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ISOLATED TOUGHNESS FOR PATH FACTORS IN NETWORKS

Sufang Wang1,* and Wei Zhang2

Abstract. Let ℋ be a set of connected graphs. Then an ℋ-factor is a spanning subgraph of 𝐺, whose
every connected component is isomorphic to a member of the set ℋ. An ℋ-factor is called a path factor
if every member of the set ℋ is a path. Let 𝑘 ≥ 2 be an integer. By a 𝑃≥𝑘-factor we mean a path factor
in which each component path admits at least 𝑘 vertices. A graph 𝐺 is called a (𝑃≥𝑘, 𝑛)-factor-critical
covered graph if for any 𝑊 ⊆ 𝑉 (𝐺) with |𝑊 | = 𝑛 and any 𝑒 ∈ 𝐸(𝐺 −𝑊 ), 𝐺 −𝑊 has a 𝑃≥𝑘-factor
covering 𝑒. In this article, we verify that (i) an (𝑛+𝜆+2)-connected graph 𝐺 is a (𝑃≥2, 𝑛)-factor-critical
covered graph if its isolated toughness 𝐼(𝐺) > 𝑛+𝜆+2

2𝜆+3
, where 𝑛 and 𝜆 are two nonnegative integers; (ii)

an (𝑛 + 𝜆 + 2)-connected graph 𝐺 is a (𝑃≥3, 𝑛)-factor-critical covered graph if its isolated toughness
𝐼(𝐺) > 𝑛+3𝜆+5

2𝜆+3
, where 𝑛 and 𝜆 be two nonnegative integers.
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1. Introduction

We may model real-world networks by graphs. The vertices of the graph stand for the nodes of the network,
and the edges of the graph act as the links between the nodes in the network. Henceforth, we replace “network” by
the term “graph”. Thus we may use several graphic parameters to characterize the robustness and vulnerability
of the network, for instance, isolated toughness, independence number and minimum degree, and so on. In data
transmission networks, the data transmission between two sites of a network goes through a path between two
corresponding vertices of a corresponding graph. Therefore, the availability of data transmission in the network
is equal to the existence of path factor in the corresponding graph which is generated by the network. When some
nodes are damaged and a special channel is assigned, the possibility of data transmission in a data transmission
network is equivalent to the existence of path factor critical covered graph. Research on the existence of path
factors or path factor critical covered graphs under specific network structures can help scientists to design
and construct networks with high data transmission rates. In this article, we study the existence of path factor
critical covered graphs which play a key role in investigating data transmissions of data transmission networks.
We find that there is strong essential connection between isolated toughness and the existence of path factor
critical covered graphs, and hence investigations on isolated toughness, which play an irreplaceable role in the
vulnerability of the network and the feasibility of data transmission, can yield theoretical guidance to meet data
transmission and network security requirements.
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In this article, we discuss only finite undirected graphs without loops or multiple edges. We denote a graph
by 𝐺 = (𝑉 (𝐺), 𝐸(𝐺)), where 𝑉 (𝐺) is the vertex set of 𝐺 and 𝐸(𝐺) is the edge set of 𝐺. Let 𝑖(𝐺) denote the
number of isolated vertices of 𝐺, and let 𝜔(𝐺) denote the number of connected components of 𝐺. For 𝑥 ∈ 𝑉 (𝐺),
we denote by 𝑑𝐺(𝑥) the degree of 𝑥 in 𝐺. Let 𝑋 be a subset of 𝑉 (𝐺). We call that 𝑋 is independent if no two
elements in 𝑋 are adjacent, and we denote by 𝐺[𝑉 (𝐺)∖𝑋] the subgraph of 𝐺 induced by 𝑉 (𝐺)∖𝑋. Yang et al.
[13] defined a graphic parameter, isolated toughness of 𝐺, denoted by 𝐼(𝐺), namely,

𝐼(𝐺) = min
{︂

|𝑋|
𝑖(𝐺−𝑋)

: 𝑋 ⊆ 𝑉 (𝐺), 𝑖(𝐺−𝑋) ≥ 2
}︂

if 𝐺 is not a complete graph; otherwise, 𝐼(𝐺) = +∞. Write 𝐾𝑛 and 𝑃𝑛 for the complete graph and the path of
order 𝑛, respectively.

