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COMPARATIVE RESULTS BETWEEN THE NUMBER OF SUBTREES AND
WIENER INDEX OF GRAPHS

Kexiang Xu1,2,*, Jie Li1,2 and Zuwen Luo1,2

Abstract. For a graph 𝐺, we denote by 𝑁(𝐺) the number of non-empty subtrees of 𝐺. If 𝐺 is
connected, its Wiener index 𝑊 (𝐺) is the sum of distances between all unordered pairs of vertices of 𝐺.
In this paper we establish some comparative results between 𝑁 and 𝑊 . It is shown that 𝑁(𝐺) > 𝑊 (𝐺)
if 𝐺 is a graph of order 𝑛 ≥ 7 and diameter 2 or 3. Also some graphs are constructed with large diameters
and 𝑁 > 𝑊 . Moreover, for a tree 𝑇 � 𝑆𝑛 of order 𝑛, we prove that 𝑊 (𝑇 ) > 𝑁(𝑇 ) if 𝑇 is a starlike
tree with maximum degree 3 or a tree with exactly two vertices of maximum degrees 3 one of which
has two leaf neighbors, or a broom with 𝑘 log2 𝑛 leaves. And a method is provided for constructing the
graphs with 𝑁 < 𝑊 . Finally several related open problems are proposed to the comparison between
𝑁 and 𝑊 .
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1. Introduction

Throughout this paper we only consider undirected, finite and simple graphs. For a graph 𝐺 = (𝑉 (𝐺), 𝐸(𝐺))
with vertex set 𝑉 (𝐺) and edge set 𝐸(𝐺), the degree of vertex 𝑣 ∈ 𝑉 (𝐺) is denoted by deg𝐺(𝑣), that is,
deg𝐺(𝑣) = |𝑁𝐺(𝑣)| where 𝑁𝐺(𝑣) is the open neighborhood. Here 𝑁𝐺[𝑣] = 𝑁𝐺(𝑣)∪{𝑣} is the closed neighborhood
of 𝑣. For any graph 𝐺, we denote by 𝐿(𝐺) the line graph of 𝐺. Denote by 𝐶𝑛 and 𝐾𝑛 the cycle and the complete
graph on 𝑛 vertices, respectively. Similarly, 𝑃𝑛 and 𝑆𝑛 are the path and the star on 𝑛 vertices, respectively.
Other undefined notations and terminology on graph theory can be found in [4].

The number of subtrees was first studied for trees [29] in 2005. For any connected graph 𝐺, we denote by
𝑁(𝐺) the number of non-empty subtrees in 𝐺. The properties of 𝑁(𝑇 ) of various classes of trees 𝑇 have been
studied [1, 2, 17, 23, 27, 30, 31, 38, 39]. However, there are few results on 𝑁(𝐺) for general graphs 𝐺. Recently,
Andriantiana and Wang [3] considered the extremal unicyclic graphs with respect to 𝑁 . Furthermore, two of
present authors and Wang [35] characterized the extremal graphs with respect to 𝑁 among all connected graphs
of order 𝑛 with 𝑘 cut edges. For a graph 𝐺 with 𝑆 ⊆ 𝑉 (𝐺), we denote by 𝑁(𝑆, 𝐺) the number of subtrees of 𝐺
that contain at least one vertex of 𝑆. In particular, if 𝑆 = {𝑣}, then 𝑁(𝑆, 𝐺) can also be simplified into 𝑁(𝑣, 𝐺),
which is called the subtree number of vertex 𝑣 in 𝐺. More generally, for any connected subgraph 𝐻 of a graph
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𝐺 with 𝑣 ∈ 𝑉 (𝐻), we denote by 𝑁𝐺(𝑣, 𝐻) the number of subtrees of 𝐻 in 𝐺 that contain 𝑣. Similarly, for a
set 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑡} ⊆ 𝑉 (𝐺) with 𝑡 ≥ 2, 𝑁(𝑣1, 𝑣2, . . . , 𝑣𝑡; 𝐺) is the number of non-empty subtrees of 𝐺 that
contain the vertices 𝑣1, 𝑣2, . . . , 𝑣𝑡, while 𝑁(𝑣1, 𝑣2, . . . , 𝑣𝑘, 𝑣𝑘+1, . . . , 𝑣𝑡; 𝐺) denotes the number of subtrees of 𝐺
that do not contain the vertices 𝑣1, 𝑣2, . . . , 𝑣𝑘 but contain the remaining vertices 𝑣𝑘+1, . . . , 𝑣𝑡. Here, relevant to
the number of subtrees, we define a novel invariant 𝐿𝑁(𝐺) called local sum of subtrees of a graph 𝐺:

𝐿𝑁(𝐺) =
∑︁

𝑣∈𝑉 (𝐺)

𝑁(𝑣, 𝐺).

For any tree 𝑇 , the subtree polynomial of 𝑇 was introduced [16] as follows:

Φ𝑇 (𝑥) =
𝑛∑︁

𝑘=1

𝑁𝑘(𝑇 )𝑥𝑘

where 𝑁𝑘(𝑇 ) denotes the number of subtrees in 𝑇 of order 𝑘. The concept of subtree polynomial of trees can
be extended to general graphs. Clearly, 𝑁(𝐺) = Φ𝐺(1) holds for any graph 𝐺. Moreover, for any subtree 𝑇 of
order 𝑘 in a graph 𝐺, 𝑇 is counted once in 𝑁(𝑣, 𝐺) for any vertex 𝑣 ∈ 𝑉 (𝑇 ) ⊆ 𝑉 (𝐺), that is, 𝑇 is counted 𝑘
times in 𝐿𝑁(𝐺). Therefore it follows that

𝐿𝑁(𝐺) =
𝑛∑︁

𝑘=1

𝑘𝑁𝑘(𝐺) (1.1)

for any graph of order 𝑛. Equivalently, we have 𝐿𝑁(𝐺) = Φ′𝐺(1) for any graph 𝐺.
If 𝑃 is a path connecting two vertices 𝑢 and 𝑣 in a graph 𝐺, then we call 𝑃 as a 𝑢, 𝑣-path and denote it by

𝑢𝑃𝑣. In particular, a shortest 𝑢, 𝑣-path is called a 𝑢, 𝑣-geodesic in 𝐺, whose length is just the distance 𝑑𝐺(𝑢, 𝑣)
between 𝑢 and 𝑣 in 𝐺. As one of the most well-studied topological indices in chemical graph theory, the Wiener
index [32] of a connected graph 𝐺 is defined as

𝑊 (𝐺) =
∑︁

{𝑢,𝑣}⊆𝑉 (𝐺)

𝑑𝐺(𝑢, 𝑣).

For more results on the Wiener index, please refer to [7,8,11–13,18–22,28,34,36,37]. In particular, the chemical
applications of 𝑊 are reported for acyclic molecules [9] and benzenoid hydrocarbons [10]. Other distance-related
topics of graphs can be found in [15,25]. Moreover,

𝑊 (𝐺) =
1
2

∑︁
𝑣∈𝑉 (𝐺)

𝑇𝑟𝐺(𝑣) (1.2)

where 𝑇𝑟𝐺(𝑣) is the transmission of vertex 𝑣, that is the sum of distances from 𝑣 to other vertices, in graph
𝐺. As a special distance, the eccentricity, denoted by 𝜀𝐺(𝑣), of vertex 𝑣 in a graph 𝐺 is the maximum distance
from 𝑣 to any other vertex in 𝐺.

An interesting “negative” correlation has been observed between the number of subtrees and the Wiener
index of general graphs. It was shown that, in some given collection of connected graphs, the extremal graphs
minimizing (maximizing, resp.) the number of subtrees are identical to the extremal ones maximizing (minimiz-
ing, resp.) the Wiener index. Such classes of graphs include various trees [29, 33] and unicyclic graphs [3, 33].
Other related works are reported in [27, 30, 35, 36]. Note that in [24] the extremal graphs are determined with
respect to 𝑁 and 𝑊 among all cacti and block graphs, respectively, which strengthen this “negative” correlation
between them.

For any positive integer 𝑘, we write [𝑘] = {1, 2, . . . , 𝑘}. A vertex 𝑣 in a tree 𝑇 is a branching vertex if
deg𝑇 (𝑣) ≥ 3. A tree 𝑇 is a starlike tree if 𝑇 contains only one branching vertex. For a starlike tree 𝑇 with
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branching vertex 𝑣 ∈ 𝑉 (𝑇 ), we write 𝑇 = 𝑇 (𝑛1, 𝑛2, . . . , 𝑛𝑘) if 𝑇 − 𝑣 =
⋃︀𝑘

𝑖=1 𝑃𝑛𝑖
where the pendant path 𝑃𝑛𝑖

is called an 𝑛𝑖-arm of 𝑇 . A tree 𝐻(𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5) is obtained by attaching at the leaf of the 𝑛3-arm in
𝑇 (𝑛1, 𝑛2, 𝑛3) two pendant paths of lengths 𝑛4 and 𝑛5, respectively.

Note that 𝑊 (𝑃𝑛) =
(︀
𝑛+1

3

)︀
>

(︀
𝑛+1

2

)︀
= 𝑁(𝑃𝑛) and 𝑁(𝑆𝑛) = 2𝑛−1 + 𝑛 − 1 > (𝑛 − 1)2 = 𝑊 (𝑆𝑛) for 𝑛 > 4.

Therefore 𝑁 and 𝑊 are incomparable even for the trees. In this paper we focus on the comparison between 𝑁
and 𝑊 of graphs. The paper is organized as follows. In Section 2 some lemmas will be provided for proving the
subsequent results. In Section 3, we prove that 𝑁(𝐺) > 𝑊 (𝐺) for any graph 𝐺 of order 𝑛 ≥ 7 and diameter 2 or
3 and provide a method for constructing more graphs with 𝑁 > 𝑊 . In Section 4 it is shown that 𝑁(𝐺) < 𝑊 (𝐺)
for some graphs 𝐺, including starlike trees with maximum degree 3, special trees with two vertices of maximum
degrees 3, brooms with not many leaves and some special unicyclic graphs. Moreover, a method is provided
for getting some new graphs with 𝑁 < 𝑊 . We conclude the paper in Section 5 by proposing several problems
related to comparison relation between 𝑁 and 𝑊 .

