝛼 +

𝑞∑︁
𝑙=1

𝛽*𝑙 (𝑍(0)
𝑙𝑘 )

𝑈

𝛼

=

𝑚∑︁
𝑖=1

𝑣*𝑖 (𝑋𝑖𝑘)𝑈
𝛼 +

𝑞∑︁
𝑙=1

𝛽*𝑙 (𝑍(0)
𝑙𝑘 )

𝑈

𝛼
+

𝑇∑︁
𝑡=2

𝑞∑︁
𝑙=1

𝛽*𝑙 (𝑍(𝑡−1)
𝑙𝑘 )

𝑈

𝛼

𝑚∑︁
𝑖=1

𝑣*𝑖 (𝑋𝑖𝑘)𝑈
𝛼 +

𝑞∑︁
𝑙=1

𝛽*𝑙 (𝑍(0)
𝑙𝑘 )

𝑈

𝛼

= 1 +

𝑇∑︁
𝑡=2

𝑞∑︁
𝑙=1

𝛽*𝑙 (𝑍(𝑡−1)
𝑙𝑘 )

𝑈

𝛼

𝑚∑︁
𝑖=1

𝑣*𝑖 (𝑋𝑖𝑘)𝑈
𝛼 +

𝑞∑︁
𝑙=1

𝛽*𝑙 (𝑍(0)
𝑙𝑘 )

𝑈

𝛼

= 1 + ∆𝐿
1𝛼. (4.6)

If ∆𝐿
𝛼 = 0 and ∆𝐿

1𝛼 = 0, then by using the equations (4.4)–(4.6), complement of lower bound system efficiency
((𝐸𝑘)𝐿*

𝛼 −1) can be written as linear combination of the complement of lower bound period efficiencies ((𝐸(𝑡)
𝑘 )𝐿*

𝛼 −
1).

Remark 3. From equations (4.4)–(4.5), we have

𝑇∑︁
𝑡=1

(︁
(𝐸(𝑡)

𝑘 )𝐿*

𝛼

)︁
𝑊 (𝑡)𝐿

𝛼 = (𝐸𝑘)𝐿*

𝛼 + (∆𝐿
𝛼 − 1) +

𝑇∑︁
𝑡=1

𝑊 (𝑡)𝐿
𝛼 = (𝐸𝑘)𝐿*

𝛼 + ∆𝐿
𝛼 + ∆𝐿

1 = (𝐸𝑘)𝐿*

𝛼 + ∆𝐿
2𝛼

where, ∆𝐿
2𝛼 = ∆𝐿

𝛼 + ∆𝐿
1𝛼
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=

𝑇−1∑︁
𝑡=1

𝑞∑︁
𝑙=1

𝛾*𝑙 (𝑍(𝑡)
𝑙𝑘 )

𝐿

𝛼
−

𝑇∑︁
𝑡=2

𝑞∑︁
𝑙=1

𝛽*𝑙 (𝑍(𝑡)
𝑙𝑘 )

𝑈

𝛼

𝑚∑︁
𝑖=1

𝑣*𝑖 (𝑋𝑖𝑘)𝑈
𝛼 +

𝑞∑︁
𝑙=1

𝛽*𝑙 (𝑍(0)
𝑙𝑘 )

𝑈

𝛼

+

𝑇∑︁
𝑡=2

𝑞∑︁
𝑙=1

𝛽*𝑙 (𝑍(𝑡−1)
𝑙𝑘 )

𝑈

𝛼

𝑚∑︁
𝑖=1

𝑣*𝑖 (𝑋𝑖𝑘)𝑈
𝛼 +

𝑞∑︁
𝑙=1

𝛽*𝑙 (𝑍(0)
𝑙𝑘 )

𝑈

𝛼

=

𝑇−1∑︁
𝑡=1

𝑞∑︁
𝑙=1

𝛾*𝑙 (𝑍(𝑡)
𝑙𝑘 )

𝐿

𝛼
−

𝑇∑︁
𝑡=2

𝑞∑︁
𝑙=1

𝛽*𝑙 (𝑍(𝑡)
𝑙𝑘 )

