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BUILDING A SUSTAINABILITY IN A TWO-ECHELON CLOSED LOOP
SUPPLY CHAINS: A MATHEMATICAL APPROACH FOR PERMISSIBLE

DELAY IN PAYMENT AND BACKLOGGING

Mohsen Lashgari1,*, Seyed Jafar Sadjadi1,
Ata Allah Taleizadeh2 and Mahdi Heydari1

Abstract. This paper develops a supply chain framework where payments take place with permissible
delays. Unlike other studies, the supply chain is modelled as a closed-loop system, in which returning
the products is incorporated into classical supply chain models and the full backorder is permitted.
Among the most important research questions is the order amount of chain members to maximize
Retailer delays and the profit chains. The study determines the portion of the time interval in which
inventory system experiences shortage and determines the optimal replenishment time and the fre-
quency. Ultimately, it was shown that, if the delay from the supplier to the retailer increases, the chain
profit also increases. For all three proposed models, a closed-form solution is developed and a solution
algorithm is presented. Applying the coordinated model considerably increases the total profit earned
by the whole SC as well as all SC members. An example of our model is a bottle supplier for the drink
producer. Another example is military oriented. Furthermore, the study elaborates the feasibility of
the suggested models by means of some numerical examples and discusses the results using sensitivity
analysis.
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1. Introduction

Most suppliers and distributers intend to achieve a long term cooperative relationship in order to guarantee
dependable supply as well as long lasting demands, while maximizing the profit, through the current competitive
environment of the business world, which is rapidly growing in recent years. As a result, determining the prefect
parameters, the most important of which, is optimal order quantity, for every supply chain system composed of
vendors and buyers, becomes crucial.

After extensive extensions presented in inventory models by different researchers, three different strategies
are found in the literature for financial exchange of purchasing cost between the sellers and buyers. The earliest
and simplest way was what Harris introduced in the classical EOQ model. But nowadays, the conditions of the
market may impose other strategies. sometimes sellers offer delay in payment to their customers as a marketing
strategy to increase sales and reduce inventories (Teng et al. [40]; Wu and Chan [42]; Zhang et al. [44]). In
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this case, two different scenarios may be used: (3.1) all of the payment can be paid after a predetermined time
(called full delayed payment) or (3.2) a percent of the payment should be paid at the delivery moment and
the remaining will be received later (partial delayed payment). Bregman [6] found that the large timing of
disbursements may have tremendous effects on the order quantity in a classical EOQ model; and Lau and Lau
[31] showed that despite of this fact, the impact of timing of disbursements on the overall cost may be small.

Different versions of inventory models with delayed payment have been presented in the literature. For the
first time, Goyal [21] proposed permissible delay in payments for a single-item inventory model. Aggarwal and
Jaggi [2] extended this EOQ model for deteriorating items. Chang et al. [8] established an EOQ model for
deteriorating items, in which the buyers are allowed to pay the purchasing cost by delay, if their purchasing
cost is greater than a predetermined amount. Delay in payments for the continuous review inventory model
was investigated by Salameh et al. [36]. Discount policy on purchasing cost along with a delay in payment was
considered by Wu and Zhou [43].

Closed-loop supply chain is becoming the focal point of the relevant research area for a variety of reasons. The
most important of which are as follows. Primarily, relative legislations is used to impose in majority of developed
countries to put organizations in charge of handling their own products and packaging after consumption by the
customers. Moreover, the awareness of customers regarding contamination of the environment, due to consumed
products, packaging burial and incineration is in growth. It also forces manufacturers to recycle their goods
rather than destroy them. The interest of end-users towards buying environment-friendly products is also being
intensified Carter and Ellram [7] estimated the market to be over $200 billion, causing extra burden on the
manufacturers’ shoulders for initiating and enhancing the process of recollecting their consumed products and
recapture the lucrative merits as hard as possible. Assimilating environmentally friendly production processes
as well as the final products themselves, on one hand, paves the way for the manufacturers to stay in accordance
with the governmental legislations, parallel to customers’ demand, while, on the other hand, improves their
corporate images. Last but not Least, assimilating proactive production approaches is becoming more interesting
for organizations, compared with passive approaches, causing them to consider employing a recycling approach
strongly.

This study will answer the following questions:

1. What are the optimal replenishment policies for SC members in presence of returnable defective products
and the strategy of variant delay payment?

2. Is there a feasible replenishment policy to Increase the capital profit of the chain and create a regular order
schedule for all the SC parties at the same time?

3. How can an appropriate incentive mechanism be proposed to induce SC members to accept these optimal
policies?

4. What are the effects of returnable defective products on the model?

In order to give an appropriate response to the aforementioned questions, a two-echelon supply chain model
including one supplier and one distributor was formed. The mentioned SC is a closed-loop system in which
returning the products is incorporated into classic supply chain models and also an incentive policy is taking
place and full backorder is permitted, too. Consider a situation where the distributor uses an EOQ model to
control the inventory of products where the shortage is being backlogged. When the distributer places an order
to the supplier, after a fixed lead time, the issued order will be delivered. Notice that after selling the products
to the final customer a fraction of them will be returned to the supplier which leads to reproducing products
with acceptable quality. There are two ways for the supplier to provide products, foreign supplier and repairing
returned products.

We configured the SC under three separate conditions:

1. A closed party model in which each part of SC will decide only based on their own reliable profit.
2. An open model in which each part will engage in order to maximize capital profit of the whole system.
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In the first model each of the members wants to optimize their own profits but in the second one they decide
integrately based on whether the length of receiving money is constant or variable.

The contribution of this paper consists of two sections: Firstly, a mathematical model will be conducted
in order to concieve the concept of closed loop supply chains and permissible delay. To do that the effect of
returnable defective products along with permissible delay in two echelon SC is investigated and a two-layer SC
decision structure is modeled by considering backordering for retailer. Secondly, an incentive policy is conducted
in order to study the effects of it on the order size and capital profit of the whole SC. The innovative part of
this paper is that for the first time an integrated model with delayed payments, closed loop supply chain and
partial backorder will be formed.

The model is simulated under seven separate circumstances: no shortage, full returnable defective products,
partial returnable defective products, no returnable defective products, full delay payment, partial delay pay-
ment, and no delay payment, And there is also the possibility of combining the aforementioned circumstances.
Therefore, another contribution of the current work is to allow. adopting any of these assumptions, which is not
the case in other works found in the literature.

2. Literature review

In one of the primary studies, Goyal [20] first discussed the idea of both customer and the supplier’s joint total
cost. Afterwards, this study was expanded by Banerjee [4] through developing a cooperative economic lot size
for the supply chain system whilst considering rewarding plans regarding the quantity discount for the buyer.
This area of study was further extended by Jamal et al. [28] by permitting shortages. Additionally, various
strategies like, price discounts, different credit payment possibilities and buy-back deals, to name but a few, are
employed for the purpose of coordination. Delay in payments was studied where cooperation existed as well as
in the situations with no cooperation by Abad and Jaggi [1], by considering the demand to be price sensitive.
Pareto efficiency solution, combined with Nash bargaining concept comprised the core of their analysis utilities.
The subjects of study of Chen and Kang [9] were combined vendor–buyer models with deterministic demands in
which payment delay was permissible. The model was solved through a presented procedure in which balancing
the savings of the vendor and buyer was achieved by extending the period of delay.

A manufacturer–customer model in which credit options are available was developed by Sarmah et al. [37],
discussing two categories of individual target profits, that are, pre-decided as well as non-pre-decided profits.
In the model proposed by Ouyang et al. [35], freight rate and terms of trade credit were incorporated and
calculated by the quantity of order. Furthermore, Chern et al. [11] employed the concept of Nash equilibrium
in a vendor–buyer system of supply chain while allowing payments delay. In a complementary research, Chern
et al. [12], expanded the EOQ model, considering both the vendor and buyer, in a parallel environment. They
also paved the way for disclosing the time of customer’s replenishment cycle, the deliveries number of items
delivered from vendor in each cycle of production, and the offered period of trade from the vendor. To solve
this model, they employed the concept of Nash equilibrium. A coordination policy for the supply chain was
developed by Duan et al. [14] through the approach of payment delay for a group of products, sharing the
quality of fixed lifetime. In this investigation, solutions that were analytically manageable, were obtained. Chen
and Kang [10] developed an inventory system of integrated models, enjoying the quality of permitted delay in
payment, in order to consider a bi-level policy of trade credit in managing the vendor–buyer–customer supply
chain. Hemapriya and Uthayakumar [22] consider two echelon supply chain with permissible delay in payments
under exponential lead time involving investment for quality improvement and ordering cost reduction. Diabat
et al. [15] apply a model of economic order quantity (EOQ) in supply chains with partial downstream delayed
payment and partial upstream advance payment for a deteriorating item under three conditions: 1) shortage
is not allowed, 2) full back ordering is allowed, and 3) partial back ordering is allowed. Heydari et al. [23]
investigates the coordination of decisions in a two-echelon supply chain (SC) consisting of a supplier delivering
a single product to a retailer. Demand is assumed stochastic and credit-dependent. Liao et al. [32] develop an
economic order quantity for deteriorating items under the condition of permissible delay in payments. Taleizadeh
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Table 1. Brief review of the most related papers discussed.

Reference Echelon Environmental
issue

Trade credit Backordering Closed
form
solution

Decision variable

Full Partial Shipment
quantity

Economic
order
quantity

Shortage

[3] Two – * – – – * * –
[5] Two * – – – – * * –
[41] Two * – – * * * * *
[27] Two – * – – * * * –
[30] One – * * * * – * *
Present
paper

Two * * * * * * * *

et al. [39] a VMI model in a two-echelon supply chain, including one vendor and two buyers are considered to
develop periodic replenishment (R, T) and continuous replenishment (r, Q) models with partial back-ordering
under VMI policy. In partial back-ordering, lost-sales and back-ordering are allowed as this assumption is more
pragmatic.

A deterministic economic order of quantity model, in which, closed-loop supply chain analysis approach was
employed, was published by Schrady [38]. In his study, a system of multiple cycles of recycling/repair supporting
a single production/procurement cycle was investigated and the optimal quantities of lot sizes was calculated.
Additionally, this model was generalized by Nahmiasj and Rivera [34] for the case of finite recycling/repair rate.

The literature regarding the permitted returns inventory systems and comprised of multi echelon lacks potent
investigations. In this regard, Korugan and Gupta [29] discussed the characteristics of a double-echelon inventory
system and its return flows. They described the system behavior through considering finite buffers for a network
with open queuing. In the next step, they analyzed the system through an extended methodology.

Some recent papers on supply chain and sustainable supply chain uncertainty have also been developed
and evaluated the performance of these chains. Izadikhah et al. [24–26]. Goodarzian et al. [17] developed a
green supply chain network under uncertainty for inventory and purchasing decisions. To cope with uncertain
parameters, fuzzy method was used. Goodarzian et al. [18] proposed a new supply chain network to decrease
the total cost and the delivery time and maximize the reliability of the transportation system. To solve their
model, some heuristic methods and meta-heuristic algorithms were provided. Goodarzian et al. [19] designed
a multi-echelon, multi-product, and multi-period mathematical model for a sustainable supply chain network
during COVID-19 pandemic. To solve their model, they suggested three meta-heuristic algorithms. Goodarzian
et al. [16] developed a multi-objective sustainable medicine SCN that their main aims were to minimize economic
and environmental aspects. To solve their model, a hybrid meta-heuristic algorithm is developed.

A comprehensive literature review has been undertaken by Dekker et al. [13] respect, a system of inventory
with two echelons was studied by Mitra [33], in a generalized environment. In this study, two models were
introduced, the first of which was a deterministic model with no shortages accepted. In the second one any
shortcomings to satisfy demands of the first stage for final products was allowed to be backordered. Employing
the deterministic model, introduced by Mitra [33], in order to consider returning products while optimizing the
inventory model, in which, partial backordering is possible.

Based on the above descriptions of literature review and what presented in Table 1, one can clearly realize
that a two-echelon closed-loop supply chain model with return product is not developed when supplier offers
partial delay payments to the buyer and shortage for buyer is fully backlogged. So the main intention of this
study is to develop environmental Vendor Managed Inventory (VMI) model with a constant delay between
payment and delivery and shortage. This comprehensive model will be extended for the first time in which the
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economic order quantity, shipment quantity from the vendor and lack quantities are being determined using
closed-form equations.

The organization of the present research is as follows. The third and the fourth sections discuss the methods as
well as the numerical examples, respectively. Results and Discussion is provided in the fifth section and sensitivity
of the model is illustrated in Section 5. In the last to sections, the managerial insights and suggestions for future
research are presented, accordingly.

3. Methods

This section consisted of two parts: “Problem definition” and “Model development”. In the first part, the
problem explained and parameters and variables introduced. In the second part the model developed.

3.1. Problem definition

A bi-echelon system of inventory, that is, a warehouse and a distributor, is considered (As shown in Fig. 1).
Receiving a demand from customer, distributor orders a request to the warehouse. Returnable defective prod-
ucts, which distributor receive from costumers, are also sent back to warehouse to be recovered. Thus, it is
logical to conjecture that this sequence takes place in one step. In the condition, that flawed items are stored in
the warehouse, the inventory of these parts becomes a section of warehouse inventory, rather than the inventory
of distributor. Due to the fact that the rate of return is lower than rate of demand most of the times, satisfying
the distributer demand merely through recovering defective parts is not a comprehensive answer for warehouse.
Furthermore, warehouse is obliged to cover the demand by outsourcing the needs from external suppliers with
unlimited capacity. Therefore, the inventory of the warehouse can be separated into two parts, namely, recover-
able items’ inventory and the purchased items. It is also supposed that the items of these two inventories enjoy
equal quality and value and the time required to repair the defective items is insignificant compared to lead
time of orders arriving from other suppliers. Last but not Least, the return rate is assumed to be independent
from demand rate.

The distributor is allowed to pay a portion of the price, required for owning the goods at the time of delivery
and disburse the rest at a predetermined time in the future. Indeed the payment defer is modeled through credit
point of view, in which the purchase fund is covered by a loan from a bank and paid to seller in a specified time in
future. Additionally, the strategy of variant delay payment is employed in order to share mutual savings of costs
among warehouse (supplier) and distributor. It is also a proper tempting for the customer to join collaborative
relationship and guaranteeing the success of both sides of the deal. In one scenario, the income acquired during
the time of delay in payment is invested somewhere, providing a revenue by the form of periodical interest, the
rate of which is, also, supposed to be lower than risk free interest rate. Finally, in this system, the shortages are
completely backordered. Figure 2 illustrates the discussed system of inventory.

Inventory costs for this system include setup cost, inventory maintenance cost for each of the three stages,
shortage that is occurred in the first stage as well as the paid interest and received interest for both of the
echelons. The goal of the study is to determine the optimum period of refilling for distributor, parallel to the
warehouse (supplier) and the shortage distributor experiences.