2. Preliminaries

In this section we will list or prove some lemmas for the use of subsequent proofs.
If 𝐺 is a disconnected graph with 𝑡 components 𝐺1, 𝐺2, . . . , 𝐺𝑡, then we have

𝑁(𝐺) =
𝑡∑︁

𝑖=1

𝑁(𝐺𝑖). (2.1)

Also, for any subset 𝑆 ⊆ 𝑉 (𝐺), we have

𝑁(𝐺) = 𝑁(𝑆, 𝐺) + 𝑁(𝐺 ∖ 𝑆) (2.2)

where 𝐺 ∖ 𝑆 denote the induced subgraph of 𝐺 by 𝑉 (𝐺) ∖ 𝑆. In particular, we have

𝑁(𝐺) = 𝑁(𝑣, 𝐺) + 𝑁(𝐺− 𝑣) (2.3)

for any vertex 𝑣 ∈ 𝑉 (𝐺) where 𝐺− 𝑣 is a short form of 𝐺 ∖ {𝑣}.
From definitions of 𝑊 , 𝑁 we can get easily the following result and skip the proof.

Lemma 2.1. Let 𝐺 be a connected graph with two non-adjacent vertices 𝑢, 𝑣 ∈ 𝑉 (𝐺). Then

(i) 𝑊 (𝐺 + 𝑢𝑣) < 𝑊 (𝐺);
(ii) 𝑁(𝐺 + 𝑢𝑣) > 𝑁(𝐺).

Based on Lemma 2.1, the following result holds clearly.

Lemma 2.2. Let 𝐺 be a connected non-complete graph with two non-adjacent vertices 𝑢, 𝑣 ∈ 𝑉 (𝐺). If 𝑁(𝐺) >
𝑊 (𝐺), then 𝑁(𝐺 + 𝑢𝑣) > 𝑊 (𝐺 + 𝑢𝑣).

For any integer 𝑛 ≥ 4, we denote by 𝒢2
𝑛 and 𝒢3

𝑛 the set of graphs of order 𝑛 with diameter 2 and the set of
𝑛-vertex graphs with diameter 3, respectively. Below is a result on the Wiener index of graphs from 𝒢2

𝑛.

Lemma 2.3 ([34]). If 𝐺 ∈ 𝒢2
𝑛 has 𝑚 edges, then 𝑊 (𝐺) = 𝑛(𝑛− 1)−𝑚.

Lemma 2.4 ([29]). Let 𝑇 be a tree of order 𝑛 ≥ 4. Then we have(︂
𝑛 + 1

2

)︂
≤ 𝑁(𝑇 ) ≤ 2𝑛−1 + 𝑛− 1

with left equality if and only if 𝑇 ∼= 𝑃𝑛 and right equality if and only if 𝑇 ∼= 𝑆𝑛.
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Lemma 2.5 ([14]). Let 𝑇 be a tree of order 𝑛 > 4 with all branching vertices 𝑢1, 𝑢2, . . . , 𝑢𝑘. If 𝑇 −𝑢𝑖 =
⋃︀𝑚𝑖

𝑡=1 𝑇𝑖𝑡

with deg𝑇 (𝑢𝑖) = 𝑚𝑖 and 𝑛(𝑇𝑖𝑗) = 𝑛𝑖𝑗 where 𝑖 ∈ [𝑘] and 𝑗 ∈ [𝑚𝑖], then

𝑊 (𝑇 ) =
(︂

𝑛 + 1
3

)︂
−

𝑘∑︁
𝑖=1

∑︁
1≤𝑝<𝑞<𝑟≤𝑚𝑖

𝑛𝑖𝑝𝑛𝑖𝑞𝑛𝑖𝑟.

Lemma 2.6 ([5]). For any tree 𝑇 of order 𝑛, we have 𝑊 (𝐿(𝑇 )) = 𝑊 (𝑇 )−
(︀
𝑛
2

)︀
.

In the following we provide a lower bound on 𝑁(𝑣, 𝐺) in terms of the degree of 𝑣.

Lemma 2.7. Let 𝐺 be a connected graph of order 𝑛 with an arbitrary vertex 𝑣 ∈ 𝑉 (𝐺) of degree 𝑘 ≥ 2. Then

(i) 𝑁(𝑣, 𝐺) ≥ 2𝑘−1(𝑛− 𝑘 + 1);
(ii) 𝑇𝑟𝐺(𝑣) ≤ 𝑘 − 1 +

(︀
𝑛−𝑘+1

2

)︀
.

Proof. Assume that 𝑁𝐺(𝑣) = {𝑣1, 𝑣2, . . . , 𝑣𝑘}. Choose any vertex 𝑣𝑖 ∈ 𝑁𝐺(𝑣), set 𝑉1 = 𝑁𝐺[𝑣] ∖ {𝑣𝑖} and
𝑉2 = (𝑉 (𝐺) ∖𝑁𝐺(𝑣)) ∪ {𝑣𝑖}, then 𝑉 (𝐺) = 𝑉1 ∪ 𝑉2 with |𝑉1| = 𝑘, |𝑉2| = 𝑛− 𝑘 + 1 and 𝑉1 ∩ 𝑉2 = {𝑣}.

Since 𝐻 = 𝐺[𝑉1] contains a subgraph 𝑆𝑘 with 𝑣 as the center, 𝑁𝐺(𝑣, 𝐻) ≥ 2𝑘−1 holds from the fact 𝑁(𝑣, 𝑆𝑘) =
2𝑘−1. Denote by 𝒯1 the set of above subtrees containing 𝑣 in 𝐻. Note that 𝑁(𝑣, 𝑢; 𝐺) ≥ 1, that is, there is at
least one path connecting 𝑣 and 𝑢 in 𝐺, for any vertex 𝑢 ∈ 𝑉2 ∖ {𝑣} and the single vertex 𝑣 is also a subtree
containing 𝑣 in 𝑉2. There are at least 𝑛−𝑘+1 subtrees that contain 𝑣 in 𝑉2. These above subtrees form a set 𝒯2.
Note that the unification at 𝑣 of two subtrees (including a single-vertex subtree 𝑣 as a trivial one) from 𝒯1 and
𝒯2, respectively, forms a subtree containing 𝑣 in 𝐺. Therefore, 𝑁(𝑣, 𝐺) ≥ 2𝑘−1(𝑛− 𝑘 + 1) follows immediately.

Next we turn to prove the upper bound on 𝑇𝑟𝐺(𝑣). From definition, we have

𝑇𝑟𝐺(𝑣) ≤ 𝑘 +
∑︁

𝑢∈𝑉 (𝐺)∖𝑁𝐺(𝑣)

𝑑𝐺(𝑣, 𝑢)

= 𝑘 + 2 + . . . + 𝑛− 𝑘

= 𝑘 − 1 +
(︂

𝑛− 𝑘 + 1
2

)︂
,

completing the proof. �

For two vertex-disjoint graphs 𝐺1, 𝐺2 with 𝑣𝑖 ∈ 𝑉 (𝐺𝑖) for 𝑖 ∈ [2], we denote by 𝐺1𝑣1 ⌣ 𝑣2𝐺2 a new graph
obtained by inserting an edge connecting the vertices 𝑣1 of 𝐺1 and 𝑣2 of 𝐺2. Here 𝐺1𝑣1 ⌣ 𝑣2𝐺2 is called the
𝑣1𝑣2-link graph of graphs 𝐺1 and 𝐺2.

Lemma 2.8. Let 𝐺 = 𝐺1𝑣1 ⌣ 𝑣2𝐺2 be the 𝑣1𝑣2-link graph of two vertex-disjoint graphs 𝐺1 and 𝐺2 of orders
𝑛1 and 𝑛2, respectively, with 𝑣1 ∈ 𝑉 (𝐺1) and 𝑣2 ∈ 𝑉 (𝐺2). Then

(i) 𝑊 (𝐺) = 𝑊 (𝐺1) + 𝑊 (𝐺2) + 𝑛1𝑇𝑟𝐺2(𝑣2) + 𝑛2𝑇𝑟𝐺1(𝑣1) + 𝑛1𝑛2;
(ii) 𝑁(𝐺) = 𝑁(𝐺1) + 𝑁(𝐺2) + 𝑁(𝑣1, 𝐺1)𝑁(𝑣2, 𝐺2).

Proof. From the structure of 𝐺, we have

𝑊 (𝐺) = 𝑊 (𝐺1) + 𝑊 (𝐺2) +
∑︁

𝑥∈𝑉 (𝐺1),𝑦∈𝑉 (𝐺2)

[︁
𝑑𝐺1(𝑥, 𝑣1) + 1 + 𝑑𝐺2(𝑣2, 𝑦)

]︁
= 𝑊 (𝐺1) + 𝑊 (𝐺2) + 𝑛2𝑇𝑟𝐺1(𝑣1) + 𝑛1𝑇𝑟𝐺2(𝑣2) + 𝑛1𝑛2.

And any subtree in 𝐺 is fallen into the following classes: (A). the subtrees only in 𝐺1; (B). the subtrees only in 𝐺2;
(C). the subtrees containing the vertices of 𝐺1 and 𝐺2. So we get 𝑁(𝐺) = 𝑁(𝐺1)+𝑁(𝐺2)+𝑁(𝑣1, 𝐺1)𝑁(𝑣2, 𝐺2),
completing the proof. �
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3. Graphs with 𝑁 > 𝑊

In this section we prove some results on the graphs with 𝑁 > 𝑊 . Note that 𝒢2
𝑛 contains a single graph 𝑃𝑛 if

𝑛 = 3. So in the following we always assume that 𝑛 ≥ 4 in 𝒢2
𝑛.

3.1. Graphs with small diameters

Any graph with diameter 1 is a complete graph and vice versa. In 𝐾𝑛, any edge is corresponding with a
subtree 𝑃2 and any vertex is a single-vertex subtree. Therefore

𝑁(𝐾𝑛) ≥ 𝑛 +
(︂

𝑛

2

)︂
>

(︂
𝑛

2

)︂
= 𝑊 (𝐾𝑛).

We first prove the result for the graphs in 𝒢2
𝑛 with 𝑛 ≥ 4. Before doing it, we need the following preliminary

results.

Lemma 3.1 ([35]). Let 𝐺 be a connected graph of order 𝑛 without any cut edge. Then 𝑁(𝐺) ≥ 𝑛2 with equality
holding if and only if 𝐺 ∼= 𝐶𝑛.

Theorem 3.2. For any graph 𝐺 ∈ 𝒢2
𝑛 with 𝑛 ≥ 5, we have 𝑁(𝐺) > 𝑊 (𝐺).

Proof. Assume that 𝐺 has 𝑚 edges and 𝑣 ∈ 𝑉 (𝐺) with maximum degree ∆(𝐺). Based on the value of ∆(𝐺),
we divide into the following cases.

Case 1. ∆(𝐺) = 𝑛− 1.
In this case 𝐺[𝑁𝐺[𝑣]] contains 𝑆Δ as a subgraph. By Lemma 2.1, we have

𝑁(𝐺)−𝑊 (𝐺) ≥ 𝑁(𝑆𝑛)−𝑊 (𝑆𝑛)
= 2𝑛−1 + 𝑛− 1− (𝑛− 1)2 > 0.