Let ℋ be a set of connected graphs. Then an ℋ-factor is a spanning subgraph of 𝐺, whose every connected
component is isomorphic to a member of the set ℋ. An ℋ-factor is called a path factor if every member of the
set ℋ is a path. Let 𝑘 ≥ 2 be an integer. By a 𝑃≥𝑘-factor we mean a path factor in which each component
path admits at least 𝑘 vertices. A graph 𝐺 is called a 𝑃≥𝑘-factor covered graph if for any 𝑒 ∈ 𝐸(𝐺), 𝐺 has a
𝑃≥𝑘-factor containing 𝑒. A graph 𝐺 is called a (𝑃≥𝑘, 𝑛)-factor-critical covered graph if for any 𝑄 ⊆ 𝑉 (𝐺) with
|𝑄| = 𝑛, 𝐺−𝑄 is a 𝑃≥𝑘-factor covered graph.

To characterize a graph with a 𝑃≥3-factor, Kaneko [5] introduced the concept of a sun. A graph 𝑅 is called
a factor-critical graph if for any 𝑥 ∈ 𝑉 (𝑅), 𝑅 − 𝑥 has a perfect matching. Assume that 𝑅 is a factor-critical
graph with vertex set 𝑉 (𝑅) = {𝑥1, 𝑥2, · · · , 𝑥𝑛}. By adding new vertices 𝑦1, 𝑦2, · · · , 𝑦𝑛 together with new edges
𝑥1𝑦1, 𝑥2𝑦2, · · · , 𝑥𝑛𝑦𝑛 to 𝑅, we acquire a new graph, which is called a sun. In particular, 𝐾1 and 𝐾2 are also
called suns. A sun with at least six vertices is called a big sun. A component of 𝐺−𝑋 is called a sun component
if it is isomorphic to a sun. Let 𝑠𝑢𝑛(𝐺−𝑋) be the number of sun components in 𝐺−𝑋.

A criterion for a graph to admit a 𝑃≥2-factor was derived by Las Vergnas [9].

Theorem 1.1 ([9]). A graph 𝐺 has a 𝑃≥2-factor if and only if

𝑖(𝐺−𝑋) ≤ 2|𝑋|

for all 𝑋 ⊆ 𝑉 (𝐺).

A characterization for a graph with a 𝑃≥3-factor was provided by Kaneko [5].

Theorem 1.2 ([5]). A graph 𝐺 has a 𝑃≥3-factor if and only if

sun(𝐺−𝑋) ≤ 2|𝑋|

for all 𝑋 ⊆ 𝑉 (𝐺).

Zhang and Zhou [15] extended Theorems 1.1 and 1.2, and got two characterizations for graphs to be 𝑃≥2-factor
and 𝑃≥3-factor covered graphs.

Theorem 1.3 ([15]). A connected graph 𝐺 is a 𝑃≥2-factor covered graph if and only if

𝑖(𝐺−𝑋) ≤ 2|𝑋| − 𝜀1(𝑋)

for all 𝑋 ⊆ 𝑉 (𝐺), where 𝜀1(𝑋) is defined by

𝜀1(𝑋) =

⎧⎪⎨⎪⎩
2, if 𝑋 is not an independent set;
1, if 𝑋 is a nonempty independent set, and 𝐺−𝑋 admits

a nontrivial component;
0, otherwise.
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Theorem 1.4 ([15]). A connected graph 𝐺 is a 𝑃≥3-factor covered graph if and only if

sun(𝐺−𝑋) ≤ 2|𝑋| − 𝜀2(𝑋)

for all 𝑋 ⊆ 𝑉 (𝐺), where 𝜀2(𝑋) is defined by

𝜀2(𝑋) =

⎧⎪⎨⎪⎩
2, if 𝑋 is not an independent set;
1, if 𝑋 is a nonempty independent set, and 𝐺−𝑋 admits

a non-sun component;
0, otherwise.

