RATIRO-Oper. Res. 56 (2022) 2621-2649 RAIRO Operations Research
https://doi.org/10.1051/ro/2022124 WWW.rairo-ro.org

MINIMIZING THE TOTAL WEIGHTED EARLINESS AND TARDINESS FOR A
SEQUENCE OF OPERATIONS IN JOB SHOPS

BABY SIVANANDAN GIRISH*®, HABIBULLAH! AND JESSAMMA DILEEPLAL?

Abstract. This paper proposes exact algorithms to generate optimal timing schedules for a given
sequence of operations in job shops to minimize the total weighted earliness and tardiness. The algo-
rithms are proposed for two job shop scheduling scenarios, one involving due dates only for the last
operation of each job and the other involving due dates for all operations on all the jobs. Computa-
tional experiments on benchmark problem instances reveal that, in the case of the scheduling scenario
involving due dates only for the last operation of each job, the proposed exact algorithms generate
schedules faster than those generated using a popular optimization solver. In the case of the scheduling
scenario involving due dates for all operations on all the jobs, the exact algorithms are competitive
with the optimization solver in terms of computation time for small and medium size problems.

Mathematics Subject Classification. 90B35.

Received January 23, 2022. Accepted July 13, 2022.

1. INTRODUCTION

Job shop scheduling problem (JSP) is one of the important machine scheduling problems and is well known
as NP-hard [21, 33]. The problem involves scheduling n jobs on a set of m machines. Each job has a chain
of ordered operations to be performed on specific machines, and the processing order on the machines can
be different for different jobs. The most commonly used scheduling objective in the literature on job shops is
to minimize makespan [21]. Since the problem is NP-hard, the state-of-the-art solution methodologies mainly
include heuristic and metaheuristic approaches. Giffler and Thompson (GT) algorithm is a well-known procedure
to construct active schedules for a given priority order of operations in JSP with makespan, tardiness and
flowtime-based objectives [17,26]. The schedule generation mechanism in the GT algorithm also allows it to be
used with dynamic priority dispatching rules, in which the job priorities change continuously over time during
schedule generation [1,8,17].

The research on scheduling job shops to minimize total weighted earliness and tardiness (TWET) has gained
considerable importance in recent years. The TWET minimization objective in JSP is important to manufac-
turing industries operating in a just-in-time (JIT) environment [22]. The aim is to reduce inventory costs and
simultaneously satisfy customer demands with the timely delivery of products. The problem involves a due date

Keywords. Job shop scheduling, total weighted earliness-tardiness, optimal timing schedule, just-in-time manufacturing.
I Department of Aerospace Engineering, Indian Institute of Space Science and Technology, Thiruvananthapuram 695547, Ker-
ala, India.

2 Department of Mechanical Engineering, College of Engineering Perumon, Kollam 691601,
Kerala, India.
*Corresponding author: girish@iist.ac.in

© The authors. Published by EDP Sciences, ROADEF, SMAI 2022

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1051/ro/2022124
https://www.rairo-ro.org
https://orcid.org/0000-0002-8581-4198
mailto:girish@iist.ac.in
https://creativecommons.org/licenses/by/4.0

2622 B.S. GIRISH ET AL.

and weights for earliness and tardiness associated with each job (or its operations). Generating a schedule with
a minimum TWET involves completing the jobs (or their operations) as close as possible to their respective
due dates. Since the GT algorithm generates active schedules by left-aligning the operations to the earliest start
time, it cannot generate optimal schedules for JSP with TWET minimization objective. This paper studies JSP
with the minimization of TWET as the objective and proposes exact algorithms to generate optimal schedules
for a given sequence of operations.

The rest of the paper is organized as follows. Section 2 presents the literature review, Section 3 presents the
formulation of the problems, Section 4 presents the proposed optimal timing algorithms, Section 5 presents the
computational study of the proposed algorithms and its comparison with the results obtained from a popular
optimization solver, and Section 6 concludes with the scope for future work.

2. LITERATURE REVIEW

The early research on TWET minimization objective in JSP considered the due date and earliness-tardiness
weights only for the last operation of each job. Beck and Refalo [7] referred to this problem as the early/tardy
scheduling problem (ETSP) and proposed a hybrid technique using constraint programming and linear program-
ming to solve the problem. Danna et al. [13] adopted the mixed integer programming (MIP) formulation from [7]
and proposed three strategies to solve the problem, namely, local branching, relaxation induced neighbourhood
search, and guided dives. Kelbel and Hanzalek [23] presented a greedy search tree initialization procedure for
solving the ETSP applied within a constraint programming framework. They used a slice-based search strategy
available in a commercial optimization solver to explore the search tree generated by their procedure. Since
the above approaches for ETSP use mathematical programming models to solve the problem, they inherently
generate the optimal schedules and do not require a separate algorithm for schedule generation. Yang et al. [32]
presented an enhanced genetic algorithm to solve ETSP with distinct due dates and a common deadline for all
the jobs. They used an operation-based scheme to represent the chromosomes. They used a three-stage decod-
ing procedure to decode each chromosome to a feasible schedule. Though their decoding procedure generates a
feasible schedule, it is not proven to provide optimal schedules in all cases. To the best of our knowledge, there
is no exact algorithm reported in the literature other than the mathematical programming-based approaches to
generate optimal schedules for a given sequence of operations in ETSP.

Recently, the research on JSP with a due date and earliness-tardiness weights associated with each operation
has gained importance. In this problem, the operations on all the jobs are scheduled to minimize the weighted
sum of earliness and tardiness associated with the deviation of completion time of each operation from its
respective due date. Baptiste et al. [5] were the first to introduce this problem and referred to it as the just-in-
time job shop scheduling problem (JIT-JSP). They presented a mathematical programming formulation for the
problem and found the lower bounds for 72 problem instances using two Lagrangian relaxations methods. They
implemented simple heuristics to derive upper bounds using the Lagrangian relaxations and further improved
them using a local search algorithm. Monette et al. [25] introduced a constraint programming approach for
JIT-JSP that relies on a branch and bound procedure, a global filtering algorithm, and two search heuristics
to solve the problem. Metaheuristic approaches have also been implemented to solve JIT-JSP. Araujo et al. [4]
implemented a combination of genetic algorithm and local search procedure to solve JIT-JSP in two sequential
phases. They generated the schedules for a given sequence of operations by left aligning the operations to their
earliest start time. Dos Santos et al. [14] presented a hybrid method that combines an evolutionary algorithm,
a mathematical programming model, and a local search procedure. The mathematical programming model is
used to determine the optimal schedule for a given sequence of operations using a commercial optimization
solver. Yang et al. [31] implemented an improved genetic algorithm that utilizes an operation-based scheme to
represent the chromosomes. Each chromosome is decoded to generate the schedules using a three-stage decoding
mechanism which initially generates a semi-active schedule and then improves the schedule by reducing earliness
cost using greedy insertion mechanisms. Though their decoding procedure generates a feasible schedule, it is
not proven to provide the optimal schedule for a given sequence of operations. Wang and Li [30] proposed a

MINIMIZING THE TOTAL WEIGHTED EARLINESS AND TARDINESS 2623

combination of variable neighbourhood search and mathematical programming to solve JIT-JSP. They used the
mathematical programming model to generate an optimal schedule for a given sequence of operations. Ahmadian
and Salehipour [2] presented a matheuristic algorithm to solve JIP-JSP, which operates by decomposing the
problem into smaller sub-problems and solving the subproblems using a commercial optimization solver to obtain
optimal or near-optimal schedules. Ahmadian et al. [3] developed a variable neighbourhood search algorithm to
solve JIT-JSP. They implemented four neighbourhood structures to generate improved solutions. They used a
commercial optimization solver to generate and improve schedules in their algorithm.

The above literature review on JIT-JSP reveals that most researchers have developed metaheuristic algorithms
that require a mathematical programming model to generate an optimal schedule for a given sequence of
operations. To the best of our knowledge, there is no exact approach reported in the literature other than
the mathematical programming approaches to generate optimal schedules. An exact algorithm for schedule
generation will also be useful in developing and implementing priority dispatching rules in scheduling job shop
with TWET objective. This paper proposes exact algorithms to generate optimal timing schedules for a given
sequence of operations in JIT-JSP. The proposed optimal timing algorithms for JIT-JSP are extended to generate
optimal schedules for a given sequence of operations in ETSP.

The proposed optimal timing (OT) algorithms for JSP is based on the OT algorithms presented in the
literature for various other scheduling problems. The OT algorithms were initially introduced to generate optimal
timing schedules for a given job sequence in single machine scheduling problem (SMSP) to minimize TWET.
Garey et al. [16] presented an OT algorithm with O(nlogn) time complexity for the SMSP with symmetric
weights for earliness and tardiness. Szwarc and Mukhopadhyay [27] proposed an OT algorithm with O(n?)
complexity for the SMSP with asymmetric earliness and tardiness weights. Lee and Choi [24] and Wan and Yen
[29] also presented OT algorithms that were used to generate optimal timing schedules within their proposed
metaheuristic algorithms for the SMSP. Chretienne [10] extended the OT algorithm proposed by Garey et al.
[16] to the asymmetric and task-independent costs case in SMSP without increasing its worst-case complexity.
He also proposed an O(n®logn) OT algorithm for the general case of asymmetric and task-dependent costs
in SMSP. Bauman and Jozefowska [6] presented an O(nlogn) OT algorithm for the SMSP. Hendel and Sourd
[19] proposed an OT algorithm for the earliness-tardiness SMSP with a linear piece-wise cost function for each
job. They showed that OT algorithms for SMSP can be extended to minimize TWET in the permutation flow
shop scheduling problem with earliness-tardiness penalties for the last operation of each job. Feng and Lau [15]
presented an OT algorithm for the SMSP and showed it to be more efficient than the OT algorithms presented
in [16,27].

Besides SMSP, OT algorithms have also been implemented for other scheduling problems, like the resource-
constrained project scheduling problem [28], parallel machine scheduling problem [9], PERT scheduling problem
[11], and scheduling of aircraft landing problem [18].

The OT algorithms presented in the literature are similar in identifying and shifting the job clusters to
minimize TWET. However, they differ in their implementation to handle the problem’s specific constraints or
make the algorithms run faster in practice. The proposed OT algorithms for JSP are similar in principle to the
existing OT algorithms. They differ mainly in the mechanisms used for handling the specific constraints of the
problem.

3. PROBLEM FORMULATION

3.1. Just-in-time job shop scheduling problem

The just-in-time job shop scheduling problem (JIT-JSP) can be described as follows [5]. There are a set of m
machines, M = {M;, M, ..., M,,}, and a set of n jobs, J = {Jy, Ja2,...,J,} to be processed. Let i is the index
for jobs and k is the index for machines, i.e. i =1,2,...,nand k = 1,2,...,m. Each job J; requires a set of n;
sequentially ordered operations, O; = {O;1,O;a,...,O;n, } to be performed. Let j is the index for operations,
i.e. j =1,2,...,n,. Each operation O;; is performed on a specified machine M (O;;) € M and the processing
time is given by p;;. For each machine Mj, € M, O(M},) represents the set of all operations that are performed

2624 B.S. GIRISH ET AL.

on My. Each operation O;; has a due date d;; such that an early or late completion incurs a penalty which
is proportional to the amount of deviation from d;;. Each operation O;; has two penalty coefficients, a;; and
Bij, to penalize its early and tardy completion, respectively. If ¢;; represents the scheduled completion time of
operation O;j, €;; its earliness, and ¢;; its tardiness, then e;; = max(0,d;; — ¢;;) and t;; = max(0,¢;; — dij).
The objective of JIT-JSP is to determine an optimal schedule that minimizes the total cost due to deviation of
completion of all the operations from their respective due dates, which is given by Y i, Z;ﬁ:l(aijeij + Bijtij).
The mathematical formulation for the problem is as follows.

Objective:

Minimize Z Z(aijeij + Bijtij) (3.1)
i=1j=1

Subject to:
eij = dij —cij Vi, j (3:2)
tij 2 ¢ij —dij Vi, j (3:3)
ci1 = pin Vi (3-4)
Cij > Cij—1 + Dij Vi,j g 7é 1 (35)

Cij > Cirjr +Ppij O Cirjr > Cij + Pirjr
vi7j7i/,j/,k:01‘j EO(Mk)aOi’j/ GO(Mk),'L?éZ/
eij > 0,85 >0 Vi, j. (3.7)

Constraints (3.2) and (3.3) relate the earliness and tardiness of each operation with its completion time and due
date. Constraint (3.4) ensures that the first operation of each job starts after time 0. Constraint (3.5) imposes
a precedence relationship between the two consecutive operations of the same job. Disjunctive constraint (3.6)
ensures that two operations cannot be processed simultaneously if they belong to two different jobs and require
processing on the same machine. For a given sequence of operations, the disjunctive constraint (3.6) transforms
into a simple linear constraint, and the mathematical formulation transforms into a linear programming model.

3.2. Early/tardy job shop scheduling problem

The problem environment of the early/tardy job shop scheduling problem (ETSP) is the same as JIT-JSP,
except that only the last operation of each job has a due date, and only its early or tardy completion is
penalized. If d; is the due date of the last operation of job J;, e; represents its earliness, and t; represents its
tardiness, then e; = max(0,d; — ¢;n,) and t; = max(0, ¢;n, — d;), where ¢;,, is the completion time of the last
operation of job i. Each job J; has two penalty coefficients, ; and 3;, to penalize its early and tardy completion,
respectively. The objective of ETSP is to determine the optimal schedule that minimizes the total cost due to
the deviation of completion of the last operation of all the jobs from their respective due dates, which is given
by Z?:l(aiei + Bit;). The mathematical formulation for the problem is as follows.