Examples of the developed model are milk and beer bottle suppliers. In this regard a two echelon supply chain
consisted of milk and beer bottle suppliers and the distributers of them can be modeled in which the supplier
will gather around used bottles from some of the distributers and return them into the cycle of producing as
new bottles after the process of washing and sterilizing them.

The parameters and decision variables are introduced hereunder:
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Figure 1. Schematic representation of the model presented.

Parameters:
𝐷 The fixed rate of demand per unit time,
𝐴𝐵 Setting-up cost for distributor (buyer) ($/order),
𝐴𝑉𝑖 The fixed ordering cost for warehouse (supplier) at stage 𝑖 (𝑖 = 2, 3) ($/order),
ℎ𝑖 The holding cost of a unit in one period of time at stage 𝑖 (𝑖 = 1, 2, 3) ($/unit-

time),
𝑟 Ratio of returned items in each time period 0 < 𝑟 < 1.
𝐶 The price of each purchased item ($).
𝑃𝐵 Selling price of each item ($).
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(Stage 1)

Figure 2. A uni-warehouse, uni-distributor system of inventory considering profit.

𝐹 Warehouse’s unchanging process cost of dealing by every order ($) per unit
time (year)

𝑀 The permissible delay to settle the remaining of the purchasing cost (1− 𝛼).
𝜋 The cost of the shortage of one item ($) per unit time (year)
𝛼 The ratio of buying cost, paid at the delivering time of items.
𝐼𝑣𝑐 The opportunity cost of the warehouse for each dollar in a period of time.
𝐼𝐵𝑒 The opportunity cost of the distributer for each dollar in a period of time.
𝐼𝐵𝑐 The interest rate determining the distributer’s income for each dollar in a period

of time.
𝐼𝑉 Annual interest rate for computing the warehouse’s opportunity interest loss

due to the delay payment

𝑀1 The lengthy postponement period in payment in the combined model of
Model 3 (∆ > 0, 𝑀1 = 𝑀 + ∆)

𝑀𝑆 The most permitted postponement period in payment accepted by warehouse
(supplier) in the combined model of Model 3, where 𝑀1 < 𝑀𝑠

Decision Variables:
𝐵 The number of backordered items
𝐾𝑖 The ratio of demand, satisfied from the storage in model 𝑖 (𝑖 = 1, 2, 3)
𝑄 The quantity of order
𝑛𝑖 Shipment quantity from the warehouse to the distributer in each time period,

(which is an integer quantity in model 𝑖 (𝑖 = 1, 2, 3).
𝑇𝑖 The duration of a cycle of inventory in model 𝑖(𝑖 =

1, 2, 3) =
{︂
𝑇𝑖1 𝑖𝑓 𝑀 ≤ 𝐾𝑖𝑇𝑖
𝑇𝑖2 𝑖𝑓 𝑀 > 𝐾𝑖𝑇𝑖

(*) Indicates the optimal value
Dependent Variables:
𝑇𝐷𝑖 The whole cost of setup, maintenance, and shortage and demand lost for the

distributor in model 𝑖 (𝑖 = 1, 2, 3)
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Table 2. The difference of models, annual expenditure warehouse, distributer and their supply
chain.

Model Sharing
informa-
tion

M is Decision
variable?

Condition Annual
total cost of
distributer

Annual
total cost of
warehouse
(supplier)

Annual total
cost of supply
chain

Model 1 No No 𝑀 < 𝐾𝑇 𝐴𝑇𝐵11 𝑇𝐶𝑉1 𝐴𝑇𝐶1

𝑀 > 𝐾𝑇 𝐴𝑇𝐵12

Model 2 Yes No 𝑀 < 𝐾𝑇 𝐴𝑇𝐵21 𝑇𝐶𝑉2 𝐴𝑇𝐶2

𝑀 > 𝐾𝑇 𝐴𝑇𝐵22

Model 3 Yes Yes 𝑀 < 𝐾𝑇 𝐴𝑇𝐵31 𝑇𝐶𝑉3 𝐴𝑇𝐶3

𝑀 > 𝐾𝑇 𝐴𝑇𝐵32

𝐴𝐻𝐶𝑖 The yearly holding cost for each stage 𝑖 (𝑖 = 1, 2, 3)
𝑇𝐶𝑉𝑖 Whole cost per unit time for the warehouse (supplier) in model 𝑖 (𝑖 = 1, 2, 3)
𝐴𝐶𝐶𝑖𝑗 The annual capital cost per year in the model 𝑖 (𝑖 = 1, 2, 3) and case 𝑗 (𝑗 =

1, 2)
𝐴𝐼𝐸𝑖𝑗 The annual interest earned per year in the model 𝑖 (𝑖 = 1, 2, 3) and case 𝑗 (𝑗 =

1, 2)
𝐴𝑇𝐵𝑖𝑗 The annual total cost for distributer per year in the model 𝑖 (𝑖 = 1, 2, 3) and

case 𝑗 (𝑗 = 1, 2)
𝐴𝑇𝐶𝑖 The yearly whole cost for each phase
𝐴𝑇𝐶

′

𝑖 The equal yearly whole cost for each phase
IPD The periodic investment cost as prepayment
IED The periodic interest transaction due to delay in payment
𝐴𝑇𝐵𝑖 The annual total cost for distributer per year in the model 𝑖 (𝑖 = 1, 2, 3)
𝐴𝑇𝐶𝑖 Summation of annual total cost for supplier and retailer in model 𝑖 (𝑖 = 1, 2, 3)

3.2. Model development

According to the discussed issues, the interactions among two echelons, combined with acceptable paying
delays, the model is as follows.

Table 2 shows the difference of models, annual expenditure warehouse, distributer and their supply chain.
In the first step, the yearly cost for the first echelon 1 is discussed and is, thus, a part of the total cost for the
echelon 2. The aim of this section is to develop three subsequent models, the first of which, depicts the costs of
the warehouse (supplier) and is utilized in the rest of the subsequent models.

3.2.1. Warehouse’s (Supplier’s) cost model

For the warehouse, the total cost for each time period includes setup, holding, processing and opportunity
cost.

The behavior of these types of costs are assessed here under:

(1) Setup cost: according to Figure 3, it can be deducted that the set-ups numbers in every time period of the
second and the third stages are 𝐴𝑉

2
𝑛𝑖𝑇𝑖

and 𝐴𝑉
3

𝑛𝑖𝑇𝑖
, separately, in the 𝑖th model (𝑖 = 1, 2, 3).

(2) Maintenance cost: for each cycle, the warehouse’s inventory level in the second stage, can be determined as
the difference of the distributer’s total inventory level from that of warehouse’s.
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Figure 3. Inventory level of warehouse and distributor When 𝑛 = 4.

Thus, in each unit time, the inventory cost of warehouse in stage 2 and 3 are as follows:

𝐴𝐻𝐶2 =
ℎ2

𝑛𝑖𝑇𝑖
[(𝑛𝑖 − 1)𝐷𝑇𝑖 × 𝑇𝑖 + (𝑛𝑖 − 2)𝐷𝑇𝑖 × 𝑇𝑖 + . . .+𝐷𝑇𝑖 × 𝑇𝑖] (3.1)

=
ℎ2

𝑛𝑖𝑇𝑖

[︀
𝐷𝑇 2

𝑖 ((𝑛𝑖 − 1) + (𝑛𝑖 − 2) . . .+ 1)
]︀

=
ℎ2

𝑛𝑖𝑇𝑖

[︂
𝐷𝑇 2

𝑖

𝑛𝑖 (𝑛𝑖 − 1)
2

]︂
= ℎ2

(𝑛𝑖 − 1)𝐷𝑇𝑖
2

for 𝑖 is 1, 2, 3

𝐴𝐻𝐶3 = ℎ3
𝑟𝑛𝑖𝐷𝑇𝑖

2
for 𝑖 is 1, 2, 3 (3.2)

(3) Processing cost: The cost to warehouse faces for dealing with each order per unit time in the model 𝑖(𝑖 =
1, 2, 3) is 𝐹

𝑇𝑖

(4) Cost of Opportunity interest loss per unit time for the model 𝑖(𝑖 = 1, 2) = (1− 𝛼)𝑀𝐶𝐼𝑉 𝑛𝑖𝐷𝑇𝑖 and for the
model 3 = (1− 𝛼)𝑀1𝐶𝐼𝑉 𝑛3𝐷𝑇3

Accordingly, the total cost in each time period, for warehouse, in the model 𝑖(𝑖 = 1, 2) is:

𝑇𝐶𝑉𝑖 =
𝐴𝑉2
𝑛𝑖𝑇𝑖

+
𝐴𝑉3
𝑛𝑖𝑇𝑖

+ ℎ2
(𝑛𝑖 − 1)𝐷𝑇𝑖

2
+ ℎ3

𝑟𝑛𝑖𝐷𝑇𝑖
2

+
𝐹

𝑇𝑖
+ (1− 𝛼)𝐶𝐼𝑉𝑀𝐷. (3.3)
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Whereas the accumulative cost of each time period in the third model for warehouse is

𝑇𝐶𝑉3 =
𝐴𝑉2
𝑛3𝑇3

+
𝐴𝑉3
𝑛3𝑇3

+ ℎ2
(𝑛3 − 1)𝐷𝑇3

2
+ ℎ3

𝑟𝑛3𝐷𝑇3

2
+
𝐹

𝑇3
+ (1− 𝛼)𝐶𝐼𝑉𝑀1𝐷. (3.4)

3.2.2. Model 1: Non-integrated warehouse–distributer model

The sum of distributer’s cost, in each period, including ordering, holding, backordering, cost of opportunity,
and gained interest, are formulated as follows:

(1) Cost of order in each time period: 𝐴𝐵

𝑇1
·

(2) Cost of maintenance (excluding interest charges) in each time period: 1
2ℎ1𝐷𝐾

2
1𝑇1.

(3) Cost of shortage for backordering in each time period: 𝜋𝐷
2 (1−𝐾1)2𝑇1.

Furthermore 𝑇𝐷1 = 𝐴𝐵

𝑇1
+ 1

2ℎ1𝐷𝐾
2
1𝑇1 + 𝜋𝐷

2 (1−𝐾1)2𝑇1.
(4) Cost of opportunity and gained interest: according to the relation of 𝐾1𝑇1 and 𝑀 , one of the two situations

may occur.

i. 𝑀 < 𝐾1𝑇1

ii. 𝑀 > 𝐾1𝑇1

First situation: 𝑀 < 𝐾1𝑇1

The cost of interest capital in this case has two parts. Since 𝛼 percent of money goods is paid at the beginning
of period and these goods are sold in KT periods, its cost of capital is 𝛼𝐶𝐼𝑐𝐷𝐾1𝑇1*𝐾1𝑇1

2 (part I of Fig. 4, left
side) and the second part is cost of 1− 𝛼 percent of money goods that is paid in time 𝑀 . Its cost of capital is
(1−𝛼)𝐶𝐼𝑐𝐷(𝐾1𝑇1−𝑀)2

2 (part II of Fig. 4, left side). So total cost of capital in this case is: (Fig. 4, left side)

𝐴𝐶𝐶11 =
1
𝑇1

⎛⎜⎜⎝𝛼𝐶𝐼𝑐𝐷𝐾2
1𝑇

2
1

2⏟  ⏞  
I

+
(1− 𝛼)𝐶𝐼𝑐𝐷 (𝐾1𝑇1 −𝑀)2

2⏟  ⏞  
II

⎞⎟⎟⎠ . (3.5)

Since at the beginning of the period, 1− 𝛼 percent of backordered money is received and we have it until time
M, gained interest is 𝐷𝑇1 (1−𝐾1) (1− 𝛼)𝑃𝐵𝐼𝑒 *𝑀 (part I of Fig. 4, right side) and gained interest from selling
goods in M duration and receiving 1− 𝛼 percent of money of goods is 𝐷𝑀(1−𝛼)𝑃𝐵𝐼𝑒*𝑀

2 (part II of Fig. 4, right
side). Annually gained interest in this case is:

𝐴𝐼𝐸11 =
1
𝑇1

⎛⎜⎜⎝(𝐷𝑇1 (1−𝐾1) (1− 𝛼)𝑃𝐵𝑀𝐼𝑒)⏟  ⏞  
I

+
𝐷𝑀2

2
(1− 𝛼)𝑃𝐵𝐼𝑒⏟  ⏞  

II

⎞⎟⎟⎠ . (3.6)

Case 2. 𝑀 > 𝐾1𝑇1

Since 𝛼 percent of money of goods is paid at the beginning of period and these goods are sold in KT duration,
its cost of capital is 𝛼𝐶𝐼𝑐𝐷𝐾1𝑇1*𝐾1𝑇1

2 . So annually cost of capital is: (Fig. 5, left side)

𝐴𝐶𝐶12 =
𝛼𝐶𝐼𝑐𝐷𝐾

2
1𝑇1

2
· (3.7)

Gained interest in this case consists of three parts. First part: 1 − 𝛼 percent of backordered money that
happens at the beginning of period and it is in our possession until time M. Gained interest from this money
is (𝐷𝑇1 (1−𝐾1) (1− 𝛼)𝑃𝐵𝐼𝑒)𝑀 . Second part: since 1 − 𝛼 percent of money of goods is received at the
buying of goods from costumer and selling continues until time KT, therefor gained interest in this part is
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Figure 4. Income of interest vs. cost of interest for the first case 1.

Figure 5. Interest earned and interest charged for case 2.

𝐷𝐾2
1𝑇

2
1

2 (1− 𝛼)𝑃𝐵𝐼𝑒 and since such money is in our possession until time M, gained interest from this money
is 𝐷𝐾1𝑇1 (𝑀 −𝐾1𝑇1) (1− 𝛼)𝑃𝐵𝐼𝑒. So gained annually interest is:

𝐴𝐼𝐸12 =
1
𝑇1

⎛⎜⎜⎝(𝐷𝑇1 (1−𝐾1) (1− 𝛼)𝑃𝐵𝑀𝐼𝑒)⏟  ⏞  
I

+
𝐷𝐾2

1𝑇
2
1

2
(1− 𝛼)𝑃𝐵𝐼𝑒⏟  ⏞  
II

+𝐷𝐾1𝑇1 (𝑀 −𝐾1𝑇1) (1− 𝛼)𝑃𝐵𝐼𝑒⏟  ⏞  
III

⎞⎟⎟⎠ .