𝑈

𝛼
+

𝑇∑︁
𝑡=2

𝑞∑︁
𝑙=1

𝛽*𝑙 (𝑍(𝑡−1)
𝑙𝑘 )

𝑈

𝛼

𝑚∑︁
𝑖=1

𝑣*𝑖 (𝑋𝑖𝑘)𝑈
𝛼 +

𝑞∑︁
𝑙=1

𝛽*𝑙 (𝑍(0)
𝑙𝑘 )

𝑈

𝛼

=

𝑇−1∑︁
𝑡=1

𝑞∑︁
𝑙=1

𝛾*𝑙 (𝑍(𝑡)
𝑙𝑘 )

𝐿

𝛼

𝑚∑︁
𝑖=1

𝑣*𝑖 (𝑋𝑖𝑘)𝑈
𝛼 +

𝑞∑︁
𝑙=1

𝛽*𝑙 (𝑍(0)
𝑙𝑘 )

𝑈

𝛼

·

It indicates that lower bound system efficiency ((𝐸𝑘)𝐿*

𝛼 ) is linear combination of lower bound period efficiencies
((𝐸(𝑡)

𝑘 )𝐿*

𝛼 ,∀𝑡), at level 𝛼 (0 ≤ 𝛼 ≤ 1) provided ∆𝐿
2𝛼 = 0. Also, if ∆𝐿

1𝛼 = 0 (& ∆𝐿
2𝛼 = 0), (𝐸𝑘)𝐿*

𝛼 can be expressed
as weighted average of (𝐸(𝑡)

𝑘 )𝐿*

𝛼 ,∀𝑡 at level 𝛼.

5. Case study in the Indian banking sector

This section presents an application of the proposed approach to the Indian banking sector. A free-float
market capitalization scheme is used to select 11 banks (See Tab. 1) for efficiency evaluation over two financial
periods, 2019-2020 and 2020-2021. Each bank utilizes three inputs (Total employees (𝑋̃(𝑡)

1𝑗 ), Total loanable

funds (𝑋̃(𝑡)
2𝑗 ) and Fixed assets (𝑋(𝑡)

3𝑗 )) to yield two desirable outputs (Performing loans (𝑌 𝑔(𝑡)
1𝑗 ) and Net profit

(𝑌 𝑔(𝑡)
2𝑗 )), and one undesirable output (Loss due to non-performing assets (𝑌 𝑏(𝑡)

1𝑗 )) in each period 𝑡, and the

consecutive periods (𝑡 and 𝑡 + 1) are connected through one link (unused assets (𝑍(𝑡)
1𝑗 )). The description of all

the input/output variables and links is as follows:

– Total employees (TE): These are the total number of employees working in a bank, including officers, clerks,
and sub-staff members.

– Total loanable funds (TLF): Total Loanable funds are the sum of deposits and borrowings of a bank.
– Fixed assets (FA): These comprise premises, fixed assets under construction and other assets.
– Performing loans (PL): These are calculated by subtracting the gross NPAs from advances where NPAs are

the non-performing assets.
– Net profit (NP): It is evaluated by subtracting total expenses, provisions and contingencies from the total

income of a bank.
– Loss due to non-performing assets (LNPAs): It is the amount held as a provision for non-performing assets

(NPAs) by the bank.
– Unused assets (UA): These are calculated by subtracting fixed capital, loans, required reserves, and security

investments from total assets [3].

5.1. Data and imprecision

Data for 11 banks for the periods 2018-2019, 2019-2020, and 2020-2021 are collected from RBI [33] and are
depicted in Tables 2, 3, and 4, respectively. The data for all variables except total employees are in Rs. Crores.
Although the original data is collected in a crisp form but discussions with the bank experts infer that due to
the uncertainty, data for some variables can be considered in the form of PFNs. Therefore, the data imprecision
is taken in the present study, which is summarized below:

Data for two inputs (TE and TLF), one desirable output (PL) and link (UA) are taken in the form of PFNs
and crisp data are considered for the remaining inputs/desirable outputs. A variation of 2% and 1% has been
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Table 1. List of banks included in the case study.