Kano et al. [7] claimed that a graph has a 𝑃≥3-factor if 𝑖(𝐺−𝑋) ≤ 2
3 |𝑋| for any 𝑋 ⊆ 𝑉 (𝐺). Kawarabayashi

et al. [8] showed that a 2-connected cubic graph with at least six vertices admits a 𝑃≥6-factor. Kano et al. [6]
verified that a connected cubic bipartite graph with at least eight vertices has a 𝑃≥8-factor. Zhou [19], Zhou
et al. [22], Zhou et al. [25], Gao and Wang [3], Zhou, Sun and Bian [24] discussed the existence of 𝑃≥2-factors
and 𝑃≥3-factors with given properties in graphs. Zhou et al. [21] posed two sufficient conditions for a graph to
be a (𝑃≥3, 𝑛)-factor-critical covered graph. Gao et al. [4] showed a binding number condition for a graph to be
a (𝑃≥3, 𝑛)-factor-critical covered graph. Zhou et al. [26] obtained a result on the existence of (𝑃≥3, 𝑛)-factor-
critical covered graphs. Some recent advances on graph factors can be found in Zhou et al. [20,23], Zhou [16–18],
Wang and Zhang [10–12], Yuan and Hao [14], Anstee and Nam [1] and Egawa et al. [2]. In this article, we study
the existence of (𝑃≥2, 𝑛)-factor-critical covered graphs and (𝑃≥3, 𝑛)-factor-critical covered graphs, and derive
the following two results.

Theorem 1.5. Let 𝑛 and 𝜆 be two nonnegative integers. Then an (𝑛 + 𝜆 + 2)-connected graph 𝐺 is a (𝑃≥2, 𝑛)-
factor-critical covered graph if its isolated toughness 𝐼(𝐺) > 𝑛+𝜆+2

2𝜆+3 .

Theorem 1.6. Let 𝑛 and 𝜆 be two nonnegative integers. Then an (𝑛 + 𝜆 + 2)-connected graph 𝐺 is a (𝑃≥3, 𝑛)-
factor-critical covered graph if its isolated toughness 𝐼(𝐺) > 𝑛+3𝜆+5

2𝜆+3 .

2. The proof of Theorem 1.5

Proof of Theorem 1.5. If 𝐺 is a complete graph, then it is obvious that 𝐺 is a (𝑃≥2, 𝑛)-factor-critical covered
graph by 𝐺 being (𝑛 + 𝜆 + 2)-connected. In what follows, we consider that 𝐺 is not a complete graph.

Let 𝐺′ = 𝐺 −𝑊 for any 𝑊 ⊆ 𝑉 (𝐺) with |𝑊 | = 𝑛. To prove Theorem 1.5, it suffices to verify that 𝐺′ is a
𝑃≥2-factor covered graph. By means of contrary, we assume that 𝐺′ is not a 𝑃≥2-factor covered graph. Then it
follows from Theorem 1.3 that

𝑖(𝐺′ −𝑋) ≥ 2|𝑋| − 𝜀1(𝑋) + 1 (2.1)

for some vertex subset 𝑋 of 𝐺′.

Claim 1. |𝑋| ≥ 𝜆 + 2.

