
RAIRO-Oper. Res. 56 (2022) 2621–2649 RAIRO Operations Research
https://doi.org/10.1051/ro/2022124 www.rairo-ro.org

MINIMIZING THE TOTAL WEIGHTED EARLINESS AND TARDINESS FOR A
SEQUENCE OF OPERATIONS IN JOB SHOPS

Baby Sivanandan Girish1,* , Habibullah1 and Jessamma Dileeplal2

Abstract. This paper proposes exact algorithms to generate optimal timing schedules for a given
sequence of operations in job shops to minimize the total weighted earliness and tardiness. The algo-
rithms are proposed for two job shop scheduling scenarios, one involving due dates only for the last
operation of each job and the other involving due dates for all operations on all the jobs. Computa-
tional experiments on benchmark problem instances reveal that, in the case of the scheduling scenario
involving due dates only for the last operation of each job, the proposed exact algorithms generate
schedules faster than those generated using a popular optimization solver. In the case of the scheduling
scenario involving due dates for all operations on all the jobs, the exact algorithms are competitive
with the optimization solver in terms of computation time for small and medium size problems.

Mathematics Subject Classification. 90B35.

Received January 23, 2022. Accepted July 13, 2022.

1. Introduction

Job shop scheduling problem (JSP) is one of the important machine scheduling problems and is well known
as NP-hard [21, 33]. The problem involves scheduling 𝑛 jobs on a set of 𝑚 machines. Each job has a chain
of ordered operations to be performed on specific machines, and the processing order on the machines can
be different for different jobs. The most commonly used scheduling objective in the literature on job shops is
to minimize makespan [21]. Since the problem is NP-hard, the state-of-the-art solution methodologies mainly
include heuristic and metaheuristic approaches. Giffler and Thompson (GT) algorithm is a well-known procedure
to construct active schedules for a given priority order of operations in JSP with makespan, tardiness and
flowtime-based objectives [17,26]. The schedule generation mechanism in the GT algorithm also allows it to be
used with dynamic priority dispatching rules, in which the job priorities change continuously over time during
schedule generation [1, 8, 17].

The research on scheduling job shops to minimize total weighted earliness and tardiness (TWET) has gained
considerable importance in recent years. The TWET minimization objective in JSP is important to manufac-
turing industries operating in a just-in-time (JIT) environment [22]. The aim is to reduce inventory costs and
simultaneously satisfy customer demands with the timely delivery of products. The problem involves a due date

Keywords. Job shop scheduling, total weighted earliness-tardiness, optimal timing schedule, just-in-time manufacturing.

1 Department of Aerospace Engineering, Indian Institute of Space Science and Technology, Thiruvananthapuram 695547, Ker-
ala, India.
2 Department of Mechanical Engineering, College of Engineering Perumon, Kollam 691601,
Kerala, India.
*Corresponding author: girish@iist.ac.in

c○ The authors. Published by EDP Sciences, ROADEF, SMAI 2022

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1051/ro/2022124
https://www.rairo-ro.org
https://orcid.org/0000-0002-8581-4198
mailto:girish@iist.ac.in
https://creativecommons.org/licenses/by/4.0

2622 B.S. GIRISH ET AL.

and weights for earliness and tardiness associated with each job (or its operations). Generating a schedule with
a minimum TWET involves completing the jobs (or their operations) as close as possible to their respective
due dates. Since the GT algorithm generates active schedules by left-aligning the operations to the earliest start
time, it cannot generate optimal schedules for JSP with TWET minimization objective. This paper studies JSP
with the minimization of TWET as the objective and proposes exact algorithms to generate optimal schedules
for a given sequence of operations.

The rest of the paper is organized as follows. Section 2 presents the literature review, Section 3 presents the
formulation of the problems, Section 4 presents the proposed optimal timing algorithms, Section 5 presents the
computational study of the proposed algorithms and its comparison with the results obtained from a popular
optimization solver, and Section 6 concludes with the scope for future work.

2. Literature review

The early research on TWET minimization objective in JSP considered the due date and earliness-tardiness
weights only for the last operation of each job. Beck and Refalo [7] referred to this problem as the early/tardy
scheduling problem (ETSP) and proposed a hybrid technique using constraint programming and linear program-
ming to solve the problem. Danna et al. [13] adopted the mixed integer programming (MIP) formulation from [7]
and proposed three strategies to solve the problem, namely, local branching, relaxation induced neighbourhood
search, and guided dives. Kelbel and Hanzalek [23] presented a greedy search tree initialization procedure for
solving the ETSP applied within a constraint programming framework. They used a slice-based search strategy
available in a commercial optimization solver to explore the search tree generated by their procedure. Since
the above approaches for ETSP use mathematical programming models to solve the problem, they inherently
generate the optimal schedules and do not require a separate algorithm for schedule generation. Yang et al. [32]
presented an enhanced genetic algorithm to solve ETSP with distinct due dates and a common deadline for all
the jobs. They used an operation-based scheme to represent the chromosomes. They used a three-stage decod-
ing procedure to decode each chromosome to a feasible schedule. Though their decoding procedure generates a
feasible schedule, it is not proven to provide optimal schedules in all cases. To the best of our knowledge, there
is no exact algorithm reported in the literature other than the mathematical programming-based approaches to
generate optimal schedules for a given sequence of operations in ETSP.

Recently, the research on JSP with a due date and earliness-tardiness weights associated with each operation
has gained importance. In this problem, the operations on all the jobs are scheduled to minimize the weighted
sum of earliness and tardiness associated with the deviation of completion time of each operation from its
respective due date. Baptiste et al. [5] were the first to introduce this problem and referred to it as the just-in-
time job shop scheduling problem (JIT-JSP). They presented a mathematical programming formulation for the
problem and found the lower bounds for 72 problem instances using two Lagrangian relaxations methods. They
implemented simple heuristics to derive upper bounds using the Lagrangian relaxations and further improved
them using a local search algorithm. Monette et al. [25] introduced a constraint programming approach for
JIT-JSP that relies on a branch and bound procedure, a global filtering algorithm, and two search heuristics
to solve the problem. Metaheuristic approaches have also been implemented to solve JIT-JSP. Araujo et al. [4]
implemented a combination of genetic algorithm and local search procedure to solve JIT-JSP in two sequential
phases. They generated the schedules for a given sequence of operations by left aligning the operations to their
earliest start time. Dos Santos et al. [14] presented a hybrid method that combines an evolutionary algorithm,
a mathematical programming model, and a local search procedure. The mathematical programming model is
used to determine the optimal schedule for a given sequence of operations using a commercial optimization
solver. Yang et al. [31] implemented an improved genetic algorithm that utilizes an operation-based scheme to
represent the chromosomes. Each chromosome is decoded to generate the schedules using a three-stage decoding
mechanism which initially generates a semi-active schedule and then improves the schedule by reducing earliness
cost using greedy insertion mechanisms. Though their decoding procedure generates a feasible schedule, it is
not proven to provide the optimal schedule for a given sequence of operations. Wang and Li [30] proposed a

MINIMIZING THE TOTAL WEIGHTED EARLINESS AND TARDINESS 2623

combination of variable neighbourhood search and mathematical programming to solve JIT-JSP. They used the
mathematical programming model to generate an optimal schedule for a given sequence of operations. Ahmadian
and Salehipour [2] presented a matheuristic algorithm to solve JIP-JSP, which operates by decomposing the
problem into smaller sub-problems and solving the subproblems using a commercial optimization solver to obtain
optimal or near-optimal schedules. Ahmadian et al. [3] developed a variable neighbourhood search algorithm to
solve JIT-JSP. They implemented four neighbourhood structures to generate improved solutions. They used a
commercial optimization solver to generate and improve schedules in their algorithm.

The above literature review on JIT-JSP reveals that most researchers have developed metaheuristic algorithms
that require a mathematical programming model to generate an optimal schedule for a given sequence of
operations. To the best of our knowledge, there is no exact approach reported in the literature other than
the mathematical programming approaches to generate optimal schedules. An exact algorithm for schedule
generation will also be useful in developing and implementing priority dispatching rules in scheduling job shop
with TWET objective. This paper proposes exact algorithms to generate optimal timing schedules for a given
sequence of operations in JIT-JSP. The proposed optimal timing algorithms for JIT-JSP are extended to generate
optimal schedules for a given sequence of operations in ETSP.

The proposed optimal timing (OT) algorithms for JSP is based on the OT algorithms presented in the
literature for various other scheduling problems. The OT algorithms were initially introduced to generate optimal
timing schedules for a given job sequence in single machine scheduling problem (SMSP) to minimize TWET.
Garey et al. [16] presented an OT algorithm with 𝑂(𝑛𝑙𝑜𝑔𝑛) time complexity for the SMSP with symmetric
weights for earliness and tardiness. Szwarc and Mukhopadhyay [27] proposed an OT algorithm with 𝑂(𝑛2)
complexity for the SMSP with asymmetric earliness and tardiness weights. Lee and Choi [24] and Wan and Yen
[29] also presented OT algorithms that were used to generate optimal timing schedules within their proposed
metaheuristic algorithms for the SMSP. Chretienne [10] extended the OT algorithm proposed by Garey et al.
[16] to the asymmetric and task-independent costs case in SMSP without increasing its worst-case complexity.
He also proposed an 𝑂(𝑛3𝑙𝑜𝑔𝑛) OT algorithm for the general case of asymmetric and task-dependent costs
in SMSP. Bauman and Jozefowska [6] presented an 𝑂(𝑛𝑙𝑜𝑔𝑛) OT algorithm for the SMSP. Hendel and Sourd
[19] proposed an OT algorithm for the earliness-tardiness SMSP with a linear piece-wise cost function for each
job. They showed that OT algorithms for SMSP can be extended to minimize TWET in the permutation flow
shop scheduling problem with earliness-tardiness penalties for the last operation of each job. Feng and Lau [15]
presented an OT algorithm for the SMSP and showed it to be more efficient than the OT algorithms presented
in [16,27].

Besides SMSP, OT algorithms have also been implemented for other scheduling problems, like the resource-
constrained project scheduling problem [28], parallel machine scheduling problem [9], PERT scheduling problem
[11], and scheduling of aircraft landing problem [18].

The OT algorithms presented in the literature are similar in identifying and shifting the job clusters to
minimize TWET. However, they differ in their implementation to handle the problem’s specific constraints or
make the algorithms run faster in practice. The proposed OT algorithms for JSP are similar in principle to the
existing OT algorithms. They differ mainly in the mechanisms used for handling the specific constraints of the
problem.

3. Problem formulation

3.1. Just-in-time job shop scheduling problem

The just-in-time job shop scheduling problem (JIT-JSP) can be described as follows [5]. There are a set of 𝑚
machines, 𝑀 = {𝑀1, 𝑀2, . . . ,𝑀𝑚}, and a set of 𝑛 jobs, 𝐽 = {𝐽1, 𝐽2, . . . , 𝐽𝑛} to be processed. Let 𝑖 is the index
for jobs and 𝑘 is the index for machines, i.e. 𝑖 = 1, 2, . . . , 𝑛 and 𝑘 = 1, 2, . . . ,𝑚. Each job 𝐽𝑖 requires a set of 𝑛𝑖

sequentially ordered operations, 𝑂𝑖 = {𝑂𝑖1, 𝑂𝑖2, . . . , 𝑂𝑖𝑛𝑖
} to be performed. Let 𝑗 is the index for operations,

i.e. 𝑗 = 1, 2, . . . , 𝑛𝑖. Each operation 𝑂𝑖𝑗 is performed on a specified machine 𝑀(𝑂𝑖𝑗) ∈ 𝑀 and the processing
time is given by 𝑝𝑖𝑗 . For each machine 𝑀𝑘 ∈ 𝑀 , 𝑂(𝑀𝑘) represents the set of all operations that are performed

2624 B.S. GIRISH ET AL.

on 𝑀𝑘. Each operation 𝑂𝑖𝑗 has a due date 𝑑𝑖𝑗 such that an early or late completion incurs a penalty which
is proportional to the amount of deviation from 𝑑𝑖𝑗 . Each operation 𝑂𝑖𝑗 has two penalty coefficients, 𝛼𝑖𝑗 and
𝛽𝑖𝑗 , to penalize its early and tardy completion, respectively. If 𝑐𝑖𝑗 represents the scheduled completion time of
operation 𝑂𝑖𝑗 , 𝑒𝑖𝑗 its earliness, and 𝑡𝑖𝑗 its tardiness, then 𝑒𝑖𝑗 = max(0, 𝑑𝑖𝑗 − 𝑐𝑖𝑗) and 𝑡𝑖𝑗 = max(0, 𝑐𝑖𝑗 − 𝑑𝑖𝑗).
The objective of JIT-JSP is to determine an optimal schedule that minimizes the total cost due to deviation of
completion of all the operations from their respective due dates, which is given by

∑︀𝑛
𝑖=1

∑︀𝑚
𝑗=1(𝛼𝑖𝑗𝑒𝑖𝑗 + 𝛽𝑖𝑗𝑡𝑖𝑗).

The mathematical formulation for the problem is as follows.

Objective:

Minimize
𝑛∑︁

𝑖=1

𝑚∑︁
𝑗=1

(𝛼𝑖𝑗𝑒𝑖𝑗 + 𝛽𝑖𝑗𝑡𝑖𝑗) (3.1)

Subject to:

𝑒𝑖𝑗 ≥ 𝑑𝑖𝑗 − 𝑐𝑖𝑗 ∀𝑖, 𝑗 (3.2)
𝑡𝑖𝑗 ≥ 𝑐𝑖𝑗 − 𝑑𝑖𝑗 ∀𝑖, 𝑗 (3.3)
𝑐𝑖1 ≥ 𝑝𝑖1 ∀𝑖 (3.4)
𝑐𝑖𝑗 ≥ 𝑐𝑖𝑗−1 + 𝑝𝑖𝑗 ∀𝑖, 𝑗 : 𝑗 ̸= 1 (3.5)
𝑐𝑖𝑗 ≥ 𝑐𝑖′𝑗′ + 𝑝𝑖𝑗 𝑜𝑟 𝑐𝑖′𝑗′ ≥ 𝑐𝑖𝑗 + 𝑝𝑖′𝑗′

∀𝑖, 𝑗, 𝑖′, 𝑗′, 𝑘 : 𝑂𝑖𝑗 ∈ 𝑂(𝑀𝑘), 𝑂𝑖′𝑗′ ∈ 𝑂(𝑀𝑘), 𝑖 ̸= 𝑖′
(3.6)

𝑒𝑖𝑗 ≥ 0, 𝑡𝑖𝑗 ≥ 0 ∀𝑖, 𝑗. (3.7)

Constraints (3.2) and (3.3) relate the earliness and tardiness of each operation with its completion time and due
date. Constraint (3.4) ensures that the first operation of each job starts after time 0. Constraint (3.5) imposes
a precedence relationship between the two consecutive operations of the same job. Disjunctive constraint (3.6)
ensures that two operations cannot be processed simultaneously if they belong to two different jobs and require
processing on the same machine. For a given sequence of operations, the disjunctive constraint (3.6) transforms
into a simple linear constraint, and the mathematical formulation transforms into a linear programming model.

3.2. Early/tardy job shop scheduling problem

The problem environment of the early/tardy job shop scheduling problem (ETSP) is the same as JIT-JSP,
except that only the last operation of each job has a due date, and only its early or tardy completion is
penalized. If 𝑑𝑖 is the due date of the last operation of job 𝐽𝑖, 𝑒𝑖 represents its earliness, and 𝑡𝑖 represents its
tardiness, then 𝑒𝑖 = max(0, 𝑑𝑖 − 𝑐𝑖𝑛𝑖) and 𝑡𝑖 = max(0, 𝑐𝑖𝑛𝑖 − 𝑑𝑖), where 𝑐𝑖𝑛𝑖 is the completion time of the last
operation of job 𝑖. Each job 𝐽𝑖 has two penalty coefficients, 𝛼𝑖 and 𝛽𝑖, to penalize its early and tardy completion,
respectively. The objective of ETSP is to determine the optimal schedule that minimizes the total cost due to
the deviation of completion of the last operation of all the jobs from their respective due dates, which is given
by

∑︀𝑛
𝑖=1(𝛼𝑖𝑒𝑖 + 𝛽𝑖𝑡𝑖). The mathematical formulation for the problem is as follows.