(3.8)
The accumulative net cost in each time period or warehouse (supplier) is modeled as follows. Accordingly,
regarding the first two cases, it can be inferred respectively that:

𝐴𝑇𝐵11 = 𝑇𝐷1 +𝐴𝐶𝐶11 −𝐴𝐼𝐸11 =
𝐴𝐵
𝑇1

+
1
2
ℎ1𝐷𝐾

2
1𝑇1 +

𝜋𝐷

2
(1−𝐾1)2𝑇1

+ 𝐶𝐼𝑐𝐷

(︃
𝛼𝐾2

1𝑇1

2
+

(1− 𝛼) (𝐾1𝑇1 −𝑀)2

2𝑇1

)︃

− (𝐷 (1−𝐾1) (1− 𝛼)𝑃𝐵𝑀𝐼𝑒)−
𝐷𝑀2

2𝑇1
(1− 𝛼)𝑃𝐵𝐼𝑒 𝑀 < 𝐾1𝑇1 (3.9)
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𝐴𝑇𝐵12 = 𝑇𝐷1 +𝐴𝐶𝐶12 −𝐴𝐼𝐸12 =
𝐴𝐵
𝑇1

+
1
2
ℎ1𝐷𝐾

2
1𝑇1 +

𝜋𝐷

2
(1−𝐾1)2𝑇1

+
𝛼𝐶𝐼𝑐𝐷𝐾

2
1𝑇1

2
− (𝐷 (1−𝐾1)𝑀 (1− 𝛼)𝑃𝐵𝐼𝑒)−

𝐷𝐾2
1𝑇1

2
(1− 𝛼)𝑃𝐵𝐼𝑒

−𝐷𝐾1 (𝑀 −𝐾1𝑇1) (1− 𝛼)𝑃𝐵𝐼𝑒 𝑀 > 𝐾1𝑇1 (3.10)

Case 1. 𝑀 < 𝐾1𝑇1

The objective function shown in equation (3.9) can be rewritten as follows;

∆11(𝐾1, 𝑇1) =
𝜓11

𝑇1
+ (𝜓12𝐾

2
1 − 2𝜓13𝐾1 + 𝜓14)𝑇1 + 𝜓15𝐾1 + 𝜓16. (3.11)

Where

𝜓11 =
2𝐴𝐵 +𝐷𝑀2 (1− 𝛼) (𝐶𝐼𝑐 − 𝑃𝐵𝐼𝑒)

2
(3.12)

𝜓12 =
𝐷

2
(ℎ1 + 𝜋 + 𝐶𝐼𝑐) (3.13)

𝜓13 =
𝜋𝐷

2
(3.14)

𝜓14 =
𝜋𝐷

2
(3.15)

𝜓15 = ((𝐷 (1− 𝛼)𝑀) (𝑃𝐵𝐼𝑒 − 𝐶𝐼𝑐)) (3.16)
𝜓16 = −𝑃𝐵𝐼𝑒𝐷 (1− 𝛼)𝑀. (3.17)

Moreover equation (3.11) can be rewritten as follows.

∆11(𝐾1, 𝑇1) =
𝜓11

𝑇1
+ 𝑇1𝛾(𝐾1) + 𝜓15𝐾1 + 𝜓16. (3.18)

Where 𝛾(𝐾1) = 𝜓12𝐾
2
1 − 2𝜓13𝐾1 + 𝜓14. Equation (A.1), is the objective function, which is a convex

in equation (3.11) the global minimum of this equation can be calculated. This is also true for equa-
tions (3.19) and (3.20), (see Appendix A, Eqs. (A.9) and (A.10)). The optimum quantities of are 𝐾1 and
𝑇1, respectively.

𝑇 *11 = 𝑇 *1

=

⎯⎸⎸⎷ (ℎ1 + 𝜋 + 𝐶𝐼𝑐)
2 [2𝐴𝐵 +𝐷𝑀2 (1− 𝛼) (𝐶𝐼𝑐 − 𝑃𝐵𝐼𝑒)]−

(︁
𝜋𝐷 + [(ℎ1 + 𝐶𝐼𝑐 + 𝜋)𝐷] ((1− 𝛼)𝑀)2 (𝑃𝐵𝐼𝑒 − 𝐶𝐼𝑐)

2
)︁

𝜋𝐷 (ℎ1 + 𝐶𝐼𝑐)
2

(3.19)

𝐾*
11 = 𝐾*

1 =
𝜋𝑇 *1 − ((1− 𝛼)𝑀) (𝑃𝐵𝐼𝑒 − 𝐶𝐼𝑐)

𝑇 *1 (ℎ1 + 𝜋 + 𝐶𝐼𝑐)
· (3.20)

Case 2. 𝑀 > 𝐾1𝑇1

The objective function shown in equation (3.10) can be rewritten as follows;

∆12(𝐾1, 𝑇1) =
𝜓21

𝑇1
+ (𝜓22𝐾

2
1 − 2𝜓23𝐾1 + 𝜓24)𝑇1 + 𝜓25. (3.21)

Where

𝜓21 = 𝐴𝐵 (3.22)
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𝜓22 =
𝐷

2
(ℎ1 + 𝜋 + (𝛼𝐶𝐼𝑐 + (1− 𝛼)𝑃𝐵𝐼𝑒)) (3.23)

𝜓23 =
𝜋𝐷

2
(3.24)

𝜓24 =
𝜋𝐷

2
(3.25)

𝜓25 = −𝑃𝐵𝐼𝑒𝐷 (1− 𝛼)𝑀 (3.26)

Equation (B.1), is the objective function, which is a convex in equation (3.21) and the global minimum
of this equation can be calculated. This is also true for equations (3.27) and (3.28), (see Appendix B,
Eqs. (B.9) and (B.10)). The optimum quantities of are 𝐾1 and 𝑇1, respectively.

𝑇 *12 = 𝑇 *1 =

⎯⎸⎸⎸⎸⎸⎷
2𝐴𝐵

(ℎ1𝐷 + 𝜋𝐷 + 𝛼𝐶𝐼𝑐𝐷 +𝐷 (1− 𝛼)𝑃𝐵𝐼𝑒)
(︁

𝜋
ℎ1+𝜋+𝛼𝐶𝐼𝑐+(1−𝛼)𝑃𝐵𝐼𝑒

)︁2

−2𝜋𝐷
(︁

𝜋
ℎ1+𝜋+𝛼𝐶𝐼𝑐+(1−𝛼)𝑃𝐵𝐼𝑒

)︁
+ 𝜋𝐷

(3.27)

𝐾*
12 = 𝐾*

1 =
𝜓23

𝜓22
=

𝜋

ℎ1 + 𝜋 + 𝛼𝐶𝐼𝑐 + (1− 𝛼)𝑃𝐵𝐼𝑒
· (3.28)

At this point, the optimal solution (𝐾*
1 , 𝑇

*
1 ) can be obtained through establishing in the Appendix H

It is undeniable that the optimal 𝑛*1 must be capable of satisfying subsequent conditions, for the minimal
𝑇𝐶𝑉1,

𝑇𝐶𝑉1 (𝑇 *1 , 𝑛
*
1 − 1) ≥ 𝑇𝐶𝑉1 (𝑇 *1 , 𝑛

*
1) And𝑇𝐶𝑉1 (𝑇 *1 , 𝑛

*
1 + 1) ≥ 𝑇𝐶𝑉1 (𝑇 *1 , 𝑛

*
1) . (3.29)

Hence, the whole cost per year in the first model is

𝐴𝑇𝐶1 (𝐾*
1 , 𝑇

*
1 , 𝑛

*
1) = 𝐴𝑇𝐵1 (𝐾*

1 , 𝑇
*
1 ) + 𝑇𝐶𝑉1 (𝑇 *1 , 𝑛

*
1) . (3.30)

3.2.3. Model 2: Combined model with a postponed payment

This model is developed for identifying proper time interval of replenishment for the distributer while mini-
mizing the whole cost per time unit, under the circumstances that warehouse and the distributer enjoy mutual
interactions of sharing information, paving the way for constructing a strategic long-term alliance. In the first
model, each member of chain minimizes its costs separately, but in this case minimization happens from view-
point of both members. In fact, cost of chains that includes supplier(warehouse) and vendor costs is added
together then minimize it.

The model is given in terms of two cases as follows.

Case 1. 𝑀 < 𝐾2𝑇2

Cost function 𝐴𝑇𝐶21 is obtained from adding supplier (warehouse) costs 𝑇𝐶𝑉21 and retailer costs 𝐴𝑇𝐵21

that if 𝐾1 = 𝐾2 and 𝑇1 = 𝑇2, 𝐴𝑇𝐵11 and 𝑇𝐶𝑉11 will become 𝐴𝑇𝐵21 and 𝑇𝐶𝑉21 respectively. So equations
are as follows:

𝐴𝑇𝐶21 = 𝐴𝑇𝐵21 + 𝑇𝐶𝑉21 =
𝐴𝐵

𝑇2
+

1

2
ℎ1𝐷𝐾

2
2𝑇2 +

𝜋𝐷

2
(1−𝐾2)

2𝑇2 + 𝐶𝐼𝑐𝐷

(︂
𝛼𝐾2

2𝑇2

2
+

(1− 𝛼) (𝐾2𝑇2 −𝑀)2

2𝑇2

)︂

− (𝐷 (1−𝐾2) (1− 𝛼)𝑃𝐵𝑀𝐼𝑒)−
𝐷𝑀2

2𝑇2
(1− 𝛼)𝑃𝐵𝐼𝑒

+

(︂
𝐴𝑣

2

𝑛2𝑇2
+

𝐴𝑣
3

𝑛2𝑇2
+ ℎ2

(𝑛− 1)𝐷𝑇2

2
+ ℎ3

𝑟𝑛𝐷𝑇2

2
+
𝐹

𝑇2
+ (1− 𝛼)𝑀𝐶𝐼𝑉 𝐷

)︂
. (3.31)
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Case 2. 𝑀 > 𝐾2𝑇2

Like previous case chain member costs are added. Since 𝑀 > 𝐾2𝑇2, these costs for supplier is 𝑇𝐶𝑉22 and
for vendor is 𝐴𝑇𝐵22. So equations are as follows:

𝐴𝑇𝐶22 = 𝐴𝑇𝐵22 + 𝑇𝐶𝑉22 =
𝐴

𝑇2
+

(︂
1

2
ℎ1𝐷 +

𝜋𝐷

2
+
𝛼𝐶𝐼𝑐𝐷

2
+
𝐷 (1− 𝛼)𝑃𝐵𝐼𝑒

2

)︂
𝐾2

2𝑇2 − 2𝐾2𝑇2

(︂
𝜋𝐷

2

)︂
+

(︂
𝜋𝐷

2

)︂
𝑇2

− (𝐷𝑀 (1− 𝛼)𝑃𝐵𝐼𝑒) +

(︂
𝐴2

𝑛2𝑇2
+

𝐴3

𝑛2𝑇2
+ ℎ2

(𝑛− 1)𝐷𝑇2

2
+ ℎ3

𝑟𝑛𝐷𝑇2

2
+
𝐹

𝑇2
+ (1− 𝛼)𝑀𝐶𝐼𝑉 𝐷

)︂
. (3.32)

Case 1. 𝑀 < 𝐾2𝑇2

Fixing 𝑛2, the objective functions shown in equation (3.31) can be rewritten as follows;

∆21(𝐾2, 𝑇2) =
𝜓31

𝑇2
+ (𝜓32𝐾

2
2 − 2𝜓33𝐾2 + 𝜓34)𝑇2 + 𝜓35𝐾2 + 𝜓36. (3.33)

Where

𝜓31 =
(︂
𝐴𝑏 + 𝐹 +

𝐴𝑉2
𝑛2

+
𝐴𝑉3
𝑛2

+
𝐷𝑀2 (1− 𝛼) (𝐶𝐼𝑐 − 𝑃𝐵𝐼𝑒)

2

)︂
(3.34)

𝜓32 =
𝐷

2
(ℎ1 + 𝜋 + 𝐶𝐼𝑐) (3.35)

𝜓33 =
𝜋𝐷

2
(3.36)

𝜓34 =
(︂
𝜋𝐷

2
+ ℎ2

(𝑛2 − 1)𝐷
2

+ ℎ3
𝑟𝑛2𝐷

2

)︂
(3.37)

𝜓35 = 𝐷 (1− 𝛼)𝑀𝑃𝐵𝐼𝑒 (3.38)
𝜓36 = −𝑃𝐵𝐼𝑒𝐷 (1− 𝛼)𝑀 + (1− 𝛼)𝑀𝐶𝐼𝑉𝐷. (3.39)

Moreover equation (3.33) can be rewritten as follows.

∆21(𝐾2, 𝑇2) =
𝜓31

𝑇2
+ 𝑇2𝛾(𝐾2)Ψ35𝐾2 + Ψ36. (3.40)

Where 𝛾(𝐾2) = 𝜓32𝐾
2
2 − 2𝜓33𝐾2 + 𝜓34,

Equation (C.1), is the objective function, which is a convex in equation (3.33) and the global mini-
mum this equation can be calculated. This is also true for equations (3.41) and (3.42), (see Appendix C,
Eqs. (C.9) and (C.10)). The optimum quantities of are 𝐾2 and 𝑇2, respectively.

𝑇 *21 = 𝑇 *2 =

⎯⎸⎸⎸⎸⎷ 2𝐷 (ℎ1 + 𝜋 + 𝐶𝐼𝑐)
(︁
𝐴𝑏 + 𝐹 + 𝐴𝑉

2
𝑛2

+ 𝐴𝑉
3
𝑛2

+ 𝐷𝑀2(1−𝛼)(𝐶𝐼𝑐−𝑃𝐵𝐼𝑒)
2

)︁
− [𝐷 (1− 𝛼)𝑀 (𝑃𝐵𝐼𝑒 − 𝐶𝐼𝑐)]

2

𝐷2 (ℎ1 + 𝜋 + 𝐶𝐼𝑐) (𝜋 + ℎ2 (𝑛2 − 1) + ℎ3𝑟𝑛2)− 𝜋2𝐷2
(3.41)

𝐾*
21 = 𝐾*

2 =
𝜋

(ℎ1 + 𝜋 + 𝐶𝐼𝑐)
− 2𝐷 (1− 𝛼)𝑀 (𝑃𝐵𝐼𝑒 − 𝐶𝐼𝑐)

(ℎ1 + 𝜋 + 𝐶𝐼𝑐)⎯⎸⎸⎸⎸⎷
𝐷2 (ℎ1 + 𝜋 + 𝐶𝐼𝑐) (𝜋 + ℎ2 (𝑛2 − 1) + ℎ3𝑟𝑛2)− 𝜋2𝐷2

8𝐷 (ℎ1 + 𝜋 + 𝐶𝐼𝑐)
(︁
𝐴𝐵 + 𝐹 + 𝐴𝑉

2
𝑛2

+ 𝐴𝑉
3
𝑛2

+ 𝐷𝑀2(1−𝛼)(𝐶𝐼𝑐−𝑃𝐵𝐼𝑒)
2

)︁
− [2𝐷 (1− 𝛼)𝑀 (𝑃𝐵𝐼𝑒 − 𝐶𝐼𝑐)]

2
.