Proof. Let |𝑋| ≤ 𝜆+1. Note that 𝐺 is (𝑛+𝜆+2)-connected and 𝐺′ = 𝐺−𝑊 . We see that 𝐺′−𝑋 is connected,
and so 𝑖(𝐺′ −𝑋) = 0. Combining this with (2.1) and 𝜀(𝑋) ≤ |𝑋|, we derive

0 = 𝑖(𝐺′ −𝑋) ≥ 2|𝑋| − 𝜀1(𝑋) + 1 ≥ |𝑋|+ 1 ≥ 1,

which is a contradiction. This completes the proof of Claim 1. �

By virtue of (2.1), 𝜀1(𝑋) ≤ 2 and Claim 1, we admit

𝑖(𝐺−𝑊 −𝑋) = 𝑖(𝐺′ −𝑋) ≥ 2|𝑋| − 𝜀1(𝑋) + 1 ≥ 2|𝑋| − 1 ≥ 2(𝜆 + 2)− 1 = 2𝜆 + 3 > 2. (2.2)
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Using (2.2), 𝜀1(𝑋) ≤ 2, Claim 1 and the definition of 𝐼(𝐺), we obtain

𝐼(𝐺) ≤ |𝑊 ∪𝑋|
𝑖(𝐺−𝑊 −𝑋)

≤ 𝑛 + |𝑋|
2|𝑋| − 𝜀1(𝑋) + 1

≤ 𝑛 + |𝑋|
2|𝑋| − 1

=
1
2

+
𝑛 + 1

2

2|𝑋| − 1

≤ 1
2

+
𝑛 + 1

2

2(𝜆 + 2)− 1
=

𝑛 + 𝜆 + 2
2𝜆 + 3

,

which contradicts that 𝐼(𝐺) > 𝑛+𝜆+2
2𝜆+3 . Theorem 1.5 is verified. �

Remark 2.1. Next, we claim that the condition 𝐼(𝐺) > 𝑛+𝜆+2
2𝜆+3 in Theorem 1.5 is sharp. We construct a

graph 𝐺 = 𝐾𝑛+𝜆+2 ∨ ((2𝜆 + 3)𝐾1), where 𝑛 and 𝜆 are two nonnegative integers, ∨ means “join”. Obviously,
𝐺 is (𝑛 + 𝜆 + 2)-connected and 𝐼(𝐺) = 𝑛+𝜆+2

2𝜆+3 . For 𝑊 ⊆ 𝑉 (𝐾𝑛+𝜆+2) with |𝑊 | = 𝑛, let 𝐺′ = 𝐺 − 𝑊 =
𝐾𝜆+2 ∨ ((2𝜆 + 3)𝐾1). Select 𝑋 = 𝑉 (𝐾𝜆+2) in 𝐺′. Then 𝜀1(𝑋) = 2, and we obtain

𝑖(𝐺′ −𝑋) = 2𝜆 + 3 > 2𝜆 + 2 = 2(𝜆 + 2)− 2 = 2|𝑋| − 𝜀1(𝑋).

In terms of Theorem 1.3, 𝐺′ is not a 𝑃≥2-factor covered graph, and so 𝐺 is not a (𝑝≥2, 𝑛)-factor-critical covered
graph.

Remark 2.2. In what follows, we claim that the condition (𝑛 + 𝜆 + 2)-connectivity in Theorem 1.5 is best
possible. We construct a graph 𝐺 = 𝐾𝑛+𝜆+1 ∨ ((2𝜆 + 1)𝐾1), where 𝑛 ≥ 0 and 𝜆 ≥ 1 are two integers, ∨ means
“join”. Clearly, 𝐼(𝐺) = 𝑛+𝜆+1

2𝜆+1 > 𝑛+𝜆+2
2𝜆+3 and 𝐺 is (𝑛+𝜆+1)-connected. Let 𝐺′ = 𝐺−𝑊 = 𝐾𝜆+1∨((2𝜆+1)𝐾1),

where 𝑊 ⊆ 𝑉 (𝐾𝑛+𝜆+1) with |𝑊 | = 𝑛. Choose 𝑋 = 𝑉 (𝐾𝜆+1) in 𝐺′. Then 𝜀1(𝑋) = 2, and we admit

𝑖(𝐺′ −𝑋) = 2𝜆 + 1 > 2𝜆 = 2(𝜆 + 1)− 2 = 2|𝑋| − 𝜀1(𝑋).