The last inequality holds because the function ℎ(𝑥) = 2𝑥 + 𝑥− 𝑥2 > 0 with 𝑥 ≥ 4.
Case 2. ∆(𝐺) < 𝑛− 1.

In this case 𝐺 is a 2-self-centered graph, that is, any vertex in 𝐺 has eccentricity 2. We first claim that
𝛿(𝐺) ≥ 2. Otherwise, 𝐺 has a pendant vertex 𝑣 with 𝑣𝑢 ∈ 𝐸(𝐺). Then 𝜀𝐺(𝑣) = 𝜀𝐺(𝑢) + 1 as a clear
contradiction. Next we prove that 𝐺 contains no cut edge. Otherwise, assume that 𝑒 = 𝑣1𝑣2 is a cut edge
of 𝐺 with 𝐺− 𝑣1𝑣2 = 𝐺1 ∪𝐺2 such that 𝑣1 ∈ 𝑉 (𝐺1) and 𝑣2 ∈ 𝑉 (𝐺2). Considering that 𝛿(𝐺) ≥ 2, we have
𝑉 (𝐺1)∖{𝑣1} ≠ ∅ and 𝑉 (𝐺2)∖{𝑣2} ≠ ∅. Moreover, 𝜀𝐺(𝑣1) = 2 = 𝜀𝐺(𝑣2) since 𝐺 ∈ 𝒢2

𝑛. Then the distance is 3
between any vertex in 𝑉 (𝐺1)∖{𝑣1} and any vertex in 𝑉 (𝐺2)∖{𝑣2}, which is a clear contradiction. Therefore
there does not exist any cut edge in 𝐺. From Lemma 3.1, we have 𝑁(𝐺) ≥ 𝑛2. By Lemma 2.3, we have

𝑁(𝐺)−𝑊 (𝐺) ≥ 𝑛2 − 𝑛(𝑛− 1) + 𝑚

= 𝑛 + 𝑚 > 0,

completing the proof.

�

Remark 3.3. A classical result from random graph theory asserts that almost every graph has diameter 2,
cf. [6], p. 312, Exercise 7. From Theorem 3.2, 𝑁(𝐺) > 𝑊 (𝐺) holds for almost all graphs 𝐺.

A double star DS𝑛1,𝑛2 with 𝑛1 ≤ 𝑛2 is a tree obtained by adding an edge at the central vertices of two
stars 𝑆𝑛1+1 and 𝑆𝑛2+1, respectively. Let 𝒢3(1)

𝑛 and 𝒢3(0)
𝑛 be the sets of 𝑛-vertex graphs with diameter 3 and

at least one cut edge and the set of 𝑛-vertex ones with diameter 3 without any cut edge, respectively. Then
𝒢3

𝑛 = 𝒢3(1)
𝑛 ∪ 𝒢3(0)

𝑛 . By definitions, we have 𝑊 (DS2,2) = 29 > 28 = 𝑁(DS2,2). We now turn to the comparison
results of graphs in 𝒢3

𝑛 with 𝑛 ≥ 7. Let 𝒜0
𝑛 be the set connected of graphs of order 𝑛 without any cut edge.

Below we first prove a result on 𝑁 .
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Lemma 3.4. Let 𝐺 ∈ 𝒜0
𝑛 ∖ {𝐶𝑛} with 𝑛 ≥ 7. Then 𝑁(𝐺) ≥ 3𝑛2

2 − 𝑛
2 .

Proof. Let 𝐺 ∈ 𝒜0
𝑛 ∖ {𝐶𝑛} with 𝑢, 𝑣 ∈ 𝑉 (𝐺) and denote by 𝒯 (𝑢, 𝑣) the set of three distinct subtrees containing

vertices 𝑢 and 𝑣 in 𝐺. The set 𝒯 (𝑢, 𝑣) is uniquely determined by the pair {𝑢, 𝑣} or {𝑢, 𝑣}-UD for short, if
𝒯 (𝑢, 𝑣) ∩ 𝒯 (𝑥, 𝑦) = ∅ for two distinct vertex pairs {𝑢, 𝑣} and {𝑥, 𝑦} in 𝑉 (𝐺). We first prove the existence of
𝒯 (𝑢, 𝑣) for any {𝑢, 𝑣} ⊆ 𝑉 (𝐺).

Let 𝒱𝑐 be the set of cut vertices of 𝐺. Based on the value of |𝒱𝑐|, we divide the argument into the following
two cases.

Case 1. |𝒱𝑐| = 0.
In this case, 𝐺 is a 2-connected graph. For any two vertices 𝑢, 𝑣 ∈ 𝑉 (𝐺), there exist two internally vertex-
disjoint paths, say 𝑃 ′ and 𝑃 ′′, that connect 𝑢 and 𝑣 in 𝐺. Since 𝐺 � 𝐶𝑛, there must be a vertex 𝑥 ∈ 𝑣(𝐺)
with deg𝐺(𝑥) ≥ 3. Let 𝑉0 = 𝑉 (𝑃 ′) ∪ 𝑉 (𝑃 ′′). Now we distinguish the following two subcases based on the
position of 𝑥 in 𝐺.
Subcase 1.1. 𝑥 ∈ 𝑉0 ∖ {𝑢, 𝑣}.

In this subcase we assume, without loss of generality, that 𝑥 ∈ 𝑉 (𝑃 ′) with a different vertex 𝑦 ∈ 𝑁𝐺(𝑥)
from two neighbors of 𝑥 on 𝑃 ′. If 𝑦 ∈ 𝑉 (𝑃 ′), we assume, w.l.o.g., that 𝑦 ∈ 𝑢𝑃 ′𝑥. Then we select
𝒯 (𝑢, 𝑣) = {𝑃 ′, 𝑃 ′′, 𝑢𝑃 ′𝑦𝑥𝑃 ′𝑣}. If 𝑦 /∈ 𝑉 (𝑃 ′), there is a 𝑦, 𝑣-path, say 𝑃 *, since 𝐺 − 𝑥 is connected.
Let 𝑧 be the first vertex of 𝑃 * lying on 𝑃 ′. Then 𝒯 (𝑢, 𝑣) = {𝑃 ′, 𝑃 ′′, 𝑢𝑃1𝑧𝑃 *𝑦𝑥𝑃 ′𝑣} if 𝑧 ∈ 𝑢𝑃 ′𝑥 and
𝒯 (𝑢, 𝑣) = {𝑃 ′, 𝑃 ′′, 𝑢𝑃1𝑥𝑦𝑃 *𝑧𝑃 ′𝑣} if 𝑧 ∈ 𝑥𝑃 ′𝑣.

Subcase 1.2. 𝑥 ∈ {𝑢, 𝑣}.
In this subcase we assume, w.l.o.g., that 𝑥 = 𝑢, that is, deg𝐺(𝑢) ≥ 3 with a different vertex 𝑢′ ∈ 𝑁𝐺(𝑢)
from its two neighbors on 𝑃 ′ and 𝑃 ′′, respectively. If 𝑢′ /∈ 𝑉0, then there is a 𝑢′, 𝑣-path, say 𝑃 *, in 𝐺 since
𝐺−𝑢 is still connected. Then we select 𝒯 (𝑢, 𝑣) = {𝑃 ′, 𝑃 ′′, 𝑢𝑢′𝑃 *𝑣}. While 𝑢′ ∈ 𝑉0, similar as Subcase 1.1,
other than 𝑃 ′ and 𝑃 ′′, there is still another 𝑢, 𝑣-path 𝑃 ** in 𝐺. Therefore we get 𝒯 (𝑢, 𝑣) = {𝑃 ′, 𝑃 ′′, 𝑃 **}.

Case 2. |𝒱𝑐| ≥ 1.
In this case 𝐺 contains at least two blocks that are maximal 2-connected subgraphs of 𝐺. Based on the
positions of 𝑢 and 𝑣 in 𝐺, we divide into the following subcases.
Subcase 2.1. 𝑢 and 𝑣 lie on two distinct blocks of 𝐺.

Suppose that 𝑢 ∈ 𝑉 (𝐵1) and 𝑣 ∈ 𝑉 (𝐵2) where 𝐵1 and 𝐵2 are two distinct blocks of 𝐺. Then there must
be 𝑥 ∈ 𝒱𝑐 ∩ 𝑉 (𝐵1) and 𝑦 ∈ 𝒱𝑐 ∩ 𝑉 (𝐵2) (possibly 𝑥 = 𝑦) such that 𝑥 and 𝑦 lie on a 𝑢, 𝑣-geodesic of
𝐺. Note that 𝐵1 and 𝐵2 are blocks in 𝐺, that is, there are two distinct 𝑢, 𝑥-paths, say 𝑃 1,1, 𝑃 1,2, and
another two distinct 𝑦, 𝑣-ones, say 𝑃 2,1, 𝑃 2,2, in 𝐺. Also there exists at least one 𝑥, 𝑦-path, say 𝑃 *, in 𝐺
(𝑃 * is just a single vertex if 𝑥 = 𝑦). Then there are at least 4 distinct 𝑢, 𝑣-paths in 𝐺. Thus 𝒯 (𝑢, 𝑣) can
be at least 4 choices by removing one 𝑢, 𝑣-path from these above 4 ones.

Subcase 2.2. 𝑢 and 𝑣 lie on a same block of 𝐺.
In this subcase we assume that 𝑢 and 𝑣 belong to a block 𝐵 of 𝐺. Based on the property of 𝐵, we consider
the following subcases.
Subcase 2.2.1. 𝐵 is not a cycle.

Note that 𝐵 is a 2-connected subgraph of 𝐺. By a similar reasoning as that in Case 1, we can get
𝒯 (𝑢, 𝑣) = {𝑃 ′, 𝑃 ′′, 𝑃 †} composed of three distinct 𝑢, 𝑣-paths in 𝐵.

Subcase 2.2.2. 𝐵 is a cycle.
In this case 𝑉 (𝐵) can be partitioned into 𝑉 (𝑃 ′) and 𝑉 (𝑃 ′′) where 𝑃 ′ and 𝑃 ′′ are two 𝑢, 𝑣-paths in
𝐵. According with the statuses of 𝑢 and 𝑣, we only need to consider the following subcases.
Subcase 2.2.2.1. At least one vertex of 𝑢 and 𝑣 is a cut vertex in 𝐵.

We assume, w.l.o.g., that 𝑣 is a cut vertex in 𝐵 with 𝑣𝑧 ∈ 𝐸(𝐺) such that 𝑧 ∈ 𝑉 (𝐵′) where 𝐵′

is a different block of 𝐺 from 𝐵. Then 𝒯 (𝑢, 𝑣) = {𝑃 ′, 𝑃 ′′, 𝑢𝑃 ′𝑣𝑧}.
Subcase 2.2.2.2. Neither 𝑢 and 𝑣 is a cut vertex in 𝐵.