(3.42)
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Case 2. 𝑀 > 𝐾2𝑇2

Fixing 𝑛2 The objective function shown in equation (3.32) can be rewritten as follows;

∆22(𝐾2, 𝑇2) =
𝜓41

𝑇2
+ (𝜓42𝐾

2
2 − 2𝜓43𝐾2 + 𝜓44)𝑇2 + 𝜓45. (3.43)

Where

𝜓41 =
(︂
𝐴𝑏 + 𝐹 +

𝐴𝑉2
𝑛2

+
𝐴𝑉3
𝑛2

)︂
(3.44)

𝜓42 =
(︂

1
2
ℎ1𝐷 +

𝜋𝐷

2
+
𝛼𝐶𝐼𝑐𝐷

2
+
𝐷 (1− 𝛼)𝑃𝐵𝐼𝑒

2

)︂
(3.45)

𝜓43 =
(︂
𝜋𝐷

2

)︂
(3.46)

𝜓44 =
(︂
𝜋𝐷

2
+ ℎ2

(𝑛2 − 1)𝐷
2

+ ℎ3
𝑟𝑛2𝐷

2

)︂
(3.47)

𝜓45 = − (𝐷𝑀 (1− 𝛼)𝑃𝐵𝐼𝑒) + (1− 𝛼)𝑀𝐶𝐼𝑉𝐷. (3.48)

Moreover equation (3.43) can be rewritten as follows.

∆22(𝐾2, 𝑇2) =
𝜓41

𝑇2
+ 𝑇2𝛾(𝐾2) + 𝜓45. (3.49)

Where 𝛾(𝐾2) = 𝜓42𝐾
2
2 − 2𝜓43𝐾2 + 𝜓44,

Equation (D.1), is the objective function, which is a convex in equation (3.43) the global minimum
this equation can be calculated. This is also true for equations (3.50) and (3.51), (see Appendix D,
Eqs. (D.9) and (D.10)). The optimum quantities of are 𝐾2 and 𝑇2, respectively.

𝐾*
22 = 𝐾*

2 =
𝜓43

𝜓42
=

𝜋

ℎ1 + 𝜋 + 𝛼𝐶𝐼𝑐 + (1− 𝛼)𝑃𝐵𝐼𝑒
(3.50)

𝑇 *22 = 𝑇 *2 = 𝑇 *2 (𝐾2) =

⎯⎸⎸⎸⎷ 2
(︁
𝐴𝐵 + 𝐹 + 𝐴𝑉

2
𝑛2

+ 𝐴𝑉
3
𝑛2

)︁
(𝜋𝐷 + ℎ2 (𝑛2 − 1)𝐷 + ℎ3𝑟𝑛2𝐷)− 𝜋𝐷

(︁
𝜋

ℎ1+𝜋+𝛼𝐶𝐼𝑐+(1−𝛼)𝑃𝐵𝐼𝑒

)︁ (3.51)

To find out optimal values of 𝐾*
2 , 𝑇 *2 and 𝑛*2 the following algorithm is provided.

Solution procedure for model 2
See appendix F.

3.2.4. Model 3: Combined model with a negotiation procedure

Generally, the infrastructures of information sharing, paves the way for lowering the total cost in integrated
environment, compared to a non-integrated environment.

Nevertheless, it must be mentioned that the distributer may experience some increase in the prices after
integration, due to increase in procurement costs. On the other hand, however, the warehouse (supplier) allocates
a considerably longer interval to distributer for delaying the payment from him/her, the terms of which is
discussed through negotiations. This interval of delay motivates the distributer, through reducing his/her total
cost, to enter a cooperative relationship for constructing a win–win management environment of supply chain.
In other words, the information sharing cooperation helps both warehouse (supplier) as well as the distributer
to benefit in the form of lowered costs.

In this regard, consider (𝑀 <)𝑀𝑛 is the interval of delay, the distributer gets from warehouse (supplier), as
discussed above. As a result, the whole cost per each time unit can be modeled in to categories, as follows
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Case 1. (𝑀 < 𝐾3𝑇3)
Like case one, cost function of model two 𝐴𝑇𝐶31 is written from viewpoint of whole members of supply chain
and it is obtained from adding supplier (warehouse) costs 𝑇𝐶𝑉31 and vendor costs 𝐴𝑇𝐵31. So equations are
as follows:

𝐴𝑇𝐶31 = 𝐴𝑇𝐵31 + 𝑇𝐶𝑉31 =
𝐴𝐵

𝑇3
+

1

2
ℎ1𝐷𝐾

2
3𝑇3 +

𝜋𝐷

2
(1−𝐾3)

2𝑇3 + 𝐶𝐼𝑐𝐷

(︂
𝛼𝐾2

3𝑇3

2
+

(1− 𝛼) (𝐾3𝑇3 −𝑀𝑛)2

2𝑇3

)︂

− (𝐷 (1−𝐾3) (1− 𝛼)𝑃𝐵𝑀𝑛𝐼𝑒)−
𝐷𝑀2

𝑛

2𝑇3
(1− 𝛼)𝑃𝐵𝐼𝑒

+

(︂
𝐴𝑉

2

𝑛3𝑇3
+

𝐴𝑉
3

𝑛3𝑇3
+ ℎ2

(𝑛3 − 1)𝐷𝑇2

2
+ ℎ3

𝑟𝑛3𝐷𝑇2

2
+
𝐹

𝑇3
+ (1− 𝛼)𝑀𝑛𝐶𝐼𝑉 𝐷

)︂
. (3.52)

Case 2. (𝑀 > 𝐾3𝑇3)
In this case we want to minimize total costs of chain members. So we add obtained costs of supplier 𝑇𝐶𝑉31

and costs of vendor 𝐴𝑇𝐵31 and minimize them.

𝐴𝑇𝐶32 = 𝐴𝑇𝐵32 + 𝑇𝐶𝑉32 =
𝐴𝐵

𝑇3
+

(︂
1

2
ℎ1𝐷 +

𝜋𝐷

2
+
𝛼𝐶𝐼𝑐𝐷

2
+
𝐷 (1− 𝛼)𝑃𝐵𝐼𝑒

2

)︂
𝐾2

3𝑇3 − 2𝐾3𝑇3

(︂
𝜋𝐷

2

)︂
+

(︂
𝜋𝐷

2

)︂
𝑇3

− (𝐷𝑀𝑛 (1− 𝛼)𝑃𝐵𝐼𝑒) +

(︂
𝐴𝑉

2

𝑛3𝑇3
+

𝐴𝑉
3

𝑛3𝑇3
+ ℎ2

(𝑛3 − 1)𝐷𝑇3

2
+ ℎ3

𝑟𝑛3𝐷𝑇3

2
+
𝐹

𝑇3
+ (1− 𝛼)𝑀𝑛𝐶𝐼𝑉 𝐷

)︂
. (3.53)

The model of coordination, while the supply chain strategy includes flexible delay interval for payment is
as follows:

𝑀1 = 𝑀 + ∆, ∆ > 0.

With a fixed quantity for 𝑛3, 𝐾3 and 𝑇3, the first derivation of both 𝐴𝑇𝐶31 and 𝐴𝑇𝐶32 with respect to ∆
is as follows:

𝑑𝐴𝑇𝐶31

𝑑∆
= −𝐷 (1− 𝛼) (𝑃𝐵𝐼𝑒 − 𝐶𝐼𝑉 ) (1−𝐾3)− (1− 𝛼)𝐷𝑀𝑛

𝑇3
(𝑃𝐵𝐼𝑒 − 𝐶𝐼𝑐) < 0

+
(1− 𝛼)𝐷 (𝑀𝑛)2

2𝑇3
(𝐶𝐼𝑐 − 𝑃𝐵𝐼𝑒)− (1− 𝛼)𝑀𝑛𝐶𝐼𝑐𝐷𝐾3

− (𝐷 (1−𝐾3) (1− 𝛼)𝑃𝐵𝑀𝑛𝐼𝑒) + (1− 𝛼)𝑀𝑛𝐶𝐼𝑉𝐷 (3.54)
𝑑𝐴𝑇𝐶32

𝑑∆
= ((1− 𝛼)𝐶𝐼𝑉𝐷)− ((1− 𝛼)𝑃𝐵𝐼𝑒𝐷) < 0. (3.55)

From equations (3.47) and (3.48), it is easily concluded that the total cost represents a decreasing conduct
in this model as the warehouse (supplier) decides to prolong the payment period of the distributer. At this
point, the profit of the distributer and warehouse (supplier) from cost savings are defined respectively as:

𝐵𝑆 = 𝑇𝐵1 − 𝑇𝐵3

𝑉 𝑆 = 𝑉 𝐵1 − 𝑉 𝐵3.

Altogether, a study on the variations of the vendor’s conduct as well as distributer’s, through comparing BS
vs. VS, sheds light on some crucial aspects of the model. The parameter 𝛼 is assumed to be the coefficient of
compromise for sharing combined cost savings between distributer and warehouse (supplier), and is specified
through satisfying 𝑉 𝑆 = 𝛼*𝐵𝑆, 𝛼 > 0. The condition in which 𝛼 = 0, illustrates the situation in which, the
distributer experiences all possible savings, while, 𝛼 = 1 stands for the sharing environment with equal cost
decrease for both warehouse (supplier) as well as the distributer. Between these two extremes, the larger
quantities of coefficient 𝛼 illustrate conditions, saving most of the costs for the warehouse (supplier). The
smaller quantities of coefficient 𝛼, however, depicts a cooperative atmosphere, in which, profits gained as
saving the costs are inclined towards the distributer.
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Table 3. The optimal solutions taken from the three models.

𝑛* 𝐾* 𝑇 * 𝛼* 𝑀*
𝑛/𝑀𝑆 𝐴𝑇𝐵 𝐴𝑇𝑉 𝐴𝑇𝐶 𝑃𝐴𝑇𝐶(%)

Model 1 6 0.6515 0.1263 0.5 1/12 152.41 497.51 649.93 –
Model 2 3 0.6525 0.2480 0.5 1/12 189.68 425.82 615.51 5.3
Model 3(𝑀𝑛) 3 0.6494 0.2474 0 0.35 146.19 448.28 594.47 8.53
Model 4(𝑀𝑆) 3 0.6494 0.2474 0 0.548 117.67 462.54 580.22 10.73

The realization of the savings is regulated by the length of the payment delay interval. With this in mind,
the smaller the correlation, the longer the delay interval is. But, a vendor normally has the most allowed
postponement period as 𝑀𝑛 for the buyer in the real world. Thus, 𝑀𝑛 plays the role of an upper limit
for delay interval decision variable in Model 3. Taking into account the negotiation coefficient 𝛼 and the
maximum length of delay interval 𝑀𝑛, a solving procedure is developed to optimize 𝑇 *3 , 𝐾*

3 and 𝑛*3.

Solving procedure:

Step 1: The parameters 𝛼, 𝜉,𝑀𝑛, and 𝛿 are set equal to zero. In order for the parameters to gain positive real
numbers, 𝜉 and 𝛿 should be minimal.

Step 2: the minimum quantity of 𝐴𝑇𝑉1 (𝑛*1, 𝑇
*
1 ) and 𝐴𝑇𝐵1 (𝐾*

1𝑇
*
1 ) are determined in the first Model by letting

𝑀𝑛 = 𝑀 , while, 𝑀 is predetermined delay interval.
Step 3: Quantities of 𝑛*3, 𝐾*

3 and 𝑇 *3 are determined based on 𝑀𝑛, through using Theorems 1 and 2 in Model
2. Calculate 𝑇𝑉3, 𝑇𝐵3, 𝑉 𝑆 (= 𝑇𝑉1 (𝑇 *1 , 𝑛

*
1)− 𝑇𝑉3), and 𝐵𝑆 (= 𝑇𝐵1 (𝑇 *1 , 𝑛

*
1)− 𝑇𝐵3).

Step 4: If |𝑉 𝑆 − 𝛼 *𝐵𝑆| < 𝜉, the termination criteria are triggered, and the final answers will be 𝐾*
3 , 𝑇 *3 , 𝑛*3,

𝑀*
1 (= 𝑀1) and 𝑇𝐶3; otherwise, procedure is iterated through Step 3 while, 𝑀𝑛 = 𝑀𝑛 + ∆.

Step 5: When 𝑀*
𝑛 > 𝑀𝑆 , let 𝑀*

𝑛 = 𝑀𝑆 , and the optimal quantities of 𝑛*3, 𝑇 *3 , and 𝑇𝐶3 are determined.

When the condition 𝑀*
𝑛 < 𝑀𝑆 is met, it can be concluded that the negotiation to achieve collaboration is

successful through a payment delay interval shorter than 𝑀𝑛. This situation can be recognized from a larger 𝛼.
The parameter 𝑀*

𝑛 is the delay interval, determined in the negotiation. Although, it must be considered that
𝑀*
𝑛 could exceed the maximum permissible delay interval 𝑀𝑛. At this point Step 5 is will be performed.

4. Numerical example

We use a numerical example to show the suggested three models with the intention of demonstrate the
difference among them. with regard to the related literature, we accepted some parameters from the paper of
Teng (2002). Let 𝐴 = 10, 𝐴𝑉2 = 120, 𝐴𝑉3 = 50, 𝐹 = 10, 𝐷 = 3600, 𝑀 = 1

12 , 𝐼𝑐 = 0.06, 𝐼𝑒 = 𝐼𝑣 = 0.04, ℎ1 = 0.5,
ℎ2 = 0.15, ℎ3 = 0.05, 𝐶 = 0.5, 𝑃𝐵 = 1, set 𝑀𝑆 = 0.35 𝛿 = 10−3, 𝜉 = 10−3 and 𝛼 = 1. Table 3 provides the
optimal solutions to the three models through deploying the following parameters.

5. Results and discussion

As it can be inferred from the Table 3, the cost of the first model in which retailer and the warehouse
(supplier) are separately trying to optimize their costs, is higher than second and third mode, while, the whole
cost of the second model is higher than the third. In the first model, the retailer does not consider the costs of
the warehouse (supplier), due to lack of exchanging information, and she optimizes 𝑇 * and 𝐾* according to her
own costs. Therefore, her costs are lower than the second model in which information exchange takes place. On
the other hand, since the warehouse merely optimizes his own 𝑛* and has no part in optimizing 𝑇 *, the total
cost is higher than the second and third models. As a matter of fact, it can be pointed out that the calculated
quantity for the total cost is not the lowest cost, since the model is optimized in two steps and warehouse’s
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cost is not considered for the optimization of 𝑇 * and 𝐾*. However, in the second model, in which information
exchange exists, and distributer’s cost as well as warehouse’s are included simultaneously, the final total cost
is 5.3% decreased, compared to the first model. Also, according to the table, 𝑇 * is increased in the second
model compared to the first model, while 𝑛* is decreased. This represents that, in each cycle, distributer’s order
quantity is increased, while the frequency of the order is decreased, which lowers the second level setup costs
(second and third steps) as well as the delivery costs.