Bank code Bank names Bank code Bank names

FB Federal Bank Ltd. BB Bandhan Bank Ltd.
RBL RBL Bank Ltd. ICICI ICICI Bank Ltd.
KMB Kotak Mahindra Bank Ltd. IB Indusind Bank Ltd.
HDFC HDFC Bank Ltd. AB Axis Bank Ltd.
PNB Punjab National Bank SBI State Bank of India
BoB Bank of Baroda

Table 2. Initial links.

DMU 𝑍
(2019)
1𝑗

DMU 𝑍
(2019)
1𝑗

DMU 𝑍
(2019)
1𝑗

DMU 𝑍
(2019)
1𝑗

FB (15811.3, 15971.0, 16130.8) HDFC (144084.4, 145539.8, 146995.2) BB (4619.9, 4666.6, 4713.2) AB (165253.2, 166922.5, 168591.7)
RBL (11231.9, 11345.4, 11458.8) PNB (126117.6, 127391.6, 128665.5) ICICI (200458.4, 202483.3, 204508.1) SBI (609648.2, 615806.3, 621964.4)
KMB (37714.3, 38095.3, 38476.2) BoB (125913.7, 127185.6, 128457.4) IB (34039.9, 34383.8, 34727.6)

taken for defining the left and right spreads of PFNs in the case of TE and UA, respectively. An imprecision
of 2% for the left spread and 1.5% for the right spread in a PFN is considered for TLF, whereas 1% for the
left spread and 0.5% for the right spread in a PFN for PL is considered. For normalization, the data have been
divided by the number of branches of the respective bank before final implementation.

5.2. Results and discussion

The upper and lower bounds of the 𝛼-cuts of system fuzzy efficiency ((𝐸̃𝑗)𝛼,∀𝑗) at each 𝛼 in (0, 1] are
evaluated using Models-5 and 7, respectively, and are shown in Table 5 at some 𝛼-levels. In a similar manner,
the upper and lower bounds of the 𝛼-cuts of period efficiency are evaluated by using Models-9(a) and 9(b),
and are shown in Tables 6 and 7, respectively. MATLAB software is used to solve the linear programming
models and evaluate efficiencies at each 𝛼. Tables 5, 6 and 7 show that FB is the only bank with the highest
upper and lower bound system and periods’ efficiencies equal to one for every 𝛼 ∈ [0, 1]. Every other bank has
shown upper/lower bound system inefficiency, which is affected by the inefficiency present in either period 1 or
period 2 or both of the selected periods. Careful observation of Table 6 depicts that KMB and BB have reached
efficiency value 1 for period 1 (both upper and lower efficiencies) but attained inefficiency in period 2 (both
upper and lower). Similarly, in Table 7, HDFC and BB are the two banks that have achieved efficiency value
1 in period 2 for each 𝛼 ∈ [0, 1]; however, ineffficiency in period 1 for both lower and upper bound efficiencies.
Due to the inefficiencies present in either period 1 or period 2, the banks, namely, KMB, BB, HDFC and IB,
lack in contributing efficiency score 1 in system efficiency. Moreover, the shapes of the membership functions
of the system and period fuzzy efficiencies are predicted and identified using the system and period interval
efficiencies obtained for 𝛼 ∈ [0, 1] in Tables 5, 6, and 7.

Figures 3 and 4 represent the graphical representation of the 𝛼-cuts, namely, (𝐸̃𝑗)𝛼 and (𝐸̃(𝑡)
𝑗 )

𝛼
. The fig-

ures depict that the shape of the membership functions of the system and period fuzzy efficiencies can be
approximated as PFNs which are presented in Table 8.

Moreover, the system and period fuzzy efficiencies of 11 banks are defuzzified using the centroid/centre of
gravity method [32] as defined in equation (5.1) and are ranked accordingly.