In this subcase there must be a cut vertex, say 𝑦, lying on one path, say 𝑃 ′, of 𝑃 ′ and 𝑃 ′′. Assume
that 𝑧 ∈ 𝑉 (𝐵′) is a neighbor of 𝑦 where 𝐵′ ̸= 𝐵 is a block of 𝐺. Denote by 𝑇 * a tree obtained
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from 𝑃 ′ by attaching a pendant vertex 𝑧 at 𝑦. Then 𝒯 (𝑢, 𝑣) = {𝑃 ′, 𝑃 ′′, 𝑇 *}. This completes the
proof of existence 𝒯 (𝑢, 𝑣) consisting of three distinct subtrees for any {𝑢, 𝑣} ⊆ 𝑉 (𝐺).

Next we prove the {𝑢, 𝑣}-UD property of 𝒯 (𝑢, 𝑣) for any {𝑢, 𝑣} ⊆ 𝑉 (𝐺).
Assume that {𝑥1, 𝑦1} ⊆ 𝑉 (𝐺) and {𝑥2, 𝑦2} ⊆ 𝑉 (𝐺) with {𝑥1, 𝑦1} ≠ {𝑥2, 𝑦2}. Next it suffices to prove that

𝒯 (𝑥1, 𝑦1) ∩ 𝒯 (𝑥2, 𝑦2) = ∅. Note that all subtrees in 𝒯 (𝑢, 𝑣) are 𝑢, 𝑣-paths listed in Case 1, or Subcase 2.1, or
Subcase 2.2.1. Then 𝒯 (𝑥1, 𝑦1) ∩ 𝒯 (𝑥2, 𝑦2) = ∅ holds if both {𝑥1, 𝑦1} and {𝑥2, 𝑦2} satisfy the assumptions in
one of (sub)cases: Case 1, Subcase 2.1 and Subcase 2.2.1. Note that 𝒯 (𝑢, 𝑣) in Subcase 2.2.2.1 consists of two
𝑢, 𝑣-paths and another 𝑢, 𝑥-path with a cut vertex 𝑣 as a neighbor of 𝑥, and, in Subcase 2.2.2.2, it consists of
two 𝑢, 𝑣-paths and another starlike tree obtained by attaching a pendant vertex at a cut vertex of one of these
𝑢, 𝑣-paths. Similarly as above, 𝒯 (𝑥1, 𝑦1)∩𝒯 (𝑥2, 𝑦2) = ∅ if both {𝑥1, 𝑦1} and {𝑥2, 𝑦2} satisfy the assumptions in
Subcase 2.2.2.1 or 2.2.2.2.

Assume that {𝑥1, 𝑦1} satisfies the assumptions in one of subcases: Subcase 2.1 and Subcase 2.2.1. Now we
consider the position of the pair {𝑥2, 𝑦2}. If {𝑥2, 𝑦2} satisfies the assumptions in Subcase 2.2.2.1, we can assume
that {𝑥2, 𝑦2} ⊆ 𝑉 (𝐵) and 𝑦2 is a cut vertex with a neighbor 𝑧 ∈ 𝑉 (𝐵′) where 𝐵, 𝐵′ are two distinct blocks
in 𝐺. The only worst possibility that 𝒯 (𝑥1, 𝑦1) ∩ 𝒯 (𝑥2, 𝑦2) ̸= ∅ is that 𝑥1 = 𝑥2 and 𝑦1 = 𝑧 where {𝑥1, 𝑦1}
satisfies the assumptions in Subcase 2.1. But, from the selecting rule of 𝒯 (𝑥1, 𝑦1) (with 4 choices), we can select
one 𝒯 (𝑥1, 𝑦1) such that 𝒯 (𝑥1, 𝑦1) ∩ 𝒯 (𝑥2, 𝑦2) = ∅. If {𝑥2, 𝑦2} satisfies the assumptions in Subcase 2.2.2.2, then
𝒯 (𝑥1, 𝑦1) ∩ 𝒯 (𝑥2, 𝑦2) = ∅ from the selecting rules of 𝒯 (𝑥1, 𝑦1) and 𝒯 (𝑥2, 𝑦2). Finally we suppose that {𝑥1, 𝑦1}
and {𝑥2, 𝑦2} satisfy the assumptions of Subcases 2.2.2.1 and 2.2.2.2, respectively. Then 𝒯 (𝑥1, 𝑦1)∩𝒯 (𝑥2, 𝑦2) = ∅
from the selecting rules of 𝒯 (𝑥1, 𝑦1) and 𝒯 (𝑥2, 𝑦2). This completes the proof of {𝑢, 𝑣}-UD property of 𝒯 (𝑢, 𝑣)
for any {𝑢, 𝑣} ⊆ 𝑉 (𝐺).

Therefore, the number of subtrees containing two distinct vertices of 𝐺 is at least 3
(︀
𝑛
2

)︀
= 3𝑛2−3𝑛

2 . Moreover,
each single vertex is also a subtree in 𝐺. Therefore, we have

𝑁(𝐺) ≥ 𝑛 +
3𝑛2 − 3𝑛

2

=
3𝑛2

2
− 𝑛

2
,

completing the proof. �

Since 𝒢3(0)
𝑛 ∖ {𝐶6, 𝐶7} ⊆ 𝒜0

𝑛 ∖ {𝐶𝑛}, from Lemma 3.4, we have the following result.

Corollary 3.5. For any graph 𝐺 ∈ 𝒢3(0)
𝑛 ∖ {𝐶6, 𝐶7}, we have 𝑁(𝐺) ≥ 3𝑛2

2 − 𝑛
2 .

Theorem 3.6. Let 𝐺 ∈ 𝒢3(0)
𝑛 with 𝑛 ≥ 7. Then 𝑁(𝐺) > 𝑊 (𝐺).

Proof. For any vertex 𝑣 ∈ 𝑉 (𝐺), we have 𝜀𝐺(𝑣) ∈ {2, 3} and 𝑇𝑟𝐺(𝑣) = 2𝑛− 2− deg𝐺(𝑣) if 𝜀𝐺(𝑣) = 2 or

𝑇𝑟𝐺(𝑣) ≤ deg𝐺(𝑣) + 2× 1 + 3
[︁
𝑛− 2− deg𝐺(𝑣)

]︁
= 3𝑛− 4− 2deg𝐺(𝑣)

if 𝜀𝐺(𝑣) = 3. Therefore 𝑇𝑟𝐺(𝑣) ≤ 3𝑛 − 4 − 2deg𝐺(𝑣) for any vertex 𝑣 ∈ 𝑉 (𝐺) since 2𝑛 − 2 − deg𝐺(𝑣) ≤
3𝑛− 4− 2deg𝐺(𝑣) from the fact deg𝐺(𝑣) ≤ 𝑛− 2. Assume that 𝑚(𝐺) = 𝑚. Then, from Equality (1.2), we have

𝑊 (𝐺) ≤ 1
2

(3𝑛− 4)𝑛−
∑︁

𝑣∈𝑉 (𝐺)

deg𝐺(𝑣)

=
3𝑛2

2
− 2(𝑛 + 𝑚).

By Corollary 3.5, we have 𝑁(𝐺) −𝑊 (𝐺) ≥ 2𝑚 + 3𝑛
2 > 0 for any 𝐺 ∈ 𝒢3(0)

𝑛 ∖ {𝐶7} with 𝑛 ≥ 7. Moreover, we
have 𝑁(𝐶7) = 49 > 42 = 𝑊 (𝐶7), completing the proof. �
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Before doing it, we list the following elementary results, omitting the proofs.

Lemma 3.7. Let 𝑓(𝑥) = 2𝑥 − 𝑥2 with 𝑥 ≥ 4. Then 𝑓(𝑥) ≥ 0 for any 𝑥 ≥ 4.

Lemma 3.8. Let 𝑔(𝑥, 𝑦) = 2𝑥+2𝑦−2𝑥𝑦 with 𝑥 > 0 and 𝑦 > 0. If 𝑥+𝑦 = 𝑛 ≥ 7, then 𝑔(𝑥, 𝑦) ≥ 𝑔(⌈𝑛
2 ⌉, ⌊

𝑛
2 ⌋) ≥ 0.

In the following we provide a lower bound on the number of subtrees of graphs with diameter 2 or 3 containing
a specific vertex.

Lemma 3.9. Let 𝐺 ∈ 𝒢2
𝑛 ∪ 𝒢3

𝑛 without any non-pendant cut edge and 𝑣 ∈ 𝑉 (𝐺) of degree 2 with 𝜀𝐺(𝑣) = 2.
Then 𝑁(𝑣, 𝐺) ≥ 2𝑛−3 + 2

√
2

𝑛−3
+ 3.

Proof. Assume that 𝑁𝐺(𝑣) = {𝑥, 𝑦}. Since 𝜀𝐺(𝑣) = 2, 𝑁𝐺[𝑥] ∪𝑁𝐺[𝑦] = 𝑉 (𝐺). Denote by 𝑃 = 𝑥𝑣𝑦 a subtree of
𝐺 which is just a path of order 3. Therefore, we have 𝑁(𝑃,𝐺) ≥ 2𝑛−3 where 𝑃 is viewed as a single part with
the remaining 𝑛− 3 vertices attached at 𝑥 or/and 𝑦 in 𝐺. Note that 𝑁𝐺(𝑥) ∖ {𝑣} ≠ ∅ and 𝑁𝐺(𝑦) ∖ {𝑣} ≠ ∅ since
𝐺 contains no non-pendant cut edge. Thus the edges 𝑣𝑥 and 𝑣𝑦 lie on a common cycle, say 𝐶, in 𝐺. Then there
are at least two subtrees containing 𝑣 that are obtained by removing the edges 𝑣𝑥 and 𝑣𝑦, respectively, from a
spanning unicyclic subgraph of 𝐺 including 𝐶. Therefore 𝑁(𝑣, 𝑥, 𝑦; 𝐺) ≥ 2𝑛−3 + 2.