Even though the total cost of the second model is decreased compared to first model, the first level of the
second model’s cost is increased, in comparison with first model. This issue lowers distributers interest for
information exchange. To convince the distributer, the warehouse (supplier) considers better terms for the delay
in payment and the portion of the purchase cost to be delayed, compared to the first model, in order to provide
financial feasibility to exchange information with the distributer. This structure is established in the third model.
The total cost of the third model shows 8.3% decrease compared to the first model. Furthermore, second level
costs 49.23 and first level costs 6.22 units decrease compared to the first model. Additionally, delay time has
reached 0.35 unit for this model. Last but not least, the portion of the purchase cost that distributer is obligated
to pay when receiving the products, has reached to zero.

In the fourth model, the constraint, 𝑀𝑛 < 𝑀𝑠 is not taken into account, resulting in the profit of 35 units for
both levels, while 𝛼 = 1 and the total cost is decreased 10.73%, compared to the first model and has reached
580.22.

5.1. Sensitive analyze and managerial insight

Sensitivity analysis for the negotiation coefficient 𝛼 is also done for more examining of the models in this
section.

In this section, in order to gain some managerial insights, several sensitivity analyses are performed on some
key parameters of the model for the first example. For this purpose, the parameters ℎ2, ℎ3, 𝐴𝑉2 , 𝐴𝑉3 , 𝐴𝑏, ℎ1,
𝛼, and 𝐷 are changed. The effects of the changes are shown in Table 4 and also the succeeding conclusions are
attained. The effect of some important parameters on decision variables is also given in Table 5

As shown in Table 4 increasing in holding costs at level 2 (2nd and 3rd phases) leads to increase in the
difference between total costs of models 1 and 3, this illustrates the fact that as holding costs in level 2 increases
the necessity of information exchange exceeds as well and the warehouse (supplier) should convince the first
level (distributer) to decrease his costs and total cost as a result.

According to Table 5 and sensitivity analysis, summary of the results for giving insights to the retailers are
as bellow:

– An increase in ℎ1, decreases the values of 𝑄*, 𝑇 *. This relationship is due to the fact that the retailer,
in order to deal with the increase in the inventory holding cost rate, follows a policy with a lower level of
inventory (through decreasing the order quantity and the period of the positive inventory level).

– An increase in 𝛼, leads to decreases in 𝑇 * and 𝑄*, but increase in 𝐵* with a slight change.
– By increasing of 𝐼𝐵𝑐, the values of 𝑇 * and 𝑄* are increased, while the value of 𝐵* is decreased.
– By increasing of 𝐼𝐵𝑒, the values of 𝑇 * and 𝐵* are increased
– By increasing of 𝑀 , the values of 𝑇 * and 𝐵* are increased

Figure 7 shows the influence of increase ℎ2 on objective function, also focuses on the cooperation between
retailer and vendor. Because with this increase, the total cost of model 3 increases with a less gradient.

Figures 8 and 9 show the influence of this parameter on objective function of retailer and vendor. In Figure 8,
the objective function of retailer in model 1 does not change by increasing ℎ2, because exchange information
does not conduct in this model and determining optimum K and T is conducted with respect to the costs of
retailer. However, costs of retailer is increasing in two other models. But as shown in Figure 9, increase h2 cause
to increase objective function of retailer in all three models but this increase carries out with more gradient in
model 1. However it can say, although the increase in h2 does not cause to increase cost of the first level of
model 1, the whole cost of chain strongly increase compared to two other models. Therefore, the more increase



BUILDING A SUSTAINABILITY IN A TWO-ECHELON CLOSED LOOP SUPPLY CHAINS 4163

Table 4. Effects of Percent decrease and increase some parameters on models.

Parameter Percent Model 1 Model 3 Difference

ℎ2, ℎ3

−0.5 535.8758 492.0547 43.8211
−0.25 598.2698 549.1842 49.0856
0 649.9302 594.4761 55.4541
0.25 695.6659 631.7691 63.8968
0.5 734.0152 659.7897 74.2255
1 803.0448 696.4151 106.6297

𝐴𝑉
2 , 𝐴

𝑉
3

−0.5 518.8316 463.4637 55.3679
−0.25 589.9913 534.3017 55.6896
0 649.9302 594.4761 55.4541
0.25 703.4571 647.9507 55.5064
0.5 751.5465 695.1968 56.3497
1 837.1331 780.9336 56.1995

𝐴𝑏, ℎ1

−0.5 595.1075 514.6708 80.4367
−0.25 623.5133 558.6192 64.8941
0 649.9302 594.4761 55.4541
0.25 676.0425 626.189 49.8535
0.5 701.5434 654.7644 46.779
1 744.898 704.4147 40.4833

𝐷

−0.5 460.0456 425.5772 34.4684
−0.25 563.13 517.7552 45.3748
0 649.9302 594.4761 55.4541
0.25 726.2481 661.3189 64.9292
0.5 795.1729 721.1451 74.0278
1 917.3827 825.9543 91.4284

𝛼

−0.5 648.8423 594.4761 54.3662
0 649.9302 594.4761 55.4541
0.5 651.0169 594.4761 56.5408
1 652.1026 594.4761 57.6265

Table 5. Effects of decrease and increase some parameters on decision variable.

Parameters Type of Change
Optimal Values
𝐾 𝑛𝑟 𝑛𝑠 𝑄

ℎ1 Decreasing ↗ ↘ ↘ ↗
Increasing ↘ ↗ ↗ ↘

𝐼𝐵𝑐 Decreasing ↗ ↘ ↘ ↗
Increasing ↘ ↗ ↗ ↘

𝐼𝐵𝑒 Decreasing ↘ ↗ ↗ ↘
Increasing ↗ ↘ ↘ ↗

𝑀 Decreasing ↘ ↗ ↗ ↘
Increasing ↗ ↘ ↘ ↗

𝛼 Decreasing ↗ ↘ ↘ ↗
Increasing ↘ ↗ ↗ ↘
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Figure 6. Effects of demand on the Cost function of three models.

in costs at level 2, the strong agreement should take among managers at level 2 with level 1 in order to increase
whole cost of chain with less gradient.

From Table 4, by increasing the initiation cost of phases 2 and 3 the cost differences of models 1 and 3
increases but it’s not too much in comparison with the holding cost. Table 4 illustrates that an increase in
𝐴𝑏, ℎ1 retailers decreases the difference of costs between models 1 and 3 but in reality companies and factories
at a lower level (2,3,. . . ) are bigger and have bigger costs compared with upper levels. Table of Sensitivity
analysis illustrates the fact that increasing in return rate of defective goods increases the difference between
models 1 and 3 and it leads to a more necessity for information exchange. Also demand ratio increases using
model 3 is more copacetic.

Figure 6 shows that increase in demand causes an increase of costs in all three models, but this increase has
more gradient in model 1 compared to the two other models and the third model has the least increase gradient.
So, in large organizations, it is very important to have strong integrity, coordination and consistency with chain
members.

The performed sensitivity analyses reveal that decreasing the length of the permissible delay to settle the
remaining of the purchasing cost, leads to increasing in the total cost of the retailer. Therefore, the retailer
tends to receive bigger periods for the permissible delay from the supplier. From this fact, it can be suggested
that the managers should try to determine the permissible delay periods as bigger as possible. Moreover, when
the permissible delay periods increases, the total cost of the retailer decreases. This finding indicates that it is
better for the retailer to choose the suppliers who offer more

the length of the permissible delay to settle the remaining of the purchasing cost. However, the suppliers
would obtain less profit in such a situation. Hence, in some cases that supplier can not decrease the price
of goods, increasing the length of delayed payment causes to decreasing costs of retailer and attracting more
costumers and retailer also should deal with suppliers whom have longer length of delayed payment.
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Figure 7. Effects of h2 on the Cost function of three models.

Figure 8. Effects of h2 on the ATB of three models.
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Figure 9. Effects of h2 on the ATV of three models.

Whenever the ratio of buying cost, paid at the delivering time of items increases, the total cost of the retailer
increases as well. Hence, it is recommended that the retailer purchases his/her items from the suppliers who
request less amount of buying cost, paid at the delivering time of items. In such a case, the retailer receives a
smaller amount of loan from the bank, and consequently will incur a fewer capital cost.

As a summary of managerial insights, it can be claimed that the method presented in the current study
provides a useful and powerful tool for the managers to capture their trade credit inventory problem in the
real-life situations. Such a claim is accepted, because using this flexible framework, it is easy to handle all
problems with integrated or non-integrated model and under no trade credit, full delayed payment, partial
delayed payment, no shortage, full backordering, returned items, no returned items, partial returned items, and
even any combination of all cases.

6. Conclusion and future research

In this paper, a two-echelon closed-loop supply chain with coordination policy under variant partial per-
missible delay and backlogging is investigated. For this purpose, three mathematical programming models are
developed. Convexity of the objective function of the models is proved and an optimal solution finding proce-
dure is provided for each model. In order to analyze the problem and validate the proposed models, a numerical
experiment is designed and executed.

This paper for the first time in the literature, takes into account closed loop supply chains, partial permissible
delay and full backordering, simultaneously. In addition, this new contribution is along with considering three
different situations: (1) Decentralized decision making model in which each SC member decides based on its own
profit and (2) Centralized decision making model in which all SC members collaborate to increase the overall
SC profitability. In the first model, each member decides by its own with the aim of increasing its profit. But,
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in the next two models, all members decides corporately since the delivery time of money is fixed or variable.
The new presented framework is comprehensive and flexible enough to capture a variety of real-life situations

Our results show that when all members of the supply chain determine their optimal decisions coordinately,
the total cost of the supply chain is significantly reduced. However, following the third policy (i.e. cooperation)
is a strategic decisions for the retailer when the interest obtained from delay in payment is more than the
cost incurred by increasing order quantity. In other words, the retailer is willing to adopt a cooperation policy,
if where sum of the benefits is more than the cost of chaining the optimal ordering decision. To obtain key
factors of the model, a sensitivity analysis is performed. Furthermore, an out and out project is solved with the
proposed model and numerical results were close enough to prove that the model is working properly.

For future studies, the researchers can work on partial backorders, money inflation, deterioration rate, and
Extending robust optimization. Incorporating discount schemes pricing policies could be another background
for future works.

Appendix A.

Proving convexity of the objective function and determining 𝑇 *1 and 𝐾*
1 for case 1.

First partial derivation of the function ∆11(𝐾1, 𝑇1) with respect to 𝑇1 is as follows;

𝜕∆11(𝐾1, 𝑇1)
𝜕𝑇1

= −𝜓11

𝑇 2
1

+ 𝛾(𝐾1). (A.1)

Equating the outcome to zero will result in;

𝑇 *1 = 𝑇 *1 (𝐾1) =

√︃
𝜓11

𝛾(𝐾1)
· (A.2)

In which 𝛾(𝐾1) = 𝜓12𝐾
2
1 − 2𝜓13𝐾1 + 𝜓14, and the relative discriminant is derived from the equation (A.2).

∆ = 𝑏2 − 4𝑎𝑐 = 4𝜓2
13 − 4𝜓12𝜓14 = 4

(︂
𝜋𝐷

2

)︂2

− 4
(︂
𝐷

2
(ℎ1 + 𝜋 + 𝐶𝐼𝑐)

)︂(︂
𝜋𝐷

2

)︂
= −

(︀
𝜋𝐷2 (ℎ1 + 𝐶𝐼𝑐)

)︀
< 0. (A.3)

Considering the fact that ∆ is negative in all situations, no root can be determined for 𝛾(𝐾1), promising that it
will be never equal to zero. Additionally, since 𝛾(0) = 𝜋𝐷

2 > 0, it is logical to say 𝛾(𝐾1) owns a positive quantity

in interval of [0, 1] in all conditions. As a result, equation (A.2) determines a unique 𝑇 * = 𝑇 * (𝐾1) =
√︁

𝜓11
𝛾(𝐾1)

minimizing ∆11(𝐾1, 𝑇1), for any possible value of 𝐾1. Substituting the above equation into ∆11(𝐾1, 𝑇1) in
equation (3.18) results in;

∆11(𝐾1) = ∆11(𝑇 * (𝐾1),𝐾1) =
𝜓11√︁
𝜓11
𝛾(𝐾1)

+𝛾(𝐾1)

√︃
𝜓11

𝛾(𝐾1)
+𝜓15𝐾1 +𝜓16 = 2

√︀
𝜓11𝛾(𝐾1)+𝜓15𝐾1 +𝜓16. (A.4)

The outcome of the equation, represents the probable minimal cost for every quantity of 𝐾1. In this regard,
the crucial point that ∆11(𝐾1) is continuous in the closed interval of [0, 1] has to be taken into account. This is
the reason for the fact that it has one or more local minimal quantity, the least of which is the optimum answer
for the cost function. Furthermore, for finding the optimum answer, first and second derivations of ∆11(𝐾1)
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with respect to 𝐾1 are determined as discussed in (A.5) and (A.6).

𝑑∆11(𝐾1)
𝑑𝐾1

=
√︀
𝜓11

𝛾
′
(𝐾1)√︀
𝛾(𝐾1)

+ 𝜓15 (A.5)

𝑑2∆11(𝐾1)
𝑑𝐾2

=

√
𝜓11

[︂
2𝛾
′′
(𝐾1)𝛾(𝐾1)−

(︁
𝛾
′
(𝐾1)

)︁2
]︂

2 (𝛾(𝐾1))
3
2

· (A.6)

It can be inferred, for all possible quantities of 𝐾1, that:

𝑑2Δ11(𝐾1)

𝑑𝐾2
1

=

√
𝜓11

[︂
2𝛾
′′
(𝐾1)𝛾(𝐾1)−

(︁
𝛾
′
(𝐾1)

)︁2]︂

2 (𝛾(𝐾1))
3
2

=

√
𝜓11

[︀
(2𝜓12)

(︀
𝜓12𝐾2

1 − 2𝜓13𝐾1 + 𝜓14

)︀
− (𝜓12𝐾1 − 𝜓13)2

]︀

(𝛾(𝐾1))
3
2

=

√
𝜓11

[︀
2
(︀
𝜓2

12𝐾
2
1 − 2𝜓12𝜓13𝐾1 + 𝜓12𝜓14

)︀
−
(︀
𝜓2

12𝐾1 − 2𝜓12𝜓13𝐾1 + 𝜓2
13

)︀]︀

(𝛾(𝐾1))
3
2

=

√
𝜓11

[︀(︀
𝜓2

12𝐾
2
1 − 2𝜓12𝜓13𝐾1 + 𝜓12𝜓14

)︀
+ 𝜓12𝜓13 − 𝜓2

13

]︀

(𝛾(𝐾1))
3
2

=

√
𝜓11

[︀
𝜓12

(︀
𝜓12𝐾2

1 − 2𝜓13𝐾1 + 𝜓14

)︀
+ (𝜓12 − 𝜓13)𝜓13

]︀

(𝛾(𝐾1))
3
2

=

√
𝜓11 [𝜓12𝛾(𝐾1) + (𝜓12 − 𝜓13)𝜓13]

(𝛾(𝐾1))
3
2

> 0. (A.7)

As 𝜓11, 𝜓12, 𝜓13, 𝛾(𝐾1) own positive quantities all the time, and also (𝜓12 − 𝜓13) =
(︀

1
2ℎ1𝐷 + 𝜋𝐷

2 + 𝐶𝐼𝑐𝐷
2

)︀
−

𝜋𝐷
2 = 1

2 (ℎ1𝐷 + 𝐶𝐼𝑐𝐷) > 0 is positive, It is easily accepted that ∆11(𝐾1) is a convex function. Consequently, a
globally optimum answer can be determined from setting the first derivative of ∆11(𝐾1) equal to zero, as shown
in equation (A.5).

