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CENTRALIZED RESOURCE ALLOCATION TO CREATE NEW MOST
PRODUCTIVE SCALE SIZE (MPSS) DMUS

Kamyar Nojoumi1, Saber Saati2,* and Leila Khoshandam3

Abstract. Data envelopment analysis (DEA) is a mathematical programming - based technique to
evaluate the performance of a homogeneous group of decision-making units (DMUs) with multiple
inputs and outputs. One of the DEA applications involves aggregating input resources and reallocating
them to create efficient DMUs.The present study employs the centralized resource allocation (CRA)
approach to develop a model for creating new DMUs. These new DMUs are the most productive scale
size (MPSS), and all new DMUs lie on a strong supporting hyperplane. In this case, a dual model
is used to obtain the strong supporting hyperplane which all new DMUs lie on. This hyperplane is
derived by solving the dual model and generating a common set of weights. Then, it is shown that
all new DMUs lie on a strong supporting hyperplane, and an MPSS facet is the intersection of this
hyperplane with the production possibility set (PPS).
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1. Introduction

Data envelopment analysis (DEA) is a non-parametric approach to evaluate the relative performance of a
set of DMUs. It consumes multiple inputs to produce multiple outputs. Farrell [17] first introduced a method
to assess the performance of DMUs. One of the substantial shortcomings of the Farrell method was related to
consideronly one output. Charnes et al. [10] developed Farrells work for the case of multiple inputs and outputs.
Their work, called the CCR model, introduced the data envelopment analysis concept. Then, Banker et al.
[8] extended the CCR model by incorporating the concept of variable returns to scale and thus introduced the
BCC model. Afterward, DEA was widely used in different performance evaluation problems, and various models
were developed to measure the efficiency and assess the performance of DMUs. Several researchers have also
proposed ways to improve the efficiency of inefficient DMUs. In this regard, Golany et al. [18–20] developed
the centralized resource allocation (CRA) approach for achieving this purpose. Then, Lozano and Villa [26–28]
suggested a radial and non-radial model for CRA. In this approach, the total input consumed by all DMUs
is reallocated to them, so that all DMUs become efficient. Also, it is assumed that DMUs are controlled by
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a centralized common decision-maker to manage inputs of all DMUs and reallocate them to DMUs. A point
related to the CRA is an equitable allocation of the resources in which the decision-maker tends to allocate
resources or fixed costs to the controlled DMUs fairly.

In addition, Cook and Kress [11] proposed a DEA method for the equitable allocation of fixed costs based on
the two principles of invariance and Pareto-optimality. Athanassopoulos [3] suggested a technique based on the
DEA and goal programming method. In this study, some bounds of the total consumption have been estimated
for each input using a series of LP models. Although these bounds may not be reachable, their deviation can be
minimized to find a resource reallocation. Then, Athanassopoulos [4] developed a goal programming approach
using multiplier DEA models. In this case, the weights were pre-calculated by an additive model to prevent the
models nonlinearity. Beasley [9] proposed a non-linear model for allocating resources. Based on this study, the
input and output levels of DMUs have been determined to maximize the average efficiency. Thus, a non-linear
fractional model was developed considering some bounds for inputs and outputs. However, the deficiency of the
proposed method was related to the issue that the projection point of DMUs was not necessarily at the efficient
frontier. Asmild et al. [2] recommended a model for CRA based on the BCC model. This model applies the
process only for inefficient DMUs, and thus efficient and inefficient DMUs are first supposed to be determined.

Cook and Zhu [12] extended the approach proposed by Cook and Kress [11] and found a practical method
for CRA problems. Jahanshahloo et al. [24] evolved a method for the CRA problem and obtained a solution
without solving a linear programming problem and only with a simple formula. This approach was based on
the invariance principle presented by Cook and Kress [11]. Korhonen et al. [25] suggested a multi-objective
linear programming method for the CRA problem. In this case, it was assumed that a central unit controlled all
DMUs simultaneously. Toloo [32] demonstrated the role of non-Archimedean epsilon in determining the most-
efficient DMU. Also, Hatami-Marbini and Toloo [22] proposed several models for the ratio data. Toloo et al.
[33] published an article entitled Robust optimization and its duality in data envelopment analysis. Also, Salahi
et al. [30] published an article entitled A new robust optimization approach to common weights formulation in
DEA. Salahi et al. [29] published an article entitled Robust Russell and enhanced Russell measures in DEA.