𝑑(𝐴) =

∫︀
𝑥

𝑥.𝜇𝐴(𝑥)d𝑥∫︀
𝑥

𝜇𝐴(𝑥)d𝑥
(5.1)

where 𝐴 is a fuzzy number with membership function 𝜇𝐴 and 𝑑(𝐴) denotes the defuzzified value of 𝐴.
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Table 5. 𝛼-cuts of system fuzzy efficiency.

DMU
𝛼 = 0
[L,U]

𝛼 = 0.2
[L,U]

𝛼 = 0.4
[L,U]

𝛼 = 0.6
[L,U]

𝛼 = 0.8
[L,U]

𝛼 = 1
[L,U]

FB [1.000,1.000] [1.000,1.000] [1.000,1.000] [1.000,1.000] [1.000,1.000] [1.000,1.000]
RBL [0.896,0.990] [0.916,0.968] [0.925,0.959] [0.931,0.952] [0.937,0.947] [0.942,0.942]
KMB [0.974,1.000] [0.992,1.000] [1.000,1.000] [1.000,1.000] [1.000,1.000] [1.000,1.000]
HDFC [0.998,1.000] [0.999,1.000] [1.000,1.000] [1.000,1.000] [1.000,1.000] [1.000,1.000]
PNB [0.654,0.723] [0.669,0.707] [0.675,0.700] [0.680,0.695] [0.684,0.691] [0.688,0.688]
BoB [0.765,0.860] [0.785,0.837] [0.794,0.828] [0.800,0.821] [0.806,0.816] [0.811,0.811]
BB [0.999,1.000] [1.000,1.000] [1.000,1.000] [1.000,1.000] [1.000,1.000] [1.000,1.000]
ICICI [0.834,0.921] [0.853,0.901] [0.861,0.893] [0.867,0.887] [0.872,0.881] [0.877,0.877]
IB [0.999,1.000] [1.000,1.000] [1.000,1.000] [1.000,1.000] [1.000,1.000] [1.000,1.000]
AB [0.866,0.959] [0.886,0.937] [0.894,0.928] [0.901,0.922] [0.906,0.916] [0.911,0.911]
SBI [0.859,0.977] [0.882,0.946] [0.891,0.933] [0.898,0.924] [0.905,0.916] [0.910,0.910]

Notes. In a similar way, the system efficiency can be evaluated at different 𝛼-levels.

Table 6. 𝛼-cuts of Period 1 fuzzy efficiency.

DMU
𝛼 = 0
[L,U]

𝛼 = 0.2
[L,U]

𝛼 = 0.4
[L,U]

𝛼 = 0.6
[L,U]

𝛼 = 0.8
[L,U]

𝛼 = 1
[L,U]

FB [1.000,1.000] [1.000,1.000] [1.000,1.000] [1.000,1.000] [1.000,1.000] [1.000,1.000]
RBL [0.894,0.989] [0.914,0.967] [0.923,0.958] [0.929,0.951] [0.935,0.945] [0.940,0.940]
KMB [1.000,1.000] [1.000,1.000] [1.000,1.000] [1.000,1.000] [1.000,1.000] [1.000,1.000]
HDFC [0.958,1.000] [0.971,1.000] [0.978,1.000] [0.985,1.000] [0.991,1.000] [0.997,0.997]
PNB [0.685,0.754] [0.700,0.738] [0.706,0.732] [0.711,0.727] [0.715,0.722] [0.719,0.719]
BoB [0.736,0.834] [0.744,0.808] [0.754,0.796] [0.761,0.788] [0.768,0.781] [0.774,0.774]
BB [1.000,1.000] [1.000,1.000] [1.000,1.000] [1.000,1.000] [1.000,1.000] [1.000,1.000]
ICICI [0.813,0.895] [0.831,0.876] [0.838,0.868] [0.844,0.862] [0.849,0.858] [0.853,0.853]
IB [0.899,1.000] [0.927,1.000] [0.939,0.990] [0.949,0.980] [0.957,0.971] [0.964,0.964]
AB [0.851,0.943] [0.871,0.922] [0.879,0.913] [0.886,0.906] [0.891,0.901] [0.896,0.896]
SBI [0.757,0.901] [0.790,0.873] [0.805,0.862] [0.816,0.853] [0.827,0.846] [0.836,0.836]

Table 7. 𝛼-cuts of Period 2 fuzzy efficiency.