Objective:

Minimize
𝑛∑︁

𝑖=1

(𝛼𝑖𝑒𝑖 + 𝛽𝑖𝑡𝑖) (3.8)

MINIMIZING THE TOTAL WEIGHTED EARLINESS AND TARDINESS 2625

Subject to:

𝑒𝑖 ≥ 𝑑𝑖 − 𝑐𝑖𝑛𝑖
∀𝑖 (3.9)

𝑡𝑖 ≥ 𝑐𝑖𝑛𝑖 − 𝑑𝑖 ∀𝑖 (3.10)
𝑐𝑖1 ≥ 𝑝𝑖1 ∀𝑖 (3.11)
𝑐𝑖𝑗 ≥ 𝑐𝑖𝑗−1 + 𝑝𝑖𝑗 ∀𝑖, 𝑗 : 𝑗 ̸= 1 (3.12)
𝑐𝑖𝑗 ≥ 𝑐𝑖′𝑗′ + 𝑝𝑖𝑗 𝑜𝑟 𝑐𝑖′𝑗′ ≥ 𝑐𝑖𝑗 + 𝑝𝑖′𝑗′

∀𝑖, 𝑗, 𝑖′𝑗′, 𝑘 : 𝑂𝑖𝑗 ∈ 𝑂(𝑀𝑘), 𝑂𝑖′𝑗′ ∈ 𝑂(𝑀𝑘), 𝑖 ̸= 𝑖′
(3.13)

𝑒𝑖 ≥ 0, 𝑡𝑖 ≥ 0 ∀𝑖 (3.14)

Constraints (3.9) and (3.10) relate the earliness and tardiness of the last operation of each job with its completion
time and due date. The constraints (3.11) to (3.13) are the same as the constraints (3.4) to (3.6) in JIT-JSP.
For a given sequence of operations, the disjunctive constraint (3.13) transforms into a simple linear constraint,
and the mathematical formulation transforms into a linear programming model.

4. The proposed optimal timing algorithms

This section first presents the implementation of the proposed OT algorithms for JIT-JSP. The extension of
the OT algorithms to ETSP is presented subsequently.

4.1. The proposed OT algorithms for JIT-JSP

Let 𝑆𝐸𝑄 be the given sequence of 𝑁 number of operations in JIT-JSP, where 𝑁 =
∑︀𝑛

𝑖=1 𝑛𝑖. Let each operation
in 𝑆𝐸𝑄 is represented by a unique identifier 𝑗(𝑗 = 1, 2, ..𝑁) based on its position in the sequence. Therefore,
each operation identifier 𝑗 can be mapped to one of the operations in 𝑂𝑖 = {𝑂𝑖1, 𝑂𝑖2, . . . , 𝑂𝑖𝑛𝑖

}, 𝑖 = 1, 2, . . . , 𝑛
(see Sect. 3.1). Let the ordered set 𝜎 represent the set of operation identifiers in a sequence corresponding to
the operations in 𝑆𝐸𝑄. Let 𝑃𝑗 be the processing time, 𝐷𝑗 is the due date, and 𝐶𝑗 is the completion time of
the 𝑗th operation in 𝜎. Let the early and tardy penalty coefficients be represented by 𝑔𝑗 and ℎ𝑗 , respectively.
Corresponding to the 𝑗th operation in 𝜎, let the singleton sets 𝐽𝑃 (𝑗) and 𝐽𝑆(𝑗) respectively contain their
immediately preceding and succeeding operations on the same job. If the 𝑗th operation is the first operation
of the job, then 𝐽𝑃 (𝑗) = ∅ and if the 𝑗th operation is the last operation, then 𝐽𝑆(𝑗) = ∅. Let the singleton
sets, 𝑀𝑃 (𝑗) and 𝑀𝑆(𝑗), respectively, contain the immediately preceding and succeeding operations of the
𝑗th operation performed on the same machine. If 𝑗th operation is the first operation on the machine, then
𝑀𝑃 (𝑗) = ∅, and if 𝑗th operation is the last operation, then 𝑀𝑆(𝑗) = ∅. Let 𝑃𝑅(𝑗) = (𝐽𝑃 (𝑗) ∪𝑀𝑃 (𝑗)) denote
the set of preceding operations and 𝑆𝑈(𝑗) = (𝐽𝑆(𝑗) ∪𝑀𝑆(𝑗)) denote the set of succeeding operations on the
same job or the same machine corresponding to 𝑗th operation in 𝜎.

Let 𝜎𝑖 is the partial sequence that contains the first 𝑖 operations in 𝜎, and let 𝑆𝑖 = {𝐶1, 𝐶2, . . . , 𝐶𝑖} is the
partial schedule corresponding to 𝜎𝑖. Let 𝑓𝑖 is the total weighted earliness and tardiness corresponding to the
partial schedule 𝑆𝑖. In an optimum partial schedule 𝑆𝑖 with minimum 𝑓𝑖, the operations will be aligned as
close as possible to their respective due dates. This results in either the operations being scheduled at their due
dates or forming clusters as shown in the Gantt chart in Figure 1. Each cluster consists of a set of contiguously
scheduled operations called a block. A pair of operations (𝑗, 𝑗′), where 𝑗 precedes 𝑗′ in 𝜎𝑖, is said to be contiguous
and belong to the same block if 𝐶𝑗′ = 𝐶𝑗 + 𝑃𝑗′ , provided that (𝑗, 𝑗′) are either the two consecutive operations
of the same job or the two consecutive operations on the same machine (i.e. 𝑗 ∈ 𝑃𝑅(𝑗′)). Let 𝐵𝑖 be the block
comprising of the cluster of operations which are contiguously scheduled and contains the 𝑖th operation in 𝜎𝑖.
In Figure 1, the block 𝐵12 is a maximum cardinality set formed by the cluster of operations {6,7,8,9,10,11,12}
which are contiguously scheduled and contains the operation 12 (i.e. 𝑂2,4). The operations in the set {1,2,3,4,5}
are not contiguously scheduled with any of the operations in 𝐵12 and, therefore, are not included in the set 𝐵12.

2626 B.S. GIRISH ET AL.

Figure 1. A typical cost function plot obtained by left shifting a set of operations in a block.

Let 𝑓(𝐵𝑖) is the total weighted earliness and tardiness function corresponding to the set of operations in
𝐵𝑖 defined in terms of the completion time of the 𝑖th operation in 𝜎𝑖. Then 𝑓(𝐵𝑖) will always be a piece-wise
linear convex cost function when all the operations in 𝐵𝑖 are shifted by the same amount of time. This can be
explained using the following theorem.

Theorem 4.1. The weighted sum of earliness and tardiness cost function 𝑓(𝐵𝑖) corresponding to a set of
operations 𝐵𝑖 ⊆ 𝜎𝑖 with cardinality 𝑁 ′ will always be a piece-wise linear convex function with at most 𝑁 ′

breakpoints.

Proof. The weighted sum of earliness and tardiness for the set of operations 𝐵𝑖 with cardinality 𝑁 ′ is given by

𝑓(𝐵𝑖) =
∑︁
𝑗∈𝐵𝑖

(𝑔𝑗 max(0, 𝐷𝑗 − 𝐶𝑗) + ℎ𝑗 max(0, 𝐶𝑗 −𝐷𝑗)) (4.1)

The cost function (4.1) can be written in terms of the completion time 𝐶𝑖 as

𝑓(𝐵𝑖) =
∑︁
𝑗∈𝐵𝑖

(𝑔𝑗 max(0, 𝐷𝑗 − 𝐶𝑖 + 𝑇𝑗) + ℎ𝑗 max(0, 𝐶𝑖 − 𝑇𝑗 −𝐷𝑗)) (4.2)

MINIMIZING THE TOTAL WEIGHTED EARLINESS AND TARDINESS 2627

where 𝑇𝑗 is the time gap between the completion time of the operation 𝑖 and operation 𝑗 in 𝐵𝑖, i.e. 𝑇𝑗 = 𝐶𝑖−𝐶𝑗 .
The cost function (4.2) can be written as

𝑓(𝐵𝑖) =
∑︁

𝑗∈𝐸𝑌

𝑔𝑗(𝐷𝑗 − 𝐶𝑖 + 𝑇𝑗) +
∑︁

𝑗∈𝑇𝑌

ℎ𝑗(𝐶𝑖 − 𝑇𝑗 −𝐷𝑗) (4.3)

where 𝐸𝑌 represents the set of early operations and 𝑇𝑌 represents the set of tardy operations for a given value
of 𝐶𝑖. The cost function (4.3) can be further rewritten as

𝑓(𝐵𝑖) =

⎛⎝ ∑︁
𝑗∈𝑇𝑌

ℎ𝑗 −
∑︁

𝑗∈𝐸𝑌

𝑔𝑗

⎞⎠ 𝐶𝑖 +
∑︁

𝑗∈𝐸𝑌

𝑔𝑗(𝐷𝑗 + 𝑇𝑗)−
∑︁

𝑗∈𝑇𝑌

ℎ𝑗(𝐷𝑗 + 𝑇𝑗) (4.4)

The above cost function will be a straight line equation with slope 𝑠(𝐵𝑖) =
∑︀

𝑗∈𝑇𝑌 ℎ𝑗 −
∑︀

𝑗∈𝐸𝑌 𝑔𝑗 when all
the operations are left-shifted by the same amount of time, i.e. 𝑇𝑗 remains constant for all the operations in
𝐵𝑖. A typical plot of 𝑓(𝐵𝑖) versus 𝐶𝑖 is shown in Figure 1. The 3 jobs-4 machines JIT-JSP instance shown in
Figure 1 contains 7 operations in block 𝐵12. The sets, 𝐸𝑌 and 𝑇𝑌 , change when an operation in 𝐵𝑖 changes
from tardiness to earliness at its due time while reducing 𝐶𝑖. This leads to a change in the slope of the cost
function, resulting in a breakpoint in the plot as shown in Figure 1. Since there are 𝑁 ′ number of operations
in 𝐵𝑖, there can be a maximum of 𝑁 ′ number of breakpoints, each occurring at the due date of one of the
operations in 𝐵𝑖. As the operations in 𝐵𝑖 change from tardiness to earliness while reducing 𝐶𝑖, the slope
of the cost function monotonically decreases after each breakpoint. This is evident from the slope equation
𝑠(𝐵𝑖) =

∑︀
𝑗∈𝑇𝑌 ℎ𝑗−

∑︀
𝑗∈𝐸𝑌 𝑔𝑗 . The value of the cost function slope becomes negative after the breakpoint with

the least value of 𝑓(𝐵𝑖). Therefore, left shifting the operations to the breakpoint where the cost function slope
changes from a positive value to a non-positive value provides the optimal 𝑓(𝐵𝑖). This property forms the basis
for optimizing the cost function in the OT algorithm. This property also holds for any subset of contiguously
scheduled operations in 𝐵𝑖 that can be left-shifted without violating the precedence constraints. �

The proposed OT algorithm for JIT-JSP can be described as follows. Initially, the first operation in 𝜎 is
assigned its completion time as 𝐶1 = 𝐷1 and the partial schedule is generated as 𝑆1 = {𝐶1}. In this case, 𝑓1

corresponding to 𝑆1 will be zero. Subsequently, the partial schedule 𝑆𝑖(2 ≤ 𝑖 ≤ 𝑁) is generated from 𝑆𝑖−1 by
assigning the completion times of all the operations from 𝑆𝑖−1 to 𝑆𝑖. The completion time of the 𝑖th operation
in 𝑆𝑖 is determined as 𝐶𝑖 = max(𝐷𝑖, 𝑌𝑖 + 𝑃𝑖), where 𝑌𝑖 = max𝑗∈𝑃𝑅(𝑖) 𝐶𝑗 . If 𝑃𝑅(𝑖) = ∅, then 𝑌𝑖 = 0.

If 𝐶𝑖 = 𝐷𝑖, then the penalty cost of the 𝑖th operation in 𝜎𝑖 will be zero, and 𝑆𝑖 will be optimal with 𝑓𝑖 = 𝑓𝑖−1.
On the other hand, if 𝐶𝑖 > 𝐷𝑖, then the 𝑖th operation will have a penalty cost due to lateness and the partial
schedule 𝑆𝑖 needs to be optimized based on Theorem 4.1 discussed above. This involves the block 𝐵𝑖 containing
the 𝑖th operation in 𝜎𝑖 to be generated and a left shifting procedure, namely LEFT SHIFT, is invoked to
optimize the partial schedule 𝑆𝑖. Algorithm 1 shows the pseudocode of the proposed OT algorithm for JIT-JSP.

In OT algorithms applied to the single machine scheduling problem, all the jobs in a block corresponding to
the last operation in the partial sequence are left-shifted to the minimum point of its cost function [24,29]. Since
JIT-JSP involves multiple machines, multiple shiftable blocks can be generated from 𝐵𝑖, each containing the
𝑖th operation in 𝜎𝑖. A shiftable block 𝑅𝑥(𝑅𝑥 ⊆ 𝐵𝑖) comprises of a set of operations, such that if an operation 𝑗
is included in 𝑅𝑥, then its immediately preceding contiguous operations in 𝑃𝑅(𝑗) are also included in 𝑅𝑥. This
allows the shiftable block 𝑅𝑥 to be left-shifted by at least one unit of time without violating the precedence
constraints of any of its operations with the respective immediately preceding operations. In other words, each
shiftable block 𝑅𝑥 is generated by eliminating a set of operations from 𝐵𝑖, such that the operations in the set
𝑅𝑥 can be left-shifted by at least one unit of time. The shiftable blocks generated from 𝐵12 for the illustration
problem shown in Figure 1 are 𝑅1 = {12, 9, 7}, 𝑅2 = {12, 9, 7, 10, 8, 6} and 𝑅3 = {12, 9, 7, 10, 8, 6, 11}, which
are subsets of 𝐵12 and can be left shifted by at least one unit of time.

The shiftable block with the highest cost function positive slope value is chosen for left shifting among all
the other shiftable blocks that can be formed from 𝐵𝑖. Let 𝐵*𝑖 denotes the block with the highest positive slope

2628 B.S. GIRISH ET AL.

Algorithm 1: OT algorithm for JIT-JSP
Data: 𝑁, 𝜎, 𝐷𝑗 , 𝑃𝑗 , 𝑔𝑗 , ℎ𝑗 , 𝑃𝑅(𝑗), 𝑆𝑈(𝑗) ∀𝑗 ∈ 𝜎

1 for 𝑖 = 1 to 𝑁 do
2 if 𝑖 = 1 then
3 𝐶1 ← 𝐷1

4 𝑆1 ← {𝐶1}
5 else
6 if 𝑃𝑅(𝑖) ̸= ∅ then
7 𝑌𝑖 ← max𝑗∈𝑃𝑅(𝑖) 𝐶𝑗

8 else
9 𝑌𝑖 ← 0

10 end
11 𝐶𝑖 ← max(𝐷𝑖, 𝑌𝑖 + 𝑃𝑖)
12 𝑆𝑖 ← 𝑆𝑖−1 ∪ {𝐶𝑖}
13 if 𝐶𝑖 > 𝐷𝑖 then
14 𝐿𝐸𝐹𝑇 𝑆𝐻𝐼𝐹𝑇 () ◁ Function call for the left shifting procedure

15 end

16 end

17 end

18 𝑓* ←
∑︀𝑁

𝑗=1(𝑔𝑗 max(0, 𝐷𝑗 − 𝐶𝑗) + ℎ𝑗 max(0, 𝐶𝑗 −𝐷𝑗)) ◁ optimal TWET

value among all the shiftable blocks in 𝐵𝑖. To optimize the partial schedule 𝑆𝑖, the block 𝐵*𝑖 is left-shifted
towards the minimum point of its cost function until the nearest breakpoint is reached or an operation 𝑗 ∈ 𝐵*𝑖
becomes contiguous with an operation in 𝑃𝑅(𝑗) that does not belong to 𝐵*𝑖 . In case if any of these two events
occur, the block 𝐵𝑖 and its corresponding shiftable blocks are regenerated using the improved partial schedule
𝑆𝑖 and the block 𝐵*𝑖 with the highest positive cost function slope value (𝑠(𝐵*𝑖)) is again chosen for further left
shifting. This left shifting process continues until a shiftable block with positive cost function slope value cannot
be created from 𝐵𝑖. The above procedure optimizes the partial schedule 𝑆𝑖 and provides optimal 𝑓𝑖. This can
be explained using the following Theorems 4.2 and 4.3.