𝑑∆11(𝐾1)
𝑑𝐾1

=
√︀
𝜓11

2𝜓12𝐾1 − 2𝜓13√︀
𝜓12𝐾2

1 − 2𝜓13𝐾1 + 𝜓14

+ 𝜓15 =

√︃
𝜓11

𝜓12𝐾2
1 − 2𝜓13𝐾1 + 𝜓14

(2𝜓12𝐾1 − 2𝜓13) + 𝜓15

= 𝑇 *1 (2𝜓12𝐾1 − 2𝜓13) + 𝜓15 = 𝑇 *1 (𝐷 (ℎ1 + 𝜋 + 𝐶𝐼𝑐)𝐾1 − 𝜋𝐷) + (𝐶𝐷 (1− 𝛼)𝑀) (𝐼𝑒 − 𝐼𝑐) = 0.
(A.8)

It can be inferred that;

𝐾*
1 =

𝜋𝑇 *1 − (𝐶 (1− 𝛼)𝑀) (𝐼𝑒 − 𝐼𝑐)
𝑇 *1 (ℎ1 + 𝜋 + 𝐶𝐼𝑐)

· (A.9)

At this stage, substitution of 𝐾*
1 in equation (A.2), after the subsequent simplification, paves the way for

obtaining optimal value of the considered period.

𝑇 *1 =

⎯⎸⎸⎷ (ℎ1 + 𝜋 + 𝐶𝐼𝑐)
2 [2𝐴+𝐷𝑀2 (1− 𝛼)𝐶 (𝐼𝑐 − 𝐼𝑒)]−

(︁
𝜋𝐷 + [(ℎ1 + 𝐶𝐼𝑐 + 𝜋)𝐷] (𝐶 (1− 𝛼)𝑀)2 (𝐼𝑒 − 𝐼𝑐)

2
)︁

𝜋𝐷 (ℎ1 + 𝐶𝐼𝑐)
2

·

(A.10)

If the solution found by using equations (3.19) and (3.20) results in 𝑀 > 𝐾1𝑇1, afterward a logical solution is
to set 𝐾1 = 𝑀

𝑇1
. In spite of this, we should then await that not only will 𝐾 be equivalent to 𝐾1, but also 𝑇 will

change. To determine the optimal 𝑇 for Case1 when 𝐾1 = 𝑀
𝑇1

, we can do the following. Substituting 𝐾1 = 𝑀
𝑇1

in equation (3.11) gives:

∆11(𝑇1) =
𝜓11

𝑇1
+ (𝜓12

𝑀2

𝑇 2
1

− 2𝜓13
𝑀

𝑇1
+ 𝜓14)𝑇1 + 𝜓15

𝑀

𝑇1
+ 𝜓16

+
𝜓12𝑀

2 + 𝜓15𝑀 + 𝜓11

𝑇1
+ 𝜓14𝑇1 + 𝜓16 − 2𝜓13𝑀. (A.11)
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Considering the derivative with regard to 𝑇 and setting it equal to 0 gives:

𝑑∆11(𝑇1)
𝑑𝑇1

= −𝜓12𝑀
2 + 𝜓15𝑀 + 𝜓11

𝑇 2
1

+ 𝜓14 = 0. (A.12)

This gives:

𝑇
′

1 =

√︃
𝜓12𝑀2 + 𝜓15𝑀 + 𝜓11

𝜓14
. (A.13)

And
𝐾
′

1 =
𝑀

𝑇
′
1

. (A.14)

An analogous process may be considered for solving the second case

Appendix B.

Proving convexity of the objective function and determining 𝑇 *1 and 𝐾*
1 for case2

First partial derivation of the function ∆12(𝐾1, 𝑇1) with respect to 𝑇1 is as follows;

𝜕∆12(𝐾1, 𝑇1)
𝜕𝑇1

= −𝜓21

𝑇 2
1

+ 𝛾(𝐾1). (B.1)

Equating the outcome to zero will result in;

𝑇 * = 𝑇 * (𝐾) =

√︃
𝜓21

𝛾(𝐾1)
. (B.2)

In which 𝛾(𝐾1) = 𝜓22𝐾
2
1 − 2𝜓23𝐾1 + 𝜓24, and the relative discriminant is derived from the equation (B.2).

∆ = 𝑏2 − 4𝑎𝑐 = 4𝜓2
23 − 4𝜓22𝜓24 == 4

(︂
𝜋𝐷

2

)︂2

− 4
(︂

1
2
ℎ1𝐷 +

𝜋𝐷

2
+
𝛼𝐶𝐼𝑐𝐷

2
+
𝐷 (1− 𝛼)𝐶𝐼𝑒

2

)︂(︂
𝜋𝐷

2

)︂
= − (ℎ1𝐷 + 𝛼𝐶𝐼𝑐𝐷 +𝐷 (1− 𝛼)𝐶𝐼𝑒) (𝜋𝐷) < 0. (B.3)

Considering the fact that ∆ is negative in all situations, no root can be determined for 𝛾(𝐾1), promising
that it will be never equal to zero. Additionally, since 𝛾(0) = 𝜋𝐷

2 > 0, it is logical to say 𝛾(𝐾1) owns a positive
quantity in interval of [0, 1] in all conditions. As a result, equation (B.2) determines a unique 𝑇 * = 𝑇 * (𝐾1) =√︁

𝜓21
𝛾(𝐾1)

minimizing ∆12(𝐾1, 𝑇1), for any possible value of 𝐾1. Substituting equation (3.36) into ∆12(𝐾1, 𝑇1)
from equation (3.34) gives;

∆12(𝐾1) =
𝜓21√︁
𝜓21
𝛾(𝐾1)

+

√︃
𝜓21

𝛾(𝐾1)
𝛾(𝐾1) + 𝜓25 = 2

√︀
𝜓21𝛾(𝐾1) + 𝜓25. (B.4)

The outcome of the equation, represents the probable minimal cost for every quantity of 𝐾1. In this regard,
the crucial point that ∆11(𝐾1) is continuous in the closed interval of [0, 1] has to be taken into account. This is
the reason for the fact that it has one or more local minimal quantity, the least of which is the optimum answer
for the cost function. Furthermore, for finding the optimum solutions, the first and the second derivations of
∆12(𝐾1) with respect to 𝐾1 are determined as discussed in (B.5) and (B.6).

𝑑∆11(𝐾1)
𝑑𝐾1

=
√︀
𝜓21

𝛾
′
(𝐾1)√︀
𝛾(𝐾1)

(B.5)

𝑑2∆11(𝐾1)
𝑑𝐾2

=

√
𝜓21

[︂
2𝛾
′′
(𝐾1)𝛾(𝐾1)−

(︁
𝛾
′
(𝐾1)

)︁2
]︂

2 (𝛾(𝐾1))
3
2

· (B.6)
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It can be inferred, for all possible quantities of K1, that:

𝑑2Δ11(𝐾1)

𝑑𝐾2
1

=

√
𝜓21

[︂
2𝛾
′′
(𝐾1)𝛾(𝐾1)−

(︁
𝛾
′
(𝐾1)

)︁2
]︂

2 (𝛾(𝐾1))
3
2

=

√
𝜓21

[︀
(2𝜓22)

(︀
𝜓22𝐾

2
1 − 2𝜓23𝐾1 + 𝜓24

)︀
− (𝜓22𝐾1 − 𝜓23)

2]︀

(𝛾(𝐾1))
3
2

=

√
𝜓21

[︀
2
(︀
𝜓2

22𝐾
2
1 − 2𝜓22𝜓23𝐾1 + 𝜓22𝜓24

)︀
−
(︀
𝜓2

22𝐾1 − 2𝜓22𝜓23𝐾1 + 𝜓2
23

)︀]︀

(𝛾(𝐾1))
3
2

=

√
𝜓21

[︀(︀
𝜓2

22𝐾
2
1 − 2𝜓22𝜓23𝐾1 + 𝜓22𝜓24

)︀
+ 𝜓22𝜓23 − 𝜓2

23

]︀

(𝛾(𝐾1))
3
2

=

√
𝜓21

[︀
𝜓22

(︀
𝜓22𝐾

2 − 2𝜓23𝐾 + 𝜓24

)︀
+ (𝜓22 − 𝜓23)𝜓23

]︀

(𝛾(𝐾))
3
2

=

√
𝜓21 [𝜓22𝛾(𝐾) + (𝜓22 − 𝜓23)𝜓23]

(𝛾(𝐾))
3
2

> 0. (B.7)

As 𝜓11, 𝜓12, 𝜓13, 𝛾(𝐾1) own positive quantities all the time, and also (𝜓22 − 𝜓23) =(︁
1
2ℎ1𝐷 + 𝜋𝐷

2 + 𝛼𝐶𝐼𝑐𝐷
2 + 𝐷(1−𝛼)𝐶𝐼𝑒

2

)︁
− 𝜋𝐷

2 =
(︁

1
2ℎ1𝐷 + 𝛼𝐶𝐼𝑐𝐷

2 + 𝐷(1−𝛼)𝐶𝐼𝑒

2

)︁
> 0 is positive, it is easily

accepted that ∆11(𝐾1) is a convex function. Consequently, a globally optimum answer can be determined from
setting the first derivative of ∆11(𝐾1) equal to zero, as shown in equation (B.5).

2𝜓22𝐾1 − 2𝜓23 = 0. (B.8)

Gives;

𝐾*
1 =

𝜓23

𝜓22
=

𝜋

ℎ1 + 𝜋 + 𝛼𝐶𝐼𝑐 + (1− 𝛼)𝐶𝐼𝑒
· (B.9)

At this stage, substitution of 𝐾*
1 in equation (B.2), after the subsequent simplification, paves the way for

obtaining optimal value of the considered period.

𝑇 *1 = 𝑇 *1 (𝐾*
1 ) =⎯⎸⎸⎷ 2𝐴

(ℎ1𝐷 + 𝜋𝐷 + 𝛼𝐶𝐼𝑐𝐷 +𝐷 (1− 𝛼)𝐶𝐼𝑒)
(︁

𝜋
ℎ1+𝜋+𝛼𝐶𝐼𝑐+(1−𝛼)𝐶𝐼𝑒

)︁2

− 2𝜋𝐷
(︁

𝜋
ℎ1+𝜋+𝛼𝐶𝐼𝑐+(1−𝛼)𝐶𝐼𝑒

)︁
+ 𝜋𝐷

·

(B.10)

If the solution obtained by using equations (3.31) and (3.32) results in 𝑀 < 𝐾1𝑇1, then a logical solution
is to set 𝐾1 = 𝑀

𝑇1
. However, we should then expect that not only will 𝐾 be equal to 𝐾1, but 𝑇 will also

change. To determine the optimal 𝑇 for Case2 when 𝐾1 = 𝑀
𝑇1

, we can do the following. Substituting 𝐾1 = 𝑀
𝑇1

in equation (3.25) gives:

∆12(𝑇1) =
𝜓21

𝑇1
+ (𝜓22

𝑀2

𝑇 2
1

− 2𝜓23
𝑀

𝑇1
+ 𝜓24)𝑇1 + 𝜓25 =

𝜓22𝑀
2 + 𝜓21

𝑇1
+ 𝜓24𝑇1 + 𝜓25 − 2𝜓23𝑀. (B.11)

Considering the derivative with respect to 𝑇 and setting it equal to 0 gives:

𝑑∆12(𝑇1)
𝑑𝑇1

= −𝜓22𝑀
2 + 𝜓21

𝑇 2
1

+ 𝜓24 = 0. (B.12)

This gives:

𝑇
′

1 =

√︃
𝜓22𝑀2 + 𝜓21

𝜓24
· (B.13)

And
𝐾
′

1 =
𝑀

𝑇
′
1

· (B.14)
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Appendix C.

Proving convexity of the objective function and determining 𝑇 *2 and 𝐾*
2 for case1

First partial derivation of the function ∆21(𝐾2, 𝑇2) with respect to 𝑇2 is as follows;

𝜕∆21(𝐾2, 𝑇2)
𝜕𝑇2

= −𝜓31

𝑇 2
2

+ 𝛾(𝐾2). (C.1)

Equating the outcome to zero will result in;

𝑇 *2 = 𝑇 *2 (𝐾2) =

√︃
𝜓31

𝛾(𝐾2)
· (C.2)

In which 𝛾(𝐾2) = 𝜓32𝐾
2
2 − 2𝜓33𝐾2 + 𝜓34, and the relative discriminant is derived from the equation (C.2).

∆ = 𝑏2 − 4𝑎𝑐 = 4𝜓2
33 − 4𝜓32𝜓34

= 4
(︂
𝜋𝐷

2

)︂2

− 4
(︂
𝐷

2
(ℎ1 + 𝜋 + 𝐶𝐼𝑐)

)︂(︂
𝜋𝐷

2
+ ℎ2

(𝑛− 1)𝐷
2

+ ℎ3
𝑟𝑛𝐷

2

)︂
= − (𝐷 (𝜋𝐷 + ℎ2 (𝑛− 1)𝐷 + ℎ3𝑟𝑛𝐷) (ℎ1 + 𝐶𝐼𝑐)) < 0. (C.3)

Considering the fact that ∆ is negative in all situations, no root can be determined for 𝛾(𝐾2), promising that
it will be never equal to zero. Additionally, since 𝛾(0) =

(︁
𝜋𝐷
2 + ℎ2

(𝑛−1)𝐷
2 + ℎ3

𝑟𝑛𝐷
2

)︁
> 0, it is logical to say

𝛾(𝐾2) owns a positive quantity in interval of [0, 1] in all conditions. As a result, equation (C.2) determines a

unique 𝑇 *2 = 𝑇 *2 (𝐾2) =
√︁

𝜓31
𝛾(𝐾2)

minimizing ∆21(𝐾2, 𝑇2), for any possible value of 𝐾2. Substituting the above
equation into ∆21(𝐾2, 𝑇2) in equation (3.41) results in;

∆21(𝐾2) = ∆21(𝑇 *2 (𝐾2) ,𝐾2) =
𝜓31√︁
𝜓31
𝛾(𝐾2)

+ 𝛾(𝐾2)

√︃
𝜓31

𝛾(𝐾2)
+ 𝜓35𝐾2 + 𝜓36

= 2
√︀
𝜓31𝛾(𝐾2) + 𝜓35𝐾2 + 𝜓36. (C.4)

The outcome of the equation, represents the probable minimal cost for every quantity of 𝐾2. In this regard,
the crucial point that ∆21(𝐾2) is continuous in the closed interval of [0, 1] has to be taken into account. This is
the reason for the fact that it has one or more local minimal quantity, the least of which is the optimum answer
for the cost function. Furthermore, for finding the optimum answer, first and second derivations of ∆21(𝐾2)
with respect to 𝐾2 are determined as discussed in (C.5) and (C.6).