Objective:

Minimize Z(aiei + ﬁztl) (38)

=1

MINIMIZING THE TOTAL WEIGHTED EARLINESS AND TARDINESS 2625

Subject to:
e; > d;i — cin, Vi (3.9)
ti> cin, —di Vi (3.10)
c1 > pin Vi (3.11)
Cij > Cij—1+Dpij Vi,j:j#1 (3.12)
Cij 2 Cirjr +DPij O Cirjr 2 Cij + Pirjr (3.13)
Vi, 7,15k : Oi; € O(My), 0400 € O(My),i #14'
e >0,t;>0 Vi (3.14)

Constraints (3.9) and (3.10) relate the earliness and tardiness of the last operation of each job with its completion
time and due date. The constraints (3.11) to (3.13) are the same as the constraints (3.4) to (3.6) in JIT-JSP.
For a given sequence of operations, the disjunctive constraint (3.13) transforms into a simple linear constraint,
and the mathematical formulation transforms into a linear programming model.

4. THE PROPOSED OPTIMAL TIMING ALGORITHMS

This section first presents the implementation of the proposed OT algorithms for JIT-JSP. The extension of
the OT algorithms to ETSP is presented subsequently.

4.1. The proposed OT algorithms for JIT-JSP

Let SEQ be the given sequence of N number of operations in JIT-JSP, where N = 2?21 n;. Let each operation
in SEQ is represented by a unique identifier j(j = 1,2,..N) based on its position in the sequence. Therefore,
each operation identifier j can be mapped to one of the operations in O; = {O;1,0;2,...,0;n,},i =1,2,...,n
(see Sect. 3.1). Let the ordered set o represent the set of operation identifiers in a sequence corresponding to
the operations in SEQ. Let P; be the processing time, D; is the due date, and C is the completion time of
the jth operation in o. Let the early and tardy penalty coeflicients be represented by g; and h;, respectively.
Corresponding to the jth operation in o, let the singleton sets JP(j) and JS(j) respectively contain their
immediately preceding and succeeding operations on the same job. If the jth operation is the first operation
of the job, then JP(j) = 0 and if the jth operation is the last operation, then JS(j) = 0. Let the singleton
sets, M P(j) and MS(j), respectively, contain the immediately preceding and succeeding operations of the
jth operation performed on the same machine. If jth operation is the first operation on the machine, then
MP(j) =0, and if jth operation is the last operation, then M S(j) = (. Let PR(j) = (JP(j) UMP(5)) denote
the set of preceding operations and SU(j) = (JS(j) U M S(j)) denote the set of succeeding operations on the
same job or the same machine corresponding to jth operation in o.

Let o; is the partial sequence that contains the first ¢ operations in o, and let S; = {C1,Co,...,C;} is the
partial schedule corresponding to o;. Let f; is the total weighted earliness and tardiness corresponding to the
partial schedule S;. In an optimum partial schedule S; with minimum f;, the operations will be aligned as
close as possible to their respective due dates. This results in either the operations being scheduled at their due
dates or forming clusters as shown in the Gantt chart in Figure 1. Each cluster consists of a set of contiguously
scheduled operations called a block. A pair of operations (j, j'), where j precedes j' in o;, is said to be contiguous
and belong to the same block if Cj; = C; + Pj/, provided that (j, j') are either the two consecutive operations
of the same job or the two consecutive operations on the same machine (i.e. j € PR(j')). Let B; be the block
comprising of the cluster of operations which are contiguously scheduled and contains the ith operation in o;.
In Figure 1, the block Bjs is a maximum cardinality set formed by the cluster of operations {6,7,8,9,10,11,12}
which are contiguously scheduled and contains the operation 12 (i.e. Oz 4). The operations in the set {1,2,3,4,5}
are not contiguously scheduled with any of the operations in B, and, therefore, are not included in the set Bis.

2626 B.S. GIRISH ET AL.

A
1 3 S
M4 [O1,1] [02,2 I 03,2] O14 "
A A A
1 ! 3 10
g M3 i ! 013 034]
f_“, S 1 A A
1
= M2 01 * 1 [_: 033 0w’
1
4 6] Y
M1 03,1 (¥ 024
| | Il | | | | I | | »
Time
Precedence relationship SEQ ={0131, 021, 022, 031, 03,2, 01,2, 033, O13, 023, 03,4, O1,4, 02,4}
T between contiguous operations
belonging to the same job 0={1,23,4,5,6,7,8,9,10, 11, 12}
B1,={6,7,8,9,10, 11, 12}
A Cost function slope value changes
~ at breakpoints when an operation
o changes from tardiness to earliness
N
-
w
o
o /
>
_—
©
c
9]
a,
Minimum point of the cost
function Z(B)»)
! I | I | | L | ! I -
>
D, ' D D, Dy D, D, C2

FIGURE 1. A typical cost function plot obtained by left shifting a set of operations in a block.

Let f(B;) is the total weighted earliness and tardiness function corresponding to the set of operations in
B; defined in terms of the completion time of the ith operation in o;. Then f(B;) will always be a piece-wise
linear convex cost function when all the operations in B; are shifted by the same amount of time. This can be
explained using the following theorem.

Theorem 4.1. The weighted sum of earliness and tardiness cost function f(B;) corresponding to a set of

operations B; C o; with cardinality N’ will always be a piece-wise linear convex function with at most N’
breakpoints.

Proof. The weighted sum of earliness and tardiness for the set of operations B; with cardinality N’ is given by

F(Bi) =Y (g;max(0, D; — Cj) + hy max(0, C; — Dy)) (4.1)
JEB;

The cost function (4.1) can be written in terms of the completion time C; as

F(Bi) =Y (g max(0, D; — C; + Ty) + hy max(0,C; — T; — D)) (4.2)
JjEB;

MINIMIZING THE TOTAL WEIGHTED EARLINESS AND TARDINESS 2627

where T} is the time gap between the completion time of the operation ¢ and operation j in B;, i.e. T; = C; —Cj.
The cost function (4.2) can be written as

f(Bi)= Y g;(Dj = Ci+Tj)+ > hj(C; = T; — D;) (4.3)

JEEY JETY

where EY represents the set of early operations and TY represents the set of tardy operations for a given value
of C;. The cost function (4.3) can be further rewritten as

FB)={ D hi= > g | Ci+ Y gi(D;+Tj))— > hi(D; +1Ty) (4.4)

JETY JEEY JEEY JETY

The above cost function will be a straight line equation with slope s(B;) = ZjeTY h; — ZjeEY g; when all
the operations are left-shifted by the same amount of time, ¢.e. T} remains constant for all the operations in
B;. A typical plot of f(B;) versus C; is shown in Figure 1. The 3 jobs-4 machines JIT-JSP instance shown in
Figure 1 contains 7 operations in block Bis. The sets, EY and TY, change when an operation in B; changes
from tardiness to earliness at its due time while reducing C;. This leads to a change in the slope of the cost
function, resulting in a breakpoint in the plot as shown in Figure 1. Since there are N’ number of operations
in B;, there can be a maximum of N’ number of breakpoints, each occurring at the due date of one of the
operations in B;. As the operations in B; change from tardiness to earliness while reducing Cj;, the slope
of the cost function monotonically decreases after each breakpoint. This is evident from the slope equation
8(Bi) = > ery hj—2_jcpy 9j- The value of the cost function slope becomes negative after the breakpoint with
the least value of f(B;). Therefore, left shifting the operations to the breakpoint where the cost function slope
changes from a positive value to a non-positive value provides the optimal f(B;). This property forms the basis
for optimizing the cost function in the OT algorithm. This property also holds for any subset of contiguously
scheduled operations in B; that can be left-shifted without violating the precedence constraints. (I

The proposed OT algorithm for JIT-JSP can be described as follows. Initially, the first operation in o is
assigned its completion time as Cy = D; and the partial schedule is generated as S; = {C1}. In this case, f;
corresponding to S; will be zero. Subsequently, the partial schedule S;(2 < i < N) is generated from S;_; by
assigning the completion times of all the operations from S;_; to S;. The completion time of the ith operation
in S; is determined as C; = max(D;,Y; + P;), where Y; = maxc pr(;) Cj. If PR(i) = 0, then Y; = 0.

If C; = D;, then the penalty cost of the ith operation in ¢; will be zero, and S; will be optimal with f; = f;_1.
On the other hand, if C; > D,, then the ith operation will have a penalty cost due to lateness and the partial
schedule S; needs to be optimized based on Theorem 4.1 discussed above. This involves the block B; containing
the ith operation in o; to be generated and a left shifting procedure, namely LEFT_SHIFT, is invoked to
optimize the partial schedule S;. Algorithm 1 shows the pseudocode of the proposed OT algorithm for JIT-JSP.

In OT algorithms applied to the single machine scheduling problem, all the jobs in a block corresponding to
the last operation in the partial sequence are left-shifted to the minimum point of its cost function [24,29]. Since
JIT-JSP involves multiple machines, multiple shiftable blocks can be generated from B;, each containing the
ith operation in o;. A shiftable block R, (R, C B;) comprises of a set of operations, such that if an operation j
is included in R, then its immediately preceding contiguous operations in PR(j) are also included in R,. This
allows the shiftable block R, to be left-shifted by at least one unit of time without violating the precedence
constraints of any of its operations with the respective immediately preceding operations. In other words, each
shiftable block R, is generated by eliminating a set of operations from B;, such that the operations in the set
R, can be left-shifted by at least one unit of time. The shiftable blocks generated from Bjs for the illustration
problem shown in Figure 1 are Ry = {12,9,7}, R, = {12,9,7,10,8,6} and Rs = {12,9,7,10,8,6,11}, which
are subsets of Byo and can be left shifted by at least one unit of time.

The shiftable block with the highest cost function positive slope value is chosen for left shifting among all
the other shiftable blocks that can be formed from B;. Let B denotes the block with the highest positive slope

2628 B.S. GIRISH ET AL.

Algorithm 1: OT algorithm for JIT-JSP

Data: N707Dj7Pjvgj7hj7PR(j)7SU(.j) VjEO
1 fori=1to N do

2 if i =1 then
3 C1+— D,
4 51— {C1}
5 else
6 if PR(i) # () then
7 | Yi — maxjepr@ C;
8 else
0 | Yie—0
10 end
11 Ci «— maX(Di, Y, + PZ)
12 Si— Si—1U {Cl}
13 if C; > D; then
14 ‘ LEFT_SHIFT() > Function call for the left shifting procedure
15 end
16 end
17 end
18 f* — 37, (g5 max(0, D;j — Cj) + hj max(0,C; — D)) > optimal TWET

value among all the shiftable blocks in B;. To optimize the partial schedule .S;, the block B} is left-shifted
towards the minimum point of its cost function until the nearest breakpoint is reached or an operation j € B}
becomes contiguous with an operation in PR(j) that does not belong to B}. In case if any of these two events
occur, the block B; and its corresponding shiftable blocks are regenerated using the improved partial schedule
S; and the block B} with the highest positive cost function slope value (s(B})) is again chosen for further left
shifting. This left shifting process continues until a shiftable block with positive cost function slope value cannot
be created from B;. The above procedure optimizes the partial schedule S; and provides optimal f;. This can
be explained using the following Theorems 4.2 and 4.3.

Theorem 4.2. Only the shiftable blocks, which are a subset of block B; and contain the ith operation in o;, can
have a positive cost function slope value.

Proof. The cost function slope value of any shiftable block generated from B; can be positive if and only if it
contains the ith operation in ;. This can be explained by the fact that the left shifting procedure is implemented
sequentially for the first ¢« — 1 operations in ¢; to find the optimal partial schedules Sy, 59, ...,.S;—1. Therefore,
considering Theorem 4.1, the left shifting of any shiftable block formed without the ith operation will have a
negative cost function slope value and will lead to an increase in penalty cost. Similarly, any operation or a set
of contiguously scheduled operations not belonging to B; will have a negative cost function slope value. (]

Theorem 4.3. If {R1,Ra,..., Ry} is the set of all the shiftable blocks that can be formed from block B; with
positive cost function slope value and containing the ith operation in o;, then left shifting the block with the
highest slope value towards the nearest breakpoint or until its shiftable point without violating the precedence
constraints, optimizes the partial schedule S;.

Proof. If there exists a shiftable block R, with positive slope value s(R,) corresponding to its cost function
f(R,), then based on Theorem 4.1, it can be concluded that left shifting the block R, improves the penalty
cost due to earliness and tardiness. The shiftable block with the highest positive cost function slope value
provides the highest improvement in penalty cost per unit time and optimizes the partial schedule S;. Though
left shifting the other shiftable blocks with positive cost function slope value also improves the partial schedule,
it may eventually result in sub-optimal schedules. This can be explained with the following example.