Hadi-Vencheh et al. [21] proposed a CRA approach using inverse DEA. In addition, the authors can rec-
ommend other studies on CRA for further review, such as Fang [15] and Tone [34]. DU et al. [14] used the
cross-efficiency concept in DEA to address resource allocation problems. The literature survey showed that the
most significant shortcoming of the previous studies ignored the growing potential of the DMU, while it plays a
crucial role in allocating extra resources. Indeed, the extra-resource allocation to a DMU must affect its output.
Amirteimori and Kordrostami [1] developed a method for implementing demand and supply changes in a cen-
tralized decision-making process. Finally, Wu et al. [35] suggested a CRA model based on MOLP considering
desirable and undesirable inputs and outputs. Another effort to cope with the CRA problem was performed by
Zhang et al. [37]. In this study, a linear model with bounded variables was proposed for extra resource alloca-
tion. Tao et al. [31] employed the theories of network flows to examine CRA for all individual units in a DEA
framework. Zhang et al. [36] suggested a two-stage scheme for CRA and distributed power control regarding NR
V2X integrated with NOMA technology. Fang et al. [5] introduced the Nash bargaining game theory to develop
a new CRA model. The authors considered the overall goals of the organization and competition among DMUs.

Also, many researchers have investigated the development and management of centralized resource reallo-
cation as one of the classic research topics in the management and economy sciences. In particular, Managers
strive to maximize productivity by consuming rare and expensive input resources and preventing waste of these
valuable resources. In this regard, the present study proposes a new approach to obtaining new units with
maximum productivity through the reallocation of centralized resources. Thus, a fractional model is first devel-
oped to derive the most productive scale size (MPSS) units. Then, these are converted into a linear model
by transforming the Charnes-Cooper variable. Afterward, a dual model is solved, and it was shown that all
new units are located on the BCC-CCR joint frontiers. The proposed model has several advantages over other
centralized resource reallocation models. First, the new units can be obtained by solving only one linear and
non-radial model. Second, the new units are all MPSS ones. By consuming valuable and expensive equipment,
it is especially important to achieve maximum productivity. This paper is organized into five sections. Section 1
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includes an introduction to DEA and a literature review. Then, Section 2 presents the basic definitions and
proposed models to identify MPSS units and CRA schemes. In Section 3, the proposed CRA model aims to
constitute new MPSS units. Also, this section discusses some properties of the dual model. Section 4 gives some
numerical examples. Finally, Section 5 represents conclusions and suggestions for future research.

2. Preliminaries

2.1. Production possibility set and MPSS in DEA

Consider 𝑛 DMUs with coordinates (x𝑗 ,y𝑗) in which the jth DMU consumes 𝑚 inputs as the components
of the vector x𝑗 = (𝑥1𝑗 , .., 𝑥𝑚𝑗) to produce 𝑠 outputs as the components of the vector y𝑗 = (𝑦1𝑗 , .., 𝑦𝑠𝑗). Hence,
the PPS can be defined as 𝑇 = { (x,y) |x 𝑐𝑎𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 y}.

The PPS with constant returns to scale is as follows:

𝑇𝐶 =

⎧⎨⎩(x,y) |
𝑛∑︁

𝑗=1

𝜆𝑗x𝑗 ≤ x,

𝑛∑︁
𝑗=1

𝜆𝑗y𝑗 ≥ y, 𝜆𝑗 ≥ 0 𝑗 = 1, 2, . . . , 𝑛

⎫⎬⎭ .

Also, the PPS for the case of variable returns to scale is as follows:

𝑇𝑉 =

⎧⎨⎩(x,y) |
𝑛∑︁

𝑗=1

𝜆𝑗x𝑗 ≤ x,

𝑛∑︁
𝑗=1

𝜆𝑗y𝑗 ≥ y,

𝑛∑︁
𝑗=1

𝜆𝑗 = 1, 𝜆𝑗 ≥ 0 𝑗 = 1, 2, . . . , 𝑛

⎫⎬⎭ .