Theorem 4.2. Only the shiftable blocks, which are a subset of block 𝐵𝑖 and contain the 𝑖th operation in 𝜎𝑖, can
have a positive cost function slope value.

Proof. The cost function slope value of any shiftable block generated from 𝐵𝑖 can be positive if and only if it
contains the 𝑖th operation in 𝜎𝑖. This can be explained by the fact that the left shifting procedure is implemented
sequentially for the first 𝑖− 1 operations in 𝜎𝑖 to find the optimal partial schedules 𝑆1, 𝑆2, . . . , 𝑆𝑖−1. Therefore,
considering Theorem 4.1, the left shifting of any shiftable block formed without the 𝑖th operation will have a
negative cost function slope value and will lead to an increase in penalty cost. Similarly, any operation or a set
of contiguously scheduled operations not belonging to 𝐵𝑖 will have a negative cost function slope value. �

Theorem 4.3. If {𝑅1, 𝑅2, . . . , 𝑅𝑝} is the set of all the shiftable blocks that can be formed from block 𝐵𝑖 with
positive cost function slope value and containing the 𝑖th operation in 𝜎𝑖, then left shifting the block with the
highest slope value towards the nearest breakpoint or until its shiftable point without violating the precedence
constraints, optimizes the partial schedule 𝑆𝑖.

Proof. If there exists a shiftable block 𝑅𝑥 with positive slope value 𝑠(𝑅𝑥) corresponding to its cost function
𝑓(𝑅𝑥), then based on Theorem 4.1, it can be concluded that left shifting the block 𝑅𝑥 improves the penalty
cost due to earliness and tardiness. The shiftable block with the highest positive cost function slope value
provides the highest improvement in penalty cost per unit time and optimizes the partial schedule 𝑆𝑖. Though
left shifting the other shiftable blocks with positive cost function slope value also improves the partial schedule,
it may eventually result in sub-optimal schedules. This can be explained with the following example.

MINIMIZING THE TOTAL WEIGHTED EARLINESS AND TARDINESS 2629

Let 𝑅* (𝑅* ⊂ 𝐵𝑖) be the set of operations with the highest positive cost function slope value. Let 𝑅′ (𝑅′ ⊂ 𝐵𝑖)
be a set of operations that are not contained in 𝑅* (i.e. 𝑅′ and 𝑅* are disjoint sets) and can be left shifted
along with 𝑅*. Since the operations in 𝑅′ are not included in 𝑅*, its cost function slope value 𝑠(𝑅′) will be
non-positive. Let us assume that 𝑠(𝑅′) < 0 and 𝑠(𝑅*) + 𝑠(𝑅′) > 0. Obviously, 𝑠(𝑅*) > 𝑠(𝑅*) + 𝑠(𝑅′). Though,
left shifting the operations in 𝑅′ along with the operations in 𝑅* will improve the total penalty cost (since
𝑠(𝑅*) + 𝑠(𝑅′) > 0), the rate of improvement of the penalty cost by left shifting the set (𝑅′ ∪ 𝑅*) will be less
compared to left shifting 𝑅* alone, as 𝑆(𝑅′) < 0. This indicates that left shifting the operations in 𝑅′ along
with the operations in 𝑅* results in a sub-optimal partial schedule. Therefore, selecting the block with the
highest positive cost function slope value for left shifting optimizes partial schedule 𝑆𝑖. Regenerating 𝐵𝑖 at each
breakpoint or every time an operation becomes contiguous with a preceding operation, followed by left shifting
the shiftable block with the highest positive cost function slope value, eventually optimizes 𝑓𝑖. �

Algorithm 2: Left shifting procedure to optimize the partial schedule
1 Function LEFT SHIFT()
2 𝐵*𝑖 ← 𝑂𝑃𝑇 𝐵𝐿𝑂𝐶𝐾(𝑖) ◁ Function call to find the optimal block

3 while 𝐵*𝑖 ̸= ∅ do
4 𝑡1 ← min𝑗∈𝐵*𝑖

(𝐶𝑗 − 𝑃𝑗 − 𝐶𝑗′ : 𝑗′ ∈ 𝑃𝑅(𝑗) & 𝑗′ /∈ 𝐵*𝑖)

5 𝑡2 ← min𝑗∈𝐵*𝑖
(𝐶𝑗 −𝐷𝑗 : 𝐶𝑗 > 𝐷𝑗)

6 𝑡3 ← min𝑗∈𝐵*𝑖
(𝐶𝑗 − 𝑃𝑗)

7 𝐶𝑗 ← 𝐶𝑗 −min(𝑡1, 𝑡2, 𝑡3) ∀𝑗 ∈ 𝐵*𝑖
8 𝐵*𝑖 ← 𝑂𝑃𝑇 𝐵𝐿𝑂𝐶𝐾(𝑖) ◁ Function call to find the optimal block

9 end

10 end

Algorithm 2 shows the pseudocode of the left shifting procedure. The function 𝑂𝑃𝑇 𝐵𝐿𝑂𝐶𝐾 in the pseu-
docode generates the shiftable block with the highest positive cost function slope value, which is also referred to
as the optimal block. We propose two methods to generate the optimal block. The first method is an enumeration
procedure that generates all possible shiftable blocks with non-negative cost function slope values. Subsequently,
the shiftable block with the highest cost function slope value is selected for left shifting. We consider even the
optimal block with slope value equal to zero for left shifting as the objective value of the resulting schedule will
remain the same. The second method is an improvement over the first method that uses dominance rules to
ignore certain shiftable blocks in the process of finding the optimal block for left shifting.

4.1.1. Enumeration method

This method first generates a tree of sub-blocks in the forward pass. Subsequently, the sub-blocks with non-
negative cost function slope values are recombined in the backward pass to form all possible shiftable blocks.
An illustrative example of the procedure is shown in Figures 2 and 3.

The procedure starts with generating the sub-block 𝑏1 by including the 𝑖th operation of 𝜎𝑖 as the first
element in 𝑏1. The preceding contiguous operations 𝑗′ ∈ 𝑃𝑅(𝑗) corresponding to each operation 𝑗 ∈ 𝑏1 are
then iteratively included in 𝑏1. Subsequently, the succeeding contiguous operations 𝑗′ ∈ 𝑆𝑈(𝑗) : 𝐶𝑗′ > 𝐷𝑗′ and
𝑃𝑅(𝑗′) = ∅ corresponding to each operation 𝑗 ∈ 𝑏1, are iteratively included in 𝑏1. Including the succeeding
operations 𝑗′ ∈ 𝑆𝑈(𝑗) : 𝐶𝑗′ > 𝐷𝑗′ and 𝑃𝑅(𝑗′) = ∅ in 𝑏1, increases its cost function slope value. This procedure
generates the shiftable sub-block 𝑏1 ⊆ 𝐵𝑖. In Figure 2, the set 𝑏1 is generated by first assigning the operation 24
to it. Subsequently, its preceding contiguous operation 20 is assigned to 𝑏1. The operations 13 is then assigned
to 𝑏1 followed by operations 8 and 9, which are the preceding contiguous operations to the operation 13. The
operation 4 is subsequently assigned to 𝑏1 as it is preceding and contiguous to operation 9. There are no
other operations in 𝐵24 which are preceding as well as contiguous to any of the assigned operations in 𝑏1. The

2630 B.S. GIRISH ET AL.

Figure 2. An illustrative example showing the generation of a tree of sub-blocks in the forward
pass of the optimal block generation procedure

operations 22 and 15 are not assigned to 𝑏1, though they are succeeding and contiguous to operations 20 and 9,
respectively, as 𝐶22 < 𝐷22 and 𝐶15 < 𝐷15. There are no other operations in 𝐵24 which are succeeding as well
as contiguous to any of the assigned operations in 𝑏1. The sub-block 𝑏1 generated by the above procedure can
be left-shifted by at least one unit of time.

The succeeding contiguous operations 𝑗′ ∈ 𝑆𝑈(𝑗) : 𝐶𝑗′ ≤ 𝐷𝑗′ or 𝑃𝑅(𝑗′) ̸= ∅ corresponding to each operation
𝑗 ∈ 𝑏1 are subsequently identified, and a sub-block is generated corresponding to each one of them using the
abovementioned procedure. In Figure 2, the operation 15 is the succeeding contiguous operation on the same
machine to the operation 9 in 𝑏1. Since 𝐶15 < 𝐷15, operation 15 was not included in 𝑏1, and is assigned to
the sub-block 𝑏3. The operation 14 belonging to 𝑏4 has a succeeding contiguous operation 16 on the same
machine. Since operation 16 has no preceding contiguous operation other than the operations {21,14,10,3}
already assigned in 𝑏4 and 𝐶16 > 𝐷16, it is assigned to the block 𝑏4. However, operation 18 is not included in 𝑏4

as it is contiguous with its preceding operation 12 on the same job. Therefore, it is assigned to 𝑏6. In each newly
formed sub-block, only the operations in 𝐵𝑖 which were not allocated in the preceding sub-blocks are included.
The succeeding contiguous operations corresponding to the operations included in the newly formed sub-blocks
are further chosen to form new sub-blocks. This branching procedure is repeated until no more sub-blocks can
be further generated. This branching procedure generates a tree of sub-blocks, as shown in Figure 2. Each

MINIMIZING THE TOTAL WEIGHTED EARLINESS AND TARDINESS 2631

Figure 3. Generating all possible shiftable blocks in the backward pass for the illustration
problem.

sub-block can be left-shifted only if its preceding sub-blocks in the tree are also left-shifted by the same amount
of time. However, a sub-block has an option of not being left-shifted while its preceding sub-blocks in the tree
are left-shifted.

Each sub-block in the branching procedure can be called a node, with block 𝑏1 becoming the root node.
Let each node is identified with a unique identifier 𝑘. Let 𝐴𝑘 be the set of operations already assigned in the
preceding nodes of node 𝑘. For e.g., in Figure 2, 𝐴2 = {24, 20, 13, 8, 9, 4} and 𝐴4 = 𝐴5 = {24, 20, 13, 8, 9, 4, 15},
where the elements in the sets 𝐴2, 𝐴4 and 𝐴5 are operation identifiers that belong to 𝜎𝑖. Let 𝑇𝑘 denote the
set of all the sub-blocks generated in the forward pass originating from node 𝑘. For example, in Figure 2,
𝑇1 = {𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5, 𝑏6, 𝑏7, 𝑏8}, 𝑇2 = {𝑏2} and 𝑇3 = {𝑏3, 𝑏4, 𝑏5, 𝑏6, 𝑏7, 𝑏8}. Let 𝐺𝑘 denote the set of immediately
succeeding nodes corresponding to a node 𝑘 in the tree of sub-blocks. For e.g., in Figure 2, 𝐺1 = {2, 3} and
𝐺3 = {4, 5}, where the elements 2, 3, 4 and 5 are node identifiers. As shown in Figure 2, the nodes in the tree of
sub-blocks can be categorized into levels such that the succeeding node corresponding to a node will be in the
immediately succeeding level and its preceding node in the immediately preceding level. Let 𝑙𝑒𝑣𝑒𝑙𝑠 denote the
total number of levels, and 𝐿𝑙 denote the set of nodes at each level 𝑙(𝑙 = 1, 2, . . . , 𝑙𝑒𝑣𝑒𝑙𝑠). For e.g., in Figure 2,

2632 B.S. GIRISH ET AL.

𝐿3 = {4, 5} and 𝐿4 = {6, 7, 8}, where the elements 4, 5, 6, 7 and 8 are node identifiers. The nodes at each level
are also denoted as 𝐿𝑙𝑘 where 𝑙 is the index for level and 𝑘 is the index for the nodes in the particular level.

In the backward pass shown in Figure 3, each node 𝑘 generates a set of blocks {𝑟𝑘1, 𝑟𝑘2, . . . , 𝑟𝑘𝑞} by combining
the sub-block 𝑏𝑘 with the sets of blocks {𝑅𝑘′1, 𝑅𝑘′2, . . ., 𝑅𝑘′𝑝𝑘′} returned by its respective child nodes 𝑘′ ∈ 𝐺𝑘.
Only the set of blocks with non-negative cost function slope values in {𝑟𝑘1, 𝑟𝑘2, . . . , 𝑟𝑘𝑞} are returned to its
respective parent node. If the cost function slope value of all the blocks in the set {𝑟𝑘1, 𝑟𝑘2, . . . , 𝑟𝑘𝑞} are negative,
the node 𝑘 returns a null set to the parent node. In Figure 3, the blocks 𝑅61, 𝑅71, and 𝑅81 are null sets since
the corresponding sets 𝑟61, 𝑟71, and 𝑟81 have negative cost function slope values. This procedure ensures that
only the blocks with non-negative cost function slope values are combined at each node.

The set of recombined blocks {𝑟𝑘1, 𝑟𝑘2, . . . , 𝑟𝑘𝑞} at each node 𝑘 are generated by forming all possible com-
binations of the blocks returned by the child nodes, ensuring that the operations in a block are not repeated.
In Figure 3, the recombined blocks {𝑟11, 𝑟12, . . . , 𝑟16} are generated by appending the sub-block 𝑏1 with the
combination of blocks 𝑅21 and {𝑅31, 𝑅32} returned by child nodes 2 and 3, respectively. The recombined block
with the highest non-negative cost function slope value at the root node is assigned to 𝐵*𝑖 , which is left-shifted
to optimize 𝑆𝑖. If all the recombined blocks generated at the root node have negative cost function slope values,
the partial schedule 𝑆𝑖 and the corresponding 𝑓𝑖 are optimal.

Algorithm 3 shows the overall framework of the optimal block generation procedure in the form of pseudocode.
The pseudocode shows two function calls, one to generate the tree of sub-blocks in the forward pass and
the other to recombine the sub-blocks in the backward pass to find all possible shiftable blocks with non-
negative cost function slope values. Subsequently, the optimal block with the highest non-negative cost function
slope value is selected (lines 4 to 13 in the pseudocode) and returned to Algorithm 2. Algorithm 4 shows the
pseudocode to generate the tree of sub-blocks in the forward pass using a recursive function. Algorithm 5 shows
the pseudocode to recombine the sub-blocks in the backward pass. The pseudocodes use the same notations
used in the illustrative example described above.