MINIMIZING THE TOTAL WEIGHTED EARLINESS AND TARDINESS 2629

Let R* (R* C B;) be the set of operations with the highest positive cost function slope value. Let R’ (R’ C B;)
be a set of operations that are not contained in R* (i.e. R’ and R* are disjoint sets) and can be left shifted
along with R*. Since the operations in R’ are not included in R*, its cost function slope value s(R’) will be
non-positive. Let us assume that s(R’) < 0 and s(R*) 4+ s(R') > 0. Obviously, s(R*) > s(R*) + s(R'). Though,
left shifting the operations in R’ along with the operations in R* will improve the total penalty cost (since
s(R*) + s(R’) > 0), the rate of improvement of the penalty cost by left shifting the set (R’ U R*) will be less
compared to left shifting R* alone, as S(R’) < 0. This indicates that left shifting the operations in R’ along
with the operations in R* results in a sub-optimal partial schedule. Therefore, selecting the block with the
highest positive cost function slope value for left shifting optimizes partial schedule S;. Regenerating B; at each
breakpoint or every time an operation becomes contiguous with a preceding operation, followed by left shifting
the shiftable block with the highest positive cost function slope value, eventually optimizes f;. O

Algorithm 2: Left shifting procedure to optimize the partial schedule

1 Function LEFT_SHIFT()

2 B} — OPT_BLOCK (3) > Function call to find the optimal block
3 while B # () do

4 tlhminjeB;(Cj—Pj—Cj/ :jIGPR(j) & jliB:‘)

5 to «— minjeB;f (CJ — Dj : Cj > Dj)
6

7

8

9

t3 < minjep; (C5 — F))

Cj «— C; —min(t1,t2,t3) Vj € B}

B} — OPT_BLOCK (7) > Function call to find the optimal block
end

10 end

Algorithm 2 shows the pseudocode of the left shifting procedure. The function OPT_BLOCK in the pseu-
docode generates the shiftable block with the highest positive cost function slope value, which is also referred to
as the optimal block. We propose two methods to generate the optimal block. The first method is an enumeration
procedure that generates all possible shiftable blocks with non-negative cost function slope values. Subsequently,
the shiftable block with the highest cost function slope value is selected for left shifting. We consider even the
optimal block with slope value equal to zero for left shifting as the objective value of the resulting schedule will
remain the same. The second method is an improvement over the first method that uses dominance rules to
ignore certain shiftable blocks in the process of finding the optimal block for left shifting.

4.1.1. Enumeration method

This method first generates a tree of sub-blocks in the forward pass. Subsequently, the sub-blocks with non-
negative cost function slope values are recombined in the backward pass to form all possible shiftable blocks.
An illustrative example of the procedure is shown in Figures 2 and 3.

The procedure starts with generating the sub-block b; by including the ith operation of o; as the first
element in b;. The preceding contiguous operations j° € PR(j) corresponding to each operation j € by are
then iteratively included in b;. Subsequently, the succeeding contiguous operations j' € SU(j) : Cj» > D; and
PR(j') = 0 corresponding to each operation j € by, are iteratively included in b;. Including the succeeding
operations j' € SU(j) : Cj» > Djs and PR(j') = 0 in by, increases its cost function slope value. This procedure
generates the shiftable sub-block b; C B;. In Figure 2, the set b; is generated by first assigning the operation 24
to it. Subsequently, its preceding contiguous operation 20 is assigned to b;. The operations 13 is then assigned
to by followed by operations 8 and 9, which are the preceding contiguous operations to the operation 13. The
operation 4 is subsequently assigned to b; as it is preceding and contiguous to operation 9. There are no
other operations in Bss which are preceding as well as contiguous to any of the assigned operations in b;. The

2630 B.S. GIRISH ET AL.

4 3 0 14 16 18
M5 [0, I 0, o,, o, o,
y. X
1 2 5 6 12
M4 [owvl I 07,1 I 05.1 I 02,|] [I OH
PN 15 2
g M3 [Oy | Oy, o, o, ‘]
=
g 7 T o ¥ (3 F)
= M2 [07.{ o, | 0,, I o,] 06,)[Oz,z]
A
8 13 20 24
M1 [09,1 08.3 I 06,2 01 03]
| | | | | | | | l | | >
Time

Precedence relationship
/'7 between contiguous operations 324 = | 24‘ 23|22 ‘ 20‘ 13 ‘ 8 ‘ 9 ‘ 4 ‘ 15 ‘ 21 ‘ 14 ‘ 10‘ 3 l 16 ‘ 18|12|
belonging to the same job

Node 1- Root node L

Level 1 bi=|24]20 [13] 8] 0| 4 |s(b)=0.08

Node 4 l Ly Node 5 * Ly,
Level 3 b 16 s(by)=027 b=[16] 14 10] 3| sbo=0.40
__ {1
Node 6 Ly Node 7 l Ly Node 8 l Ly

Level 4 be[18[12] stbg=-om1| |n- shy=-011| | b= s(by=-0.13

FIGURE 2. An illustrative example showing the generation of a tree of sub-blocks in the forward
pass of the optimal block generation procedure

operations 22 and 15 are not assigned to by, though they are succeeding and contiguous to operations 20 and 9,
respectively, as Coa < Dos and C15 < Di5. There are no other operations in Bsy which are succeeding as well
as contiguous to any of the assigned operations in b;. The sub-block b; generated by the above procedure can
be left-shifted by at least one unit of time.

The succeeding contiguous operations j' € SU(j) : Cj» < Dj or PR(j') #) corresponding to each operation
j € by are subsequently identified, and a sub-block is generated corresponding to each one of them using the
abovementioned procedure. In Figure 2, the operation 15 is the succeeding contiguous operation on the same
machine to the operation 9 in b;. Since C15 < Dj5, operation 15 was not included in by, and is assigned to
the sub-block b3. The operation 14 belonging to b4 has a succeeding contiguous operation 16 on the same
machine. Since operation 16 has no preceding contiguous operation other than the operations {21,14,10,3}
already assigned in by and Cy¢ > Dsg, it is assigned to the block bs. However, operation 18 is not included in by
as it is contiguous with its preceding operation 12 on the same job. Therefore, it is assigned to bg. In each newly
formed sub-block, only the operations in B; which were not allocated in the preceding sub-blocks are included.
The succeeding contiguous operations corresponding to the operations included in the newly formed sub-blocks
are further chosen to form new sub-blocks. This branching procedure is repeated until no more sub-blocks can
be further generated. This branching procedure generates a tree of sub-blocks, as shown in Figure 2. Each

MINIMIZING THE TOTAL WEIGHTED EARLINESS AND TARDINESS 2631

[1 1 1 -
: b(, : IL b7 : : 8 :
Level4 ot K2 Ly Node 7 v Ly Node8 Ly
ro= [18]12] strgp=-oat| = sr)=- 001 = [21] s)=-0.13
___________________________ R] Rb BR8]
. Node 4 Ly Node 5 Ly, e
1 1 1 1
Level3 | b, rolr,=[16]21]14] 103 | s0,)=027| |~ =ms(r) =0.40 |41 b, |
|__4_| 41 41 51 51 |__5_|
| Ry=ry Rsi=rs)
Node 3 L Ly,

= 15| s)=-027
1
Level2 L | =013 el 1, |

[

21
1 = N =

R

R

lerll 3l:r32 2 R}Z :r33

Node 1- Root node \ 4 11

r11=|24 2013 89 4| s(r,)= 0.08

r12:|24‘ 20‘ 13‘ 8‘ 9 ‘ 4 \22\23| 5(r\)=0.10

Level 1 e |rp=[24/20[138] 9] 4 [1s]16]14]10] 3| (=021

re=| 24/ 200138 0 [4 [15]16] 21/ 14] 10] 3| s(r=0.08

ris=[24[201 1378 [0] 4 [22][23]15[16] 14] 10] 3] 50, 9=023

re=|24 20 13] 8| o] 4]22]23]15]16]21] 14 10] 3 | s, 9=0.10

Optimal block B24" = ri5

FI1GURE 3. Generating all possible shiftable blocks in the backward pass for the illustration
problem.

sub-block can be left-shifted only if its preceding sub-blocks in the tree are also left-shifted by the same amount
of time. However, a sub-block has an option of not being left-shifted while its preceding sub-blocks in the tree
are left-shifted.

Each sub-block in the branching procedure can be called a node, with block b; becoming the root node.
Let each node is identified with a unique identifier k. Let Aj be the set of operations already assigned in the
preceding nodes of node k. For e.g., in Figure 2, As = {24,20,13,8,9,4} and A4 = A5 = {24,20,13,8,9,4, 15},
where the elements in the sets Ao, A4 and As are operation identifiers that belong to o;. Let T} denote the
set of all the sub-blocks generated in the forward pass originating from node k. For example, in Figure 2,
Ty = {b1,ba,b3, by, b5, b6, b7,bs}, To = {ba} and T3 = {bs, by, b5, b, b7, bs }. Let Gy, denote the set of immediately
succeeding nodes corresponding to a node k in the tree of sub-blocks. For e.g., in Figure 2, G; = {2,3} and
G3 = {4, 5}, where the elements 2, 3, 4 and 5 are node identifiers. As shown in Figure 2, the nodes in the tree of
sub-blocks can be categorized into levels such that the succeeding node corresponding to a node will be in the
immediately succeeding level and its preceding node in the immediately preceding level. Let levels denote the
total number of levels, and L; denote the set of nodes at each level [(I =1,2,... levels). For e.g., in Figure 2,

2632 B.S. GIRISH ET AL.

Ls ={4,5} and Ly = {6,7,8}, where the elements 4, 5, 6, 7 and 8 are node identifiers. The nodes at each level
are also denoted as L;; where [is the index for level and k is the index for the nodes in the particular level.

In the backward pass shown in Figure 3, each node k generates a set of blocks {rg1, 742, . .., riq} by combining
the sub-block by with the sets of blocks {Ry/1, Ry, ..., Rerp,, } returned by its respective child nodes &' € G.
Only the set of blocks with non-negative cost function slope values in {rg1,7k2,...,Tke} are returned to its
respective parent node. If the cost function slope value of all the blocks in the set {ry1,7x2, ..., e} are negative,
the node k returns a null set to the parent node. In Figure 3, the blocks Rg1, R71, and Rg; are null sets since
the corresponding sets 761, 771, and rg; have negative cost function slope values. This procedure ensures that
only the blocks with non-negative cost function slope values are combined at each node.

The set of recombined blocks {ri1,7k2,. .., 7k} at each node k are generated by forming all possible com-
binations of the blocks returned by the child nodes, ensuring that the operations in a block are not repeated.
In Figure 3, the recombined blocks {r11,712,...,716} are generated by appending the sub-block b; with the
combination of blocks Ra; and {Rs;, Rs2} returned by child nodes 2 and 3, respectively. The recombined block
with the highest non-negative cost function slope value at the root node is assigned to B}, which is left-shifted
to optimize .S;. If all the recombined blocks generated at the root node have negative cost function slope values,
the partial schedule S; and the corresponding f; are optimal.

Algorithm 3 shows the overall framework of the optimal block generation procedure in the form of pseudocode.
The pseudocode shows two function calls, one to generate the tree of sub-blocks in the forward pass and
the other to recombine the sub-blocks in the backward pass to find all possible shiftable blocks with non-
negative cost function slope values. Subsequently, the optimal block with the highest non-negative cost function
slope value is selected (lines 4 to 13 in the pseudocode) and returned to Algorithm 2. Algorithm 4 shows the
pseudocode to generate the tree of sub-blocks in the forward pass using a recursive function. Algorithm 5 shows
the pseudocode to recombine the sub-blocks in the backward pass. The pseudocodes use the same notations
used in the illustrative example described above.

Algorithm 3: Pseudocode to generate the optimal block for left shifting
1 Function OPT_-BLOCK(z)

2 FORWARD_PASS(z,0,0) > Function call to generate the tree of sub-blocks
3 node — BACKWARD_PASS() > Function call to find the shiftable blocks with non-negative cost function slope
values
4 z=0
5 if node # 0 then
6 mazr =0
7 for y =1 to p1 do
8 if s(R1y) > maz then
9 maz = s(Riy)
10 z—y
11 end
12 end
13 end
14 if z =0 then
15 ‘ return ()
16 else
17 ‘ return R,
18 end
19 end

Lines 7 to 27 in Algorithm 4 generate a sub-block corresponding to an operation z considering the already
assigned operations in set Ag. The child nodes corresponding to the node are generated in lines 28 to 33.

MINIMIZING THE TOTAL WEIGHTED EARLINESS AND TARDINESS 2633

Algorithm 4: Generating the tree of sub-blocks in the forward pass

1 Initialize global variables: k= 0,levels =0,H; =0 Vj=1,2,....4
2 Function FORWARD_PASS(z,1, A)
3 l—1+1 > [: level of the node in the tree
4 ke—k+1 > k: node identifier
5 Initialize: k «— k, e — 1,by — {z},Ux — 0, G — 0, Ay, — 0 > by:ordered set
6 Ap — A U {1‘}
7 while e < |bg| do
8 J — bile] b by [e]:et element in the ordered set by,
9 for j' € (PR(j)USU(j)) : j' ¢ Ax do
10 if j' € PR(j) & C; = Cy + P; then
11 if Cj/ = Pj/ then
12 ‘ return (0) > return from function
13 else
14 A — A U {]/}
15 ‘ b <—ka{j/}
16 end
17 else if j' ¢ SU(j) & Cyy =C;+ Py & Cj > Pj then
18 if PR(j') =0 & C; > D; then
19 A — Ar U {]/}
20 ‘ b < be U{j'}
21 else
22 | Uk —j'
23 end
24 end
25 end
26 e—e+1
27 end
28 for i €Uy : j' ¢ Ay do
29 node «— FORW ARD_PASS(j',1, Ax) > creates a child node
30 if node # 0 then
31 ‘ Gr — Gi U {node} > G: set of succeeding nodes of node k in the tree
32 end
33 end
34 if [> levels then
35 levels «— 1 > levels: number of levels in the tree
36 L0 > L;: set of nodes at the [th level in the tree
37 end

38 Ly — LU {k}
39 for j € b, do

40 ‘ Hj — H;j+1 > Hj: number of times operation j appears in the tree
41 end

42 return (k)

43 end

The child node identifiers corresponding to the parent node k are updated in the set Gi. The level identifier
corresponding to the node is updated in line 3 and the total number of levels are updated in lines 34 to 37. In
line 38, the set L; stores the node identifier k. Lines 39 to 41 update the number of times each operation j € by,
appears in the tree of sub-blocks 7. The updated value for each operation j in Hj is used in the improved
method discussed later.