DMU
𝛼 = 0
[L,U]

𝛼 = 0.2
[L,U]

𝛼 = 0.4
[L,U]

𝛼 = 0.6
[L,U]

𝛼 = 0.8
[L,U]

𝛼 = 1
[L,U]

FB [1.000,1.000] [1.000,1.000] [1.000,1.000] [1.000,1.000] [1.000,1.000] [1.000,1.000]
RBL [0.895,0.987] [0.915,0.966] [0.923,0.957] [0.930,0.951] [0.935,0.945] [0.940,0.940]
KMB [0.755,0.908] [0.769,0.857] [0.775,0.838] [0.785,0.824] [0.794,0.813] [0.804,0.804]
HDFC [1.000,1.000] [1.000,1.000] [1.000,1.000] [1.000,1.000] [1.000,1.000] [1.000,1.000]
PNB [0.660,0.730] [0.674,0.713] [0.680,0.706] [0.685,0.701] [0.689,0.697] [0.693,0.693]
BoB [0.811,0.874] [0.826,0.862] [0.833,0.857] [0.837,0.852] [0.841,0.848] [0.845,0.845]
BB [0.845,0.950] [0.863,0.924] [0.873,0.914] [0.881,0.906] [0.887,0.899] [0.893,0.893]
ICICI [0.851,0.937] [0.869,0.917] [0.877,0.909] [0.883,0.902] [0.888,0.897] [0.893,0.893]
IB [1.000,1.000] [1.000,1.000] [1.000,1.000] [1.000,1.000] [1.000,1.000] [1.000,1.000]
AB [0.873,0.967] [0.894,0.945] [0.902,0.936] [0.909,0.930] [0.914,0.924] [0.919,0.919]
SBI [0.866,0.966] [0.886,0.936] [0.895,0.924] [0.901,0.917] [0.907,0.916] [0.911,0.911]
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Figure 3. Shape of membership function of system efficiency (𝐸̃𝑗) of 𝐷𝑀𝑈𝑗 .

Table 8. The values of 𝐸̃𝑗 , 𝐸̃
(1)
𝑗 and 𝐸̃

(2)
𝑗 approximated as PFNs with defuzzified values and

ranking.

DMU 𝐸̃𝑗 𝑑(𝐸̃𝑗) Rank 𝐸̃
(1)
𝑗 𝑑(𝐸̃

(1)
𝑗 ) Rank 𝐸̃

(2)
𝑗 𝑑(𝐸̃

(2)
𝑗 ) Rank

FB (1.000,1.000,1.000) 1.0000 1 (1.000,1.000,1.000) 1.0000 1 (1.000,1.000,1.000) 1.0000 1

RBL (0.896,0.942,0.990) 0.9425 6 (0.894,0.940,0.989) 0.9407 6 (0.895,0.940,0.987) 0.9405 4

KMB (0.974,1.000,1.000) 0.9888 5 (1.000,1.000,1.000) 1.0000 1 (0.755,0.804,0.908) 0.8178 10

HDFC (0.998,1.000,1.000) 0.9999 2 (0.958,0.997,1.000) 0.9853 4 (1.000,1.000,1.000) 1.0000 1

PNB (0.654,0.688,0.723) 0.6883 11 (0.685,0.719,0.754) 0.7193 11 (0.660,0.693,0.730) 0.6939 11

BoB (0.765,0.811,0.860) 0.8117 10 (0.736,0.774,0.834) 0.7795 10 (0.811,0.845,0.874) 0.8437 9