By means of Theorem 1.3, 𝐺′ is not a 𝑃≥2-factor covered graph, and so 𝐺 is not a (𝑝≥2, 𝑛)-factor-critical covered
graph.

3. The proof of Theorem 1.6

Proof of Theorem 1.6. If 𝐺 is a complete graph, then it is clear that 𝐺 is a (𝑃≥3, 𝑛)-factor-critical covered graph
by 𝐺 being (𝑛 + 𝜆 + 2)-connected. In what follows, we consider that 𝐺 is not a complete graph.

Let 𝐺′ = 𝐺−𝑊 for any 𝑊 ⊆ 𝑉 (𝐺) with |𝑊 | = 𝑛. To verify Theorem 1.6, it suffices to justify that 𝐺′ is a
𝑃≥3-factor covered graph. By means of contrary, we assume that 𝐺′ is not a 𝑃≥3-factor covered graph. Then
by Theorem 1.4, we have

sun(𝐺′ −𝑋) ≥ 2|𝑋| − 𝜀2(𝑋) + 1 (3.1)

for some vertex subset 𝑋 of 𝐺′.
Next, we shall discuss two cases by the value of |𝑋|, and derive a contradiction in each case.

Case 1. 0 ≤ |𝑋| ≤ 𝜆 + 1.

Since 𝐺′ = 𝐺−𝑊 and 𝐺 is (𝑛+𝜆+2)-connected, 𝐺′ is (𝜆+2)-connected. Combining this with the definition
of sun component, we know that sun(𝐺′) = 0. If |𝑋| = 0, then by (3.1) and 𝜀2(𝑋) ≤ |𝑋|, we derive

0 = sun(𝐺′) = sun(𝐺′ −𝑋) ≥ 2|𝑋| − 𝜀2(𝑋) + 1 ≥ |𝑋|+ 1 = 1,

which is a contradiction.
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If 1 ≤ |𝑋| ≤ 𝜆 + 1, then we have

𝜔(𝐺′ −𝑋) = 1 (3.2)

by 𝐺′ being (𝜆 + 2)-connected. By virtue of (3.1), (3.2) and 𝜀2(𝑋) ≤ |𝑋|, we get

1 = 𝜔(𝐺′ −𝑋) ≥ sun(𝐺′ −𝑋) ≥ 2|𝑋| − 𝜀2(𝑋) + 1 ≥ |𝑋|+ 1 ≥ 2,

which is a contradiction.

Case 2. |𝑋| ≥ 𝜆 + 2.

In this case, we assume that there exist 𝑎 isolated vertices, 𝑏 𝐾2’s and 𝑐 big sun components 𝑄1, 𝑄2, · · · , 𝑄𝑐,
where |𝑉 (𝑄𝑖)| ≥ 6 for 1 ≤ 𝑖 ≤ 𝑐, in 𝐺′ −𝑋, and so

sun(𝐺′ −𝑋) = 𝑎 + 𝑏 + 𝑐. (3.3)

We choose one vertex from every 𝐾2 component of 𝐺′ −𝑋, and use 𝑌 to denote the set of such vertices. Let
𝑅𝑖 be the factor-critical subgraph of 𝑄𝑖 for 1 ≤ 𝑖 ≤ 𝑐. Obviously, we have |𝑌 | = 𝑏 and 𝑖(𝑄𝑖− 𝑉 (𝑅𝑖)) = |𝑉 (𝑅𝑖)|.
Thus, we derive