2634 B.S. GIRISH ET AL.

Algorithm 5: Pseudocode to recombine the sub-blocks in the backward pass using the enumeration method
1 Function BACKWARD_PASS()

2 for [= levels to 1 do
3 for k € L; do
4 qg=1
5 Tkq < br
6 for k' € G, do
7 u—q
8 for y =1 to pyr do
9 for xt =1 to g do
10 if r4e N Ryry = 0 then
11 u—u+1
12 Thuy < Tke U Rk/y
13 end
14 end
15 end
16 q—u
17 end
18 pr =0
19 for x =1 to g do
20 if s(rgz) > 0 then
21 pr < pr+1
22 Rkpk — Tka
23 end
24 end
25 end
26 end
27 end

The pseudocode shown in Algorithm 5 accesses the levels in the tree of sub-blocks in the decreasing order and
finds all possible combinations of blocks corresponding to each node. Line 5 in the pseudocode assigns by to set
ri1. Subsequently, the lines 6 to 17 generate all possible combinations of blocks {rg1, ri,..., rrq} by accessing
the sets of blocks {Ryg/1, Rkra, .- ., Rk’Pﬁc} from the child nodes k¥’ € G}. The condition in line 10 ensures that
each block generated does not have any repeating operations. Lines 18 to 24 select the set of recombined blocks
{Rk1, Ri2, . .., Rip, } with non-negative cost function slope values from the set {ry1,7x2,...,7kq} to be returned
to its parent node.

The total number of shiftable blocks generated from N number of operations can be theoretically considered
as a problem of generating k-combinations of N elements for all values of k (i.e. 1 < k < N), which is 2V [12].
However, the actual number of shiftable blocks can be far less because if an operation j is not included in the
shiftable block, then all the operations in the tree of sub-blocks T} originating from node k will get excluded.
Therefore, many combinations will not be feasible, and the proposed OT algorithm ensures that only feasible
shiftable blocks are generated. The worst-case time complexity of the OT algorithm can be estimated as an
exponential function of the problem size (N) due to the exponential increase in the number of shiftable blocks.
We present the computational performance of the proposed OT algorithm on benchmark instances with up to
30 jobs and 20 machines in Section 5.

4.1.2. Improved method

Algorithms 6 and 7 show the pseudocodes to generate the optimal block using the improved method. The
improved method uses dominance rules to ignore certain recombined blocks at each node in the backward pass,
which will not result in the optimal block. This reduces the search space and improves the computation time

MINIMIZING THE TOTAL WEIGHTED EARLINESS AND TARDINESS 2635

required to generate the optimal schedule. Therefore, this method is an implicit enumeration method. We use
the following two dominance rules.

i. The first dominance rule, namely OPT_SELECT, checks if the operations present in the set of recombined
blocks {7k1, k2, ---,Tkq} at a node k € L; do not exist in the recombined blocks generated by the other nodes
at the same level, i.e. ¥’ € L; : k' # k. If the condition is satisfied, the recombined block with the highest
non-negative cost function slope value is selected at node k and returned to its parent node. If the condition
is not satisfied, then all the recombined blocks with non-negative cost function slope values are selected and
returned to its parent node, as in the enumeration method.

ii. The second dominance rule, namely OPT_COMBINE, is applied when the sub-block b5 at node k is
combined with the blocks (Ry/1, Ry, ..., Ry,) returned by the child nodes k' € G. The recombined blocks
returned by the child nodes in the set G, that satisfied the condition in the OPT_SELFECT rule, are directly
appended to the sub-block by at node k. No new set of blocks is generated at the parent node using the blocks
returned by such child nodes.

Lines 5 to 17 in the pseudocode shown in Algorithm 6 check whether the node k at level L; satisfies the
condition in the OPT_SELECT rule. Q)i; represents the number of times the operation j appears in the set of
all the sub-blocks in the tree of sub-blocks T}, originating from node k. Lines 5 to 12 determine @, corresponding
to each operation j. The condition in line 14 of the pseudocode verifies that each operation j belonging to T}
exists only within it and does not exist in the other trees of sub-blocks at the same level. The value of I denotes
whether the node k satisfies the condition in the OPT_SELECT rule. I, = 1 indicates that the node k satisfies
the condition in the OPT_SELECT rule, and I}, = 0 if not. Lines 4 to 14 in Algorithm 7 show the procedure
to select the recombined block with the highest non-negative cost function slope value when the node k satisfies
the condition in the OPT_SELECT rule (i.e. I, = 1). Lines 16 to 21 show the procedure to select all the
recombined blocks with non-negative cost function slope value when the node does not satisfy the condition in
the OPT_SELECT rule (i.e. I, = 0). Subsequently, in the immediate lower level L;_1, the nodes that satisfied
the condition in the OPT_SELECT rule in level L;, are directly appended to the sub-block as shown in lines
18 to 22 in Algorithm 6. On the other hand, the child nodes that did not satisfy the condition, their returned
blocks combine in all possible ways with the sub-block at the parent node, as shown in lines 25 to 38 of the
pseudocode.

Figure 4 shows the optimal block generated using the improved method for the illustration problem shown
in Figure 2. The recombined blocks generated at node 4 and node 5 at level 3 of the backward pass shown in
Figure 4 have common operations. Therefore, they do not satisfy the condition in the OPT_COM BINE rule
and the blocks R41, R51 and bs are combined in all possible ways to form blocks r3;, r32 and rs3 at node 3.
The node 3 at level 2 satisfies the condition in the OPT_SELECT rule as none of the operations in the tree
of sub-blocks T3 exist in T5. Therefore, only one block R3; = r3o with highest non-negative cost function slope
value (s(rs2) = 0.13) is selected among the set of recombined blocks {r32, 733} with non-negative cost function
slope values. Similarly, node 2 also satisfies the condition in the OPT_SELFECT rule as none of the operations
in the tree of sub-blocks 75 exist in T5. Consequently, at node 1, the blocks Ry, and R3; are directly appended
to the sub-block by using the OPT_COM BINE rule to form the block 717, which is also the optimal block for
the given instance.

The following Theorems 4.4 and 4.5 prove the two dominance rules.

Theorem 4.4. If a node k € L; satisfies the condition that the operations in the tree of sub-blocks T} do not
exist in the other tree of sub-blocks Ty, k' € Ly, then the recombined block with the highest cost function slope
value from the set {ry1,rg2,...,7hq} dominates the remaining blocks.

Proof. Suppose that there are two blocks, R,; and R,1, with a set of common operations that are returned to
the parent node k from the child nodes u and v, respectively. Since the child nodes originate from the same
parent node, the set of already assigned operations in the preceding nodes, u and v, will be the same, i.e.
A, = A,. Therefore, the remaining operations, (B; — A,) and (B; — A,), available to form the respective tree
of sub-blocks, T;, and T,,, in their forward pass will also be the same. Consequently, the resulting blocks R,

2636 B.S. GIRISH ET AL.

Algorithm 6: Pseudocode to combine sub-blocks in the backward pass using the improved method

1 Global variables: I, = 1,Qx; =0, Vk=1,2,...k Yj=1,2,...,i
2 Function BACKWARD_PASS()

3 for [= levels to 1 do
4 for k € L; do
5 for j € b do
6 ‘ ij =1
7 end
8 for k' € Gy do
9 for j =1 toido
10 | Qrj — Qrj + Qu;
11 end
12 end
13 for j =1 toido
14 if Qr; > 0 and Qr; # H; then
15 | I =0
16 end
17 end
18 for k' € G, do
19 if I, = 1 then
20 ‘ by «— b U Rk/pk/ > Node k' satisfies the condition in the OPT_COM BINE rule
21 end
22 end
23 qg=1
24 Tkq < br
25 for k' € G do
26 if I =0 then
27 U — q
28 for y =1 to pyr do
29 for x =1 to ¢ do
30 if 7 N Rk/y = () then
31 u<+—u+1
32 Thu < Tka U Rpry
33 end
34 end
35 end
36 q—u
37 end
38 end
39 SELECT(]{) > Function call to select the recombined blocks
40 end
41 end
42 end

and R, will be the subsets of the set (B; — A,) (or (B; — A,)). As per the forward pass of the optimal block
generation procedure shown in lines 28 to 32 of Algorithm 4, b, and b, are formed by two different succeeding
operations corresponding to the set of operations in by. Since the sets R,; and R,; have common operations,
the set of all the operations in T;, will be the same as in T,,. This is also evident from the illustrative example
shown in Figure 2, where the set of operations {16,14,10,3,18,12,21} are the same in the trees of sub-blocks,
Ty = {bs,bs} and T5 = {bs, b7, bs}. This is because a tree of sub-blocks is generated by identifying the preceding
and the succeeding chain of contiguous operations. As a result, any two trees of sub-blocks originating from the

MINIMIZING THE TOTAL WEIGHTED EARLINESS AND TARDINESS

2637

Algorithm 7: Pseudocode to select the set of recombined blocks with non-negative cost function slope
value at each node

1 Function SELECT(k)
2 Pk = 0
3 if I, =1 then
4 max =0 > Node k satifies the condition in the OPT_SELECT rule
5 for t =1 to g do
6 if s(rgz) > max then
7 max «— $(Tkz)
8 pr — 1
9 Y—x
10 end
11 end
12 if pr = 1 then
13 ‘ Rk'Pk — Tky
14 end
15 else
16 for t =1 to g do
17 if s(Tke) > 0 then
18 P —pr+1
19 RkPk — Tkx
20 end
21 end
22 end
23 end
==
b 0 | b
Level 4 ode 6 A 4 L Node 7 Ly, Node 8 L 4 Ly
Ter™ s(rg)=-0.11 = s(ry)=-0.11 re= s(rg)=-0.13
R-6 R0

Node 5 ¢

Ll

5™ s(rg;) =0.40 4 b, !

Level 2

Dby ol = [22]23] syp=0.02

R, =r, 51051

A 4

Node 2 Ly,

= m s(ry,) =0.13

R, =r. R

21 "1 I

31: 32
Node 3 satisfies the condition in

the OPT_SELECT rule

Node 1- Root node

o= (24120013 8 [0 | 4 1 22]23]15]16] 14] 10] 3| s0r,=023

Nodes 2 and 3
satisfy the
condition in the
OPT_COMBINE

Optimal block B24" = r11

FIGURE 4. Generating optimal block using the improved method in the illustration problem.

2638 B.S. GIRISH ET AL.

same parent node will either have a different set of operations (e.g., the tree of sub-blocks 75 and T35 in Fig. 2)
or they will have the same set of operations (e.g., the tree of sub-blocks T and T in Fig. 2). Nevertheless,
the grouping of operations within the sub-blocks within a particular tree of sub-blocks can differ from the
other trees of sub-blocks. This is evident from Figure 2, where the grouping of operations within the sub-blocks
in Ty = {bs,bg} differ from the grouping of operations in T5 = {bs, by, bg}. Consequently, the cost function
slope values of the sub-blocks also differ from each other, as evident from Figure 2. Therefore, the optimal
combination of sub-blocks belonging to different trees of sub-blocks originating from the same parent node
eventually optimizes the total cost. Hence, all possible combinations of the recombined blocks are maintained
until the trees of sub-blocks with a common set of operations converge at a parent node.

Suppose that the trees of sub-blocks with common operations converge at a node k. Then each recombined
block generated at node k£ will be a combination of sub-blocks contained in 7. The recombined block containing
the optimum combination of sub-blocks will have the highest cost function slope value compared to all other
recombined blocks generated at node k. Therefore, the recombined block with the highest cost function slope
value will dominate all other recombined blocks generated at node k. (]

Theorem 4.5. The recombined block Ry, , with pyr = 1, which satisfied the condition in the OPT_SELECT
rule at child node k' € Ljy1, can be appended to all the recombined blocks at its parent node k € Ly and does
not require the generation of recombined blocks without Ry , to find the optimal block.