Fare, Groskopf, and Lovell [16] and Cooper et al. [13] introduced non-increasing returns to scale (NIRS)
and non-decreasing returns to scale (NDRS) models and called FG and ST models, respectively. DMUs can
be assessed by different DEA models. This procedure is accomplished using various production technologies
discussed above. Recently, the CCR and BCC models have broadly been used by researchers. The CCR and
BCC models for evaluating DMU𝑝 are as below, respectively:

min 𝜃 − 𝜀 (1t− + 1t+)
s.t

∑︀𝑛
𝑗=1 𝜆𝑗x𝑗 + t− = 𝜃x𝑝∑︀𝑛
𝑗=1 𝜆𝑗y𝑗 − t+ = y𝑝

𝜆𝑗 ≥ 0 ∀𝑗, t− ≥ 0, t+ ≥ 0

(2.1)

min 𝜃 − 𝜀
(︀
1s− + 1s+

)︀
s.t

∑︀𝑛
𝑗=1 𝜆𝑗x𝑗 + s− = 𝜃x𝑝∑︀𝑛
𝑗=1 𝜆𝑗y𝑗 − s+ = y𝑝∑︀𝑛
𝑗=1 𝜆𝑗 = 1

𝜆𝑗 ≥ 0 ∀𝑗, s− ≥ 0, s+ ≥ 0

(2.2)

where 𝑡− and 𝑡+are slack variables for input and output CCR models. Also s− and s+ are slack variables for
input and output BCC models, respectively.

In this research, the symbol 𝜀 > 0 utilized in models (2.1) and (2.2) signifies that the variable 𝜃 is minimized
in the first stage, and then the sum of slack variables is maximized in the second stage while assuming 𝜃 = 𝜃*,
where 𝜃* is the optimal value in the first stage.

Assume that (𝜃*, 𝜆*,s−*,s+*) is an optimal solution to model (2.2). Then, DMU𝑝 is efficient if and only if the
following conditions are satisfied in each optimal solution:

𝑖) 𝜃* = 1 𝑖𝑖) s−
* = 0, s+* = 0.
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Nowadays, analysis of economic scales is of particular importance. The MPSS concept in DEA was first
produced by Banker [6]. The MPSS region shows that points in PPS whose ratio of their output to input are
the highest values. Also, DMUs in the MPSS region have the best size. Due to variations in rare, expensive, or
valuable inputs (e.g., large equipment), these DMUs are important to optimize outputs to inputs ratios.

Definition 2.1. The unit (x𝑝,y𝑝) ∈ 𝑇𝑉 is an MPSS if and only if:

∀𝛼, ∀𝛽, 𝛼 > 0, 𝛽 > 0, (𝛼x𝑝, 𝛽y𝑝) ∈ 𝑇𝑉 ⇒ 𝛽

𝛼
≤ 1.

Based on the above definition, Banker [7] proposed the following model to identify whether or not the point
(x𝑝,y𝑝) is an MPSS:

max 𝛽
𝛼

s.t
𝑛∑︀

𝑗=1

𝜆𝑗x𝑗 + s− = 𝛼x𝑝

𝑛∑︀
𝑗=1

𝜆𝑗y𝑗 − s+ = 𝛽y𝑝

𝑛∑︀
𝑗=1

𝜆𝑗 = 1

𝜆𝑗 ≥ 0∀𝑗, s− ≥ 0, s+ ≥ 0.

(2.3)

Assume that (𝛼*, 𝛽*, 𝜆*, s−*, s+*) is an optimal solution to model (2.3). Then, the unit (x𝑝,y𝑝) is an MPSS
if and only if the following conditions are satisfied in each optimal solution:

𝑖) 𝛼* = 𝛽* 𝑖𝑖) s−
* = 0, s+* = 0.

Consider the following output-oriented CCR model to evaluate DMU𝑝:

max 𝜙 + 𝜀 (1 s− + 1 s+)
s.t

∑︀𝑛
𝑗=1 𝜆𝑗x𝑗 + s− = x𝑝∑︀𝑛
𝑗=1 𝜆𝑗y𝑗 − s+ = 𝜙y𝑝

𝜆𝑗 ≥ 0 ∀𝑗, s− ≥ 0, s+ ≥ 0.