𝑑∆21(𝐾2)
𝑑𝐾2

=
√︀
𝜓31

𝛾
′
(𝐾2)√︀
𝛾(𝐾2)

+ 𝜓35 (C.5)

𝑑2∆21(𝐾2)
𝑑𝐾2

2

=

√
𝜓31

[︂
2𝛾
′′
(𝐾2)𝛾(𝐾2)−

(︁
𝛾
′
(𝐾2)

)︁2
]︂

2 (𝛾(𝐾2))
3
2

· (C.6)
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It can be inferred, for all possible quantities of 𝐾2, that:

𝑑2Δ21(𝐾2)

𝑑𝐾2
2

=

√
𝜓31

[︂
2𝛾
′′
(𝐾2)𝛾(𝐾2)−

(︁
𝛾
′
(𝐾2)

)︁2]︂

2 (𝛾(𝐾2))
3
2

=

√
𝜓31

[︀
(2𝜓32)

(︀
𝜓32𝐾2

2 − 2𝜓33𝐾2 + 𝜓34

)︀
− (𝜓32𝐾2 − 𝜓33)2

]︀

(𝛾(𝐾2))
3
2

=

√
𝜓31

[︀
2
(︀
𝜓2

32𝐾
2
2 − 2𝜓32𝜓33𝐾2 + 𝜓32𝜓34

)︀
−
(︀
𝜓2

32𝐾2 − 2𝜓32𝜓33𝐾2 + 𝜓2
33

)︀]︀

(𝛾(𝐾2))
3
2

=

√
𝜓31

[︀(︀
𝜓2

32𝐾
2
2 − 2𝜓32𝜓33𝐾2 + 𝜓32𝜓34

)︀
+ 𝜓32𝜓33 − 𝜓2

33

]︀

(𝛾(𝐾2))
3
2

=

√
𝜓31

[︀
𝜓32

(︀
𝜓32𝐾2

2 − 2𝜓33𝐾2 + 𝜓34

)︀
+ (𝜓32 − 𝜓33)𝜓33

]︀

(𝛾(𝐾2))
3
2

=

√
𝜓31 [𝜓32𝛾(𝐾2) + (𝜓32 − 𝜓33)𝜓33]

(𝛾(𝐾2))
3
2

> 0. (C.7)

As 𝜓31, 𝜓32, 𝜓33, 𝛾(𝐾2) own positive quantities all the time, and also (𝜓32 − 𝜓33) =
(︀

1
2ℎ1𝐷 + 𝜋𝐷

2 + 𝐶𝐼𝑐𝐷
2

)︀
−

𝜋𝐷
2 = 1

2 (ℎ1𝐷 + 𝐶𝐼𝑐𝐷) > 0 is positive, it is easily accepted that ∆21(𝐾2) is a convex function. Consequently, a
globally optimum answer can be determined from setting the first derivative of ∆21(𝐾2) equal to zero, as shown
in equation (C.5).

𝑑∆21(𝐾2)
𝑑𝐾2

=
√︀
𝜓31

2𝜓32𝐾2 − 2𝜓33√︀
𝜓32𝐾2

2 − 2𝜓33𝐾2 + 𝜓34

+ 𝜓35 =

√︃
𝜓31

𝜓32𝐾2
2 − 2𝜓33𝐾2 + 𝜓34

(2𝜓32𝐾2 − 2𝜓33) + 𝜓35

= 𝑇 *2 (2𝜓32𝐾2 − 2𝜓33) + 𝜓35 = 𝑇 *2 (𝐷 (ℎ1 + 𝜋 + 𝐶𝐼𝑐)𝐾2 − 𝜋𝐷) + (𝐶𝐼𝑒𝐷 (1− 𝛼)𝑀) = 0. (C.8)

It can be inferred that;

𝐾*
2 =

𝜋𝑇 *2 − (𝐶𝐼𝑒 (1− 𝛼)𝑀)
𝑇 *2 (ℎ1 + 𝜋 + 𝐶𝐼𝑐)

· (C.9)

At this stage, substitution of 𝐾*
2 in equation (C.2), after the subsequent simplification, paves the way for

obtaining optimal value of the considered period.

𝑇 *2 = 𝑇 *2 (𝐾2) =

⎯⎸⎸⎸⎸⎷
(︁
𝐴+ 𝐹 + 𝐴2

𝑛2
+ 𝐴3

𝑛2

)︁
𝐷
2

(𝜋𝑇*2 −(𝐶𝐼𝑒(1−𝛼)𝑀))2

𝑇*22 (ℎ1+𝜋+𝐶𝐼𝑐)
− 𝜋𝐷

(︁
𝜋𝑇*2 −(𝐶𝐼𝑒(1−𝛼)𝑀)
𝑇*2 (ℎ1+𝜋+𝐶𝐼𝑐)

)︁
+
(︁
𝜋𝐷
2 + ℎ2

(𝑛−1)𝐷
2 + ℎ3

𝑟𝑛𝐷
2

)︁ · (C.10)

After simplificatoins we have:

𝑇 *21 = 𝑇 *2 =

⎯⎸⎸⎷2𝐷 (ℎ1 + 𝜋 + 𝐶𝐼𝑐)
(︁
𝐴𝑏 + 𝐹 + 𝐴𝑉

2
𝑛2

+ 𝐴𝑉
3
𝑛2

+ 𝐷𝑀2(1−𝛼)𝐶(𝐼𝑐−𝐼𝑒)
2

)︁
− [(𝐶𝐷 (1− 𝛼)𝑀) (𝐼𝑒 − 𝐼𝑐)]

2

𝐷2 (ℎ1 + 𝜋 + 𝐶𝐼𝑐) (𝜋 + ℎ2 (𝑛2 − 1) + ℎ3𝑟𝑛2)− 𝜋2𝐷2

(C.11)

𝐾*
21 = 𝐾*

2 =
𝜋

(ℎ1 + 𝜋 + 𝐶𝐼𝑐)
− 2𝐼𝑒 (𝐶𝐷 (1− 𝛼)𝑀)

(ℎ1 + 𝜋 + 𝐶𝐼𝑐)⎯⎸⎸⎷ 𝐷2 (ℎ1 + 𝜋 + 𝐶𝐼𝑐) (𝜋 + ℎ2 (𝑛2 − 1) + ℎ3𝑟𝑛2)− 𝜋2𝐷2

8𝐷 (ℎ1 + 𝜋 + 𝐶𝐼𝑐)
(︁
𝐴𝐵 + 𝐹 + 𝐴𝑉

2
𝑛2

+ 𝐴𝑉
3
𝑛2

+ 𝐷𝑀2(1−𝛼)𝐶(𝐼𝑐−𝐼𝑒)
2

)︁
− [2𝐼𝑒 (𝐶𝐷 (1− 𝛼)𝑀)]2

· (C.12)

If the solution obtained by using equations (C.11) and (C.12) results in 𝑀 > 𝐾2𝑇2, then a logical solution is
to set 𝐾2 = 𝑀

𝑇2
. But, we should then await that not only will 𝐾 be equal to 𝐾2, but 𝑇 will also change. To set

the optimal 𝑇 for Case1 when 𝐾2 = 𝑀
𝑇2

, we can do the following.
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Substituting 𝐾2 = 𝑀
𝑇2

in equation (3.41) gives:

∆21(𝑇2) =
𝜓31

𝑇2
+ (𝜓32

𝑀2

𝑇 2
2

− 2𝜓33
𝑀

𝑇2
+ 𝜓34)𝑇2 + 𝜓35

𝑀

𝑇2
+ 𝜓36

=
𝜓32𝑀

2 + 𝜓35𝑀 + 𝜓31

𝑇2
+ 𝜓34𝑇2 + 𝜓36 − 2𝜓33𝑀. (C.13)

Considering the derivative with respect to 𝑇 and setting it equivalent to 0 gives:

𝑑∆21(𝑇2)
𝑑𝑇2

= −𝜓32𝑀
2 + 𝜓35𝑀 + 𝜓31

𝑇 2
2

+ 𝜓34 = 0. (C.14)

This gives:

𝑇
′

2 =

√︃
𝜓32𝑀2 + 𝜓35𝑀 + 𝜓31

𝜓34
(C.15)

And
𝐾
′

2 =
𝑀

𝑇
′
2

· (C.16)

An analogous process may be considered for solving the second case.

Appendix D.

Proving convexity of the objective function and determining 𝑇 *2 and 𝐾*
2 for case2

First partial derivation of the function ∆22(𝐾2, 𝑇2) with respect to 𝑇2is as follows;

𝜕∆22(𝐾2, 𝑇2)
𝜕𝑇2

= −𝜓41

𝑇 2
2

+ 𝛾(𝐾2). (D.1)

Equating the outcome to zero will result in;

𝑇 * = 𝑇 * (𝐾2) =

√︃
𝜓41

𝛾(𝐾2)
· (D.2)

In which 𝛾(𝐾2) = 𝜓42𝐾
2
2 − 2𝜓43𝐾2 + 𝜓44, and the relative discriminant is derived from the equation (D.2).

∆ = 𝑏2 − 4𝑎𝑐 = 4𝜓2
43 − 4𝜓42𝜓44

= 4
(︂
𝜋𝐷

2

)︂2

− 4
(︂

1
2
ℎ1𝐷 +

𝜋𝐷

2
+
𝛼𝐶𝐼𝑐𝐷

2
+
𝐷 (1− 𝛼)𝐶𝐼𝑒

2

)︂
𝐷

2
(𝜋 + ℎ2 (𝑛− 1) + ℎ3𝑟𝑛)

= − (ℎ1𝐷 + 𝛼𝐶𝐼𝑐𝐷 +𝐷 (1− 𝛼)𝐶𝐼𝑒)𝐷 (𝜋 + ℎ2 (𝑛− 1) + ℎ3𝑟𝑛) < 0. (D.3)

Considering the fact that ∆ is negative in all situations, no root can be determined for 𝛾(𝐾2), promising
that it will be never equal to zero. Additionally, since 𝛾(0) = 𝐷

2 (𝜋 + ℎ2 (𝑛− 1) + ℎ3𝑟𝑛) > 0, it is logical to say
𝛾(𝐾2) owns a positive quantity in interval of [0, 1] in all conditions. As a result, equation (D.2) determines a

unique 𝑇 * = 𝑇 * (𝐾2) =
√︁

𝜓41
𝛾(𝐾2)

minimizing ∆22(𝐾2, 𝑇2), for any possible value of 𝐾2. Substituting the above
Equation into ∆22(𝐾2, 𝑇2) from equation (3.50) gives;

∆22(𝐾2) =
𝜓41√︁
𝜓41
𝛾(𝐾2)

+

√︃
𝜓41

𝛾(𝐾2)
𝛾(𝐾2) + 𝜓45 = 2

√︀
𝜓41𝛾(𝐾2) + 𝜓45. (D.4)
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The outcome of the equation, represents the probable minimal cost for every quantity of 𝐾2. In this regard,
the crucial point that ∆22(𝐾2) is continuous in the closed interval of [0, 1] has to be taken into account. This
is the reason for the fact that it has one or more local minimal quantity, the least of which is the optimum
answer for the cost function. Furthermore, for finding the optimum answer, the first and the second derivations
of ∆22(𝐾2) with respect to 𝐾2 are determined as discussed in (D.5) and (D.6).

𝑑∆22(𝐾2)
𝑑𝐾2

=
√︀
𝜓41

𝛾
′
(𝐾2)√︀
𝛾(𝐾2)

(D.5)

𝑑2∆22(𝐾2)
𝑑𝐾2

2

=

√
𝜓41

[︂
2𝛾
′′
(𝐾2)𝛾(𝐾2)−

(︁
𝛾
′
(𝐾2)

)︁2
]︂

2 (𝛾(𝐾2))
3
2

· (D.6)

It can be inferred, for all possible quantities of 𝐾2, that:

𝑑2Δ22(𝐾2)

𝑑𝐾2
2

=

√
𝜓41

[︂
2𝛾
′′
(𝐾2)𝛾(𝐾2)−

(︁
𝛾
′
(𝐾2)

)︁2
]︂

2 (𝛾(𝐾2))
3
2

=

√
𝜓41

[︀
(2𝜓42)

(︀
𝜓42𝐾

2
2 − 2𝜓43𝐾2 + 𝜓44

)︀
− (𝜓42𝐾2 − 𝜓43)

2]︀

(𝛾(𝐾2))
3
2

=

√
𝜓41

[︀
2
(︀
𝜓2

42𝐾
2
2 − 2𝜓42𝜓43𝐾2 + 𝜓42𝜓44

)︀
−
(︀
𝜓2

42𝐾2 − 2𝜓42𝜓43𝐾2 + 𝜓2
43

)︀]︀

(𝛾(𝐾2))
3
2

=

√
𝜓41

[︀(︀
𝜓2

42𝐾
2
2 − 2𝜓42𝜓43𝐾2 + 𝜓42𝜓44

)︀
+ 𝜓42𝜓43 − 𝜓2

43

]︀

(𝛾(𝐾2))
3
2

=

√
𝜓41

[︀
𝜓42

(︀
𝜓42𝐾

2
2 − 2𝜓43𝐾2 + 𝜓44

)︀
+ (𝜓42 − 𝜓43)𝜓43

]︀

(𝛾(𝐾2))
3
2

=

√
𝜓41 [𝜓42𝛾(𝐾2) + (𝜓42 − 𝜓43)𝜓43]

(𝛾(𝐾2))
3
2

> 0.

(D.7)

As 𝜓41, 𝜓42, 𝜓43, 𝛾(𝐾2) own positive quantities all the time, and also (𝜓42 − 𝜓43) =(︁
1
2ℎ1𝐷 + 𝜋𝐷

2 + 𝛼𝐶𝐼𝑐𝐷
2 + 𝐷(1−𝛼)𝐶𝐼𝑒

2

)︁
− 𝜋𝐷

2 =
(︁

1
2ℎ1𝐷 + 𝛼𝐶𝐼𝑐𝐷

2 + 𝐷(1−𝛼)𝐶𝐼𝑒

2

)︁
> 0 is positive, it is easily

accepted that ∆22(𝐾2) is a convex function. Consequently, a globally optimum answer can be determined from
setting the first derivative of ∆22(𝐾2) equal to zero, as shown in equation (D.5).