Assume that |𝑁𝐺(𝑥) ∖ {𝑣, 𝑦}| = 𝑛1 and |𝑁𝐺(𝑦) ∖ {𝑣, 𝑥}| = 𝑛2. Then 𝑛1 + 𝑛2 ≥ 𝑛− 3. Similarly as above, we
have 𝑁(𝑦, 𝑣, 𝑥; 𝐺) ≥ 2𝑛1 and 𝑁(𝑥, 𝑣, 𝑦; 𝐺) ≥ 2𝑛2 . It follows that

𝑁(𝑣,𝐺) = 𝑁(𝑣, 𝑥, 𝑦; 𝐺) + 𝑁(𝑦, 𝑣, 𝑥; 𝐺) + 𝑁(𝑥, 𝑣, 𝑦; 𝐺) + 𝑁(𝑥, 𝑦, 𝑣; 𝐺)
≥ 2𝑛−3 + 2 + 2𝑛1 + 2𝑛2 + 1

≥ 2𝑛−3 + 2
√

2
𝑛−3

+ 3,

completing the proof. �

Theorem 3.10. Let 𝐺 ∈ 𝒢3(1)
𝑛 with 𝑛 ≥ 7. Then 𝑁(𝐺) > 𝑊 (𝐺).

Proof. Based on the statuses of cut edges in 𝐺 ∈ 𝒢3(1)
𝑛 , we divide into the following cases.

Case 1. There is a non-pendant cut edge, say 𝑣1𝑣2, in 𝐺.
In this case, we assume that 𝐺 − 𝑣1𝑣2 = 𝐺1 ∪ 𝐺2. Then 𝐺 can be viewed as the 𝑣1𝑣2-link graph of graphs
𝐺1 and 𝐺2 of order 𝑛1 and 𝑛2, respectively, with 𝑛1 + 𝑛2 = 𝑛. Since 𝐺 ∈ 𝒢3(1)

𝑛 , 𝑣1 and 𝑣2 are universal
vertices in 𝐺1 and 𝐺2, respectively, with 𝜀𝐺(𝑣1) = 𝜀𝐺(𝑣2) = 2. Then DS𝑛1−1,𝑛2−1 is the spanning subgraph
of 𝐺 with 𝑛1 + 𝑛2 = 𝑛. From Lemma 2.2, it suffices to prove 𝑁(DS𝑛1−1,𝑛2−1) > 𝑊 (DS𝑛1−1,𝑛2−1). Setting
𝐴 = 𝑁(DS𝑛1−1,𝑛2−1)−𝑊 (DS𝑛1−1,𝑛2−1), by Lemmas 2.8, 3.7 and 3.8, we have

𝐴 = 2𝑛1−1 + 𝑛1 − 1 + 2𝑛2−1 + 𝑛2 − 1 + 2𝑛1+𝑛2−2 − (𝑛1 − 1)2 − (𝑛2 − 1)2 − 𝑛2(𝑛1 − 1)− 𝑛1(𝑛2 − 1)− 𝑛1𝑛2

= 2𝑛−2 − (𝑛− 2)2 +
1
2

(2𝑛1 + 2𝑛2 − 2𝑛1𝑛2) > 0.

Case 2. Any cut edge is pendant in 𝐺.
In this case, we prove the result by induction on 𝑝, the number of pendant cut edges in 𝐺. If 𝑝 = 1, without
loss of generality, we assume that 𝑣1𝑣2 is the pendant cut edge with pendant vertex 𝑣2 and 𝐺1 = 𝐺 − 𝑣2.
From the structure of 𝐺, we have 𝐺1 ∈ 𝒢2

𝑛−1 ∪ 𝒢3
𝑛−1 with 𝜀𝐺1(𝑣1) = 2. Assume that deg𝐺1

(𝑣1) = 𝑘, which
yields 𝑇𝑟𝐺1(𝑣1) = 𝑘 + 2(𝑛− 2− 𝑘) = 2𝑛− 4− 𝑘 with 𝑘 ≤ 𝑛− 3. By Lemma 2.8, we have

𝑊 (𝐺) = 𝑊 (𝐺1) + 𝑛− 1 + 𝑇𝑟𝐺1(𝑣1),
𝑁(𝐺) = 𝑁(𝐺1) + 1 + 𝑁(𝑣1, 𝐺1).
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Then it follows that

𝑁(𝐺)−𝑊 (𝐺) = 𝑁(𝐺1)−𝑊 (𝐺1) + 𝑁(𝑣1, 𝐺1)− 𝑇𝑟𝐺1(𝑣1)− (𝑛− 2). (3.1)

Since 𝐺 has no any non-pendant cut edge, we have 𝑘 ≥ 2. If 𝑘 = 2, by Lemma 3.9, we have 𝑁(𝑣1, 𝐺1) ≥
2𝑛−4 + 2

√
2

𝑛−4
+ 3. Moreover, 𝑇𝑟𝐺1(𝑣1) = 2𝑛 − 6. Note that 2𝑛−4 + 2

√
2

𝑛−4
+ 3 > 3𝑛 − 8 for 𝑛 ≥ 4 since

the function 𝜙(𝑥) = 2𝑥 + 2
√

2
𝑥 − 3𝑥− 1 > 0 for 𝑥 ≥ 0. In view of Equality (3.1), we have

𝑁(𝐺)−𝑊 (𝐺) > 𝑁(𝐺1)−𝑊 (𝐺1) + 2𝑛−4 + 2
√

2
𝑛−4

+ 3− (3𝑛− 8)
> 𝑁(𝐺1)−𝑊 (𝐺1). (3.2)

If 𝑘 ≥ 3, combining Equality (3.1), Lemma 2.7 (𝑖) and the fact 𝑇𝑟𝐺1(𝑣1) = 2𝑛 − 4 − 𝑘 with 𝑘 ≤ 𝑛 − 3, we
have

𝑁(𝐺)−𝑊 (𝐺) = 𝑁(𝐺1)−𝑊 (𝐺1) + (2𝑘−1 − 3)(𝑛− 𝑘)− (2𝑘 − 6)
≥ 𝑁(𝐺1)−𝑊 (𝐺1) + 3(2𝑘−1 − 3)− (2𝑘 − 6)
> 𝑁(𝐺1)−𝑊 (𝐺1). (3.3)

Since 𝐺1 ∈ 𝒢2
𝑛−1 ∪ 𝒢3

𝑛−1 without any cut edge, 𝑁(𝐺1) > 𝑊 (𝐺1) holds in (3.2) and (3.3) from Lemmas 3.2
and 3.6. Thus 𝑁(𝐺) > 𝑊 (𝐺) for any 𝐺 ∈ 𝒢3(1)

𝑛 with one pendant cut edge.

Next we assume that 𝑝 > 1 and 𝑁(𝐺′) > 𝑊 (𝐺′) for any 𝐺′ ∈ 𝒢3(1)
𝑛 with 𝑝 − 1 pendant cut edge(s). Let

𝐺 ∈ 𝒢3(1)
𝑛 with 𝑝 pendant cut edges. As the induction basis, 𝑁(𝐺) > 𝑊 (𝐺) can be routinely checked for any

graph 𝐺 ∈ 𝒢3(1)
𝑛 with 𝑛 = 6 by computer search. By a same reasoning as that in the proof of Inequalities (3.2),

(3.3) and the induction hypothesis, we have

𝑁(𝐺)−𝑊 (𝐺) > 𝑁(𝐺′)−𝑊 (𝐺′) > 0,

completing the proof. �

Combining Theorems 3.6 and 3.10, we have the following result.

Theorem 3.11. For any graph 𝐺 ∈ 𝒢3
𝑛 with 𝑛 ≥ 7, we have 𝑁(𝐺) > 𝑊 (𝐺).

A broom 𝐵𝑛,𝑘 is a tree obtained by attaching 𝑘 pendant vertices to a leaf of path 𝑃𝑛−𝑘. Note that the
property 𝑁(𝐺) > 𝑊 (𝐺) cannot be extended to the graphs with diameter 4. Clearly, 𝐵𝑛,𝑛−4 has diameter 4.
As two examples, we have 𝑁(𝐵6,2) = 24 < 32 = 𝑊 (𝐵6,2) and 𝑁(𝐵7,3) = 41 < 46 = 𝑊 (𝐵7,3) from some
calculations. Other comparison results of general brooms will be presented in Section 4.

3.2. Graphs with large diameters

In this section we provide some graphs with 𝑁 > 𝑊 and large diameters.
Let 𝐺0 be a graph of order 5 consisting of two triangles which intersect at one vertex 𝑣. Observe that 𝐺0

contains two pairs of non-adjacent vertices 𝑣1, 𝑣′1 and 𝑣2, 𝑣′2 of degrees 2. Then 𝐿(𝐻(𝑛1, 𝑛2; 1; 𝑛1, 𝑛2)) with
𝑛1 ≤ 𝑛2 can be obtained by attaching at each of 𝑣1 and 𝑣′1 in 𝐺0 a pendant path of length 𝑛1− 1 and at each of
𝑣2 and 𝑣′2 in it a pendant path of length 𝑛2 − 1. Note that 𝐿(𝐻(𝑛1, 𝑛2; 1; 𝑛1, 𝑛2)) has order 𝑛 = 2(𝑛1 + 𝑛2) + 1
and diameter 𝑑 = 2𝑛2 ≥ 𝑛−1

2 .

Theorem 3.12. Let 𝐺 = 𝐿(𝐻(𝑛1, 𝑛2; 1; 𝑛1, 𝑛2)) defined as above with 2 ≤ 𝑛1 ≤ 𝑛2. If 𝑛2 ≤ 𝑛1 + 19, then we
have 𝑁(𝐺) > 𝑊 (𝐺).
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Proof. Note that 𝐻(𝑛1, 𝑛2; 1; 𝑛1, 𝑛2) has order 𝑛 = 2(𝑛1 + 𝑛2) + 2. Then we have

𝑊 (𝐺) = 𝑊 (𝐻(𝑛1, 𝑛2; 1; 𝑛1, 𝑛2))−
(︂

𝑛

2

)︂
=

(︂
2𝑛1 + 2𝑛2 + 3

3

)︂
− 2(𝑛1 + 𝑛2 + 1)𝑛1𝑛2 −

(︂
2𝑛1 + 2𝑛2 + 2

2

)︂
=

(︂
2𝑛1 + 2𝑛2 + 2

3

)︂
− 2(𝑛1 + 𝑛2 + 1)𝑛1𝑛2

from Lemmas 2.6 and 2.5. Note that 𝑁(𝐺− 𝑣) = 2𝑁(𝑃𝑛1+𝑛2) = (𝑛1 + 𝑛2 + 1)(𝑛1 + 𝑛2). Since 𝐺− 𝑣 consists of
two copies of 𝑃𝑛1+𝑛2 , there exist 1 + 𝑛1 + 𝑛2 + 3𝑛1𝑛2 subtrees counted in 𝑁(𝑣, 𝐺) which are formed of 𝑣 and
other vertices in exactly one copy of 𝑃𝑛1+𝑛2 . Thus we have 𝑁(𝑣,𝐺) = (1 + 𝑛1 + 𝑛2 + 3𝑛1𝑛2)2. Then it follows
from Equality (2.3) that 𝑁(𝐺) = (1 + 𝑛1 + 𝑛2 + 3𝑛1𝑛2)2 + (𝑛1 + 𝑛2 + 1)(𝑛1 + 𝑛2). Note that 𝑛1𝑛2 ≥ 𝑛1 + 𝑛2

for 2 ≤ 𝑛1 ≤ 𝑛2. Setting 𝐴 = 𝑁(𝐺)−𝑊 (𝐺). Therefore,

𝐴 = (1 + 𝑛1 + 𝑛2 + 3𝑛1𝑛2)2 + (𝑛1 + 𝑛2 + 1)(𝑛1 + 𝑛2 + 2𝑛1𝑛2)−
(︂

2𝑛1 + 2𝑛2 + 2
3

)︂
= 9𝑛2

1𝑛
2
2 + 8𝑛1𝑛2(𝑛1 + 𝑛2 + 1) + (𝑛1 + 𝑛2 + 1)2 − (𝑛1 + 𝑛2 + 1)(𝑛1 + 𝑛2)