Proof. As discussed in the proof of Theorem 4.4, all possible combinations of the recombined blocks are main-
tained until the trees of sub-blocks with a common set of operations converge at a parent node. Therefore, the
blocks returned by the child nodes having common operations with other nodes at the same level are combined
in all possible ways to eventually obtain the optimum combination of operations in the shiftable block with
the highest cost function slope value. Since the blocks that satisfied the condition in the OPT_SELECT rule
are already the optimum combination of sub-blocks at their respective child nodes, they do not require to be
recombined in all possible ways. They can be appended to all the recombined blocks generated at the parent
node. O

4.2. The proposed OT algorithm for ETSP

The problem environment of ETSP is the same as JIT-JSP, except that the due dates and earliness-tardiness
penalties are associated only with the last operation of each job. Let F' (F' C o) represent the set containing the
last operation of each job. We use the notations for earliness-tardiness penalties, g; and h;, and due date D;
for all the operations in . The earliness-tardiness penalties and due dates corresponding to the last operation
(i.e. gj, hj, Dj, j € F) are the inputs to the problem. The earliness-tardiness penalties and the due dates for
the remaining operations are set as zero, i.e. gj = h; = D; =0, j € (6 — F). All the other notations used in
the description of OT algorithm for ETSP are the same as those used in JIT-JSP.

Since in ETSP, only the last operation of each job has a due date, the first n; — 1 operations of each job i are
scheduled according to their position in the given sequence o at their earliest start times. The last operation
of each job ¢ is scheduled as per the given sequence either at its due date or at its earliest possible start-time,
whichever is later. The left shifting procedure is subsequently invoked to optimize its partial schedule. The left
shifting procedure is applied only if at least one job with its last operation is not contiguously scheduled with
any of its immediately preceding operations either on the same job or the same machine. Suppose that the
last operations of the jobs in the partial schedule are contiguous with their respective preceding operations on
the same job or the same machine. In that case, left shifting is not possible as all the operations, except the
last operation of the jobs, are already scheduled at their earliest possible start times. Algorithm 8 shows the
pseudocode of the OT algorithm for ETSP.

The OPT_BLOCK function call in Algorithm 8 is directed to Algorithm 3 presented in Section 4.1. The
OPT_BLOCK function is invoked only if at least one job with its last operation in o; is not contiguously
scheduled with any of its immediately preceding operations. Either the enumeration method (Algorithm 5) or

MINIMIZING THE TOTAL WEIGHTED EARLINESS AND TARDINESS 2639

the improved method (Algorithms 6 and 7) can be implemented in the backward pass to generate the set of
shiftable blocks. Since we considered g; = h; = D; =0, j € (0 — F) and the condition s(Rx;) > 0,1 < j < p
to return the set {Ry1, Ri2, . .., Rip, } to the parent node, the operations belonging to set (¢ — F') will remain
left-aligned at their earliest start time during left shifting.

Algorithm 8: OT algorithm for ETSP

Data: N,o, P;, PR(5),SU(j) Vj€o

F = {set of last operations of all the jobs: F' C o}, D;,g;,h; j€F
1 Initialize: S; =0 ¢=0,1,2,...,N,g;=h;=D; =0 j€(c—F)
2 fori=1to N do

3 if i ¢ F then
4 C} <—Pi+maz]~€pR(i)C’j
5 Si — Si_1 U {CZ}
6 else
7 if PR(i) # 0 then
8 ‘ Y — maX;ePR(i) Cj
9 else
10 | Yi—0
11 end
12 C; — maX(Di,Yi + PZ)
13 S — Sic1 U{Ci}
14 if C; > D; and at least one of the last operations of the jobs in o; is not contiguous with any preceding
operation then
15 B — OPT_BLOCK (i) > Function call to find the optimal block
16 while B} # () do
17 t1 — minjEB;(C]- — P — Oj/ Zjl S PR(]) & j/ ¢ B:)
18 to «— min]’GB;‘ (Cj —-D;:C; > Dj)
19 tg «— minjeB:‘ (CJ — Pj)
20 C; —Cj — min(t1,t2,t3) Vj € By
21 if at least one of the last operations of the jobs in o; is not contiguous with any preceding operation
then
22 | Bf <~ OPT_BLOCK(i) > Function call to find the optimal block
23 end
24 end
25 end
26 end
27 end
28 [> cp(gs max(0, D;j — Cj) + h; max(0, C; — Dj)) > optimal TWET

The total number of shiftable blocks generated from N number of operations can be theoretically considered
as a problem of generating k-combinations of N elements for all values of k (i.e. 1 < k < N), which is 2.
This is the same as the computational complexity of generating the shiftable blocks in the case of JIT-JSP.
However, only those operations in the set (¢ — F') are included in the shiftable blocks that are between the last
operation of the job that appears first in o and the last operation of the job that appears last in o. Therefore,
in a practical scenario, the computational complexity of the OT algorithms for ETSP will be much less than
that of JIT-JSP. The computational performance of the proposed OT algorithms on ETSP instances with up
to 50 jobs and 30 machines is presented in the subsequent section.

The operations belonging to the set (o — F) can also be scheduled using the Giffler and Thomspon (GT)
algorithm to generate active schedules. However, if an operation j € (o — F) is sequenced after operation j' € F
in o; on same machine, j’ should not be scheduled prior to j. The resulting optimal schedule will be either same

2640 B.S. GIRISH ET AL.

TABLE 1. Computational results for the JIT-JSP instances from literature with 2 machines.

Computation time (in seconds)

Problem CPLEX OT1 OT2 TF
AVG AVG MAX AVG MAX OT1 OT2
I-10-2-tight-equal-1 6.6E-03 1.6E-04 1.6E-04 8.1E-05 8.1E-05 41.1 81.8
I-10-2-tight-equal-2 ~ 4.2E-03 5.6E-05 5.6E-05 5.0E-05 5.0E-05 74.5 83.5
I-10-2-tight-tard-1 8.3E-03 9.1E-05 9.1E-05 8.4E-05 8.4E-05 91.0 98.6
1-10-2-tight-tard-2 5.3E-03 9.6E-05 9.6E-05 8.8E-05 8.8E-05 55.1 60.2
1-10-2-loose-equal-1 ~ 6.0E-03 4.1E-04 5.1E-04 3.5E-04 3.5E-04 14.7 17.2
I-10-2-loose-equal-2 4.2E-03 1.4E-04 1.4E-04 1.3E-04 1.3E-04 29.5 33.3
1-10-2-loose-tard-1 4.0E-03 7.3E-05 7.3E-05 6.8E-05 6.8E-05 55.3 59.4
I-10-2-loose-tard-2 4.0E-03 8.4E-05 8.4E-05 8.0E-05 8.0E-05 47.9 50.3
I-15-2-tight-equal-1 5.6E-03 7.3E-05 7.3E-05 6.7E-05 6.7E-05 76.2 83.0
I-15-2-tight-equal-2 ~ 5.0E-03 5.9E-05 5.9E-05 5.3E-05 5.3E-05 85.3 94.9
I-15-2-tight-tard-1 5.3E-03 1.3E-04 1.3E-04 1.2E-04 1.2E-04 42.1 46.1
I-15-2-tight-tard-2 5.1E-03 8.4E-05 8.4E-05 7.8E-05 7.8E-05 60.9 65.6
I-15-2-loose-equal-1 9.0E-03 3.4E-04 3.4E-04 3.2E-04 3.2E-04 26.7 27.8
I-15-2-loose-equal-2 5.1E-03 2.6E-04 2.6E-04 2.7E-04 2.7E-04 19.2 18.9
1-15-2-loose-tard-1 7.8E-03 4.2E-04 4.2E-04 3.8E-04 3.8E-04 18.8 20.7
I-15-2-loose-tard-2 5.0E-03 3.3E-04 3.3E-04 2.6E-04 2.6E-04 15.0 18.9
1-20-2-tight-equal-1 ~ 7.6E-03 9.8E-05 9.8E-05 9.5E-05 9.5E-05 774 79.9
1-20-2-tight-equal-2 7.6E-03 2.3E-04 2.3E-04 2.0E-04 2.0E-04 33.3 38.9
[-20-2-tight-tard-1 7.7E-03 1.4E-04 1.4E-04 1.3E-04 1.3E-04 54.3 58.0
1-20-2-tight-tard-2 8.4E-03 2.8E-04 2.8E-04 2.4E-04 2.4E-04 30.5 35.4
1-20-2-loose-equal-1 1.7E-02 4.5E-04 4.5E-04 4.3E-04 4.3E-04 38.8 40.6
1-20-2-loose-equal-2 7.0E-03 1.6E-04 1.6E-04 1.5E-04 1.5E-04 44.0 47.9
1-20-2-loose-tard-1 7.5E-03 1.6E-04 1.6E-04 1.5E-04 1.5E-04 46.9 51.0
1-20-2-loose-tard-2 6.8E-03 1.2E-04 1.2E-04 1.1E-04 1.1E-04 58.1 60.7
Average 6.7E-03 1.8E-04 1.9E-04 1.7E-04 1.7E-04 47.4 53.0

or better than the optimal schedule generated strictly following the sequence of operations in ¢. Since, the GT
algorithm cannot be implemented in the optimization solver, we did not use the GT algorithm within the OT
algorithms for effective comparison with the optimization solver in the computational study.

5. COMPUTATIONAL RESULTS

The performance of the proposed OT algorithms for JIT-JSP and ETSP is evaluated using a set of benchmark
instances from the literature [5]. The problem set consists of 72 instances. Each instance is named in the pattern
I—n—m—DD—-W —1ID. Notations n and m, respectively, indicate the number of jobs and number of machines
in the instance, where n € {10,15,20} and m € {2,5,10}. Jobs are processed exactly once on each machine.
However, the processing order of jobs on the machines varies. Processing times are in the range [10, 30]. DD
represents the due date tightness and is either specified as tight or loose. W is specified either as equal or
tard. equal indicates that the earliness and tardiness penalties are chosen randomly in the range [0.1, 1]. tard
indicates that the tardiness penalty is chosen in the range [0.1, 1], whereas the earliness penalty is chosen in the
range [0.1, 0.3]. There are two instances (ID = 1 and ID = 2) for each combination of the above parameters.
Since the instances used in the literature for ETSP are not publicly available, we use the above 72 JIT-JSP
instances and consider the due dates and earliness-tardiness penalties only for the last operation of each job.

The performance of the OT algorithms is compared with the results obtained by solving the linear pro-
gramming (LP) formulation modeled using CPLEX solver [20]. The OT algorithms were coded in C language
and run using Visual C++ on a PC with 3.6 GHz Intel Core i7-9700K octa-core processor, 16GB RAM, and

MINIMIZING THE TOTAL WEIGHTED EARLINESS AND TARDINESS 2641

TABLE 2. Computational results for the JIT-JSP instances from literature with 5 machines.

Computation time (in seconds)

Problem CPLEX OT1 OT2 TF
AVG AVG MAX AVG MAX OT1T OT2
1-10-5-tight-equal-1 ~ 8.5E-03 4.2E-04 4.2E-04 3.7E-04 3.7TE-04 20.4 23.4
I-10-5-tight-equal-2 ~ 7.9E-03 1.6E-04 1.6E-04 1.5E-04 1.5E-04 48.1 52.2
1-10-5-tight-tard-1 8.8E-03 4.4E-04 4.4E-04 4.0E-04 4.0E-04 19.8 22.1
1-10-5-tight-tard-2 8.8E-03 2.0E-04 2.0E-04 1.8E-04 1.8E-04 43.4 48.1
1-10-5-loose-equal-1 ~ 1.1E-02 8.1E-04 8.1E-04 7.2E-04 7.2E-04 13.3 15.0
1-10-5-loose-equal-2 8.2E-03 4.2E-04 4.2E-04 3.7E-04 3.7TE-04 19.3 22.2
1-10-5-loose-tard-1 8.1E-03 3.8E-04 3.8E-04 3.6E-04 3.6E-04 21.1 22.3
1-10-5-loose-tard-2 8.2E-03 1.5E-04 1.5E-04 1.4E-04 1.4E-04 53.8 58.0
I-15-5-tight-equal-1 ~ 1.6E-02 2.9E-04 7.6E-04 2.9E-04 6.5E-04 54.0 54.9
1-15-5-tight-equal-2 ~ 1.5E-02 2.4E-04 5.6E-04 2.3E-04 6.0E-04 64.5 66.1
1-15-5-tight-tard-1 1.5E-02 3.0E-04 T7.7TE-04 2.9E-04 6.5E-04 50.6 52.0
I-15-5-tight-tard-2 1.6E-02 8.4E-04 2.2E-03 7.4E-04 1.9E-03 18.6 20.9
I-15-5-loose-equal-1 1.6E-02 2.8E-04 1.8E-03 2.7TE-04 4.1E-03 55.8 58.3
I-15-5-loose-equal-2 1.4E-02 3.0E-04 6.3E-04 2.9E-04 5.8E-04 48.5 50.7
1-15-5-loose-tard-1 1.4E-02 4.2E-04 9.4E-04 3.9E-04 8.8E-04 34.5 36.8
I-15-5-loose-tard-2 1.4E-02 1.5E-03 3.8E-03 1.3E-03 3.1E-03 9.3 11.1
1-20-5-tight-equal-1 ~ 2.5E-02 2.2E-03 6.3E-03 1.9E-03 5.3E-03 11.5 13.3
1-20-5-tight-equal-2 ~ 2.5E-02 2.2E-04 5.9E-04 2.2E-04 5.7TE-04 112.8 1144
1-20-5-tight-tard-1 2.5E-02 2.8E-04 6.8E-04 2.7E-04 6.5E-04 90.9 91.9
1-20-5-tight-tard-2 2.7E-02 2.2E-03 9.4E-03 1.9E-03 1.4E-02 11.9 14.3
1-20-5-loose-equal-1 ~ 2.5E-02 3.2E-04 1.6E-03 3.1E-04 1.3E-03 78.4 79.9
1-20-5-loose-equal-2 2.4E-02 3.2E-04 9.6E-04 3.2E-04 9.0E-04 75.1 76.3
1-20-5-loose-tard-1 2.5E-02 5.0E-04 2.5E-03 4.8E-04 1.5E-03 49.8 51.5
1-20-5-loose-tard-2 2.4E-02 2.5E-04 5.9E-04 2.5E-04 6.1E-04 95.1 95.5
Average 1.6E-02 5.6E-04 1.5E-03 5.0E-04 1.7E-03 45.9 48.0

Windows 10 operating system. The LP model was coded in C language using callable libraries from CPLEX
concert technology and embedded within the OT algorithm code to compare the results.