Algorithm 3: Pseudocode to generate the optimal block for left shifting
1 Function OPT BLOCK(𝑥)
2 𝐹𝑂𝑅𝑊𝐴𝑅𝐷 𝑃𝐴𝑆𝑆(𝑥, 0, ∅) ◁ Function call to generate the tree of sub-blocks

3 𝑛𝑜𝑑𝑒← 𝐵𝐴𝐶𝐾𝑊𝐴𝑅𝐷 𝑃𝐴𝑆𝑆() ◁ Function call to find the shiftable blocks with non-negative cost function slope

values

4 𝑧 = 0
5 if 𝑛𝑜𝑑𝑒 ̸= 0 then
6 𝑚𝑎𝑥 = 0
7 for 𝑦 = 1 to 𝑝1 do
8 if 𝑠(𝑅1𝑦) > 𝑚𝑎𝑥 then
9 𝑚𝑎𝑥 = 𝑠(𝑅1𝑦)

10 𝑧 ← 𝑦

11 end

12 end

13 end
14 if 𝑧 = 0 then
15 return ∅
16 else
17 return 𝑅1𝑧

18 end

19 end

Lines 7 to 27 in Algorithm 4 generate a sub-block corresponding to an operation 𝑥 considering the already
assigned operations in set 𝐴𝑘. The child nodes corresponding to the node are generated in lines 28 to 33.

MINIMIZING THE TOTAL WEIGHTED EARLINESS AND TARDINESS 2633

Algorithm 4: Generating the tree of sub-blocks in the forward pass

1 Initialize global variables: 𝑘 = 0, 𝑙𝑒𝑣𝑒𝑙𝑠 = 0, 𝐻𝑗 = 0 ∀𝑗 = 1, 2,𝑖

2 Function FORWARD PASS(𝑥, 𝑙, 𝐴)
3 𝑙← 𝑙 + 1 ◁ 𝑙: level of the node in the tree

4 𝑘 ← 𝑘 + 1 ◁ 𝑘: node identifier

5 Initialize: 𝑘 ← 𝑘, 𝑒← 1, 𝑏𝑘 ← {𝑥}, 𝑈𝑘 ← ∅, 𝐺𝑘 ← ∅, 𝐴𝑘 ← ∅ ◁ 𝑏𝑘:ordered set

6 𝐴𝑘 ← 𝐴 ∪ {𝑥}
7 while 𝑒 ≤ |𝑏𝑘| do
8 𝑗 ← 𝑏𝑘[𝑒] ◁ 𝑏𝑘[𝑒]:𝑒𝑡ℎ element in the ordered set 𝑏𝑘

9 for 𝑗′ ∈ (𝑃𝑅(𝑗) ∪ 𝑆𝑈(𝑗)) : 𝑗′ /∈ 𝐴𝑘 do
10 if 𝑗′ ∈ 𝑃𝑅(𝑗) & 𝐶𝑗 = 𝐶𝑗′ + 𝑃𝑗 then
11 if 𝐶𝑗′ = 𝑃𝑗′ then
12 return (0) ◁ return from function

13 else
14 𝐴𝑘 ← 𝐴𝑘 ∪ {𝑗′}
15 𝑏𝑘 ← 𝑏𝑘 ∪ {𝑗′}
16 end

17 else if 𝑗′ ∈ 𝑆𝑈(𝑗) & 𝐶𝑗′ = 𝐶𝑗 + 𝑃𝑗′ & 𝐶𝑗′ > 𝑃𝑗′ then
18 if 𝑃𝑅(𝑗′) = ∅ & 𝐶𝑗′ > 𝐷𝑗′ then
19 𝐴𝑘 ← 𝐴𝑘 ∪ {𝑗′}
20 𝑏𝑘 ← 𝑏𝑘 ∪ {𝑗′}
21 else
22 𝑈𝑘 ← 𝑗′

23 end

24 end

25 end
26 𝑒← 𝑒 + 1

27 end
28 for 𝑗′ ∈ 𝑈𝑘 : 𝑗′ /∈ 𝐴𝑘 do
29 𝑛𝑜𝑑𝑒← 𝐹𝑂𝑅𝑊𝐴𝑅𝐷 𝑃𝐴𝑆𝑆(𝑗′, 𝑙, 𝐴𝑘) ◁ creates a child node

30 if 𝑛𝑜𝑑𝑒 ̸= 0 then
31 𝐺𝑘 ← 𝐺𝑘 ∪ {𝑛𝑜𝑑𝑒} ◁ 𝐺𝑘: set of succeeding nodes of node 𝑘 in the tree

32 end

33 end
34 if 𝑙 > 𝑙𝑒𝑣𝑒𝑙𝑠 then
35 𝑙𝑒𝑣𝑒𝑙𝑠← 𝑙 ◁ 𝑙𝑒𝑣𝑒𝑙𝑠: number of levels in the tree

36 𝐿𝑙 ← ∅ ◁ 𝐿𝑙: set of nodes at the 𝑙th level in the tree

37 end
38 𝐿𝑙 ← 𝐿𝑙 ∪ {𝑘}
39 for 𝑗 ∈ 𝑏𝑘 do
40 𝐻𝑗 ← 𝐻𝑗 + 1 ◁ 𝐻𝑗 : number of times operation 𝑗 appears in the tree

41 end
42 return (𝑘)

43 end

The child node identifiers corresponding to the parent node 𝑘 are updated in the set 𝐺𝑘. The level identifier
corresponding to the node is updated in line 3 and the total number of levels are updated in lines 34 to 37. In
line 38, the set 𝐿𝑙 stores the node identifier 𝑘. Lines 39 to 41 update the number of times each operation 𝑗 ∈ 𝑏𝑘

appears in the tree of sub-blocks 𝑇1. The updated value for each operation 𝑗 in 𝐻𝑗 is used in the improved
method discussed later.

2634 B.S. GIRISH ET AL.

Algorithm 5: Pseudocode to recombine the sub-blocks in the backward pass using the enumeration method
1 Function BACKWARD PASS()
2 for 𝑙 = 𝑙𝑒𝑣𝑒𝑙𝑠 to 1 do
3 for 𝑘 ∈ 𝐿𝑙 do
4 𝑞 = 1
5 𝑟𝑘𝑞 ← 𝑏𝑘

6 for 𝑘′ ∈ 𝐺𝑘 do
7 𝑢← 𝑞
8 for 𝑦 = 1 to 𝑝𝑘′ do
9 for 𝑥 = 1 to 𝑞 do

10 if 𝑟𝑘𝑥 ∩𝑅𝑘′𝑦 = ∅ then
11 𝑢← 𝑢 + 1
12 𝑟𝑘𝑢 ← 𝑟𝑘𝑥 ∪𝑅𝑘′𝑦

13 end

14 end

15 end
16 𝑞 ← 𝑢

17 end
18 𝑝𝑘 = 0
19 for 𝑥 = 1 to 𝑞 do
20 if 𝑠(𝑟𝑘𝑥) ≥ 0 then
21 𝑝𝑘 ← 𝑝𝑘 + 1
22 𝑅𝑘𝑝𝑘 ← 𝑟𝑘𝑥

23 end

24 end

25 end

26 end

27 end

The pseudocode shown in Algorithm 5 accesses the levels in the tree of sub-blocks in the decreasing order and
finds all possible combinations of blocks corresponding to each node. Line 5 in the pseudocode assigns 𝑏𝑘 to set
𝑟𝑘1. Subsequently, the lines 6 to 17 generate all possible combinations of blocks {𝑟𝑘1, 𝑟𝑘2,. . ., 𝑟𝑘𝑞} by accessing
the sets of blocks {𝑅𝑘′1, 𝑅𝑘′2, . . . , 𝑅𝑘′𝑝′𝑘

} from the child nodes 𝑘′ ∈ 𝐺𝑘. The condition in line 10 ensures that
each block generated does not have any repeating operations. Lines 18 to 24 select the set of recombined blocks
{𝑅𝑘1, 𝑅𝑘2, . . . , 𝑅𝑘𝑝𝑘

} with non-negative cost function slope values from the set {𝑟𝑘1, 𝑟𝑘2, . . . , 𝑟𝑘𝑞} to be returned
to its parent node.

The total number of shiftable blocks generated from 𝑁 number of operations can be theoretically considered
as a problem of generating 𝑘-combinations of 𝑁 elements for all values of 𝑘 (i.e. 1 ≤ 𝑘 ≤ 𝑁), which is 2𝑁 [12].
However, the actual number of shiftable blocks can be far less because if an operation 𝑗 is not included in the
shiftable block, then all the operations in the tree of sub-blocks 𝑇𝑘 originating from node 𝑘 will get excluded.
Therefore, many combinations will not be feasible, and the proposed OT algorithm ensures that only feasible
shiftable blocks are generated. The worst-case time complexity of the OT algorithm can be estimated as an
exponential function of the problem size (𝑁) due to the exponential increase in the number of shiftable blocks.
We present the computational performance of the proposed OT algorithm on benchmark instances with up to
30 jobs and 20 machines in Section 5.

4.1.2. Improved method

Algorithms 6 and 7 show the pseudocodes to generate the optimal block using the improved method. The
improved method uses dominance rules to ignore certain recombined blocks at each node in the backward pass,
which will not result in the optimal block. This reduces the search space and improves the computation time

MINIMIZING THE TOTAL WEIGHTED EARLINESS AND TARDINESS 2635

required to generate the optimal schedule. Therefore, this method is an implicit enumeration method. We use
the following two dominance rules.

i. The first dominance rule, namely 𝑂𝑃𝑇 𝑆𝐸𝐿𝐸𝐶𝑇 , checks if the operations present in the set of recombined
blocks {𝑟𝑘1, 𝑟𝑘2, . . . , 𝑟𝑘𝑞} at a node 𝑘 ∈ 𝐿𝑙 do not exist in the recombined blocks generated by the other nodes
at the same level, i.e. 𝑘′ ∈ 𝐿𝑙 : 𝑘′ ̸= 𝑘. If the condition is satisfied, the recombined block with the highest
non-negative cost function slope value is selected at node 𝑘 and returned to its parent node. If the condition
is not satisfied, then all the recombined blocks with non-negative cost function slope values are selected and
returned to its parent node, as in the enumeration method.

ii. The second dominance rule, namely 𝑂𝑃𝑇 𝐶𝑂𝑀𝐵𝐼𝑁𝐸, is applied when the sub-block 𝑏𝑘 at node 𝑘 is
combined with the blocks (𝑅𝑘′1, 𝑅𝑘′2, . . . , 𝑅𝑘′𝑝𝑘′) returned by the child nodes 𝑘′ ∈ 𝐺𝑘. The recombined blocks
returned by the child nodes in the set 𝐺𝑘, that satisfied the condition in the 𝑂𝑃𝑇 𝑆𝐸𝐿𝐸𝐶𝑇 rule, are directly
appended to the sub-block 𝑏𝑘 at node 𝑘. No new set of blocks is generated at the parent node using the blocks
returned by such child nodes.

Lines 5 to 17 in the pseudocode shown in Algorithm 6 check whether the node 𝑘 at level 𝐿𝑙 satisfies the
condition in the 𝑂𝑃𝑇 𝑆𝐸𝐿𝐸𝐶𝑇 rule. 𝑄𝑘𝑗 represents the number of times the operation 𝑗 appears in the set of
all the sub-blocks in the tree of sub-blocks 𝑇𝑘 originating from node 𝑘. Lines 5 to 12 determine 𝑄𝑘𝑗 corresponding
to each operation 𝑗. The condition in line 14 of the pseudocode verifies that each operation 𝑗 belonging to 𝑇𝑘

exists only within it and does not exist in the other trees of sub-blocks at the same level. The value of 𝐼𝑘 denotes
whether the node 𝑘 satisfies the condition in the 𝑂𝑃𝑇 𝑆𝐸𝐿𝐸𝐶𝑇 rule. 𝐼𝑘 = 1 indicates that the node 𝑘 satisfies
the condition in the 𝑂𝑃𝑇 𝑆𝐸𝐿𝐸𝐶𝑇 rule, and 𝐼𝑘 = 0 if not. Lines 4 to 14 in Algorithm 7 show the procedure
to select the recombined block with the highest non-negative cost function slope value when the node 𝑘 satisfies
the condition in the 𝑂𝑃𝑇 𝑆𝐸𝐿𝐸𝐶𝑇 rule (i.e. 𝐼𝑘 = 1). Lines 16 to 21 show the procedure to select all the
recombined blocks with non-negative cost function slope value when the node does not satisfy the condition in
the 𝑂𝑃𝑇 𝑆𝐸𝐿𝐸𝐶𝑇 rule (i.e. 𝐼𝑘 = 0). Subsequently, in the immediate lower level 𝐿𝑙−1, the nodes that satisfied
the condition in the 𝑂𝑃𝑇 𝑆𝐸𝐿𝐸𝐶𝑇 rule in level 𝐿𝑙, are directly appended to the sub-block as shown in lines
18 to 22 in Algorithm 6. On the other hand, the child nodes that did not satisfy the condition, their returned
blocks combine in all possible ways with the sub-block at the parent node, as shown in lines 25 to 38 of the
pseudocode.

Figure 4 shows the optimal block generated using the improved method for the illustration problem shown
in Figure 2. The recombined blocks generated at node 4 and node 5 at level 3 of the backward pass shown in
Figure 4 have common operations. Therefore, they do not satisfy the condition in the 𝑂𝑃𝑇 𝐶𝑂𝑀𝐵𝐼𝑁𝐸 rule
and the blocks 𝑅41, 𝑅51 and 𝑏3 are combined in all possible ways to form blocks 𝑟31, 𝑟32 and 𝑟33 at node 3.
The node 3 at level 2 satisfies the condition in the 𝑂𝑃𝑇 𝑆𝐸𝐿𝐸𝐶𝑇 rule as none of the operations in the tree
of sub-blocks 𝑇3 exist in 𝑇2. Therefore, only one block 𝑅31 = 𝑟32 with highest non-negative cost function slope
value (𝑠(𝑟32) = 0.13) is selected among the set of recombined blocks {𝑟32, 𝑟33} with non-negative cost function
slope values. Similarly, node 2 also satisfies the condition in the 𝑂𝑃𝑇 𝑆𝐸𝐿𝐸𝐶𝑇 rule as none of the operations
in the tree of sub-blocks 𝑇2 exist in 𝑇3. Consequently, at node 1, the blocks 𝑅21 and 𝑅31 are directly appended
to the sub-block 𝑏1 using the 𝑂𝑃𝑇 𝐶𝑂𝑀𝐵𝐼𝑁𝐸 rule to form the block 𝑟11, which is also the optimal block for
the given instance.

The following Theorems 4.4 and 4.5 prove the two dominance rules.

Theorem 4.4. If a node 𝑘 ∈ 𝐿𝑙 satisfies the condition that the operations in the tree of sub-blocks 𝑇𝑘 do not
exist in the other tree of sub-blocks 𝑇𝑘′ , 𝑘

′ ∈ 𝐿𝑙, then the recombined block with the highest cost function slope
value from the set {𝑟𝑘1, 𝑟𝑘2, . . . , 𝑟𝑘𝑞} dominates the remaining blocks.