BB (0.999,1.000,1.000) 0.9999 2 (1.000,1.000,1.000) 1.0000 1 (0.845,0.893,0.950) 0.8952 7

ICICI (0.834,0.877,0.921) 0.8773 9 (0.813,0.853,0.895) 0.8534 8 (0.851,0.893,0.937) 0.8935 8

IB (0.999,1.000,1.000) 0.9999 2 (0.899,0.964,1.000) 0.9567 5 (1.000,1.000,1.000) 1.0000 1

AB (0.866,0.911,0.959) 0.9117 8 (0.851,0.896,0.943) 0.8965 7 (0.873,0.919,0.967) 0.9195 5

SBI (0.859,0.910,0.977) 0.9140 7 (0.757,0.836,0.901) 0.8325 9 (0.866,0.911,0.966) 0.9135 6

The defuzzified values of the system and period fuzzy efficiencies and their ranking are also shown in Table 8,
where 𝑑(𝐸̃𝑗) and 𝑑(𝐸̃(𝑡)

𝑗 ) represents the defuzzified values of system fuzzy efficiency (𝐸̃𝑗) and period fuzzy

efficiency (𝐸̃(𝑡)
𝑗 ,∀𝑡), respectively. It has been observed that defuzzified system as well as period efficiencies of

Federal Bank are 1, hence ranked as most efficient bank whereas Punjab National Bank (PNB) is found to be
the least efficient with 11th rank in system and both the periods. Moreover, 3 banks (HDFC, BB, IB) are given
rank 2 with defuzzified system efficiency 0.9999. Similarly, 3 banks (FB, KMB, BB) and 3 banks (FB, HDFC,
IB) are given rank 1 in period 1 and period 2, respectively.

5.3. Comparison with a static approach

The conventional DEA models tend to ignore the interdependence of periods and measure the performance
of DMUs statically. However, the proposed approach evaluates the efficiency in a dynamic environment with
periods connected through carry-overs/links. To better analyze the effect of links on the efficiency of DMUs,
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Figure 4. Shape of membership function of Period efficiencies (𝐸̃(𝑡)
𝑗 ) of 𝐷𝑀𝑈𝑗 . (A) Shape of

membership function of 𝐸̃
(1)
𝑗 . (B) Shape of membership function of 𝐸̃

(2)
𝑗 .

particularly, the impact of unused assets on the performance of selected banks in our case study, a comparative
analysis is conducted between the proposed approach (with carry-overs/links) and the static approach (without
carry-overs/links) at each level 𝛼. The comparison concludes that all banks except FB have shown an increase in
system fuzzy efficiency (defuzzified value) with the proposed dynamic approach compared to the static approach.
The efficiency of FB remains the same (See Fig. 5). The increase in system efficiency in a dynamic environment
represents the positive impact of unused assets on the system efficiency of the selected banks. It implies that
carry-overs like unused assets must be included in the production process to get a realistic picture of banks’
performance. Thus, the proposed dynamic DEA approach has shown a significant impact of carry-over elements
(unused assets) on the banks’ efficiencies in India during the selected period. Therefore, in the present scenario,
it is evident to use the dynamic approach, particularly the proposed approach, when data is fuzzy.

6. Implications

This section consists of theoretical, managerial and policy implications of the present study.

6.1. Theoretical implications

The present study developed a novel parabolic fuzzy dynamic DEA (PFDDEA) approach that not only han-
dles inputs/outputs/links data as PFNs along with undesirable outputs but also considers the inter-relationships
present between two periods in terms of carry-over variables to see the dynamic effect of variables on DMUs’
efficiencies. Different weights are assigned to links that act as inputs at one time and outputs at another. The
modeling of the proposed approach based on the 𝛼-cut approach and Pareto’s efficiency concept characterizes
two main aspects: system fuzzy efficiency score and algorithmic approach for period fuzzy efficiency. As a the-
oretical development in the proposed PFDDEA approach, (i) the shapes of the membership functions of the
system and period fuzzy efficiencies were predicted and identified, (ii) some conditions were derived that ensure
upper (lower) bound system efficiency can be expressed as a linear combination (weighted average) of the upper
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Figure 5. Percentage change in defuzzified values of system efficicney at level 𝛼 = 0 from
static to dynamic environment.