2𝜓42𝐾2 − 2𝜓43 = 0. (D.8)

Gives;

𝐾*
2 =

𝜓43

𝜓42
=

𝜋

ℎ1 + 𝜋 + 𝛼𝐶𝐼𝑐 + (1− 𝛼)𝐶𝐼𝑒
· (D.9)

At this stage, substitution of 𝐾*
2 in equation (D.2), after the subsequent simplification, paves the way for

obtaining optimal value of the considered period.

𝑇 *2 = 𝑇 *2 (𝐾2) =

⎯⎸⎸⎷ 2
(︀
𝐴+ 𝐹 + 𝐴2

𝑛 + 𝐴3
𝑛

)︀
(𝜋𝐷 + ℎ2 (𝑛− 1)𝐷 + ℎ3𝑟𝑛𝐷)− 𝜋𝐷

(︁
𝜋

ℎ1+𝜋+𝛼𝐶𝐼𝑐+(1−𝛼)𝐶𝐼𝑒

)︁ · (D.10)

If the solution obtained by using equations (D.9) and (D.10) results in 𝑀 < 𝐾2𝑇2, afterward a logical solution
is to set 𝐾2 = 𝑀

𝑇2
. However, we should then expect that not only will 𝐾 be equal to 𝐾2, but 𝑇 will also change.

To determine the optimal 𝑇 for Case2 when 𝐾2 = 𝑀
𝑇2

, we can do the following.
Substituting 𝐾2 = 𝑀

𝑇2
in equation (3.55) gives:

∆22(𝑇2) =
𝜓42𝑀

2 + 𝜓41

𝑇2
+ 𝜓44𝑇2 + 𝜓45 − 2𝜓43𝑀. (D.11)
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Considering the derivative with regard to 𝑇 and setting it equal to 0 gives:

𝑑∆22(𝑇2)
𝑑𝑇2

= −𝜓42𝑀
2 + 𝜓41

𝑇 2
2

+ 𝜓44 = 0. (D.12)

This gives:

𝑇
′

2 =

√︃
𝜓42𝑀2 + 𝜓41

𝜓44
· (D.13)

And
𝐾
′

2 =
𝑀

𝑇
′
2

· (D.14)

Appendix E.

Finding the length of inventory periods
If we assume that 𝐾11 = 1, from equation (3.11), we have:

∆#
11(𝐾1, 𝑇1) = ∆#

11(1, 𝑇1) =
𝜓11

𝑇1
+ (𝜓12 − 2𝜓13 + 𝜓14)𝑇1 + 𝜓15 + 𝜓16. (E.1)

Taking the first derivative of ∆#
11(𝑇1) with respect to 𝑇1 and setting it equal to zero gives:

𝑑∆#
11(𝑇1)
𝑑𝑇1−1

= (𝜓12 − 2𝜓13 + 𝜓14)− 𝜓11

𝑇 2
1

· (E.2)

The above equation leads to:

𝑇#
1 =

√︃
𝜓11

(𝜓12 − 2𝜓13 + 𝜓14)
· (E.3)

Similarly for the other cases, 𝑇# can be obtained when 𝐾12 = 1 Therefore, we have:

𝑇#
12 =

√︃
𝜓21

𝜓22 − 2𝜓23 + 𝜓24
· (E.4)

Appendix F.

Solution procedure for model 2
Step1. Obtain (𝑛*21,𝐾

*
21, 𝑇

*
21) and (𝑛*22,𝐾

*
22, 𝑇

*
22).

A. Determine (𝑛*21,𝐾
*
21, 𝑇

*
21) using following sub-steps.

A1.Frist set 𝑛21 = 1 and calculate 𝜓31−𝜓36, from equations (3.34) to (3.39).
A2. Obtain 𝐾21 (𝑛21) 𝑎𝑛𝑑𝑇21 (𝑛21) via equations (3.41) and (3.42). If 𝑀 < 𝐾21 (𝑛21)𝑇21 (𝑛21) go to step A3,

Otherwise obtain 𝐾21 (𝑛21) 𝑎𝑛𝑑𝑇21 (𝑛21) via equations (B.11) and (B.12) and go to step A3.
A3. If 𝐾21 (𝑛21) ≤ 1, go to step A5; otherwise, go to step A4.
A4. Set 𝐾21 (𝑛21) = 1 and determine 𝑇#

21 (𝑛21) via equation (E.4) in Appendix E. If 𝑀 < 𝐾21 (𝑛21)𝑇21 (𝑛21),
set (𝐾21 (𝑛21) , 𝑇21 (𝑛21)) = (1, 𝑇#

21 (𝑛21)) and go to step A5; if not, set (𝐾21 (𝑛21) , 𝑇21 (𝑛21)) = (1,𝑀) and go
to step A5.
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Figure F.1. Flowchart for Solution procedure.
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A5. Obtain 𝐴𝑇𝐶21(𝑛21,𝐾21 (𝑛21) , 𝑇21 (𝑛21)) via equation (3.31),
A6. Set 𝑛21 = 𝑛21 + 1 and calculate 𝜓31−𝜓36, from equations (3.34) to (3.39).
A7. Obtain 𝐾21 (𝑛21) 𝑎𝑛𝑑𝑇21 (𝑛21) via equations (3.41) and (3.42). If 𝑀 < 𝐾21 (𝑛21)𝑇21 (𝑛21) go to step A8,

Otherwise obtain 𝐾21 (𝑛21) 𝑎𝑛𝑑𝑇21 (𝑛21) via equations (C.13) and (C.14) and go to step A8.
A8. If 𝐾21 (𝑛21) ≤ 1, go to step A10; otherwise, go to step A9.
A9. Set 𝐾21 (𝑛21) = 1 and determine 𝑇#

21 via equation (E.4) in Appendix E. If 𝑀 < 𝐾21 (𝑛21)𝑇21 (𝑛21), set
(𝐾21 (𝑛21) , 𝑇21 (𝑛21)) = (1, 𝑇#

21 (𝑛21)) and go to step A10; if not, set (𝐾21 (𝑛21) , 𝑇21 (𝑛21)) = (1,𝑀) and go to
step A10.

A10. Obtain 𝐴𝑇𝐶21(𝑛21,𝐾21 (𝑛21) , 𝑇21 (𝑛21)) via equation (3.31),
A11. If 𝐴𝑇𝐶21(𝑛21,𝐾21 (𝑛21) , 𝑇21 (𝑛21)) > 𝐴𝑇𝐶21((𝑛21 − 1) ,𝐾21 (𝑛21 − 1) , 𝑇21 (𝑛21 − 1)) then the optimal

values are 𝑛*21 = (𝑛21 − 1) , 𝐾*
21 = 𝐾21 (𝑛21 − 1) , 𝑇 *21 = 𝑇21 (𝑛21 − 1) and go to step A12. Otherwise, return to

step A6.
A12. If 𝐴𝑇𝐶*

21(𝑛*21,𝐾
*
21, 𝑇

*
21) ≤ 𝜋𝐷, go to step B; otherwise, go to step A13.

A13. Set (𝑛*2,𝐾
*
21, 𝑇

*
21) = (0, 0,∞) and 𝐴𝑇𝐶21(𝐾*

21, 𝑇
*
21) = 𝜋𝐷, then go to step B.

B. Determine (𝑛*22,𝐾
*
22, 𝑇

*
22) using following sub-steps.

We calculated the optimum value of (𝑛*22,𝐾
*
22, 𝑇

*
22) in Thirteen different parts in section B

B1.Frist set 𝑛22 = 1 and calculate 𝜓41−𝜓45, from equations (3.44) to (3.48).
B2. Obtain 𝐾22 (𝑛22) 𝑎𝑛𝑑𝑇22 (𝑛22) via equations (3.50) and (3.51). If 𝑀 < 𝐾22 (𝑛22)𝑇22 (𝑛22) go to step B3,

Otherwise obtain 𝐾22 (𝑛22) 𝑎𝑛𝑑𝑇22 (𝑛22) via equations (D.11) and (D.12) and go to step B3.
B3. If 𝐾22 (𝑛22) ≤ 1, go to step B5; otherwise, go to step B4.
B4. Set 𝐾22 (𝑛22) = 1 and determine 𝑇#

22 (𝑛22) via equation (E5) in Appendix E. If 𝑀 < 𝐾22 (𝑛22)𝑇22 (𝑛22),
set (𝐾22 (𝑛22) , 𝑇22 (𝑛22)) = (1, 𝑇#

22 (𝑛22)) and go to step B5; if not, seta and go to step B5.
B5. Obtain 𝐴𝑇𝐶22(𝑛22,𝐾22 (𝑛22) , 𝑇22 (𝑛22)) via equation (3.36),
B6. Set 𝑛22 = 𝑛22 + 1 and calculate 𝜓41−𝜓45, from equations (3.44) to (3.48).
B7. Obtain 𝐾22 (𝑛22) 𝑎𝑛𝑑𝑇22 (𝑛22) via equations (3.50) and (3.51). If 𝑀 < 𝐾22 (𝑛22)𝑇22 (𝑛22) go to step B8,

Otherwise obtain 𝐾22 (𝑛22) 𝑎𝑛𝑑𝑇22 (𝑛22) via equations (D.11) and (D.12) and go to step B8.
B8. If 𝐾22 (𝑛22) ≤ 1, go to step B10; otherwise, go to step B9.
B9. Set 𝐾22 (𝑛22) = 1 and determine 𝑇#

22 (𝑛22) i equation (E5) in appendix E. If 𝑀 < 𝐾22 (𝑛22)𝑇22 (𝑛22), set
(𝐾22 (𝑛22) , 𝑇22 (𝑛22)) = (1, 𝑇#

22 (𝑛22)) and go to step B10; if not, set (𝐾22 (𝑛22) , 𝑇22 (𝑛22)) = (1,𝑀) and go to
step B10.

B10. Obtain 𝐴𝑇𝐶22(𝑛22,𝐾22 (𝑛22) , 𝑇22 (𝑛22)) via equation (3.33),
B11. If 𝐴𝑇𝐶22(𝑛22,𝐾22 (𝑛22) , 𝑇22 (𝑛22)) > 𝐴𝑇𝐶22((𝑛22 − 1) ,𝐾22 (𝑛22 − 1) , 𝑇22 (𝑛22 − 1)) then the optimal

values are 𝑛*22 = (𝑛22 − 1) , 𝐾*
22 = 𝐾22 (𝑛22 − 1) , 𝑇 *22 = 𝑇22 (𝑛22 − 1) and go to step B12. Otherwise, return to

step B6.
B12. If 𝐴𝑇𝐶*

22(𝑛*22,𝐾
*
22, 𝑇

*
22) ≤ 𝜋𝐷, go to step B; otherwise, go to step B13.

B13. Set (𝑛*22,𝐾
*
22, 𝑇

*
22) = (0, 0,∞) and 𝐴𝑇𝐶22(𝐾*

22, 𝑇
*
22) = 𝜋𝐷, then go to step 2.

Step2. Determine the optimal policy.
C1-Set 𝐴𝑇𝐶*

2 (𝑛*𝑑,𝐾
*
𝑑 , 𝑇

*
𝑑 ) = 𝑀𝑖𝑛 {𝐴𝑇𝐶21(𝑛21,𝐾21, 𝑇21), 𝐴𝑇𝐶22(𝑛22,𝐾22, 𝑇22)} and (𝑛*2,𝐾

*
2 , 𝑇

*
2 ) =

(𝑛*𝑑𝐾
*
𝑑 , 𝑇

*
𝑑 ).

C2-End.

Appendix G.

Solution procedure for model 1
Step1. Obtain (𝐾*

11, 𝑇
*
11) and (𝐾*

12, 𝑇
*
12).

A. Determine (𝐾*
11, 𝑇

*
11) using following sub-steps.

A1. Calculate 𝜓11−𝜓16, from equations (3.12) to (3.17).
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A2. Obtain 𝐾11 𝑎𝑛𝑑𝑇11 via equations (3.19) and (3.20). If 𝑀 < 𝐾11𝑇11 go to step A3, Otherwise obtain
𝐾11 𝑎𝑛𝑑𝑇11 via equations (3.21) and (3.22) and go to step A3.

A3. If 𝐾11 ≤ 1, go to step A5; otherwise, go to step A4.
A4. Set 𝐾11 = 1 and determine 𝑇#

11 via equation (E.3) in Appendix E. If 𝑀 < 𝐾11𝑇11, set (𝐾*
11, 𝑇

*
11) = (1, 𝑇#

11)
and go to step A5; if not, set (𝐾*

11, 𝑇
*
11) = (1,𝑀) and go to step A5.

A5. Obtain 𝐴𝑇𝐵11(𝐾*
11, 𝑇

*
11) via equation (3.9). If 𝐴𝑇𝐵11(𝐾*

11, 𝑇
*
11) ≤ 𝜋𝐷, go to step B; otherwise, go to

step A6.
A6. Set (𝐾*

11, 𝑇
*
11) = (0,∞) and 𝐴𝑇𝐵11(𝐾*

11, 𝑇
*
11) = 𝜋𝐷, then go to step B.

B. Determine (𝐾*
12, 𝑇

*
12) using following sub-steps.

We calculated the optimum value of (𝐾*
12, 𝑇

*
12) in six different parts in Section B

B1. Calculate 𝜓21−𝜓26, from equations (3.22) to (3.26).
B2. Obtain 𝐾12 𝑎𝑛𝑑𝑇12 via equations (3.27) and (3.28). If 𝑀 > 𝐾12𝑇12 go to step B3, Otherwise obtain

𝐾12 𝑎𝑛𝑑𝑇12 via equations (3.31) and (3.32) and go to step B3.
B3. If 𝐾12 ≤ 1, go to step B5; otherwise, go to step B4.
B4. Set 𝐾12 = 1 and determine 𝑇#

12 via equation (E.4) in Appendix E. If 𝑀 > 𝐾12𝑇12, set (𝐾*
11, 𝑇

*
11) = (1, 𝑇#

11)
and go to step (B.5); if not, set (𝐾*

11, 𝑇
*
11) = (1,𝑀) and go to step (B.5).

B5. Obtain 𝐴𝑇𝐵12(𝐾*
12, 𝑇

*
12) via equation (3.10). If 𝐴𝑇𝐵12(𝐾*

12, 𝑇
*
12) ≤ 𝜋𝐷, go to step 2; otherwise, go to

step B6.
B6. Set (𝐾*

12, 𝑇
*
12) = (0,∞) and 𝐴𝑇𝐵12(𝐾*

12, 𝑇
*
12) = 𝜋𝐷, then go to step 2.

Step2. Determine the optimal policy.
C1-Set 𝐴𝑇𝐵*

1(𝐾*
𝑑 , 𝑇

*
𝑑 ) = 𝑀𝑖𝑛 {𝐴𝑇𝐵11(𝐾*

11, 𝑇
*
11), 𝐴𝑇𝐵12(𝐾*

12, 𝑇
*
12)} and (𝐾*

1 , 𝑇
*
1 ) = (𝐾*

𝑑 , 𝑇
*
𝑑 ).

C2-End.
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