Proof. Suppose that there are two blocks, 𝑅𝑢1 and 𝑅𝑣1, with a set of common operations that are returned to
the parent node 𝑘 from the child nodes 𝑢 and 𝑣, respectively. Since the child nodes originate from the same
parent node, the set of already assigned operations in the preceding nodes, 𝑢 and 𝑣, will be the same, i.e.
𝐴𝑢 = 𝐴𝑣. Therefore, the remaining operations, (𝐵𝑖 − 𝐴𝑢) and (𝐵𝑖 − 𝐴𝑣), available to form the respective tree
of sub-blocks, 𝑇𝑢 and 𝑇𝑣, in their forward pass will also be the same. Consequently, the resulting blocks 𝑅𝑢1

2636 B.S. GIRISH ET AL.

Algorithm 6: Pseudocode to combine sub-blocks in the backward pass using the improved method

1 Global variables: 𝐼𝑘 = 1, 𝑄𝑘𝑗 = 0, ∀𝑘 = 1, 2, . . . , 𝑘 ∀𝑗 = 1, 2, . . . , 𝑖
2 Function BACKWARD PASS()
3 for 𝑙 = 𝑙𝑒𝑣𝑒𝑙𝑠 to 1 do
4 for 𝑘 ∈ 𝐿𝑙 do
5 for 𝑗 ∈ 𝑏𝑘 do
6 𝑄𝑘𝑗 = 1
7 end
8 for 𝑘′ ∈ 𝐺𝑘 do
9 for 𝑗 = 1 to 𝑖 do

10 𝑄𝑘𝑗 ← 𝑄𝑘𝑗 + 𝑄𝑘′𝑗

11 end

12 end
13 for 𝑗 = 1 to 𝑖 do
14 if 𝑄𝑘𝑗 > 0 and 𝑄𝑘𝑗 ̸= 𝐻𝑗 then
15 𝐼𝑘 = 0
16 end

17 end
18 for 𝑘′ ∈ 𝐺𝑘 do
19 if 𝐼𝑘′ = 1 then
20 𝑏𝑘 ← 𝑏𝑘 ∪𝑅𝑘′𝑝𝑘′

◁ Node 𝑘′ satisfies the condition in the 𝑂𝑃𝑇 𝐶𝑂𝑀𝐵𝐼𝑁𝐸 rule

21 end

22 end
23 𝑞 = 1
24 𝑟𝑘𝑞 ← 𝑏𝑘

25 for 𝑘′ ∈ 𝐺𝑘 do
26 if 𝐼𝑘′ = 0 then
27 𝑢← 𝑞
28 for 𝑦 = 1 to 𝑝𝑘′ do
29 for 𝑥 = 1 to 𝑞 do
30 if 𝑟𝑘𝑥 ∩𝑅𝑘′𝑦 = ∅ then
31 𝑢← 𝑢 + 1
32 𝑟𝑘𝑢 ← 𝑟𝑘𝑥 ∪𝑅𝑘′𝑦

33 end

34 end

35 end
36 𝑞 ← 𝑢

37 end

38 end
39 𝑆𝐸𝐿𝐸𝐶𝑇 (𝑘) ◁ Function call to select the recombined blocks

40 end

41 end

42 end

and 𝑅𝑣1 will be the subsets of the set (𝐵𝑖 − 𝐴𝑢) (or (𝐵𝑖 − 𝐴𝑣)). As per the forward pass of the optimal block
generation procedure shown in lines 28 to 32 of Algorithm 4, 𝑏𝑢 and 𝑏𝑣 are formed by two different succeeding
operations corresponding to the set of operations in 𝑏𝑘. Since the sets 𝑅𝑢1 and 𝑅𝑣1 have common operations,
the set of all the operations in 𝑇𝑢 will be the same as in 𝑇𝑣. This is also evident from the illustrative example
shown in Figure 2, where the set of operations {16,14,10,3,18,12,21} are the same in the trees of sub-blocks,
𝑇4 = {𝑏4, 𝑏6} and 𝑇5 = {𝑏5, 𝑏7, 𝑏8}. This is because a tree of sub-blocks is generated by identifying the preceding
and the succeeding chain of contiguous operations. As a result, any two trees of sub-blocks originating from the

MINIMIZING THE TOTAL WEIGHTED EARLINESS AND TARDINESS 2637

Algorithm 7: Pseudocode to select the set of recombined blocks with non-negative cost function slope
value at each node

1 Function SELECT(𝑘)
2 𝑝𝑘 = 0
3 if 𝐼𝑘 = 1 then
4 𝑚𝑎𝑥 = 0 ◁ Node 𝑘 satifies the condition in the 𝑂𝑃𝑇 𝑆𝐸𝐿𝐸𝐶𝑇 rule

5 for 𝑥 = 1 to 𝑞 do
6 if 𝑠(𝑟𝑘𝑥) ≥ 𝑚𝑎𝑥 then
7 𝑚𝑎𝑥← 𝑠(𝑟𝑘𝑥)
8 𝑝𝑘 ← 1
9 𝑦 ← 𝑥

10 end

11 end
12 if 𝑝𝑘 = 1 then
13 𝑅𝑘𝑝𝑘 ← 𝑟𝑘𝑦

14 end

15 else
16 for 𝑥 = 1 to 𝑞 do
17 if 𝑠(𝑟𝑘𝑥) ≥ 0 then
18 𝑝𝑘 ← 𝑝𝑘 + 1
19 𝑅𝑘𝑝𝑘 ← 𝑟𝑘𝑥

20 end

21 end

22 end

23 end

Figure 4. Generating optimal block using the improved method in the illustration problem.

2638 B.S. GIRISH ET AL.

same parent node will either have a different set of operations (e.g., the tree of sub-blocks 𝑇2 and 𝑇3 in Fig. 2)
or they will have the same set of operations (e.g., the tree of sub-blocks 𝑇4 and 𝑇5 in Fig. 2). Nevertheless,
the grouping of operations within the sub-blocks within a particular tree of sub-blocks can differ from the
other trees of sub-blocks. This is evident from Figure 2, where the grouping of operations within the sub-blocks
in 𝑇4 = {𝑏4, 𝑏6} differ from the grouping of operations in 𝑇5 = {𝑏5, 𝑏7, 𝑏8}. Consequently, the cost function
slope values of the sub-blocks also differ from each other, as evident from Figure 2. Therefore, the optimal
combination of sub-blocks belonging to different trees of sub-blocks originating from the same parent node
eventually optimizes the total cost. Hence, all possible combinations of the recombined blocks are maintained
until the trees of sub-blocks with a common set of operations converge at a parent node.

Suppose that the trees of sub-blocks with common operations converge at a node 𝑘. Then each recombined
block generated at node 𝑘 will be a combination of sub-blocks contained in 𝑇𝑘. The recombined block containing
the optimum combination of sub-blocks will have the highest cost function slope value compared to all other
recombined blocks generated at node 𝑘. Therefore, the recombined block with the highest cost function slope
value will dominate all other recombined blocks generated at node 𝑘. �

Theorem 4.5. The recombined block 𝑅𝑘′𝑝𝑘′ with 𝑝𝑘′ = 1, which satisfied the condition in the 𝑂𝑃𝑇 𝑆𝐸𝐿𝐸𝐶𝑇
rule at child node 𝑘′ ∈ 𝐿𝑙+1, can be appended to all the recombined blocks at its parent node 𝑘 ∈ 𝐿𝑙 and does
not require the generation of recombined blocks without 𝑅𝑘′𝑝𝑘′ to find the optimal block.

Proof. As discussed in the proof of Theorem 4.4, all possible combinations of the recombined blocks are main-
tained until the trees of sub-blocks with a common set of operations converge at a parent node. Therefore, the
blocks returned by the child nodes having common operations with other nodes at the same level are combined
in all possible ways to eventually obtain the optimum combination of operations in the shiftable block with
the highest cost function slope value. Since the blocks that satisfied the condition in the 𝑂𝑃𝑇 𝑆𝐸𝐿𝐸𝐶𝑇 rule
are already the optimum combination of sub-blocks at their respective child nodes, they do not require to be
recombined in all possible ways. They can be appended to all the recombined blocks generated at the parent
node. �

4.2. The proposed OT algorithm for ETSP

The problem environment of ETSP is the same as JIT-JSP, except that the due dates and earliness-tardiness
penalties are associated only with the last operation of each job. Let 𝐹 (𝐹 ⊆ 𝜎) represent the set containing the
last operation of each job. We use the notations for earliness-tardiness penalties, 𝑔𝑗 and ℎ𝑗 , and due date 𝐷𝑗

for all the operations in 𝜎. The earliness-tardiness penalties and due dates corresponding to the last operation
(i.e. 𝑔𝑗 , ℎ𝑗 , 𝐷𝑗 , 𝑗 ∈ 𝐹) are the inputs to the problem. The earliness-tardiness penalties and the due dates for
the remaining operations are set as zero, i.e. 𝑔𝑗 = ℎ𝑗 = 𝐷𝑗 = 0, 𝑗 ∈ (𝜎 − 𝐹). All the other notations used in
the description of OT algorithm for ETSP are the same as those used in JIT-JSP.

Since in ETSP, only the last operation of each job has a due date, the first 𝑛𝑖− 1 operations of each job 𝑖 are
scheduled according to their position in the given sequence 𝜎 at their earliest start times. The last operation
of each job 𝑖 is scheduled as per the given sequence either at its due date or at its earliest possible start-time,
whichever is later. The left shifting procedure is subsequently invoked to optimize its partial schedule. The left
shifting procedure is applied only if at least one job with its last operation is not contiguously scheduled with
any of its immediately preceding operations either on the same job or the same machine. Suppose that the
last operations of the jobs in the partial schedule are contiguous with their respective preceding operations on
the same job or the same machine. In that case, left shifting is not possible as all the operations, except the
last operation of the jobs, are already scheduled at their earliest possible start times. Algorithm 8 shows the
pseudocode of the OT algorithm for ETSP.

The 𝑂𝑃𝑇 𝐵𝐿𝑂𝐶𝐾 function call in Algorithm 8 is directed to Algorithm 3 presented in Section 4.1. The
OPT BLOCK function is invoked only if at least one job with its last operation in 𝜎𝑖 is not contiguously
scheduled with any of its immediately preceding operations. Either the enumeration method (Algorithm 5) or

MINIMIZING THE TOTAL WEIGHTED EARLINESS AND TARDINESS 2639

the improved method (Algorithms 6 and 7) can be implemented in the backward pass to generate the set of
shiftable blocks. Since we considered 𝑔𝑗 = ℎ𝑗 = 𝐷𝑗 = 0, 𝑗 ∈ (𝜎 − 𝐹) and the condition 𝑠(𝑅𝑘𝑗) ≥ 0, 1 ≤ 𝑗 ≤ 𝑝𝑘

to return the set {𝑅𝑘1, 𝑅𝑘2, . . . , 𝑅𝑘𝑝𝑘
} to the parent node, the operations belonging to set (𝜎 − 𝐹) will remain

left-aligned at their earliest start time during left shifting.

Algorithm 8: OT algorithm for ETSP
Data: 𝑁, 𝜎, 𝑃𝑗 , 𝑃𝑅(𝑗), 𝑆𝑈(𝑗) ∀𝑗 ∈ 𝜎
𝐹 = {set of last operations of all the jobs: 𝐹 ⊆ 𝜎}, 𝐷𝑗 , 𝑔𝑗 , ℎ𝑗 𝑗 ∈ 𝐹

1 Initialize: 𝑆𝑖 = ∅ 𝑖 = 0, 1, 2, . . . , 𝑁, 𝑔𝑗 = ℎ𝑗 = 𝐷𝑗 = 0 𝑗 ∈ (𝜎 − 𝐹)
2 for 𝑖 = 1 to 𝑁 do
3 if 𝑖 /∈ 𝐹 then
4 𝐶𝑖 ← 𝑃𝑖 + 𝑚𝑎𝑥𝑗∈𝑃𝑅(𝑖)𝐶𝑗

5 𝑆𝑖 ← 𝑆𝑖−1 ∪ {𝐶𝑖}
6 else
7 if 𝑃𝑅(𝑖) ̸= ∅ then
8 𝑌𝑖 ← max𝑗∈𝑃𝑅(𝑖) 𝐶𝑗

9 else
10 𝑌𝑖 ← 0
11 end
12 𝐶𝑖 ← max(𝐷𝑖, 𝑌𝑖 + 𝑃𝑖)
13 𝑆𝑖 ← 𝑆𝑖−1 ∪ {𝐶𝑖}
14 if 𝐶𝑖 > 𝐷𝑖 and at least one of the last operations of the jobs in 𝜎𝑖 is not contiguous with any preceding

operation then
15 𝐵*𝑖 ← 𝑂𝑃𝑇 𝐵𝐿𝑂𝐶𝐾(𝑖) ◁ Function call to find the optimal block

16 while 𝐵*𝑖 ̸= ∅ do
17 𝑡1 ← min𝑗∈𝐵*𝑖

(𝐶𝑗 − 𝑃𝑗 − 𝐶𝑗′ : 𝑗′ ∈ 𝑃𝑅(𝑗) & 𝑗′ /∈ 𝐵*𝑖)

18 𝑡2 ← min𝑗∈𝐵*𝑖
(𝐶𝑗 −𝐷𝑗 : 𝐶𝑗 > 𝐷𝑗)

19 𝑡3 ← min𝑗∈𝐵*𝑖
(𝐶𝑗 − 𝑃𝑗)

20 𝐶𝑗 ← 𝐶𝑗 −min(𝑡1, 𝑡2, 𝑡3) ∀𝑗 ∈ 𝐵*𝑖
21 if at least one of the last operations of the jobs in 𝜎𝑖 is not contiguous with any preceding operation

then
22 𝐵*𝑖 ← 𝑂𝑃𝑇 𝐵𝐿𝑂𝐶𝐾(𝑖) ◁ Function call to find the optimal block

23 end

24 end

25 end

26 end

27 end
28 𝑓* ←

∑︀
𝑗∈𝐹 (𝑔𝑗 max(0, 𝐷𝑗 − 𝐶𝑗) + ℎ𝑗 max(0, 𝐶𝑗 −𝐷𝑗)) ◁ optimal TWET

The total number of shiftable blocks generated from 𝑁 number of operations can be theoretically considered
as a problem of generating 𝑘-combinations of 𝑁 elements for all values of 𝑘 (i.e. 1 ≤ 𝑘 ≤ 𝑁), which is 2𝑁 .
This is the same as the computational complexity of generating the shiftable blocks in the case of JIT-JSP.
However, only those operations in the set (𝜎−𝐹) are included in the shiftable blocks that are between the last
operation of the job that appears first in 𝜎 and the last operation of the job that appears last in 𝜎. Therefore,
in a practical scenario, the computational complexity of the OT algorithms for ETSP will be much less than
that of JIT-JSP. The computational performance of the proposed OT algorithms on ETSP instances with up
to 50 jobs and 30 machines is presented in the subsequent section.

The operations belonging to the set (𝜎 − 𝐹) can also be scheduled using the Giffler and Thomspon (GT)
algorithm to generate active schedules. However, if an operation 𝑗 ∈ (𝜎−𝐹) is sequenced after operation 𝑗′ ∈ 𝐹
in 𝜎𝑖 on same machine, 𝑗′ should not be scheduled prior to 𝑗. The resulting optimal schedule will be either same

2640 B.S. GIRISH ET AL.

Table 1. Computational results for the JIT-JSP instances from literature with 2 machines.