[︂
1− 2(2𝑛1 + 2𝑛2 + 1)

3

]︂
= 9𝑛2

1𝑛
2
2 + 8𝑛1𝑛2(𝑛1 + 𝑛2 + 1) +

7(𝑛1 + 𝑛2)
3

+ 1− 4(𝑛1 + 𝑛2)3

3

> 𝑛1𝑛2(9𝑛1𝑛2 + 8)− (𝑛1 + 𝑛2)
[︂

4
3

(𝑛1 + 𝑛2)2 − 8𝑛1𝑛2 −
7
3

]︂
>

𝑛1𝑛2

3
[−4(𝑛1 − 𝑛2)2 + 35𝑛1𝑛2 + 31].

Assume that 𝑛2 − 𝑛1 = 𝑡. It can be routinely checked that 4𝑡2 − 70𝑡 − 171 < 0, that is, 4𝑡2 − 31 < 70(2 + 𝑡),
if 0 ≤ 𝑡 ≤ 19. Equivalently, we have 4(𝑛1 − 𝑛2)2 − 31 ≤ 𝑛1(𝑛1 + 𝑡), that is, 4(𝑛1 − 𝑛2)2 − 35𝑛1𝑛2 − 31 < 0 if
0 ≤ 𝑛2 − 𝑛1 ≤ 9 with 𝑛1 ≥ 2. Therefore 𝑁(𝐺) > 𝑊 (𝐺) as desired. �

For a graph 𝐺 with 𝑒 ∈ 𝐸(𝐺), the partial subdivision graph 𝑆𝑒(𝐺) on 𝑒 is a graph obtained by subdividing
the edge 𝑒, that is, inserting a vertex of degree 2 adjacent to two ends of 𝑒 of 𝐺. Next we construct more new
graphs with 𝑁 > 𝑊 from some known ones of this kind.

Theorem 3.13. Let 𝐺1 and 𝐺2 be two connected graphs of order 𝑛 ≥ 16 such that 𝑁(𝐺𝑖) ≥ 𝑊 (𝐺𝑖) for
𝑖 ∈ {1, 2}. Assume that 𝑣1, 𝑣2 are two vertices of degrees 𝑘1 ≥ 𝑛

2 and 𝑘2 ≥ 𝑛
2 in 𝐺1 and 𝐺2, respectively. Let

𝐺 = 𝐺1𝑣1 ⌣ 𝑣2𝐺2. Then 𝑁(𝐺) > 𝑊 (𝐺) and 𝑁(𝑆𝑒(𝐺)) > 𝑊 (𝑆𝑒(𝐺)) where 𝑒 = 𝑣1𝑣2.

Proof. Let 𝑉1 ⊆ 𝑉 (𝐺1) and 𝑉2 ⊆ 𝑉 (𝐺2) be the sets of vertices of degrees 𝑘1 and 𝑘2 in 𝐺1 and 𝐺2, respectively.
Thus 𝑣𝑖 ∈ 𝑉𝑖 for 𝑖 ∈ [2]. By Lemma 2.7, we have, for 𝑖 ∈ [2],

𝑁(𝑣𝑖, 𝐺𝑖)− 𝑇𝑟𝐺𝑖
(𝑣𝑖) ≥ min

𝑣𝑝∈𝑉𝑖

{𝑁(𝑣𝑝, 𝐺𝑖)} − max
𝑣𝑞∈𝑉𝑖

{𝑇𝑟𝐺𝑖
(𝑣𝑞)}

≥ 2𝑘𝑖−1(𝑛− 𝑘𝑖 + 1)−
[︂
𝑘𝑖 − 1 +

(𝑛− 𝑘𝑖)(𝑛− 𝑘𝑖 + 1)
2

]︂
= 2𝑘𝑖−1(𝑛− 𝑘𝑖 + 1)− 𝑘2

𝑖

2
+

2𝑛− 1
2

𝑘𝑖 −
(𝑛− 1)(𝑛 + 2)

2
·

Define a function 𝑓(𝑥) = 2𝑥−1(𝑛−𝑥 + 1)− 𝑥2

2 + 2𝑛−1
2 𝑥− (𝑛−1)(𝑛+2)

2 with 𝑥 ≥ 𝑛
2 . Taking the first differential,

we have 𝑓 ′(𝑥) = 2𝑥−1
[︁
(𝑛− 𝑥 + 1)𝑙𝑛2− 1

]︁
+ 𝑛− 𝑥− 1

2 > 0. Therefore 𝑓(𝑥) is strictly increasing for 𝑥 ≥ 𝑛
2 . Thus
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it follows that 𝑓(𝑥) attains its minimum 𝑓(𝑛
2 ) = 2

𝑛
2−1(𝑛

2 + 1)− 𝑛2+6𝑛−8
8 uniquely at 𝑥 = 𝑛

2 . Note that

𝑓
(︁𝑛

2

)︁
−

[︂
(𝑛 + 1)2

2
− 1

]︂
= 2

𝑛
2−1

(︁𝑛

2
+ 1

)︁
− 𝑛2 + 6𝑛− 8

8
− (𝑛 + 1)2

2
+ 1

= 2
𝑛
2−1

(︁𝑛

2
+ 1

)︁
− 5𝑛2 + 14𝑛− 12

8

>

(︂𝑛
2 − 1

2

)︂(︁𝑛

2
+ 1

)︁
− 5𝑛2 + 14𝑛− 12

8

=
(𝑛2 − 4)(𝑛− 4)− 10𝑛2 − 28𝑛 + 24

16

=
𝑛3 − 14𝑛2 − 32𝑛 + 40

16
≥ 0

for 𝑛 ≥ 16. Therefore we have, for 𝑖 ∈ [2],

𝑁(𝑣𝑖, 𝐺𝑖)− 𝑇𝑟𝐺𝑖
(𝑣𝑖) >

(𝑛 + 1)2

2
− 1. (3.4)

Since (𝑛+1)2

2 − 1 > 𝑛, we have, for 𝑖 ∈ [2],

𝑁(𝑣𝑖, 𝐺𝑖)− 𝑇𝑟𝐺𝑖
(𝑣𝑖) > 𝑛. (3.5)

From the structure of 𝐺 = 𝐺1𝑣1 ⌣ 𝑣2𝐺2 and Lemma 2.8, we have

𝑊 (𝐺) = 𝑊 (𝐺1) + 𝑊 (𝐺2) + 𝑛(𝑇𝑟𝐺1(𝑣1) + 𝑇𝑟𝐺2(𝑣2)) + 𝑛2, and
𝑁(𝐺) = 𝑁(𝐺1) + 𝑁(𝐺2) + 𝑁(𝑣1, 𝐺1)𝑁(𝑣2, 𝐺2).

Thus, by Inequalities (3.5) for 𝑖 ∈ [2] and the assumptions, we get

𝑁(𝐺)−𝑊 (𝐺) > 𝑁(𝐺1)−𝑊 (𝐺1) + 𝑁(𝐺1)−𝑊 (𝐺2) + (𝑇𝑟𝐺1(𝑣1) + 𝑛)(𝑇𝑟𝐺2(𝑣2) + 𝑛)
−𝑛(𝑇𝑟𝐺1(𝑣1) + 𝑇𝑟𝐺2(𝑣2))− 𝑛2

≥ 𝑇𝑟𝐺1(𝑣1)𝑇𝑟𝐺2(𝑣2) > 0.

Assume that 𝑉 (𝑆𝑒(𝐺)) ∖ 𝑉 (𝐺) = {𝑣}, that is, 𝑣 is the newly inserted vertex from 𝐺 to 𝑆𝑒(𝐺). From the
structure of 𝑆𝑒(𝐺), we have

𝑊 (𝑆𝑒(𝐺)) = 𝑊 (𝐺1) + 𝑊 (𝐺2) +
∑︁

𝑥∈𝑉 (𝐺1)

𝑑𝐺(𝑣, 𝑥) +
∑︁

𝑦∈𝑉 (𝐺2)

𝑑𝐺(𝑣, 𝑦)

+
∑︁

𝑥∈𝑉 (𝐺1),𝑦∈𝑉 (𝐺2)

[𝑑𝐺1(𝑥, 𝑣1) + 2 + 𝑑𝐺2(𝑣2, 𝑦)]

=
2∑︁

𝑖=1

𝑊 (𝐺𝑖) +
2∑︁

𝑖=1

𝑇𝑟𝐺𝑖(𝑣𝑖) + 2𝑛 + 𝑛[𝑇𝑟𝐺1(𝑣1) + 𝑇𝑟𝐺2(𝑣2)] + 2𝑛2

= 𝑊 (𝐺) + 𝑇𝑟𝐺1(𝑣1) + 𝑇𝑟𝐺2(𝑣2) + 2𝑛 + 𝑛2, and
𝑁(𝑆𝑒(𝐺)) = 𝑁(𝐺1) + 𝑁(𝐺2) + 1 + 𝑁(𝑣1, 𝐺1) + 𝑁(𝑣2, 𝐺2) + 𝑁(𝑣1, 𝐺1)𝑁(𝑣2, 𝐺2)

= 𝑁(𝐺) + 1 + 𝑁(𝑣1, 𝐺1) + 𝑁(𝑣2, 𝐺2).

Combining Inequalities (3.4) for 𝑖 ∈ [2] with the above result 𝑁(𝐺) > 𝑊 (𝐺), we have

𝑁(𝑆𝑒(𝐺))−𝑊 (𝑆𝑒(𝐺)) = 𝑁(𝐺)−𝑊 (𝐺) + 2 + 𝑁(𝑣1, 𝐺1) + 𝑁(𝑣2, 𝐺2)− 𝑇𝑟𝐺1(𝑣1)− 𝑇𝑟𝐺2(𝑣2)− (𝑛 + 1)2

> 0,

completing the proof. �
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From Theorem 3.13, we arrive at the following remark.