𝑖(𝐺− (𝑊 ∪𝑋 ∪ 𝑌 ∪ 𝑉 (𝑅1) ∪ · · · ∪ 𝑉 (𝑅𝑐))) = 𝑖(𝐺′ − (𝑋 ∪ 𝑌 ∪ 𝑉 (𝑅1) ∪ · · · ∪ 𝑉 (𝑅𝑐)))
= 𝑎 + 𝑏 + 𝑖(𝑄1 − 𝑉 (𝑅1)) + · · ·+ 𝑖(𝑄𝑐 − 𝑉 (𝑅𝑐))
= 𝑎 + 𝑏 + |𝑉 (𝑅1)|+ · · ·+ |𝑉 (𝑅𝑐)|

= 𝑎 + 𝑏 +
𝑐∑︁

𝑖=1

|𝑉 (𝑅𝑖)|. (3.4)

It follows from (3.1), (3.3), (3.4), 𝜀2(𝑋) ≤ 2 and |𝑉 (𝑅𝑖)| ≥ 3 that

𝑖(𝐺− (𝑊 ∪𝑋 ∪ 𝑌 ∪ 𝑉 (𝑅1) ∪ · · · ∪ 𝑉 (𝑅𝑐))) = 𝑎 + 𝑏 +
𝑐∑︁

𝑖=1

|𝑉 (𝑅𝑖)|

≥ 𝑎 + 𝑏 + 3𝑐 ≥ 𝑎 + 𝑏 + 𝑐 = sun(𝐺′ −𝑋)
≥ 2|𝑋| − 𝜀2(𝑋) + 1 ≥ 2|𝑋| − 1
≥ 2(𝜆 + 2)− 1 = 2𝜆 + 3 ≥ 3. (3.5)

In terms of (3.5), 𝐼(𝐺) > 𝑛+3𝜆+5
2𝜆+3 and the definition of 𝐼(𝐺), we deduce

𝑛 + 3𝜆 + 5
2𝜆 + 3

< 𝐼(𝐺) ≤ |𝑊 ∪𝑋 ∪ 𝑌 ∪ 𝑉 (𝑅1) ∪ · · · ∪ 𝑉 (𝑅𝑐)|
𝑖(𝐺− (𝑊 ∪𝑋 ∪ 𝑌 ∪ 𝑉 (𝑅1) ∪ · · · ∪ 𝑉 (𝑅𝑐)))

=
𝑛 + |𝑋|+ |𝑌 |+

∑︀𝑐
𝑖=1 |𝑉 (𝑅𝑖)|

𝑎 + 𝑏 +
∑︀𝑐

𝑖=1 |𝑉 (𝑅𝑖)|

=
𝑛 + |𝑋|+ 𝑏 +

∑︀𝑐
𝑖=1 |𝑉 (𝑅𝑖)|

𝑎 + 𝑏 +
∑︀𝑐

𝑖=1 |𝑉 (𝑅𝑖)|
,

which implies

(𝑛 + 3𝜆 + 5)𝑎 + (𝑛 + 𝜆 + 2)𝑏 + (𝑛 + 𝜆 + 2)
𝑐∑︁

𝑖=1

|𝑉 (𝑅𝑖)| − (2𝜆 + 3)|𝑋| − (2𝜆 + 3)𝑛 < 0. (3.6)
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By means of (3.1), (3.3), (3.6), 𝜀2(𝑋) ≤ 2 and |𝑉 (𝑅𝑖)| ≥ 3, we derive