Problem
Computation time (in seconds)

TF
CPLEX OT1 OT2
AVG AVG MAX AVG MAX OT1 OT2

I-10-2-tight-equal-1 6.6E-03 1.6E-04 1.6E-04 8.1E-05 8.1E-05 41.1 81.8
I-10-2-tight-equal-2 4.2E-03 5.6E-05 5.6E-05 5.0E-05 5.0E-05 74.5 83.5
I-10-2-tight-tard-1 8.3E-03 9.1E-05 9.1E-05 8.4E-05 8.4E-05 91.0 98.6
I-10-2-tight-tard-2 5.3E-03 9.6E-05 9.6E-05 8.8E-05 8.8E-05 55.1 60.2
I-10-2-loose-equal-1 6.0E-03 4.1E-04 5.1E-04 3.5E-04 3.5E-04 14.7 17.2
I-10-2-loose-equal-2 4.2E-03 1.4E-04 1.4E-04 1.3E-04 1.3E-04 29.5 33.3
I-10-2-loose-tard-1 4.0E-03 7.3E-05 7.3E-05 6.8E-05 6.8E-05 55.3 59.4
I-10-2-loose-tard-2 4.0E-03 8.4E-05 8.4E-05 8.0E-05 8.0E-05 47.9 50.3
I-15-2-tight-equal-1 5.6E-03 7.3E-05 7.3E-05 6.7E-05 6.7E-05 76.2 83.0
I-15-2-tight-equal-2 5.0E-03 5.9E-05 5.9E-05 5.3E-05 5.3E-05 85.3 94.9
I-15-2-tight-tard-1 5.3E-03 1.3E-04 1.3E-04 1.2E-04 1.2E-04 42.1 46.1
I-15-2-tight-tard-2 5.1E-03 8.4E-05 8.4E-05 7.8E-05 7.8E-05 60.9 65.6
I-15-2-loose-equal-1 9.0E-03 3.4E-04 3.4E-04 3.2E-04 3.2E-04 26.7 27.8
I-15-2-loose-equal-2 5.1E-03 2.6E-04 2.6E-04 2.7E-04 2.7E-04 19.2 18.9
I-15-2-loose-tard-1 7.8E-03 4.2E-04 4.2E-04 3.8E-04 3.8E-04 18.8 20.7
I-15-2-loose-tard-2 5.0E-03 3.3E-04 3.3E-04 2.6E-04 2.6E-04 15.0 18.9
I-20-2-tight-equal-1 7.6E-03 9.8E-05 9.8E-05 9.5E-05 9.5E-05 77.4 79.9
I-20-2-tight-equal-2 7.6E-03 2.3E-04 2.3E-04 2.0E-04 2.0E-04 33.3 38.9
I-20-2-tight-tard-1 7.7E-03 1.4E-04 1.4E-04 1.3E-04 1.3E-04 54.3 58.0
I-20-2-tight-tard-2 8.4E-03 2.8E-04 2.8E-04 2.4E-04 2.4E-04 30.5 35.4
I-20-2-loose-equal-1 1.7E-02 4.5E-04 4.5E-04 4.3E-04 4.3E-04 38.8 40.6
I-20-2-loose-equal-2 7.0E-03 1.6E-04 1.6E-04 1.5E-04 1.5E-04 44.0 47.9
I-20-2-loose-tard-1 7.5E-03 1.6E-04 1.6E-04 1.5E-04 1.5E-04 46.9 51.0
I-20-2-loose-tard-2 6.8E-03 1.2E-04 1.2E-04 1.1E-04 1.1E-04 58.1 60.7
Average 6.7E-03 1.8E-04 1.9E-04 1.7E-04 1.7E-04 47.4 53.0

or better than the optimal schedule generated strictly following the sequence of operations in 𝜎. Since, the GT
algorithm cannot be implemented in the optimization solver, we did not use the GT algorithm within the OT
algorithms for effective comparison with the optimization solver in the computational study.

5. Computational results

The performance of the proposed OT algorithms for JIT-JSP and ETSP is evaluated using a set of benchmark
instances from the literature [5]. The problem set consists of 72 instances. Each instance is named in the pattern
𝐼−𝑛−𝑚−𝐷𝐷−𝑊−𝐼𝐷. Notations 𝑛 and 𝑚, respectively, indicate the number of jobs and number of machines
in the instance, where 𝑛 ∈ {10, 15, 20} and 𝑚 ∈ {2, 5, 10}. Jobs are processed exactly once on each machine.
However, the processing order of jobs on the machines varies. Processing times are in the range [10, 30]. 𝐷𝐷
represents the due date tightness and is either specified as 𝑡𝑖𝑔ℎ𝑡 or 𝑙𝑜𝑜𝑠𝑒. 𝑊 is specified either as 𝑒𝑞𝑢𝑎𝑙 or
𝑡𝑎𝑟𝑑. 𝑒𝑞𝑢𝑎𝑙 indicates that the earliness and tardiness penalties are chosen randomly in the range [0.1, 1]. 𝑡𝑎𝑟𝑑
indicates that the tardiness penalty is chosen in the range [0.1, 1], whereas the earliness penalty is chosen in the
range [0.1, 0.3]. There are two instances (𝐼𝐷 = 1 and 𝐼𝐷 = 2) for each combination of the above parameters.
Since the instances used in the literature for ETSP are not publicly available, we use the above 72 JIT-JSP
instances and consider the due dates and earliness-tardiness penalties only for the last operation of each job.

The performance of the OT algorithms is compared with the results obtained by solving the linear pro-
gramming (LP) formulation modeled using CPLEX solver [20]. The OT algorithms were coded in C language
and run using Visual C++ on a PC with 3.6 GHz Intel Core i7-9700K octa-core processor, 16GB RAM, and

MINIMIZING THE TOTAL WEIGHTED EARLINESS AND TARDINESS 2641

Table 2. Computational results for the JIT-JSP instances from literature with 5 machines.

Problem
Computation time (in seconds)

TF
CPLEX OT1 OT2
AVG AVG MAX AVG MAX OT1 OT2

I-10-5-tight-equal-1 8.5E-03 4.2E-04 4.2E-04 3.7E-04 3.7E-04 20.4 23.4
I-10-5-tight-equal-2 7.9E-03 1.6E-04 1.6E-04 1.5E-04 1.5E-04 48.1 52.2
I-10-5-tight-tard-1 8.8E-03 4.4E-04 4.4E-04 4.0E-04 4.0E-04 19.8 22.1
I-10-5-tight-tard-2 8.8E-03 2.0E-04 2.0E-04 1.8E-04 1.8E-04 43.4 48.1
I-10-5-loose-equal-1 1.1E-02 8.1E-04 8.1E-04 7.2E-04 7.2E-04 13.3 15.0
I-10-5-loose-equal-2 8.2E-03 4.2E-04 4.2E-04 3.7E-04 3.7E-04 19.3 22.2
I-10-5-loose-tard-1 8.1E-03 3.8E-04 3.8E-04 3.6E-04 3.6E-04 21.1 22.3
I-10-5-loose-tard-2 8.2E-03 1.5E-04 1.5E-04 1.4E-04 1.4E-04 53.8 58.0
I-15-5-tight-equal-1 1.6E-02 2.9E-04 7.6E-04 2.9E-04 6.5E-04 54.0 54.9
I-15-5-tight-equal-2 1.5E-02 2.4E-04 5.6E-04 2.3E-04 6.0E-04 64.5 66.1
I-15-5-tight-tard-1 1.5E-02 3.0E-04 7.7E-04 2.9E-04 6.5E-04 50.6 52.0
I-15-5-tight-tard-2 1.6E-02 8.4E-04 2.2E-03 7.4E-04 1.9E-03 18.6 20.9
I-15-5-loose-equal-1 1.6E-02 2.8E-04 1.8E-03 2.7E-04 4.1E-03 55.8 58.3
I-15-5-loose-equal-2 1.4E-02 3.0E-04 6.3E-04 2.9E-04 5.8E-04 48.5 50.7
I-15-5-loose-tard-1 1.4E-02 4.2E-04 9.4E-04 3.9E-04 8.8E-04 34.5 36.8
I-15-5-loose-tard-2 1.4E-02 1.5E-03 3.8E-03 1.3E-03 3.1E-03 9.3 11.1
I-20-5-tight-equal-1 2.5E-02 2.2E-03 6.3E-03 1.9E-03 5.3E-03 11.5 13.3
I-20-5-tight-equal-2 2.5E-02 2.2E-04 5.9E-04 2.2E-04 5.7E-04 112.8 114.4
I-20-5-tight-tard-1 2.5E-02 2.8E-04 6.8E-04 2.7E-04 6.5E-04 90.9 91.9
I-20-5-tight-tard-2 2.7E-02 2.2E-03 9.4E-03 1.9E-03 1.4E-02 11.9 14.3
I-20-5-loose-equal-1 2.5E-02 3.2E-04 1.6E-03 3.1E-04 1.3E-03 78.4 79.9
I-20-5-loose-equal-2 2.4E-02 3.2E-04 9.6E-04 3.2E-04 9.0E-04 75.1 76.3
I-20-5-loose-tard-1 2.5E-02 5.0E-04 2.5E-03 4.8E-04 1.5E-03 49.8 51.5
I-20-5-loose-tard-2 2.4E-02 2.5E-04 5.9E-04 2.5E-04 6.1E-04 95.1 95.5
Average 1.6E-02 5.6E-04 1.5E-03 5.0E-04 1.7E-03 45.9 48.0

Windows 10 operating system. The LP model was coded in C language using callable libraries from CPLEX
concert technology and embedded within the OT algorithm code to compare the results.

To study the performance of the OT algorithms, a simple local search (LS) algorithm is used to generate
sequences of operations corresponding to each problem instance. Algorithm 9 shows the pseudocode of the LS
algorithm. In the LS algorithm, an initial solution is first generated by arranging the operations in the increasing
order of its due date. The initial solution (𝑋𝑖𝑛𝑖) is set as the current solution (𝑋𝑐𝑢𝑟) and a set of neighbourhood
solutions is generated corresponding to it. The best neighbourhood (with the least TWET value) replaces the
current solution if it is an improved solution. Generating neighbourhoods and selecting the best neighbourhood
to replace the current solution is repeated until there is no further improvement in the objective value. We used
the pair-wise interchange mechanism for generating neighbourhoods. Two operations in the current solution
(𝑋𝑐𝑢𝑟) are swapped if they do not violate the precedence relationships between the operations in the sequence.
An operation is paired with another operation for swapping so that the distance between their positions in the
sequence is within a specified limit. We set this limit as 50 for the computational study.

Since the proposed OT algorithms and CPLEX are exact methods, the objective values obtained with the
approaches will always be the same. Therefore, the computational performance is evaluated based on the com-
putation time. The average (AVG) and the maximum (MAX) computation time required to generate schedules
using the OT algorithms for the sequences generated by the LS procedure are considered for comparison.
CPLEX was found to generate schedules with a marginal variability in its computation time to solve different
sequences generated using the LS algorithm. Therefore, only the average computation time (AVG) required by

2642 B.S. GIRISH ET AL.

Table 3. Computational results for the JIT-JSP instances from literature with 10 machines.

Problem
Computation time (in seconds)

TF
CPLEX OT1 OT2
AVG AVG MAX AVG MAX OT1 OT2

I-10-10-tight-equal-1 2.6E-02 5.9E-04 1.4E-03 5.6E-04 1.3E-03 44.2 46.0
I-10-10-tight-equal-2 2.2E-02 1.8E-03 3.2E-03 1.6E-03 2.9E-03 12.6 14.2
I-10-10-tight-tard-1 2.2E-02 2.2E-03 6.0E-03 1.9E-03 4.8E-03 10.3 11.6
I-10-10-tight-tard-2 2.2E-02 2.9E-03 1.2E-02 2.6E-03 6.2E-03 7.6 8.5
I-10-10-loose-equal-1 2.2E-02 7.6E-04 4.0E-03 7.2E-04 2.9E-03 28.6 30.1
I-10-10-loose-equal-2 2.1E-02 6.3E-04 1.7E-03 6.1E-04 1.6E-03 32.8 34.2
I-10-10-loose-tard-1 2.1E-02 1.5E-03 2.8E-02 1.3E-03 1.8E-02 13.9 16.3
I-10-10-loose-tard-2 2.0E-02 5.9E-04 1.3E-03 5.9E-04 1.1E-03 34.9 34.7
I-15-10-tight-equal-1 4.7E-02 3.8E-04 3.5E-03 3.7E-04 2.4E-03 124.4 125.7
I-15-10-tight-equal-2 4.8E-02 4.6E-03 3.9E-02 3.8E-03 1.8E-02 10.3 12.7
I-15-10-tight-tard-1 4.9E-02 2.8E-02 1.7E-01 2.2E-02 1.3E-01 1.7 2.2
I-15-10-tight-tard-2 4.9E-02 1.4E-02 2.1E-01 1.1E-02 1.7E-01 3.6 4.5
I-15-10-loose-equal-1 4.7E-02 4.6E-03 2.7E-02 3.7E-03 1.9E-02 10.1 12.6
I-15-10-loose-equal-2 4.5E-02 5.0E-03 2.7E-02 4.1E-03 2.1E-02 9.0 10.9
I-15-10-loose-tard-1 4.5E-02 2.5E-03 1.2E-02 2.3E-03 1.4E-02 18.1 19.5
I-15-10-loose-tard-2 4.5E-02 1.3E-03 5.1E-03 1.2E-03 3.5E-03 34.6 36.6
I-20-10-tight-equal-1 8.5E-02 8.1E-04 2.2E-03 8.1E-04 2.0E-03 105.1 105.6
I-20-10-tight-equal-2 8.7E-02 2.4E-02 1.5E-01 1.8E-02 1.1E-01 3.7 4.8
I-20-10-tight-tard-1 8.5E-02 3.0E-03 1.6E-02 2.6E-03 1.6E-02 28.4 32.6
I-20-10-tight-tard-2 8.7E-02 5.4E-02 1.6 4.1E-02 1.3 1.6 2.1
I-20-10-loose-equal-1 8.5E-02 5.6E-03 1.1E-01 4.6E-03 9.6E-02 15.0 18.3
I-20-10-loose-equal-2 8.0E-02 2.8E-03 1.8E-02 2.6E-03 1.7E-02 28.4 31.3
I-20-10-loose-tard-1 8.3E-02 7.4E-04 4.5E-03 7.4E-04 9.7E-03 111.7 112.0
I-20-10-loose-tard-2 8.2E-02 4.5E-02 1.1 3.4E-02 9.4E-01 1.8 2.4
Average 5.1E-02 8.6E-03 1.5E-01 6.8E-03 1.2E-01 28.9 30.4

Algorithm 9: Pseudocode of the local search algorithm
1 𝑋𝑖𝑛𝑖 ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛
2 𝑋𝑐𝑢𝑟 ← 𝑋𝑖𝑛𝑖

3 do
4 𝑓𝑏𝑒𝑠𝑡 ← 𝑓(𝑋𝑐𝑢𝑟)
5 𝑋𝑏𝑒𝑠𝑡 ← 𝑋𝑐𝑢𝑟

6 𝑁𝐻 ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑𝑠(𝑋𝑐𝑢𝑟)
7 𝑋𝑐𝑢𝑟 ← 𝑆𝑒𝑙𝑒𝑐𝑡𝐵𝑒𝑠𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟(𝑁𝐻)

8 while 𝑓(𝑋𝑐𝑢𝑟) < 𝑓𝑏𝑒𝑠𝑡

CPLEX to generate schedules has been considered for the performance comparison. We use the ratio between
the average computation time required by CPLEX and the average computation time required by OT algorithm
as a measure for performance comparison between the OT algorithms and CPLEX. We call this performance
measure as times faster (𝑇𝐹) to indicate how many times the OT algorithm is faster than CPLEX. 𝑇𝐹 will
be a useful measure to assess the performance improvement if OT algorithms are used instead of CPLEX for
schedule generation. 𝑇𝐹 is determined as follows.

𝑇𝐹 =
Average computation time (AVG) required by CPLEX

Average computation time (AVG) required by the OT algorithm
· (5.1)

MINIMIZING THE TOTAL WEIGHTED EARLINESS AND TARDINESS 2643

Table 4. Computational results for larger size JIT-JSP instances.