To study the performance of the OT algorithms, a simple local search (LS) algorithm is used to generate
sequences of operations corresponding to each problem instance. Algorithm 9 shows the pseudocode of the LS
algorithm. In the LS algorithm, an initial solution is first generated by arranging the operations in the increasing
order of its due date. The initial solution (X;,;) is set as the current solution (X,,) and a set of neighbourhood
solutions is generated corresponding to it. The best neighbourhood (with the least TWET value) replaces the
current solution if it is an improved solution. Generating neighbourhoods and selecting the best neighbourhood
to replace the current solution is repeated until there is no further improvement in the objective value. We used
the pair-wise interchange mechanism for generating neighbourhoods. Two operations in the current solution
(Xeur) are swapped if they do not violate the precedence relationships between the operations in the sequence.
An operation is paired with another operation for swapping so that the distance between their positions in the
sequence is within a specified limit. We set this limit as 50 for the computational study.

Since the proposed OT algorithms and CPLEX are exact methods, the objective values obtained with the
approaches will always be the same. Therefore, the computational performance is evaluated based on the com-
putation time. The average (AVG) and the maximum (MAX) computation time required to generate schedules
using the OT algorithms for the sequences generated by the LS procedure are considered for comparison.
CPLEX was found to generate schedules with a marginal variability in its computation time to solve different
sequences generated using the LS algorithm. Therefore, only the average computation time (AVG) required by

2642

B.S. GIRISH ET AL.

TABLE 3. Computational results for the JIT-JSP instances from literature with 10 machines.

Computation time (in seconds)

Problem CPLEX OT1 OT2 T
AVG AVG MAX AVG MAX OT1 OT2
1-10-10-tight-equal-1 ~ 2.6E-02 5.9E-04 1.4E-03 5.6E-04 1.3E-03 44.2 46.0
1-10-10-tight-equal-2 ~ 2.2E-02 1.8E-03 3.2E-03 1.6E-03 2.9E-03 12.6 14.2
1-10-10-tight-tard-1 2.2E-02 2.2E-03 6.0E-03 1.9E-03 4.8E-03 10.3 11.6
1-10-10-tight-tard-2 2.2E-02 2.9E-03 1.2E-02 2.6E-03 6.2E-03 7.6 8.5
1-10-10-loose-equal-1 2.2E-02 7.6E-04 4.0E-03 7.2E-04 2.9E-03 28.6 30.1
1-10-10-loose-equal-2 2.1E-02 6.3E-04 1.7E-03 6.1E-04 1.6E-03 32.8 34.2
1-10-10-loose-tard-1 2.1E-02 1.5E-03 2.8E-02 1.3E-03 1.8E-02 13.9 16.3
1-10-10-loose-tard-2 2.0E-02 5.9E-04 1.3E-03 5.9E-04 1.1E-03 34.9 34.7
I-15-10-tight-equal-1 4.7E-02 3.8E-04 3.5E-03 3.7E-04 2.4E-03 124.4 125.7
1-15-10-tight-equal-2 ~ 4.8E-02 4.6E-03 3.9E-02 3.8E-03 1.8E-02 10.3 12.7
[-15-10-tight-tard-1 4.9E-02 2.8E-02 1.7E-01 2.2E-02 1.3E-01 1.7 2.2
1-15-10-tight-tard-2 4.9E-02 1.4E-02 2.1E-01 1.1E-02 1.7E-01 3.6 4.5
1-15-10-loose-equal-1 4.7E-02 4.6E-03 2.7TE-02 3.7E-03 1.9E-02 10.1 12.6
1-15-10-loose-equal-2 4.5E-02 5.0E-03 2.7E-02 4.1E-03 2.1E-02 9.0 10.9
1-15-10-loose-tard-1 4.5E-02 2.5E-03 1.2E-02 2.3E-03 1.4E-02 18.1 19.5
1-15-10-loose-tard-2 4.5E-02 1.3E-03 5.1E-03 1.2E-03 3.5E-03 34.6 36.6
1-20-10-tight-equal-1 8.5E-02 8.1E-04 2.2E-03 8.1E-04 2.0E-03 105.1 105.6
1-20-10-tight-equal-2 ~ 8.7E-02 2.4E-02 1.5E-01 1.8E-02 1.1E-01 3.7 4.8
1-20-10-tight-tard-1 8.5E-02 3.0E-03 1.6E-02 2.6E-03 1.6E-02 28.4 32.6
1-20-10-tight-tard-2 8.7E-02 5.4E-02 1.6 4.1E-02 1.3 1.6 2.1
1-20-10-loose-equal-1 ~ 8.5E-02 5.6E-03 1.1E-01 4.6E-03 9.6E-02 15.0 18.3
1-20-10-loose-equal-2 8.0E-02 2.8E-03 1.8E-02 2.6E-03 1.7E-02 28.4 31.3
1-20-10-loose-tard-1 8.3E-02 7.4E-04 4.5E-03 7.4E-04 9.7E-03 111.7 112.0
1-20-10-loose-tard-2 8.2E-02 4.5E-02 1.1 3.4E-02 9.4E-01 1.8 2.4
Average 5.1E-02 8.6E-03 1.5E-01 6.8E-03 1.2E-01 28.9 30.4

Algorithm 9: Pseudocode of the local search algorithm

1 Xini < Generatelnitial Solution
2 Xcu'r — Xini

3 do

4
5
6
7
8

fbest — f(qu)
Xbest — Xcur
NH « GenerateN eighbourhoods(Xcyr)
Xcur < SelectBestNeighbour(NH)

while f(Xcur) < fbest

CPLEX to generate schedules has been considered for the performance comparison. We use the ratio between
the average computation time required by CPLEX and the average computation time required by OT algorithm
as a measure for performance comparison between the OT algorithms and CPLEX. We call this performance
measure as times faster (T'F) to indicate how many times the OT algorithm is faster than CPLEX. TF will
be a useful measure to assess the performance improvement if OT algorithms are used instead of CPLEX for

schedule generation. TF is determined as follows.

Average computation time (AVG) required by CPLEX

TF

- Average computation time (AVG) required by the OT algorithrn'

MINIMIZING THE TOTAL WEIGHTED EARLINESS AND TARDINESS 2643

TABLE 4. Computational results for larger size JIT-JSP instances.

Computation time (in seconds)

Problem CPLEX OT1 0T2 TF

AVG AVG MAX AVG MAX OT1 OT2
N-25-10-tight-equal 1.5E-01 1.3E-03 7.4E-03 1.2E-03 5.4E-03 114.0 132.0
N-25-10-tight-tard 1.5E-01 8.9E-04 2.8E-03 8.0E-04 2.5E-03 165.7 183.7
N-25-10-loose-equal 1.5E-01 1.2E-03 5.2E-03 1.0E-03 3.5E-03 1204 141.2
N-25-10-loose-tard 1.4E-01 7.0E-04 6.4E-03 6.5E-04 3.1E-03 204.4 221.0
N-25-15-tight-equal 2.8E-01 2.7E-02 6.2 2.7E-02 6.1 10.2 10.3
N-25-15-tight-tard 2.8E-01 4.0E-03 2.1E-02 3.3E-03 1.8E-02 69.6 82.5
N-25-15-loose-equal 2.8E-01 9.5E-02 4.8 9.1E-02 4.7 2.9 3.1
N-25-15-loose-tard 2.8E-01 1.2E-01 309.6 1.1E-01 309.4 2.3 2.6
N-25-20-tight-equal ~ 4.7E-01 8.6E-02 3.3 8.4E-02 3.3 5.5 5.6
N-25-20-tight-tard 4.7E-01 2.0 190.5 1.8 184.5 0.2 0.3
N-25-20-loose-equal 4.7E-01 8.0E-01 198.5 7.7E-01 197.7 0.6 0.6
N-25-20-loose-tard 4.6E-01 5.0 220.2 4.9 207.1 0.1 0.1
N-30-10-tight-equal 1.9E-01 1.8E-03 6.9E-03 1.6E-03 6.8E-03 107.7 123.2
N-30-10-tight-tard 1.9E-01 1.1E-03 2.4E-03 9.6E-04 2.2E-03 183.2 201.5
N-30-10-loose-equal 1.9E-01 1.7E-03 3.2E-03 1.4E-03 2.9E-03 117.2 1395
N-30-10-loose-tard 1.9E-01 3.7TE-03 2.4E-03 1.2E-03 1.0E-03 52.3 164.3
N-30-15-tight-equal ~ 3.9E-01 4.7E-02 9.9E-01 4.7E-02 9.7E-01 8.2 8.3
N-30-15-tight-tard 4.0E-01 6.4E-03 3.5E-02 5.1E-03 3.5E-02 62.9 78.7
N-30-15-loose-equal 3.9E-01 1.7E-01 11.0 1.7E-01 10.6 2.3 2.3
N-30-15-loose-tard 3.9E-01 1.7E-02 3.8 1.5E-02 3.8 22.7 25.6
N-30-20-tight-equal ~ 6.8E-01 5.5E-01 35.0 5.0E-01 16.0 1.2 1.3
N-30-20-tight-tard 6.7E-01 5.2E-01 80.0 5.1E-01 79.7 1.3 1.3
N-30-20-loose-equal 6.6E-01 5.3 604.5 3.6 506.5 0.1 0.2
N-30-20-loose-tard 6.6E-01 1.9 162.0 1.9 80.3 0.3 0.4

The following sections present the performance comparison between the OT algorithms and CPLEX on
JIT-JSP and ETSP instances.

5.1. Performance comparison on JIT-JSP instances

Tables 1, 2 and 3 show the results obtained with the OT algorithms and CPLEX for the JIT-JSP instances
from literature with 2, 5 and 10 machines, respectively. OT1 represents the enumeration method, and OT2
represents the improved method. The comparison between the average T'F values of OT1 and OT2 with CPLEX
reveals that the OT algorithms are approximately 30 to 50 times faster than CPLEX in generating the schedules.
With the increase in the number of machines, the average TF values of the OT algorithms decreases. The
comparison between the average T'F values of OT1 and OT?2 reveals that the performance of the OT2 algorithm
is slightly better than that of the OT1 algorithm. The comparison between the AVG values of the OT algorithms
with that of CPLEX reveals that the OT algorithms consistently perform better than CPLEX. The comparison
of MAX values of the OT algorithms with the corresponding AVG values of CPLEX reveals that, for problem
instances involving 2 and 5 machines, the OT algorithms consistently perform better than CPLEX. However, for
a few instances with 10 machines shown in Table 3, the MAX values of the OT algorithms are inferior compared
to the corresponding AVG values of CPLEX. This indicates that for a few larger size instances (i.e. instances
with 15 and 20 jobs) with 10 machines, the OT algorithms required higher computation time than CPLEX to
generate schedules for some of the sequences generated with the LS algorithm. However, the AVG values of the
OT algorithms for those instances are marginally better than that of CPLEX. Hence, it can be concluded that
the proposed OT algorithms are competitive with CPLEX in terms of computation time for small and medium

2644 B.S. GIRISH ET AL.

TABLE 5. Computational results for the ETSP instances from literature with 2 machines.