0 > (𝑛 + 3𝜆 + 5)𝑎 + (𝑛 + 𝜆 + 2)𝑏 + (𝑛 + 𝜆 + 2)
𝑐∑︁

𝑖=1

|𝑉 (𝑅𝑖)| − (2𝜆 + 3)|𝑋| − (2𝜆 + 3)𝑛

≥ (𝑛 + 𝜆 + 2)𝑎 + (𝑛 + 𝜆 + 2)𝑏 + (𝑛 + 𝜆 + 2)𝑐− (2𝜆 + 3)|𝑋| − (2𝜆 + 3)𝑛
= (𝑛 + 𝜆 + 2)(𝑎 + 𝑏 + 𝑐)− (2𝜆 + 3)|𝑋| − (2𝜆 + 3)𝑛
= (𝑛 + 𝜆 + 2)sun(𝐺′ −𝑋)− (2𝜆 + 3)|𝑋| − (2𝜆 + 3)𝑛
≥ (𝑛 + 𝜆 + 2)(2|𝑋| − 𝜀2(𝑋) + 1)− (2𝜆 + 3)|𝑋| − (2𝜆 + 3)𝑛
≥ (𝑛 + 𝜆 + 2)(2|𝑋| − 1)− (2𝜆 + 3)|𝑋| − (2𝜆 + 3)𝑛
= (2𝑛 + 1)|𝑋| − (𝜆 + 2)(2𝑛 + 1),

which implies that |𝑋| < 𝜆 + 2, which contradicts that |𝑋| ≥ 𝜆 + 2. This completes the proof of
Theorem 1.6. �

Remark 3.1. Next, we claim that the condition 𝐼(𝐺) > 𝑛+3𝜆+5
2𝜆+3 in Theorem 1.6 is sharp. We construct a

graph 𝐺 = 𝐾𝑛+𝜆+2 ∨ ((2𝜆 + 3)𝐾2), where 𝑛 and 𝜆 are two nonnegative integers, ∨ means “join”. Obviously,
𝐺 is (𝑛 + 𝜆 + 2)-connected and 𝐼(𝐺) = 𝑛+3𝜆+5

2𝜆+3 . For 𝑊 ⊆ 𝑉 (𝐾𝑛+𝜆+2) with |𝑊 | = 𝑛, let 𝐺′ = 𝐺 − 𝑊 =
𝐾𝜆+2 ∨ ((2𝜆 + 3)𝐾2). Select 𝑋 = 𝑉 (𝐾𝜆+2) in 𝐺′. Then 𝜀2(𝑋) = 2, and we derive

sun(𝐺′ −𝑋) = 2𝜆 + 3 > 2𝜆 + 2 = 2(𝜆 + 2)− 2 = 2|𝑋| − 𝜀2(𝑋).

According to Theorem 1.4, 𝐺′ is not a 𝑃≥3-factor covered graph, and so 𝐺 is not a (𝑝≥3, 𝑛)-factor-critical covered
graph.

Remark 3.2. In what follows, we claim that the condition (𝑛 + 𝜆 + 2)-connectivity in Theorem 1.6 is best
possible. We construct a graph 𝐺 = 𝐾𝑛+𝜆+1 ∨ ((2𝜆 + 1)𝐾2), where 𝑛 ≥ 0 and 𝜆 ≥ 1 are two integers, ∨ means
“join”. Clearly, 𝐼(𝐺) = 𝑛+3𝜆+2

2𝜆+1 > 𝑛+3𝜆+5
2𝜆+3 and 𝐺 is (𝑛+𝜆+1)-connected. Let 𝐺′ = 𝐺−𝑊 = 𝐾𝜆+1∨((2𝜆+1)𝐾2),

where 𝑊 ⊆ 𝑉 (𝐾𝑛+𝜆+1) with |𝑊 | = 𝑛. Choose 𝑋 = 𝑉 (𝐾𝜆+1) in 𝐺′. Then 𝜀2(𝑋) = 2, and we have

sun(𝐺′ −𝑋) = 2𝜆 + 1 > 2𝜆 = 2(𝜆 + 1)− 2 = 2|𝑋| − 𝜀2(𝑋).

In light of Theorem 1.4, 𝐺′ is not a 𝑃≥3-factor covered graph, and so 𝐺 is not a (𝑝≥3, 𝑛)-factor-critical covered
graph.

Acknowledgements. The authors of this paper would like to thank the referees for their good suggestions to improve the
paper.
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