Problem
Computation time (in seconds)

TF
CPLEX OT1 OT2
AVG AVG MAX AVG MAX OT1 OT2

N-25-10-tight-equal 1.5E-01 1.3E-03 7.4E-03 1.2E-03 5.4E-03 114.0 132.0
N-25-10-tight-tard 1.5E-01 8.9E-04 2.8E-03 8.0E-04 2.5E-03 165.7 183.7
N-25-10-loose-equal 1.5E-01 1.2E-03 5.2E-03 1.0E-03 3.5E-03 120.4 141.2
N-25-10-loose-tard 1.4E-01 7.0E-04 6.4E-03 6.5E-04 3.1E-03 204.4 221.0
N-25-15-tight-equal 2.8E-01 2.7E-02 6.2 2.7E-02 6.1 10.2 10.3
N-25-15-tight-tard 2.8E-01 4.0E-03 2.1E-02 3.3E-03 1.8E-02 69.6 82.5
N-25-15-loose-equal 2.8E-01 9.5E-02 4.8 9.1E-02 4.7 2.9 3.1
N-25-15-loose-tard 2.8E-01 1.2E-01 309.6 1.1E-01 309.4 2.3 2.6
N-25-20-tight-equal 4.7E-01 8.6E-02 3.3 8.4E-02 3.3 5.5 5.6
N-25-20-tight-tard 4.7E-01 2.0 190.5 1.8 184.5 0.2 0.3
N-25-20-loose-equal 4.7E-01 8.0E-01 198.5 7.7E-01 197.7 0.6 0.6
N-25-20-loose-tard 4.6E-01 5.0 220.2 4.9 207.1 0.1 0.1
N-30-10-tight-equal 1.9E-01 1.8E-03 6.9E-03 1.6E-03 6.8E-03 107.7 123.2
N-30-10-tight-tard 1.9E-01 1.1E-03 2.4E-03 9.6E-04 2.2E-03 183.2 201.5
N-30-10-loose-equal 1.9E-01 1.7E-03 3.2E-03 1.4E-03 2.9E-03 117.2 139.5
N-30-10-loose-tard 1.9E-01 3.7E-03 2.4E-03 1.2E-03 1.0E-03 52.3 164.3
N-30-15-tight-equal 3.9E-01 4.7E-02 9.9E-01 4.7E-02 9.7E-01 8.2 8.3
N-30-15-tight-tard 4.0E-01 6.4E-03 3.5E-02 5.1E-03 3.5E-02 62.9 78.7
N-30-15-loose-equal 3.9E-01 1.7E-01 11.0 1.7E-01 10.6 2.3 2.3
N-30-15-loose-tard 3.9E-01 1.7E-02 3.8 1.5E-02 3.8 22.7 25.6
N-30-20-tight-equal 6.8E-01 5.5E-01 35.0 5.0E-01 16.0 1.2 1.3
N-30-20-tight-tard 6.7E-01 5.2E-01 80.0 5.1E-01 79.7 1.3 1.3
N-30-20-loose-equal 6.6E-01 5.3 604.5 3.6 506.5 0.1 0.2
N-30-20-loose-tard 6.6E-01 1.9 162.0 1.9 80.3 0.3 0.4

The following sections present the performance comparison between the OT algorithms and CPLEX on
JIT-JSP and ETSP instances.

5.1. Performance comparison on JIT-JSP instances

Tables 1, 2 and 3 show the results obtained with the OT algorithms and CPLEX for the JIT-JSP instances
from literature with 2, 5 and 10 machines, respectively. OT1 represents the enumeration method, and OT2
represents the improved method. The comparison between the average 𝑇𝐹 values of OT1 and OT2 with CPLEX
reveals that the OT algorithms are approximately 30 to 50 times faster than CPLEX in generating the schedules.
With the increase in the number of machines, the average 𝑇𝐹 values of the OT algorithms decreases. The
comparison between the average 𝑇𝐹 values of OT1 and OT2 reveals that the performance of the OT2 algorithm
is slightly better than that of the OT1 algorithm. The comparison between the AVG values of the OT algorithms
with that of CPLEX reveals that the OT algorithms consistently perform better than CPLEX. The comparison
of MAX values of the OT algorithms with the corresponding AVG values of CPLEX reveals that, for problem
instances involving 2 and 5 machines, the OT algorithms consistently perform better than CPLEX. However, for
a few instances with 10 machines shown in Table 3, the MAX values of the OT algorithms are inferior compared
to the corresponding AVG values of CPLEX. This indicates that for a few larger size instances (i.e. instances
with 15 and 20 jobs) with 10 machines, the OT algorithms required higher computation time than CPLEX to
generate schedules for some of the sequences generated with the LS algorithm. However, the AVG values of the
OT algorithms for those instances are marginally better than that of CPLEX. Hence, it can be concluded that
the proposed OT algorithms are competitive with CPLEX in terms of computation time for small and medium

2644 B.S. GIRISH ET AL.

Table 5. Computational results for the ETSP instances from literature with 2 machines.

Problem
Computation time (in seconds)

TF
CPLEX OT1 OT2
AVG AVG MAX AVG MAX OT1 OT2

I-10-2-tight-equal-1 7.6E-03 3.2E-05 3.2E-05 3.1E-05 3.1E-05 237.4 245.1
I-10-2-tight-equal-2 3.5E-03 2.1E-05 2.1E-05 1.9E-05 1.9E-05 168.5 186.2
I-10-2-tight-tard-1 3.6E-03 3.4E-05 3.4E-05 3.3E-05 3.3E-05 105.5 108.7
I-10-2-tight-tard-2 3.6E-03 4.6E-05 4.6E-05 4.1E-05 4.1E-05 78.3 87.9
I-10-2-loose-equal-1 3.6E-03 1.5E-05 1.5E-05 1.3E-05 1.3E-05 237.5 274.0
I-10-2-loose-equal-2 3.6E-03 4.8E-05 4.8E-05 4.4E-05 4.4E-05 75.8 82.7
I-10-2-loose-tard-1 3.6E-03 2.9E-05 2.9E-05 2.7E-05 2.7E-05 124.7 133.9
I-10-2-loose-tard-2 3.6E-03 7.1E-05 7.1E-05 3.6E-05 3.6E-05 50.3 99.2
I-15-2-tight-equal-1 5.5E-03 2.4E-05 2.4E-05 2.1E-05 2.1E-05 230.6 263.5
I-15-2-tight-equal-2 5.1E-03 3.5E-05 3.5E-05 3.0E-05 3.0E-05 145.6 169.8
I-15-2-tight-tard-1 5.2E-03 4.4E-05 4.4E-05 4.0E-05 4.0E-05 117.1 128.8
I-15-2-tight-tard-2 4.6E-03 2.3E-05 2.3E-05 2.0E-05 2.0E-05 198.0 227.7
I-15-2-loose-equal-1 5.2E-03 2.4E-05 2.4E-05 2.2E-05 2.2E-05 215.0 234.5
I-15-2-loose-equal-2 5.1E-03 5.1E-05 5.1E-05 4.7E-05 4.7E-05 100.4 109.0
I-15-2-loose-tard-1 5.3E-03 3.6E-05 3.6E-05 3.3E-05 3.3E-05 146.1 159.3
I-15-2-loose-tard-2 5.0E-03 7.5E-05 7.5E-05 6.9E-05 6.9E-05 67.0 72.8
I-20-2-tight-equal-1 6.3E-03 3.1E-05 3.1E-05 2.8E-05 2.8E-05 202.4 224.1
I-20-2-tight-equal-2 7.1E-03 5.3E-05 5.3E-05 4.7E-05 4.7E-05 134.6 151.7
I-20-2-tight-tard-1 7.3E-03 5.8E-05 5.8E-05 5.4E-05 5.4E-05 126.4 135.7
I-20-2-tight-tard-2 7.1E-03 6.5E-05 6.5E-05 5.7E-05 5.7E-05 108.6 123.9
I-20-2-loose-equal-1 6.3E-03 3.1E-05 3.1E-05 2.9E-05 2.9E-05 203.6 217.7
I-20-2-loose-equal-2 7.1E-03 4.9E-05 4.9E-05 4.5E-05 4.5E-05 144.5 157.4
I-20-2-loose-tard-1 6.6E-03 5.0E-05 5.0E-05 4.7E-05 4.7E-05 131.0 139.4
I-20-2-loose-tard-2 6.7E-03 5.2E-05 5.2E-05 4.8E-05 4.8E-05 129.1 139.8
Average 5.3E-03 4.2E-05 4.2E-05 3.7E-05 3.7E-05 144.9 161.4

size problems. For larger size problems with 10 machines, the proposed OT algorithms are not consistent in
their performance. They require higher computation time than CPLEX to generate schedules for some of the
sequences generated by the LS algorithm.

The above results obtained with the benchmark instances from literature reveal that, with the increase
in problem size, the performance of the OT algorithms deteriorates compared to CPLEX. To analyze the
performance bounds beyond which the CPLEX would get closer or perform better than the OT algorithms in
terms of the average computational time (AVG), we generated larger size instances with up to 30 jobs and 20
machines. The problem instances were generated based on the procedure used in the literature [5], described in
Section 5 of this paper. The newly generated instances are named in the pattern 𝑁−𝑛−𝑚−𝐷𝐷−𝑊 , where the
notations 𝑛, 𝑚, 𝐷𝐷 and 𝑊 are the same as described previously for the instances from the literature, shown in
Tables 1, 2 and 3. Table 4 shows the results obtained with OT algorithms and CPLEX for the newly generated
larger size instances. The results reveal that, for some of the instances involving 20 machines, the 𝑇𝐹 values
are less than 1, which are highlighted in bold in Table 4. This shows that, as the problem size increases to 25
jobs and 20 machines, CPLEX performs relatively better than the OT algorithms. The MAX values obtained
with the OT algorithms for instances involving 20 machines are also much higher, as shown in Table 4. The
reasons can be attributed to the exponential complexity of the OT algorithms. This limits their application to
small and medium-sized JIT-JSP instances, particularly while implementing within heuristic and metaheuristic
algorithms.

MINIMIZING THE TOTAL WEIGHTED EARLINESS AND TARDINESS 2645

Table 6. Computational results for the ETSP instances from literature with 5 machines.

Problem
Computation time (in seconds)

TF
CPLEX OT1 OT2
AVG AVG MAX AVG MAX OT1 OT2

I-10-5-tight-equal-1 9.2E-03 1.8E-05 1.8E-05 1.5E-05 1.5E-05 513.1 615.7
I-10-5-tight-equal-2 7.8E-03 1.8E-05 1.8E-05 1.5E-05 1.5E-05 432.3 518.8
I-10-5-tight-tard-1 8.5E-03 2.4E-05 2.4E-05 2.1E-05 2.1E-05 354.2 404.8
I-10-5-tight-tard-2 7.8E-03 1.7E-05 1.7E-05 1.4E-05 1.4E-05 456.5 554.4
I-10-5-loose-equal-1 8.6E-03 1.5E-05 1.5E-05 1.4E-05 1.4E-05 575.3 616.4
I-10-5-loose-equal-2 7.8E-03 1.9E-05 1.9E-05 1.4E-05 1.4E-05 408.5 554.4
I-10-5-loose-tard-1 7.4E-03 4.2E-05 4.2E-05 4.0E-05 4.0E-05 175.3 184.1
I-10-5-loose-tard-2 9.2E-03 1.4E-05 1.4E-05 1.3E-05 1.3E-05 658.3 708.9
I-15-5-tight-equal-1 1.5E-02 2.2E-05 5.8E-05 2.2E-05 8.0E-05 671.2 671.2
I-15-5-tight-equal-2 1.4E-02 2.3E-05 7.7E-05 2.3E-05 6.4E-05 624.0 624.0
I-15-5-tight-tard-1 1.4E-02 2.1E-05 6.0E-05 2.1E-05 5.8E-05 672.2 672.2
I-15-5-tight-tard-2 1.4E-02 2.3E-05 6.9E-05 2.2E-05 5.8E-05 606.0 633.6
I-15-5-loose-equal-1 1.4E-02 2.2E-05 7.3E-05 2.2E-05 7.7E-05 636.3 636.3
I-15-5-loose-equal-2 1.4E-02 2.0E-05 6.3E-05 2.0E-05 6.0E-05 698.4 698.4
I-15-5-loose-tard-1 1.4E-02 2.1E-05 6.5E-05 2.0E-05 5.4E-05 667.6 701.0
I-15-5-loose-tard-2 1.5E-02 6.4E-05 1.6E-04 6.7E-05 1.6E-04 241.5 230.7
I-20-5-tight-equal-1 2.3E-02 3.2E-05 1.4E-04 3.2E-05 1.2E-04 724.1 724.1
I-20-5-tight-equal-2 2.3E-02 3.4E-05 2.2E-04 3.4E-05 1.1E-04 689.4 689.4
I-20-5-tight-tard-1 2.3E-02 2.9E-05 1.0E-04 2.9E-05 1.1E-04 800.1 800.1
I-20-5-tight-tard-2 2.3E-02 3.2E-05 1.2E-04 3.3E-05 1.1E-04 721.6 699.8
I-20-5-loose-equal-1 2.3E-02 2.9E-05 1.2E-04 2.9E-05 1.0E-04 801.2 801.2
I-20-5-loose-equal-2 2.3E-02 3.2E-05 2.1E-04 3.1E-05 1.1E-04 723.7 747.0
I-20-5-loose-tard-1 2.3E-02 2.9E-05 1.7E-04 2.9E-05 1.0E-04 795.6 795.6
I-20-5-loose-tard-2 2.4E-02 2.9E-05 1.2E-04 2.9E-05 1.2E-04 835.4 835.4
Average 1.5E-02 2.6E-05 8.4E-05 2.5E-05 6.8E-05 603.4 629.9

5.2. Performance comparison on ETSP instances

Tables 5, 6 and 7 show the results obtained with the OT algorithms and CPLEX for the ETSP instances
from literature with 2, 5 and 10 machines, respectively. We have considered both the enumeration and the
improved methods represented in the tables as OT1 and OT2, respectively. The 𝑇𝐹 values of OT1 and OT2 in
the tables reveal that the OT algorithms are approximately 50 to 1500 times faster than CPLEX in generating
the schedules. The comparison between the average values of AVG of the OT algorithms for the instances with
2, 5 and 10 machines reveals that the performance of the OT algorithms has negligible influence on the increase
in number of machines. However, the average 𝑇𝐹 values of the OT algorithms increase with the increase in the
number of machines due to the increase in AVG values of CPLEX. This shows that CPLEX is more influenced
by the increase in problem size than the OT algorithms. The comparison between the average 𝑇𝐹 values of OT1
and OT2 reveals that the performance of the OT2 algorithm is slightly better than that of the OT1 algorithm.
The comparison in terms of AVG and MAX values of the OT algorithms with that of CPLEX reveals that
irrespective of the problem size, the OT algorithms consistently outperform CPLEX.

In addition to the problem instances from literature, we generated larger size ETSP instances with upto 50
jobs and 30 machines to analyze if the performance of CPLEX would get closer or perform better than the
OT algorithms. Table 8 shows the results obtained with OT algorithms and CPLEX for the newly generated
larger size instances. The results reveal that, with the increase in problem size, the OT algorithms perform
much better than CPLEX. The OT algorithms generated schedules approximately 15000 times faster than that
of CPLEX for instances with 50 jobs and 30 machines.

2646 B.S. GIRISH ET AL.

Table 7. Computational results for the ETSP instances from literature with 10 machines.