(lower) bound period efficiencies at each 𝛼 in [0,1], and (iii) it can also be applied to problems having other forms
of imprecision such as interval numbers, ordinal numbers, and fuzzy numbers (like triangular/trapezoidal/LR
fuzzy numbers).

6.2. Managerial implications

For validation and effectiveness, the proposed PFDDEA approach has been applied to the Indian banking
sector. The findings of the case study provide practical implications to the bank experts for managerial decisions,
which are summarized below:

– FB ranked first with a defuzzified value of system and period fuzzy efficiencies equal to 1 and can act as a
benchmark for the other low-ranked banks. PNB ranked last and needs to refer to FB for improvement in
the system as well as period efficiencies.

– HDFC, BB and IB possess the second rank for system fuzzy efficiency. BB performed efficiently in period 1,
whereas HDFC and IB worked efficiently in period 2.

– The percentage change of lower and upper bound period efficiencies from period 1 to period 2 at level 𝛼 =
0 is analyzed, which depicts that SBI has shown the highest percentage increase of 14.5% (7%) for lower
(upper) bound period efficiency. In contrast, KMB has shown the highest percentage decrease of 24.5% (9%)
for lower (upper) bound period efficiency.

– Among all banks, seven banks (RBL, HDFC, BoB, ICICI, IB, AB and SBI) have shown a percentage
increase (ranges in [0.15%, 14.5%] for lower and [2.6%, 7.24%] for upper bound efficiencies) whereas three
banks (KMB, PNB and BB) have shown percentage decrease (ranges in [3.63%, 24.5%] for lower and [0.16%,
9.24%] for upper bound efficiencies) from period 1 to period 2 using the proposed approach.

– The proposed approach, when compared with the static approach, resulted in an increase in the system effi-
ciency (defuzzified value) for all banks in a dynamic proposed approach (with carry-overs/links) as compared
to the static approach (without carry-overs/links). It ranges from 0.01% to 8.85%, with the highest increase
in KMB and lowest in AB. It clearly indicates that the carry-over/link (unused assets in the present case
study) imparted its positive impact on the system efficiency of each bank which implies that carry-overs like
unused assets must be included in the production process to get a realistic picture of banks’ performance
which is ignored by static approach.

6.3. Policy implications

The case study presented in this paper demonstrated that the proposed PFDDEA model offers more consistent
efficiency results when the target industry is characterized by intertemporal dependencies and fuzziness. As a
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performance analysis tool, the PFDDEA model not only can provide policymakers with a coherent depiction
of the industry’s dynamic performance over periods but can also handle qualitative performance indicators like
customer satisfaction, service quality, etc. Moreover, it can also be used by the decision-makers to know about
the need for investment in the early stages (e.g., number of employees, loanable funds, assets in the case study).
Lastly, the findings on the impact of unused assets over banks’ performance can be utilized by the bank experts
in policy making.

7. Conclusion

In the present study, a parabolic fuzzy dynamic DEA approach has been developed to evaluate system and
period efficiencies of DMUs in the presence of undesirable outputs and imprecise data in the form of PFNs. An
algorithm is presented to evaluate period efficiencies. The 𝛼-cut approach has been used to measure efficiencies.
Further a relationship between upper bound (lower bound) system and upper bound (lower bound) period
efficiencies is derived to indicate the dependence among each other. To prove the validity of the proposed
approach, it has been applied to 11 banks in India and the resulting system as well as period efficiencies are
derived as PFNs. For ranking the fuzzy efficiencies in dynamic environment, the centre of gravity method has
been used to defuzzify the system and period efficiencies and then ranked accordingly. The findings of the case
study conclude that FB is the most efficient and PNB is the least efficient among selected DMUs in dynamic
environment.

The future scope of the present study is very wide and can be expanded in various directions. The proposed
fuzzy dynamic DEA approach has vast implications and withstands its immense applicability in real-life prob-
lems. The present study can be extended to dynamic network structures with data uncertainties of different
types and applications in other sectors like manufacturing, insurance, supply chain, health care, power plants,
etc.
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