Remark 3.14. For two connected graphs 𝐺1 and 𝐺2 of order 𝑛 ≥ 16 with 𝑁(𝐺𝑖) ≥ 𝑊 (𝐺𝑖) and 𝑣𝑖 ∈ 𝑉 (𝐺𝑖)
for 𝑖 ∈ [2], if 𝑣1, 𝑣2 are two diametrical vertices of degrees 𝑘1 ≥ 𝑛

2 and 𝑘2 ≥ 𝑛
2 in 𝐺1 and 𝐺2, respectively, then

both the graphs 𝐺 = 𝐺1𝑣1 ⌣ 𝑣2𝐺2 and 𝑆𝑒(𝐺) have the property 𝑁 > 𝑊 with larger diameters where 𝑒 = 𝑣1𝑣2.

4. Graphs with 𝑊 > 𝑁

In this section we will present some graphs with 𝑁 < 𝑊 .

Theorem 4.1. Let 𝑇 = 𝑇 (𝑛1, 𝑛2, 𝑛3) defined as above with 𝑛1+𝑛2+𝑛3 > 3. Then 𝑊 (𝑇 )−𝑁(𝑇 ) > 0. Moreover,
𝑊 (𝑇 )−𝑁(𝑇 ) > (𝑛1+𝑛2)

2−9
2 − 4(𝑛1+𝑛2+3)

3 > 3
2 if 𝑛1 + 𝑛2 ≥ 6.

Proof. Let 𝑣 be the vertex with deg𝑇 (𝑣) = 3 in 𝑇 . Then we have 𝑇 − 𝑣 =
⋃︀3

𝑖=1 𝑃𝑛𝑖 with 𝑛 = 𝑛1 + 𝑛2 + 𝑛3 + 1.
From Equality (2.3) on the vertex 𝑣 and Lemma 2.4, we have

𝑁(𝑇 ) = 𝑁(𝑣, 𝑇 ) + 𝑁(𝑇 − 𝑣)

= (𝑛1 + 1)(𝑛2 + 1)(𝑛3 + 1) +
3∑︁

𝑖=1

(︂
𝑛𝑖 + 1

2

)︂
.

By Lemma 2.5, we have

𝑊 (𝑇 ) =
(︂

𝑛 + 1
3

)︂
− 𝑛1𝑛2𝑛3

=
(︂

𝑛1 + 𝑛2 + 𝑛3 + 1
3

)︂
+

(︂
𝑛1 + 𝑛2 + 𝑛3 + 1

2

)︂
− 𝑛1𝑛2𝑛3.

Setting 𝐴 = 𝑊 (𝑇 )−𝑁(𝑇 ), then we have

𝐴 =
(︂

𝑛1 + 𝑛2 + 𝑛3 + 1
3

)︂
− 2𝑛1𝑛2𝑛3 − (𝑛1 + 𝑛2 + 𝑛3)− 1

=
(︂

𝑛

3

)︂
− 𝑛− 2𝑛1𝑛2𝑛3

=
(𝑛− 4)𝑛(𝑛 + 1)

6
− 2𝑛1𝑛2𝑛3.

Note that 𝑛1𝑛2𝑛3 reaches its maximum with 𝑛1 + 𝑛2 + 𝑛3 = 𝑛 − 1 if and only if |𝑛𝑖 − 𝑛𝑗 | ≤ 1 for 𝑖, 𝑗 ∈ [3].

Therefore 𝑛1𝑛2𝑛3 ≤

⎧⎪⎨⎪⎩
(𝑛+1)2(𝑛−2)

27 , 𝑛 ≡ 0(mod 3) ;
(𝑛−1)3

27 , 𝑛 ≡ 1(mod 3) ;
(𝑛+1)(𝑛−2)2

27 , 𝑛 ≡ 2(mod 3) .

Then

𝐴 =
(𝑛− 4)𝑛(𝑛 + 1)

6
− 2𝑛1𝑛2𝑛3

≥ (𝑛− 4)𝑛(𝑛 + 1)
6

− 2(𝑛 + 1)2(𝑛− 2)
27

=
(𝑛 + 1)(5𝑛2 − 32𝑛 + 8)

54
> 0

for 𝑛 ≥ 7. Furthermore, it can be routinely verified that 𝐴 > 0 for 𝑛 ∈ {5, 6}.
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Next we turn to prove 𝑊 (𝑇 )−𝑁(𝑇 ) > (𝑛1+𝑛2)
2−9

2 − 4(𝑛1+𝑛2+3)
3 > 3

2 if 𝑛1 + 𝑛2 ≥ 6. To do it, we first define

a function 𝑓(𝑥) = (𝑥+1)(5𝑥2−32𝑥+8)
54 with 𝑥 ≥ 4. Taking the first differential, we have 𝑓 ′(𝑥) = (5𝑥+2)(𝑥−4)

18 ≥ 0.
Hence 𝑓(𝑥) is increasing when 𝑥 ≥ 4. Then we arrive at 𝐴 = 𝑓(𝑛) ≥ 𝑓(𝑛1 + 𝑛2 + 2) since 𝑛3 ≥ 1. Setting
𝑦 = 𝑛1 + 𝑛2, then 𝑓(𝑛1 + 𝑛2 + 2) = (𝑦+3)(5𝑦2−12𝑦−36)

54 . Define another function ℎ(𝑦) = (𝑦+3)(5𝑦2−12𝑦−36)
54 with

𝑦 ≥ 2. Therefore, we have 𝐴 ≥ ℎ(𝑦) with 𝑦 ≥ 2. Since 5𝑦2−39𝑦+117 > 0 for 𝑦 ≥ 6, we have 5𝑦2−12𝑦−36
54 > 𝑦−3

2 − 4
3

for 𝑦 ≥ 6. Then it follows that

𝐴 ≥ ℎ(𝑦) >
𝑦2 − 9

2
− 4(𝑦 + 3)

3

=
3𝑦2 − 8𝑦 − 51

6
≥ 3

2

for 𝑦 ≥ 6. This completes the proof. �

Recall that the brrom 𝐵𝑛,𝑘 is a tree obtained by attaching 𝑘 pendant vertices to a leaf of path 𝑃𝑛−𝑘. Below
we present the brooms with 𝑊 > 𝑁 .

Theorem 4.2. Let 𝑇 = 𝐵𝑛,𝑘 be a broom with 2 ≤ 𝑘 ≤ log2 𝑛− 1. Then 𝑊 (𝑇 ) > 𝑁(𝑇 ).

Proof. Since the result holds for 𝑘 = 2 from Theorem 4.1, we assume that 𝑘 ≥ 3 in the following. From the
structure of 𝑇 and Lemma 2.5, we have

𝑊 (𝑇 ) =
(︂

𝑛 + 1
3

)︂
−

(︂
𝑘

3

)︂
− (𝑛− 𝑘 − 1)

(︂
𝑘

2

)︂
.

Assume that 𝑣 is the vertex of degree 𝑘 + 1 in 𝑇 . Based on Equality (2.3) and the fact 𝑁(𝑃𝑛) =
(︀
𝑛+1

2

)︀
, we

have

𝑁(𝑇 ) = 𝑁(𝑣, 𝑇 ) + 𝑁(𝑇 − 𝑣)

= 2𝑘(𝑛− 𝑘) + 𝑘 +
(︂

𝑛− 𝑘

2

)︂
.

From the assumption 2 ≤ 𝑘 ≤ log2 𝑛− 1, that is, 2𝑘 ≤ 𝑛
2 , it follows that

𝑊 (𝑇 )−𝑁(𝑇 ) =
𝑛(𝑛2 − 1)

6
− 𝑘(𝑘2 − 3𝑘 + 8)

6
− 𝑛 + 𝑘2 − 2𝑘

2
(𝑛− 1− 𝑘)− 2𝑘(𝑛− 𝑘)

=
𝑛(𝑛2 − 1)

6
− 𝑛2

2
− 2𝑘𝑛− 𝑘2 − 3𝑘 − 1

2
𝑛 +

𝑘(𝑘2 − 7)
3

+ 𝑘2𝑘

>
𝑛(𝑛2 − 1)

6
− 𝑛2 − 𝑛2

4
as 𝑘2 − 3𝑘 − 1 < 𝑘2 − 1 < 2𝑘 for 𝑘 ≥ 3

=
𝑛(2𝑛2 − 15𝑛− 2)

12
> 0.

Note that the last inequality holds for any 𝑛 ≥ 8 since 2 ≤ log2 𝑛− 1. �

Next we construct a class of chemical trees with 𝑊 > 𝑁 with two 3-degree vertices. Before doing it, we need
a preliminary result as follows.

Lemma 4.3. Let 𝐺 be a connected graph of order 𝑛 with a pendant vertex 𝑢 ∈ 𝑉 (𝐺) and 𝐺* be a new graph
obtained by attaching two pendant vertices to the vertex 𝑢 of 𝐺. Then 𝑊 (𝐺*) = 𝑊 (𝐺) + 2𝑇𝑟𝐺(𝑢) + 2𝑛 + 2.
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Proof. Assume that 𝑉 (𝐺*) ∖ 𝑉 (𝐺) = {𝑣, 𝑣′}. From the structure of 𝐺*, we have

𝑊 (𝐺*) =
∑︁

{𝑥,𝑦}⊆𝑉 (𝐺)

𝑑𝐺*(𝑥, 𝑦) + 2
∑︁

𝑥∈𝑉 (𝐺)

𝑑𝐺*(𝑣, 𝑥) + 𝑑𝐺*(𝑣, 𝑣′)

= 𝑊 (𝐺) + 2
∑︁

𝑥∈𝑉 (𝐺)

(𝑑𝐺(𝑢, 𝑥) + 1) + 2

= 𝑊 (𝐺) + 2𝑇𝑟𝐺(𝑢) + 2𝑛 + 2,

finishing the proof. �

Theorem 4.4. Let 𝑇 = 𝐻(𝑛1, 𝑛2, 𝑛3, 1, 1) with 𝑛1 + 𝑛2 + 𝑛3 > 3. Then 𝑊 (𝑇 ) > 𝑁(𝑇 ).