Computation time (in seconds)

Problem CPLEX OT1 OT2 TF
AVG AVG MAX AVG MAX OT1T OT2
1-10-2-tight-equal-1 ~ 7.6E-03 3.2E-05 3.2E-05 3.1E-05 3.1E-05 237.4 245.1
1-10-2-tight-equal-2 ~ 3.5E-03 2.1E-05 2.1E-05 1.9E-05 1.9E-05 168.5 186.2
1-10-2-tight-tard-1 3.6E-03 3.4E-05 3.4E-05 3.3E-05 3.3E-05 105.5 108.7
1-10-2-tight-tard-2 3.6E-03 4.6E-05 4.6E-05 4.1E-05 4.1E-05 78.3 87.9
1-10-2-loose-equal-1 3.6E-03 1.5E-05 1.5E-05 1.3E-05 1.3E-05 237.5 274.0
1-10-2-loose-equal-2 3.6E-03 4.8E-05 4.8E-05 4.4E-05 4.4E-05 75.8 82.7
1-10-2-loose-tard-1 3.6E-03 2.9E-05 2.9E-05 2.7E-05 2.7E-05 124.7 133.9
1-10-2-loose-tard-2 3.6E-03 7.1E-05 7.1E-05 3.6E-05 3.6E-05 50.3 99.2
I-15-2-tight-equal-1 ~ 5.5E-03 2.4E-05 2.4E-05 2.1E-05 2.1E-05 230.6 263.5
1-15-2-tight-equal-2 ~ 5.1E-03 3.5E-05 3.5E-05 3.0E-05 3.0E-05 145.6 169.8
I-15-2-tight-tard-1 5.2E-03 4.4E-05 4.4E-05 4.0E-05 4.0E-05 117.1 128.8
1-15-2-tight-tard-2 4.6E-03 2.3E-05 2.3E-05 2.0E-05 2.0E-05 198.0 227.7
I-15-2-loose-equal-1 5.2E-03 2.4E-05 2.4E-05 2.2E-05 2.2E-05 215.0 234.5
1-15-2-loose-equal-2 5.1E-03 5.1E-05 5.1E-05 4.7E-05 4.7E-05 100.4 109.0
1-15-2-loose-tard-1 5.3E-03 3.6E-05 3.6E-05 3.3E-05 3.3E-05 146.1 159.3
1-15-2-loose-tard-2 5.0E-03 7.5E-05 7.5E-05 6.9E-05 6.9E-05 67.0 72.8
1-20-2-tight-equal-1 ~ 6.3E-03 3.1E-05 3.1E-05 2.8E-05 2.8E-05 202.4 224.1
1-20-2-tight-equal-2 7.1E-03 5.3E-05 5.3E-05 4.7E-05 4.7E-05 134.6 151.7
1-20-2-tight-tard-1 7.3E-03 5.8E-05 5.8E-05 5.4E-05 5.4E-05 126.4 135.7
1-20-2-tight-tard-2 7.1E-03 6.5E-05 6.5E-05 5.7TE-05 5.7E-05 108.6 123.9
1-20-2-loose-equal-1 6.3E-03 3.1E-05 3.1E-05 2.9E-05 2.9E-05 203.6 217.7
1-20-2-loose-equal-2 7.1E-03 4.9E-05 4.9E-05 4.5E-05 4.5E-05 144.5 1574
1-20-2-1oose-tard-1 6.6E-03 5.0E-05 5.0E-05 4.7E-05 4.7E-05 131.0 1394
1-20-2-loose-tard-2 6.7E-03 5.2E-05 5.2E-05 4.8E-05 4.8E-05 129.1 139.8
Average 5.3E-03 4.2E-05 4.2E-05 3.7E-05 3.7E-05 1449 1614

size problems. For larger size problems with 10 machines, the proposed OT algorithms are not consistent in
their performance. They require higher computation time than CPLEX to generate schedules for some of the
sequences generated by the LS algorithm.

The above results obtained with the benchmark instances from literature reveal that, with the increase
in problem size, the performance of the OT algorithms deteriorates compared to CPLEX. To analyze the
performance bounds beyond which the CPLEX would get closer or perform better than the OT algorithms in
terms of the average computational time (AVG), we generated larger size instances with up to 30 jobs and 20
machines. The problem instances were generated based on the procedure used in the literature [5], described in
Section 5 of this paper. The newly generated instances are named in the pattern N —n—m— DD — W, where the
notations n, m, DD and W are the same as described previously for the instances from the literature, shown in
Tables 1, 2 and 3. Table 4 shows the results obtained with OT algorithms and CPLEX for the newly generated
larger size instances. The results reveal that, for some of the instances involving 20 machines, the TF values
are less than 1, which are highlighted in bold in Table 4. This shows that, as the problem size increases to 25
jobs and 20 machines, CPLEX performs relatively better than the OT algorithms. The MAX values obtained
with the OT algorithms for instances involving 20 machines are also much higher, as shown in Table 4. The
reasons can be attributed to the exponential complexity of the OT algorithms. This limits their application to
small and medium-sized JIT-JSP instances, particularly while implementing within heuristic and metaheuristic
algorithms.

MINIMIZING THE TOTAL WEIGHTED EARLINESS AND TARDINESS 2645

TABLE 6. Computational results for the ETSP instances from literature with 5 machines.

Computation time (in seconds)

Problem CPLEX OT1 OT2 TF
AVG AVG MAX AVG MAX OT1 OT2
1-10-5-tight-equal-1 ~ 9.2E-03 1.8E-05 1.8E-05 1.5E-05 1.5E-05 513.1 615.7
1-10-5-tight-equal-2 7.8E-03 1.8E-05 1.8E-05 1.5E-05 1.5E-05 432.3 518.8
1-10-5-tight-tard-1 8.5E-03 2.4E-05 2.4E-05 2.1E-05 2.1E-05 354.2 404.8
1-10-5-tight-tard-2 7.8E-03 1.7E-05 1.7E-05 1.4E-05 1.4E-05 456.5 554.4
1-10-5-loose-equal-1 8.6E-03 1.5E-05 1.5E-05 1.4E-05 1.4E-05 575.3 616.4
1-10-5-loose-equal-2 7.8E-03 1.9E-05 1.9E-05 1.4E-05 1.4E-05 408.5 554.4
1-10-5-loose-tard-1 7.4E-03 4.2E-05 4.2E-05 4.0E-05 4.0E-05 175.3 184.1
I-10-5-loose-tard-2 9.2E-03 1.4E-05 1.4E-05 1.3E-05 1.3E-05 658.3 708.9
I-15-5-tight-equal-1 ~ 1.5E-02 2.2E-05 5.8E-05 2.2E-05 8.0E-05 671.2 671.2
I-15-5-tight-equal-2 1.4E-02 2.3E-05 7.7E-05 2.3E-05 6.4E-05 624.0 624.0
I-15-5-tight-tard-1 1.4E-02 2.1E-05 6.0E-05 2.1E-05 5.8E-05 672.2 672.2
1-15-5-tight-tard-2 1.4E-02 2.3E-05 6.9E-05 2.2E-05 5.8E-05 606.0 633.6
I-15-5-loose-equal-1 1.4E-02 2.2E-05 7.3E-05 2.2E-05 7.7TE-05 636.3 636.3
I-15-5-loose-equal-2 1.4E-02 2.0E-05 6.3E-05 2.0E-05 6.0E-05 698.4 698.4
I-15-5-loose-tard-1 1.4E-02 2.1E-05 6.5E-05 2.0E-05 5.4E-05 667.6 701.0
I-15-5-loose-tard-2 1.5E-02 6.4E-05 1.6E-04 6.7E-05 1.6E-04 241.5 230.7
1-20-5-tight-equal-1 2.3E-02 3.2E-05 1.4E-04 3.2E-05 1.2E-04 724.1 724.1
1-20-5-tight-equal-2 2.3E-02 3.4E-05 2.2E-04 3.4E-05 1.1E-04 689.4 689.4
1-20-5-tight-tard-1 2.3E-02 2.9E-05 1.0E-04 2.9E-05 1.1E-04 800.1 800.1
1-20-5-tight-tard-2 2.3E-02 3.2E-05 1.2E-04 3.3E-05 1.1E-04 721.6 699.8
1-20-5-loose-equal-1 2.3E-02 2.9E-05 1.2E-04 2.9E-05 1.0E-04 801.2 801.2
1-20-5-loose-equal-2 2.3E-02 3.2E-05 2.1E-04 3.1E-05 1.1E-04 723.7 747.0
1-20-5-loose-tard-1 2.3E-02 2.9E-05 1.7E-04 2.9E-05 1.0E-04 795.6 795.6
1-20-5-loose-tard-2 2.4E-02 2.9E-05 1.2E-04 2.9E-05 1.2E-04 835.4 835.4
Average 1.5E-02 2.6E-05 8.4E-05 2.5E-05 6.8E-05 603.4 629.9

5.2. Performance comparison on ETSP instances

Tables 5, 6 and 7 show the results obtained with the OT algorithms and CPLEX for the ETSP instances
from literature with 2, 5 and 10 machines, respectively. We have considered both the enumeration and the
improved methods represented in the tables as OT1 and OT2, respectively. The T'F values of OT1 and OT2 in
the tables reveal that the OT algorithms are approximately 50 to 1500 times faster than CPLEX in generating
the schedules. The comparison between the average values of AVG of the OT algorithms for the instances with
2, 5 and 10 machines reveals that the performance of the OT algorithms has negligible influence on the increase
in number of machines. However, the average T'F values of the OT algorithms increase with the increase in the
number of machines due to the increase in AVG values of CPLEX. This shows that CPLEX is more influenced
by the increase in problem size than the OT algorithms. The comparison between the average T'F values of OT1
and OT2 reveals that the performance of the OT2 algorithm is slightly better than that of the OT1 algorithm.
The comparison in terms of AVG and MAX values of the OT algorithms with that of CPLEX reveals that
irrespective of the problem size, the OT algorithms consistently outperform CPLEX.

In addition to the problem instances from literature, we generated larger size ETSP instances with upto 50
jobs and 30 machines to analyze if the performance of CPLEX would get closer or perform better than the
OT algorithms. Table 8 shows the results obtained with OT algorithms and CPLEX for the newly generated
larger size instances. The results reveal that, with the increase in problem size, the OT algorithms perform
much better than CPLEX. The OT algorithms generated schedules approximately 15000 times faster than that
of CPLEX for instances with 50 jobs and 30 machines.

2646 B.S. GIRISH ET AL.

TABLE 7. Computational results for the ETSP instances from literature with 10 machines.

Computation time (in seconds)

Problem CPLEX OT1 OT2 T

AVG AVG MAX AVG MAX OT1 OT2
I-10-10-tight-equal-1 2.4E-02 1.6E-05 9.7E-05 1.6E-05 5.5E-05 1527.2 1527.2
1-10-10-tight-equal-2 ~ 2.1E-02 1.7E-05 5.5E-05 1.7E-05 4.7E-05 1237.6 1237.6
1-10-10-tight-tard-1 2.1E-02 1.5E-05 6.3E-05 1.5E-05 4.5E-05 1405.5 1405.5
1-10-10-tight-tard-2 2.1E-02 3.0E-05 7.7E-05 2.9E-05 8.2E-05 704.3 728.6
1-10-10-loose-equal-1 ~ 2.1E-02 3.8E-05 8.0E-05 3.7E-05 1.2E-04 551.1 565.9
1-10-10-loose-equal-2 2.1E-02 3.2E-05 6.4E-05 3.1E-05 4.7E-05 660.0 681.3
1-10-10-loose-tard-1 2.1E-02 3.6E-05 8.6E-05 3.5E-05 1.2E-04 584.3 601.0
1-10-10-loose-tard-2 2.2E-02 2.6E-05 8.4E-05 2.5E-05 7.7E-05 837.3 870.8
I-15-10-tight-equal-1 ~ 4.5E-02 2.3E-05 9.0E-05 2.3E-05 1.0E-04 1969.7 1969.7
I-15-10-tight-equal-2 ~ 4.5E-02 2.3E-05 1.1E-04 2.3E-05 9.4E-05 1957.3 1957.3
[-15-10-tight-tard-1 4.5E-02 5.9E-05 1.7E-04 5.5E-05 1.4E-04 758.6 813.8
I-15-10-tight-tard-2 4.5E-02 2.4E-05 1.1E-04 2.4E-05 8.1E-05 1878.4 1878.4
1-15-10-loose-equal-1 4.5E-02 4.7TE-05 1.7E-04 4.4E-05 2.2E-04 955.5 1020.6
1-15-10-loose-equal-2 4.5E-02 4.0E-05 1.4E-04 3.7E-05 1.3E-04 1122.7 1213.7
1-15-10-loose-tard-1 4.5E-02 5.6E-05 2.1E-04 5.2E-05 1.9E-04 802.3 864.1
1-15-10-loose-tard-2 4.6E-02 2.6E-05 1.0E-04 2.6E-05 3.1E-04 1785.4 1785.4
1-20-10-tight-equal-1 7.8E-02 3.3E-05 3.1E-04 3.3E-05 7.4E-04 2375.2 2375.2
1-20-10-tight-equal-2 ~ 7.8E-02 3.3E-05 1.2E-04 3.3E-05 1.8E-04 2362.6 2362.6
1-20-10-tight-tard-1 7.9E-02 3.6E-05 1.9E-04 3.6E-05 1.4E-04 2201.3 2201.3
1-20-10-tight-tard-2 7.8E-02 3.5E-05 9.2E-04 3.5E-05 1.5E-04 2241.7 2241.7
1-20-10-loose-equal-1 7.9E-02 3.3E-05 2.2E-04 3.3E-05 2.1E-04 2393.1 2393.1
1-20-10-loose-equal-2 7.8E-02 3.7E-05 1.4E-04 3.6E-05 1.2E-04 2120.2 2179.1
1-20-10-loose-tard-1 7.9E-02 3.3E-05 2.1E-04 3.3E-05 1.7E-04 2382.2 2382.2
1-20-10-loose-tard-2 8.2E-02 5.8E-05 2.7E-04 5.5E-05 2.8E-04 1415.6 1492.8
Average 4.9E-02 3.4E-05 1.7E-04 3.3E-05 1.6E-04 1509.5 1531.2

6. CONCLUSIONS

In this paper, we presented exact algorithms to generate optimal timing schedules for two job shop scheduling
scenarios, namely JIT-JSP and ETSP. In JIT-JSP, each operation has a due date and the associated weights to
penalize its earliness and tardiness. The scheduling objective of JIT-JSP involves minimization of the weighted
sum of earliness and tardiness associated with the deviation of completion time of each operation from its
respective due date. On the other hand, in ETSP, only the last operation of each job has a due date and the
associated weights to penalize its earliness and tardiness. The scheduling objective of ETSP involves minimiza-
tion of the weighted sum of earliness and tardiness associated with the deviation of completion time of each
job from its respective due date. We proposed two OT algorithms to generate optimal schedules, which can
be used for both scheduling scenarios. The first method, namely OT1, is an enumeration method. The second
method, namely OT2, improves the first method that uses dominance rules to reduce the solution space, thereby
improving the computation time. The performance of the OT Algorithms, OT1 and OT2, was compared with
the CPLEX solver for several JIT-JSP and ETSP instances. The computational experiments revealed that the
improved method (OT2) performed slightly better than the enumeration method (OT1) on all the problem
instances. Though the OT algorithms have exponential complexity, the computational study revealed that they
are practical in generating schedules in reasonable computation time and competitive with CPLEX for small
and medium size JIT-JSP instances. In the case of ETSP instances, the OT algorithms generated schedules in
short computation time and consistently outperformed CPLEX in all the problem instances.