Problem
Computation time (in seconds)

TF
CPLEX OT1 OT2
AVG AVG MAX AVG MAX OT1 OT2

I-10-10-tight-equal-1 2.4E-02 1.6E-05 9.7E-05 1.6E-05 5.5E-05 1527.2 1527.2
I-10-10-tight-equal-2 2.1E-02 1.7E-05 5.5E-05 1.7E-05 4.7E-05 1237.6 1237.6
I-10-10-tight-tard-1 2.1E-02 1.5E-05 6.3E-05 1.5E-05 4.5E-05 1405.5 1405.5
I-10-10-tight-tard-2 2.1E-02 3.0E-05 7.7E-05 2.9E-05 8.2E-05 704.3 728.6
I-10-10-loose-equal-1 2.1E-02 3.8E-05 8.0E-05 3.7E-05 1.2E-04 551.1 565.9
I-10-10-loose-equal-2 2.1E-02 3.2E-05 6.4E-05 3.1E-05 4.7E-05 660.0 681.3
I-10-10-loose-tard-1 2.1E-02 3.6E-05 8.6E-05 3.5E-05 1.2E-04 584.3 601.0
I-10-10-loose-tard-2 2.2E-02 2.6E-05 8.4E-05 2.5E-05 7.7E-05 837.3 870.8
I-15-10-tight-equal-1 4.5E-02 2.3E-05 9.0E-05 2.3E-05 1.0E-04 1969.7 1969.7
I-15-10-tight-equal-2 4.5E-02 2.3E-05 1.1E-04 2.3E-05 9.4E-05 1957.3 1957.3
I-15-10-tight-tard-1 4.5E-02 5.9E-05 1.7E-04 5.5E-05 1.4E-04 758.6 813.8
I-15-10-tight-tard-2 4.5E-02 2.4E-05 1.1E-04 2.4E-05 8.1E-05 1878.4 1878.4
I-15-10-loose-equal-1 4.5E-02 4.7E-05 1.7E-04 4.4E-05 2.2E-04 955.5 1020.6
I-15-10-loose-equal-2 4.5E-02 4.0E-05 1.4E-04 3.7E-05 1.3E-04 1122.7 1213.7
I-15-10-loose-tard-1 4.5E-02 5.6E-05 2.1E-04 5.2E-05 1.9E-04 802.3 864.1
I-15-10-loose-tard-2 4.6E-02 2.6E-05 1.0E-04 2.6E-05 3.1E-04 1785.4 1785.4
I-20-10-tight-equal-1 7.8E-02 3.3E-05 3.1E-04 3.3E-05 7.4E-04 2375.2 2375.2
I-20-10-tight-equal-2 7.8E-02 3.3E-05 1.2E-04 3.3E-05 1.8E-04 2362.6 2362.6
I-20-10-tight-tard-1 7.9E-02 3.6E-05 1.9E-04 3.6E-05 1.4E-04 2201.3 2201.3
I-20-10-tight-tard-2 7.8E-02 3.5E-05 9.2E-04 3.5E-05 1.5E-04 2241.7 2241.7
I-20-10-loose-equal-1 7.9E-02 3.3E-05 2.2E-04 3.3E-05 2.1E-04 2393.1 2393.1
I-20-10-loose-equal-2 7.8E-02 3.7E-05 1.4E-04 3.6E-05 1.2E-04 2120.2 2179.1
I-20-10-loose-tard-1 7.9E-02 3.3E-05 2.1E-04 3.3E-05 1.7E-04 2382.2 2382.2
I-20-10-loose-tard-2 8.2E-02 5.8E-05 2.7E-04 5.5E-05 2.8E-04 1415.6 1492.8
Average 4.9E-02 3.4E-05 1.7E-04 3.3E-05 1.6E-04 1509.5 1531.2

6. Conclusions

In this paper, we presented exact algorithms to generate optimal timing schedules for two job shop scheduling
scenarios, namely JIT-JSP and ETSP. In JIT-JSP, each operation has a due date and the associated weights to
penalize its earliness and tardiness. The scheduling objective of JIT-JSP involves minimization of the weighted
sum of earliness and tardiness associated with the deviation of completion time of each operation from its
respective due date. On the other hand, in ETSP, only the last operation of each job has a due date and the
associated weights to penalize its earliness and tardiness. The scheduling objective of ETSP involves minimiza-
tion of the weighted sum of earliness and tardiness associated with the deviation of completion time of each
job from its respective due date. We proposed two OT algorithms to generate optimal schedules, which can
be used for both scheduling scenarios. The first method, namely OT1, is an enumeration method. The second
method, namely OT2, improves the first method that uses dominance rules to reduce the solution space, thereby
improving the computation time. The performance of the OT Algorithms, OT1 and OT2, was compared with
the CPLEX solver for several JIT-JSP and ETSP instances. The computational experiments revealed that the
improved method (OT2) performed slightly better than the enumeration method (OT1) on all the problem
instances. Though the OT algorithms have exponential complexity, the computational study revealed that they
are practical in generating schedules in reasonable computation time and competitive with CPLEX for small
and medium size JIT-JSP instances. In the case of ETSP instances, the OT algorithms generated schedules in
short computation time and consistently outperformed CPLEX in all the problem instances.

MINIMIZING THE TOTAL WEIGHTED EARLINESS AND TARDINESS 2647

Table 8. Computational results for larger size ETSP instances.

Problem
Computation time (in seconds)

TF
CPLEX OT1 OT2
AVG AVG MAX AVG MAX OT1 OT2

N-25-20-tight-equal 0.47 8.5E-05 4.7E-04 8.5E-05 2.9E-04 5516.5 5516.5
N-25-20-tight-tard 0.47 8.6E-05 3.2E-04 8.6E-05 2.5E-04 5465.6 5465.6
N-25-20-loose-equal 0.47 8.3E-05 2.5E-04 8.2E-05 2.6E-04 5629.8 5698.5
N-25-20-loose-tard 0.46 8.7E-05 3.7E-04 8.8E-05 3.1E-04 5344.4 5283.7
N-30-20-tight-equal 0.66 1.1E-04 3.7E-04 1.1E-04 3.2E-04 6014.9 6014.9
N-30-20-tight-tard 0.66 1.0E-04 3.4E-04 1.0E-04 3.0E-04 6450.5 6450.5
N-30-20-loose-equal 0.66 1.1E-04 1.6E-03 1.1E-04 6.4E-04 6253.9 6253.9
N-30-20-loose-tard 0.66 1.0E-04 3.3E-04 1.0E-04 2.9E-04 6359.5 6421.2
N-35-20-tight-equal 0.89 1.4E-04 7.8E-03 1.4E-04 5.9E-04 6535.1 6583.5
N-35-20-tight-tard 0.90 1.5E-04 5.3E-04 1.5E-04 4.9E-04 6001.3 6041.5
N-35-20-loose-equal 0.90 1.3E-04 3.7E-04 1.3E-04 3.5E-04 7005.1 7060.3
N-35-20-loose-tard 0.90 1.3E-04 1.1E-02 1.3E-04 9.4E-03 6872.6 6872.6
N-40-30-tight-equal 2.57 2.4E-04 8.1E-04 2.3E-04 6.1E-04 10909.4 11002.6
N-40-30-tight-tard 2.57 2.4E-04 6.1E-04 2.4E-04 7.1E-04 10561.9 10649.6
N-40-30-loose-equal 2.57 2.2E-04 5.8E-04 2.2E-04 5.5E-04 11837.4 11892.2
N-40-30-loose-tard 2.57 1.9E-04 6.1E-04 1.9E-04 5.7E-04 13326.7 13396.1
N-45-30-tight-equal 3.30 2.5E-04 5.4E-03 2.5E-04 1.3E-03 13379.3 13433.6
N-45-30-tight-tard 3.22 2.3E-04 1.8E-02 2.3E-04 1.1E-02 14198.0 14260.8
N-45-30-loose-equal 3.29 2.3E-04 1.6E-02 2.3E-04 1.6E-02 14250.8 14189.4
N-45-30-loose-tard 3.24 2.5E-04 6.5E-04 2.5E-04 6.1E-04 12758.2 12758.2
N-50-30-tight-equal 3.98 2.8E-04 1.2E-03 2.8E-04 6.8E-04 14354.4 14406.4
N-50-30-tight-tard 4.03 3.3E-04 5.3E-03 3.3E-04 4.0E-03 12129.3 12165.9
N-50-30-loose-equal 4.02 2.8E-04 1.4E-03 2.8E-04 1.5E-03 14373.8 14271.8
N-50-30-loose-tard 3.99 2.7E-04 3.3E-03 2.7E-04 2.5E-03 14557.2 14610.5

To the best of our knowledge, this is the first reported study on exact approaches for generating optimal
schedules in job shop scheduling problems with TWET minimization objective. Future research can be directed
towards improving the proposed OT algorithms to reduce their computational complexity. The schedule gen-
eration mechanism in the proposed OT algorithms allows them to be used with priority dispatching rules.
Therefore, a future research direction would be developing and implementing priority dispatching rules for the
static and dynamic job shop scheduling problems. The proposed OT algorithms can be employed to generate
schedules within heuristic and metaheuristic approaches. Therefore, future research can also be directed towards
developing efficient heuristic and metaheuristic approaches incorporating the proposed OT algorithms. Future
research can also directed towards extending the proposed OT algorithms to generate schedules in other related
multi-machine scheduling problems.

Acknowledgements. The authors are thankful to the Area Editor and the anonymous reviewers for giving constructive
comments for improving this paper.

References

[1] N.R. Adam and J. Surkis, Priority update intervals and anomalies in dynamic ratio type job shop scheduling rules. Manage.
Sci. 26 (1980) 1227–1237.

[2] M.M. Ahmadian and A. Salehipour, The just-in-time job shop scheduling problem with distinct due-dates for operations.
J. Heuristics 27 (2021) 175–204.

[3] M.M. Ahmadian, A. Salehipour and T.C.E. Cheng, A meta-heuristic to solve the just-in-time job-shop scheduling problem.
Eur. J. Oper. Res. 288 (2021) 14–29.

2648 B.S. GIRISH ET AL.

[4] R.P. Araujo, A.G. dos Santos and J.E.C. Arroyo, Genetic Algorithm and Local Search for Just-in-Time Job–Shop Scheduling.
In: Proceedings of the 2009 IEEE Congress on Evolutionary Computation (CEC 2009) (2009) 955–961.

[5] P. Baptiste, M. Flamini and F. Sourd, Lagrangian bounds for just-in-time job-shop scheduling. Comput. Oper. Res. 35 (2008)
906–915.

[6] J. Bauman and J. Józefowska, Minimizing the earliness–tardiness costs on a single machine. Comput. Oper. Res. 33 (2006)
3219–3230.

[7] J.C. Beck and P. Refalo, A hybrid approach to scheduling with earliness and tardiness costs. Ann. Oper. Res. 118 (2003)
49–71.

[8] J.H. Blackstone, D.T. Phillips and G.L. Hogg, A state-of-the-art survey of dispatching rules for manufacturing job shop
operations. Int. J. Prod. Res. 20 (1982) 27–45.

[9] F.D. Croce and M. Trubian, Optimal idle time insertion in early-tardy parallel machines scheduling with precedence con-
straints. Prod. Plan. Control. 13 (2002) 133–142.

[10] P. Chretienne, Minimizing the earliness and tardiness cost of a sequence of tasks on a single machine. RAIRO-Oper. Res. 35
(2001) 165–187.

[11] P. Chretienne and F. Sourd, PERT scheduling with convex cost functions. Theor. Comput. Sci. 292 (2003) 145–164.

[12] T. Cleveland, Number Theory. Ed-Tech Press (2020).

[13] E. Danna, E. Rothberg and C.L. Pape, Integrating mixed integer programming and local search: A case on Job-shop schedul-
ing problems. In: Proceedings of the Fifth International Workshop on Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimisation Problems (CPAIOR’03) (2003) 65–79.

[14] A.G. dos Santos, R.P. Araujo and J.E.C. Arroyo, A combination of evolutionary algorithm, mathematical programming,
and a new local search procedure for the just-in-time job-shop scheduling problem. In Vol. 6073 of Learning and Intelligent
Optimization (LION 2010), edited by C. Blum and R. Battiti, Lecture Notes in Computer Science, Springer-Verlag, Berlin-
Heidelberg (2010) 10–24.

[15] G. Feng and H.C. Lau, Efficient algorithms for machine scheduling problems with earliness and tardiness penalties. Ann.
Oper. Res. 159 (2008) 83–95.

[16] M.R. Garey, R.E. Tarjan and G.T. Wilfong, One-Processor Scheduling with Symmetric Earliness and Tardiness Penalties.
Math. Oper. Res. 13 (1988) 330–348.

[17] B. Giffler and G.L. Thompson, Algorithms for solving production-scheduling problems. Oper. Res. 8 (1960) 487–503.

[18] B.S. Girish, An efficient hybrid particle swarm optimization algorithm in a rolling horizon framework for the aircraft landing
problem. Appl. Soft Comput. 44 (2016) 200–221.

[19] Y. Hendel and F. Sourd, An improved earliness–tardiness timing algorithm. Comput. Oper. Res. 34 (2007) 2931–2938.

[20] IBM software, IBM ILOG CPLEX Optimization Studio CPLEX User’s Manual version 12 Release 8, IBM, 2017. Available
online: https://www.ibm.com/support/pages/introduction-concert-technology.

[21] A.S. Jain and S. Meeran, Deterministic job-shop scheduling: Past, present and future. Eur. J. Oper. Res. 113 (1999) 390–434.

[22] J. Józefowska, Just-in-time concept in manufacturing and computer systems, In: Just-In-Time Scheduling: Models and Algo-
rithms for Computer and Manufacturing Systems, Vol. 106 of International Series In Operations Research, Springer, Boston
(2007) 1–23.

[23] J. Kelbel and Z. Hanzalek, Solving production scheduling with earliness/tardiness penalties by constraint programming.
J. Intell. Manuf. 22 (2011) 553–562.

[24] C.Y. Lee and J.Y. Choi, A genetic algorithm for job sequencing problems with distinct due dates and general early-tardy
penalty weights. Comput. Oper. Res. 22 (1995) 857–869.

[25] J. Monette, Y. Deville and P.V. Hentenryck, Just-in-time scheduling with constraint programming. In: Proceedings of the
Nineteenth International Conference on Automated Planning and Scheduling (ICAPS 2009) (2009) 241–248.

[26] S.G. Ponnambalam, N. Jawahar and B.S. Girish, Giffler and Thompson procedure based genetic algorithms for scheduling
job shops, In: Computational intelligence of flow shop and job shop scheduling, In Vol. 230 of Studies in Computational
Intelligence, Springer-Verlag, Berlin-Heidelberg (2010) 229–259.

[27] W. Szwarc and S.K. Mukhopadhyay, Optimal timing schedules in earliness-tardiness single machine sequencing. Nav. Res.
Logist. 42 (1995) 1109–1114.

[28] M. Vanhoucke, E. Demeulemeester and W. Herroelen, An exact procedure for the resource-constrained weighted earliness–
Tardiness project scheduling problem. Ann. Oper. Res. 102 (2001) 179–196.

[29] G. Wan and B.P.C. Yen, Tabu search for single machine scheduling with distinct due windows and weighted earliness/tardiness
penalties. Eur. J. Oper. Res. 142 (2002) 271–281.

[30] S. Wang and Y. Li, Variable neighbourhood search and mathematical programming for just-in-time job-shop scheduling
problem. Math. Probl. Eng. 2014 (2014) 1–9.

[31] H. Yang, J. Li and L. Qi, An Improved Genetic Algorithm For Just-In-Time Job-Shop Scheduling Problem. Adv. Mat. Res.
472–475 (2012) 2462–2467.

[32] H. Yang, Q. Sun, C. Saygin and S. Sun, Job shop scheduling based on earliness and tardiness penalties with due dates and
deadlines: an enhanced genetic algorithm. Int. J. Adv. Manuf. Technol. 61 (2012) 657–666.

https://www.ibm.com/support/pages/introduction-concert-technology

MINIMIZING THE TOTAL WEIGHTED EARLINESS AND TARDINESS 2649

[33] J. Zhang, G. Ding, Y. Zhou, S. Qin and J. Fu, Review of job shop scheduling research and its new perspectives under industry
4.0. J. Intell. Manuf. 30 (2019) 1809–1830.

This journal is currently published in open access under a Subscribe-to-Open model (S2O). S2O is a transformative
model that aims to move subscription journals to open access. Open access is the free, immediate, online availability of
research articles combined with the rights to use these articles fully in the digital environment. We are thankful to our
subscribers and sponsors for making it possible to publish this journal in open access, free of charge for authors.

Please help to maintain this journal in open access!

Check that your library subscribes to the journal, or make a personal donation to the S2O programme, by contacting
subscribers@edpsciences.org

More information, including a list of sponsors and a financial transparency report, available at: https://www.
edpsciences.org/en/maths-s2o-programme

mailto:subscribers@edpsciences.org
https://www.edpsciences.org/en/maths-s2o-programme
https://www.edpsciences.org/en/maths-s2o-programme

	Introduction
	Literature review
	Problem formulation
	Just-in-time job shop scheduling problem
	Early/tardy job shop scheduling problem

	The proposed optimal timing algorithms
	The proposed OT algorithms for JIT-JSP
	Enumeration method
	Improved method

	The proposed OT algorithm for ETSP

	Computational results
	Performance comparison on JIT-JSP instances
	Performance comparison on ETSP instances

	Conclusions
	References