Proof. Note that 𝑇 has order 𝑛 = 𝑛1 + 𝑛2 + 𝑛3 + 3. Let 𝑢 be a vertex of degree 3 in 𝑇 with two leaf neighbors 𝑣
and 𝑣′ where 𝑉0 = {𝑣, 𝑣′}. Then 𝑇 ∖𝑉0 = 𝑇 (𝑛1, 𝑛2, 𝑛3) with 𝑁(𝑣, 𝑣′; 𝑇 ) = 𝑁(𝑣, 𝑣′; 𝑇 ) = 𝑛3 +1+(𝑛1 +1)(𝑛2 +1)
and 𝑁(𝑣, 𝑣′; 𝑇 ) = 𝑛3 + (𝑛1 + 1)(𝑛2 + 1) from the structure of 𝑇 , which yield

𝑁(𝑇 ) = 𝑁(𝑇 ∖ 𝑉0) + 𝑁(𝑉0, 𝑇 )
= 𝑁(𝑇 (𝑛1, 𝑛2, 𝑛3)) + 𝑁

(︀
𝑣, 𝑣′; 𝑇

)︀
+ 𝑁(𝑣, 𝑣′; 𝑇 ) + 𝑁(𝑣, 𝑣′; 𝑇 )

= 𝑁(𝑇 (𝑛1, 𝑛2, 𝑛3)) + 3[𝑛3 + (𝑛1 + 1)(𝑛2 + 1)] + 2.

Let 𝑇0 = 𝑇 (𝑛1, 𝑛2, 𝑛3). Then 𝑇𝑟𝑇0(𝑢) =
∑︀3

𝑖=1

(︀
𝑛𝑖

2

)︀
+ 𝑛3(𝑛1 + 𝑛2). By Lemma 4.3, we have

𝑊 (𝑇 ) = 𝑊 (𝑇0) + 2𝑛− 2 + 2𝑇𝑟𝑇0(𝑢)

= 𝑊 (𝑇0) + 2(𝑛1 + 𝑛2 + 𝑛3) + 4 +
3∑︁

𝑖=1

𝑛𝑖(𝑛𝑖 + 1) + 2𝑛3(𝑛1 + 𝑛2)

= 𝑊 (𝑇0) + (𝑛1 + 𝑛2 + 𝑛3 + 2)2 − 2𝑛1𝑛2 − (𝑛1 + 𝑛2 + 𝑛3).

Setting 𝐴 = 𝑊 (𝑇0)−𝑁(𝑇0) and 𝐵 = 𝑊 (𝑇 )−𝑁(𝑇 ). Then we get

𝐵 = 𝐴 + (𝑛1 + 𝑛2 + 𝑛3 + 2)2 − 2𝑛1𝑛2 − (𝑛1 + 𝑛2 + 𝑛3)− 3[𝑛3 + (𝑛1 + 1)(𝑛2 + 1)]− 2
= 𝐴 + 𝑛2

1 + 𝑛2
2 − 3𝑛1𝑛2 + 2(𝑛1 + 𝑛2)𝑛3 + 𝑛2

3 − 1
≥ 𝐴 + 2(𝑛1 + 𝑛2)− 𝑛1𝑛2.

If 𝑛1 + 𝑛2 ≤ 5, then 2(𝑛1 + 𝑛2)− 𝑛1𝑛2 > 0 for 𝑛1 + 𝑛2 ∈ {2, 3, 4, 5}. Thus, from Theorem 4.1, 𝑊 (𝑇 ) > 𝑁(𝑇 )
follows. While 𝑛1 + 𝑛2 ≥ 6, by Theorem 4.1, we have 𝐴 > 𝑛1𝑛2 − 4(𝑛1+𝑛2+3)

3 since 𝑛2
1 + 𝑛2

2 > 9 for 𝑛1 + 𝑛2 ≥ 6.
Then, for 𝑛1 + 𝑛2 ≥ 6,

𝐵 > 𝐴 + 2(𝑛1 + 𝑛2)− 𝑛1𝑛2

≥ 2(𝑛1 + 𝑛2)
3

− 4 ≥ 0.

Our result holds from the argument in the two cases above. �

Below we provide a more generalized result than Theorem 4.4.

Theorem 4.5. Let 𝐺 be a connected graph of order 𝑛 with a pendant vertex 𝑢 ∈ 𝑉 (𝐺) and 𝐺* be a new graph
obtained by attaching two pendant vertices 𝑣 and 𝑣′ to the vertex 𝑢 of 𝐺. If 𝑊 (𝐺) > 𝑁(𝐺) with 2(𝑇𝑟𝐺(𝑢)+𝑛) ≥
3𝑁(𝑢, 𝐺), then 𝑊 (𝐺*) > 𝑁(𝐺*).
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Proof. Let 𝑉0 = {𝑣, 𝑣′}. Then, by Equality (2.2), we have

𝑁(𝐺*) = 𝑁(𝐺) + 2𝑁(𝑣, 𝑣′; 𝐺) + 𝑁(𝑣, 𝑣′; 𝐺)
= 𝑁(𝐺) + 2(𝑁(𝑣, 𝐺) + 1) + 𝑁(𝑣, 𝐺)
≥ 𝑁(𝐺) + 3𝑁(𝑣, 𝐺) + 2.

From Lemma 4.3 and the assumptions, it follows that

𝑊 (𝐺*)−𝑁(𝐺*) = 𝑊 (𝐺)−𝑁(𝐺) + 2(𝑇𝑟𝐺(𝑢) + 𝑛) ≥ 3𝑁(𝑢, 𝐺) > 0.

�

Let 𝑇 = 𝐵𝑛,𝑘 be a broom with 𝑣 ∈ 𝑉 (𝑇 ) as a leaf farthest from the vertex of maximum degree 𝑘 +1 and 𝐵*
𝑛,𝑘

be a tree obtained from 𝑇 by attaching two pendant vertices at 𝑣. Then, by elementary calculations, we have
𝑇𝑟𝑇 (𝑣) = (𝑛−𝑘)(𝑛+𝑘−1)

2 and 𝑁(𝑣, 𝑇 ) = 2𝑘(𝑛− 𝑘). If 𝑘 ≤ log2
𝑛
3 , we have 2(𝑇𝑟𝑇 (𝑣) + 𝑛) ≥ 3𝑁(𝑣, 𝑇 ). Combining

this fact with Theorem 4.2, we have 𝑊 (𝐵*
𝑛,𝑘) > 𝑁(𝐵*

𝑛,𝑘) if 𝑘 ≤ log2
𝑛
3 .

Note that 𝑊 (𝐶𝑛) = 𝑛
2 ⌊

𝑛2

4 ⌋ [26] and 𝑁(𝐶𝑛) = 𝑛2 [35]. So 𝑊 (𝐶𝑛) > 𝑁(𝐶𝑛) for 𝑛 > 8. Next we provide a
cycle-containing but non-cycle graph with 𝑊 > 𝑁 .

Theorem 4.6. Let 𝐺 = 𝐿(𝑇 (1, 𝑛1, 𝑛2)) with 𝑛1 + 𝑛2 ≥ 8. Then 𝑊 (𝐺) > 𝑁(𝐺).

Proof. By the structure of 𝐺, we can assume that 𝑣 is the unique vertex of degree 2 in 𝐶3 of 𝐺. Note that
𝑇 (1, 𝑛1, 𝑛2) has order 𝑛 = 𝑛1 + 𝑛2 + 2. By Lemma 2.6, we have

𝑊 (𝐺) = 𝑊 (𝑇 )−
(︂

𝑛

2

)︂
=

(︂
𝑛 + 1

3

)︂
− 𝑛1𝑛2 −

(︂
𝑛

2

)︂
=

(︂
𝑛1 + 𝑛2 + 2

3

)︂
− 𝑛1𝑛2.

Moreover, we have 𝑁(𝐺− 𝑣) = 𝑁(𝑃𝑛1+𝑛2) =
(︀
𝑛1+𝑛2+1

2

)︀
and

𝑁(𝑣,𝐺) = 1 + 𝑁(𝑣1, 𝑣2, 𝑣; 𝐺) + 𝑁(𝑣2, 𝑣1, 𝑣; 𝐺) + 𝑁(𝑣1, 𝑣2, 𝑣; 𝐺)
= 1 + 𝑛2 + 𝑛1 + 3𝑛1𝑛2.

Then 𝑁(𝐺) =
(︀
𝑛1+𝑛2+1

2

)︀
+ 1 + 𝑛1 + 𝑛2 + 3𝑛1𝑛2 holds from Equality (2.3). Therefore,

𝑊 (𝐺)−𝑁(𝐺) =
(︂

𝑛1 + 𝑛2 + 1
3

)︂
− 𝑛1 − 𝑛2 − 1− 4𝑛1𝑛2

=
(𝑛1 + 𝑛2 + 1)(𝑛1 + 𝑛2 − 3)(𝑛1 + 𝑛2 + 2)

6
− 4𝑛1𝑛2

≥ (𝑛1 + 𝑛2)2 + 3(𝑛1 + 𝑛2) + 2− 4𝑛1𝑛2

≥ 3(𝑛1 + 𝑛2) + 2 > 0

for 𝑛1 + 𝑛2 ≥ 9. Moreover, if 𝑛1 + 𝑛2 = 8, we have 𝑊 (𝐺)−𝑁(𝐺) ≥ 75− 64 > 0. �
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5. Concluding remarks

In this paper we determine some graphs with 𝑁 > 𝑊 and 𝑊 > 𝑁 , respectively. From the results obtained
in Sections 3 and 4, we have an intuition that the more is the diameter of graph 𝐺, then the more possible is
the conclusion 𝑊 (𝐺) > 𝑁(𝐺). Moreover, we have 𝑊 (𝐺− 𝑒) > 𝑁(𝐺− 𝑒) for any edge 𝑒 of 𝐺 if 𝑊 (𝐺) > 𝑁(𝐺).
Therefore we pose the following problem.

Problem 5.1. Determine a constant 𝑑(𝑛) such that 𝑊 (𝐺) > 𝑁(𝐺) and 𝑊 (𝑇 ) > 𝑁(𝑇 ) for any graph 𝐺 with
diameter at least 𝑑(𝑛) where 𝑇 is a spanning tree of 𝐺.

From Remark 3.3, we find that almost all graphs 𝐺 satisfy 𝑁(𝐺) > 𝑊 (𝐺). Naturally we have the following
problem.

Problem 5.2. Characterize all the graphs 𝐺 with 𝑊 (𝐺) > 𝑁(𝐺).

Maybe the case of trees is a good point for solving Problem 5.2. From definitions, we have 𝑁(𝑃4) = 𝑊 (𝑃4) =
10 and 𝑁(𝐶8) = 𝑊 (𝐶8) = 64. Is there any other graph 𝐺 with 𝑁(𝐺) = 𝑊 (𝐺) than 𝑃4 and 𝐶8? We would like
to end up the paper with the following problem.

Problem 5.3. Characterize all the graphs 𝐺 with 𝑊 (𝐺) = 𝑁(𝐺).

Acknowledgements. The authors are grateful to the anonymous referee for his/her helpful comments, which improved
the manuscript.
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[29] L.A. Székely and H. Wang, On subtrees of trees. Adv. Appl. Math. 34 (2005) 138–155.
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