MINIMIZING THE TOTAL WEIGHTED EARLINESS AND TARDINESS 2647

TABLE 8. Computational results for larger size ETSP instances.

Computation time (in seconds)

Problem CPLEX OT1 0T2 TF

AVG AVG MAX AVG MAX OT1 OT2
N-25-20-tight-equal 0.47 8.5E-05 4.7E-04 8.5E-05 2.9E-04 5516.5 5516.5
N-25-20-tight-tard 0.47 8.6E-05 3.2E-04 8.6E-05 2.5E-04 5465.6 5465.6
N-25-20-loose-equal 0.47 8.3E-05 2.5E-04 8.2E-05 2.6E-04 5629.8 5698.5
N-25-20-loose-tard 0.46 8.7E-05 3.7E-04 8.8E-05 3.1E-04 5344.4 5283.7
N-30-20-tight-equal 0.66 1.1E-04 3.7E-04 1.1E-04 3.2E-04 6014.9 6014.9
N-30-20-tight-tard 0.66 1.0E-04 3.4E-04 1.0E-04 3.0E-04 6450.5 6450.5
N-30-20-loose-equal 0.66 1.1E-04 1.6E-03 1.1E-04 6.4E-04 6253.9 6253.9
N-30-20-loose-tard 0.66 1.0E-04 3.3E-04 1.0E-04 2.9E-04 6359.5 6421.2
N-35-20-tight-equal 0.89 1.4E-04 7.8E-03 1.4E-04 5.9E-04 6535.1 6583.5
N-35-20-tight-tard 0.90 1.5E-04 5.3E-04 1.5E-04 4.9E-04 6001.3 6041.5
N-35-20-loose-equal 0.90 1.3E-04 3.7TE-04 1.3E-04 3.5E-04 7005.1 7060.3
N-35-20-loose-tard 0.90 1.3E-04 1.1E-02 1.3E-04 9.4E-03 6872.6 6872.6
N-40-30-tight-equal 2.57 2.4E-04 8.1E-04 2.3E-04 6.1E-04 10909.4 11002.6
N-40-30-tight-tard 2.57 2.4E-04 6.1E-04 2.4E-04 7.1E-04 10561.9 10649.6
N-40-30-loose-equal 2.57 2.2E-04 5.8E-04 2.2E-04 5.5E-04 11837.4 11892.2
N-40-30-loose-tard 2.57 1.9E-04 6.1E-04 1.9E-04 5.7TE-04 13326.7 13396.1
N-45-30-tight-equal 3.30 2.5E-04 5.4E-03 2.5E-04 1.3E-03 13379.3 13433.6
N-45-30-tight-tard 3.22 2.3E-04 1.8E-02 2.3E-04 1.1E-02 14198.0 14260.8
N-45-30-loose-equal 3.29 2.3E-04 1.6E-02 2.3E-04 1.6E-02 14250.8 14189.4
N-45-30-loose-tard 3.24 2.5E-04 6.5E-04 2.5E-04 6.1E-04 12758.2 12758.2
N-50-30-tight-equal 3.98 2.8E-04 1.2E-03 2.8E-04 6.8E-04 14354.4 14406.4
N-50-30-tight-tard 4.03 3.3E-04 5.3E-03 3.3E-04 4.0E-03 12129.3 12165.9
N-50-30-loose-equal 4.02 2.8E-04 1.4E-03 2.8E-04 1.5E-03 14373.8 14271.8
N-50-30-loose-tard 3.99 2.7E-04 3.3E-03 2.7E-04 2.5E-03 14557.2 14610.5

To the best of our knowledge, this is the first reported study on exact approaches for generating optimal
schedules in job shop scheduling problems with TWET minimization objective. Future research can be directed
towards improving the proposed OT algorithms to reduce their computational complexity. The schedule gen-
eration mechanism in the proposed OT algorithms allows them to be used with priority dispatching rules.
Therefore, a future research direction would be developing and implementing priority dispatching rules for the
static and dynamic job shop scheduling problems. The proposed OT algorithms can be employed to generate
schedules within heuristic and metaheuristic approaches. Therefore, future research can also be directed towards
developing efficient heuristic and metaheuristic approaches incorporating the proposed OT algorithms. Future
research can also directed towards extending the proposed OT algorithms to generate schedules in other related
multi-machine scheduling problems.

Acknowledgements. The authors are thankful to the Area Editor and the anonymous reviewers for giving constructive
comments for improving this paper.

REFERENCES

[1] N.R. Adam and J. Surkis, Priority update intervals and anomalies in dynamic ratio type job shop scheduling rules. Manage.
Sci. 26 (1980) 1227-1237.

[2] M.M. Ahmadian and A. Salehipour, The just-in-time job shop scheduling problem with distinct due-dates for operations.
J. Heuristics 27 (2021) 175-204.

[3] M.M. Ahmadian, A. Salehipour and T.C.E. Cheng, A meta-heuristic to solve the just-in-time job-shop scheduling problem.
Eur. J. Oper. Res. 288 (2021) 14-29.

2648

4]
5
(6]
(7]
(8]

[9]

(10]
(1]

(12]
(13]

14]

(15]
(16]

17)
(18]

(19]
20]

[21]
[22]
[23]
[24]
[25]

[26]

27]
(28]
29]
(30]
(31]

32]

B.S. GIRISH ET AL.

R.P. Araujo, A.G. dos Santos and J.E.C. Arroyo, Genetic Algorithm and Local Search for Just-in-Time Job—Shop Scheduling.
In: Proceedings of the 2009 IEEE Congress on Evolutionary Computation (CEC 2009) (2009) 955-961.

P. Baptiste, M. Flamini and F. Sourd, Lagrangian bounds for just-in-time job-shop scheduling. Comput. Oper. Res. 35 (2008)
906-915.

J. Bauman and J. Jézefowska, Minimizing the earliness—tardiness costs on a single machine. Comput. Oper. Res. 33 (2006)
3219-3230.

J.C. Beck and P. Refalo, A hybrid approach to scheduling with earliness and tardiness costs. Ann. Oper. Res. 118 (2003)
49-71.

J.H. Blackstone, D.T. Phillips and G.L. Hogg, A state-of-the-art survey of dispatching rules for manufacturing job shop
operations. Int. J. Prod. Res. 20 (1982) 27-45.

F.D. Croce and M. Trubian, Optimal idle time insertion in early-tardy parallel machines scheduling with precedence con-
straints. Prod. Plan. Control. 13 (2002) 133-142.

P. Chretienne, Minimizing the earliness and tardiness cost of a sequence of tasks on a single machine. RAIRO-Oper. Res. 35
(2001) 165-187.

P. Chretienne and F. Sourd, PERT scheduling with convex cost functions. Theor. Comput. Sci. 292 (2003) 145-164.

T. Cleveland, Number Theory. Ed-Tech Press (2020).

E. Danna, E. Rothberg and C.L. Pape, Integrating mixed integer programming and local search: A case on Job-shop schedul-
ing problems. In: Proceedings of the Fifth International Workshop on Integration of Al and OR Techniques in Constraint
Programming for Combinatorial Optimisation Problems (CPAIOR’03) (2003) 65-79.

A.G. dos Santos, R.P. Araujo and J.E.C. Arroyo, A combination of evolutionary algorithm, mathematical programming,
and a new local search procedure for the just-in-time job-shop scheduling problem. In Vol. 6073 of Learning and Intelligent
Optimization (LION 2010), edited by C. Blum and R. Battiti, Lecture Notes in Computer Science, Springer-Verlag, Berlin-
Heidelberg (2010) 10-24.

G. Feng and H.C. Lau, Efficient algorithms for machine scheduling problems with earliness and tardiness penalties. Ann.
Oper. Res. 159 (2008) 83-95.

M.R. Garey, R.E. Tarjan and G.T. Wilfong, One-Processor Scheduling with Symmetric Earliness and Tardiness Penalties.
Math. Oper. Res. 13 (1988) 330-348.

B. Giffler and G.L. Thompson, Algorithms for solving production-scheduling problems. Oper. Res. 8 (1960) 487-503.

B.S. Girish, An efficient hybrid particle swarm optimization algorithm in a rolling horizon framework for the aircraft landing
problem. Appl. Soft Comput. 44 (2016) 200-221.

Y. Hendel and F. Sourd, An improved earliness—tardiness timing algorithm. Comput. Oper. Res. 34 (2007) 2931-2938.

IBM software, IBM ILOG CPLEX Optimization Studio CPLEX User’s Manual version 12 Release 8, IBM, 2017. Available
online: https://wuw.ibm.com/support/pages/introduction-concert-technology.

A.S. Jain and S. Meeran, Deterministic job-shop scheduling: Past, present and future. Eur. J. Oper. Res. 113 (1999) 390-434.
J. Jézefowska, Just-in-time concept in manufacturing and computer systems, In: Just-In-Time Scheduling: Models and Algo-
rithms for Computer and Manufacturing Systems, Vol. 106 of International Series In Operations Research, Springer, Boston
(2007) 1-23.

J. Kelbel and Z. Hanzalek, Solving production scheduling with earliness/tardiness penalties by constraint programming.
J. Intell. Manuf. 22 (2011) 553-562.

C.Y. Lee and J.Y. Choi, A genetic algorithm for job sequencing problems with distinct due dates and general early-tardy
penalty weights. Comput. Oper. Res. 22 (1995) 857—869.

J. Monette, Y. Deville and P.V. Hentenryck, Just-in-time scheduling with constraint programming. In: Proceedings of the
Nineteenth International Conference on Automated Planning and Scheduling (ICAPS 2009) (2009) 241-248.

S.G. Ponnambalam, N. Jawahar and B.S. Girish, Giffler and Thompson procedure based genetic algorithms for scheduling
job shops, In: Computational intelligence of flow shop and job shop scheduling, In Vol. 230 of Studies in Computational
Intelligence, Springer-Verlag, Berlin-Heidelberg (2010) 229-259.

W. Szwarc and S.K. Mukhopadhyay, Optimal timing schedules in earliness-tardiness single machine sequencing. Nav. Res.
Logist. 42 (1995) 1109-1114.

M. Vanhoucke, E. Demeulemeester and W. Herroelen, An exact procedure for the resource-constrained weighted earliness—
Tardiness project scheduling problem. Ann. Oper. Res. 102 (2001) 179-196.

G. Wan and B.P.C. Yen, Tabu search for single machine scheduling with distinct due windows and weighted earliness/tardiness
penalties. Fur. J. Oper. Res. 142 (2002) 271-281.

S. Wang and Y. Li, Variable neighbourhood search and mathematical programming for just-in-time job-shop scheduling
problem. Math. Probl. Eng. 2014 (2014) 1-9.

H. Yang, J. Li and L. Qi, An Improved Genetic Algorithm For Just-In-Time Job-Shop Scheduling Problem. Adv. Mat. Res.
472-475 (2012) 2462-2467.

H. Yang, Q. Sun, C. Saygin and S. Sun, Job shop scheduling based on earliness and tardiness penalties with due dates and
deadlines: an enhanced genetic algorithm. Int. J. Adv. Manuf. Technol. 61 (2012) 657-666.

https://www.ibm.com/support/pages/introduction-concert-technology

MINIMIZING THE TOTAL WEIGHTED EARLINESS AND TARDINESS 2649

[33] J. Zhang, G. Ding, Y. Zhou, S. Qin and J. Fu, Review of job shop scheduling research and its new perspectives under industry
4.0. J. Intell. Manuf. 30 (2019) 1809-1830.

Subscribe to Open (S20)

A fair and sustainable open access model

This journal is currently published in open access under a Subscribe-to-Open model (S20). S20 is a transformative
model that aims to move subscription journals to open access. Open access is the free, immediate, online availability of
research articles combined with the rights to use these articles fully in the digital environment. We are thankful to our
subscribers and sponsors for making it possible to publish this journal in open access, free of charge for authors.

Please help to maintain this journal in open access!

Check that your library subscribes to the journal, or make a personal donation to the S20 programme, by contacting
subscribers@edpsciences.org

More information, including a list of sponsors and a financial transparency report, available at: https://www.
edpsciences.org/en/maths-s2o0-programme

mailto:subscribers@edpsciences.org
https://www.edpsciences.org/en/maths-s2o-programme
https://www.edpsciences.org/en/maths-s2o-programme

	Introduction
	Literature review
	Problem formulation
	Just-in-time job shop scheduling problem
	Early/tardy job shop scheduling problem

	The proposed optimal timing algorithms
	The proposed OT algorithms for JIT-JSP
	Enumeration method
	Improved method

	The proposed OT algorithm for ETSP

	Computational results
	Performance comparison on JIT-JSP instances
	Performance comparison on ETSP instances

	Conclusions
	References