(2.4)

Assume that (𝜙*, 𝜆*, s−*, s+*) is an optimal solution to model (2.4). Let:

x̂𝑝 =
x𝑝 − s−*

𝜆̂
, ŷ𝑝 =

𝜙*y𝑝 + s+*

𝜆̂

where 𝜆̂ =
𝑛∑︀

𝑗=1

𝜆*𝑗 . Then, (x̂𝑝, ŷ𝑝) ∈ 𝜕𝑇𝑉 ∩ 𝜕𝑇𝐶 so that 𝜕𝑇𝑉 ∩ 𝜕𝑇𝐶 is the intersection between the 𝑇𝑉 and 𝑇𝐶

boundaries. Figure 1 shows that Model (2.4) projects DMU (x𝑝,y𝑝). It is first performed to an efficient point

(x𝑝 − s−*, 𝜙*y𝑝 + s+*) in 𝑇𝐶 , and then it is accomplished to an MPSS point according to equations x̂𝑝 = x𝑝−s−*

𝜆̂

and ŷ𝑝 = 𝜙*y𝑝+s+*

𝜆̂
.

Definition 2.2. Unit (x𝑝,y𝑝) ∈ 𝑇𝑉 is an MPSS only if (x𝑝,y𝑝) ∈ 𝜕𝑇𝑉 ∩𝜕𝑇𝐶 . Jahanshahloo and Khodabakhshi
[23] proposed the following model to identify MPSS DMUs:

max 𝜙− 𝜃
s.t

∑︀𝑛
𝑗=1 𝜆𝑗x𝑗 + s− = 𝜃x𝑝∑︀𝑛
𝑗=1 𝜆𝑗y𝑗 − s+ = 𝜙y𝑝∑︀𝑛
𝑗=1 𝜆𝑗 = 1

𝜆𝑗 ≥ 0 ∀𝑗, s− ≥ 0, s+ ≥ 0.

(2.5)
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Figure 1. Projection (x𝑝,y𝑝)to the intersection of BCC and CCR frontiers.

Assume that (𝜃*, 𝜙*, 𝜆*, s−*, s+*) is an optimal solution to model (2.5). Then, the unit (x𝑝,y𝑝) is an MPSS
if and only if the following conditions are satisfied in each optimal solution:

𝑖) 𝜃* = 𝜙* 𝑖𝑖) s−
* = 0, s+* = 0.

2.2. Resource allocation problem

Consider a situation in which an organization consists of homogeneous units, and each unit consumes several
input resources to produce output resources. If the organization faces extra resources in the subsequent period
of activity, it requires reallocating input resources to constitute new efficient units. In this regard, Lozano and
Villa [26] first addressed the centralized resource allocation (CRA) problem, and their model became a basis

for subsequent research on CRA. They aggregated inputs and outputs as
𝑛∑︀

𝑗=1

𝑥𝑖𝑗 (𝑖 = 1, 2, . . . ,𝑚) and
𝑛∑︀

𝑗=1

𝑦𝑟𝑗

(𝑟 = 1, 2, . . . , 𝑠), respectively. Then, the authors proposed the following radial model:

min 𝜃 − 𝜀
(︀∑︀𝑚

𝑖=1 𝑠−𝑖 +
∑︀𝑠

𝑟=1 𝑠+
𝑟

)︀
s.t

∑︀𝑛
𝑘=1

∑︀𝑛
𝑗=1 𝜆𝑘𝑗𝑥𝑖𝑗 + 𝑠−𝑖 = 𝜃

∑︀𝑛
𝑗=1 𝑥𝑖𝑗 𝑖 = 1, 2, . . . ,𝑚∑︀𝑛

𝑘=1

∑︀𝑛
𝑗=1 𝜆𝑘𝑗𝑦𝑟𝑗 − 𝑠+

𝑟 =
∑︀𝑛

𝑗=1 𝑦𝑟𝑗 𝑟 = 1, 2, . . . , 𝑠∑︀𝑛
𝑗=1 𝜆𝑘𝑗 = 1

𝜆𝑘𝑗 ≥ 0,
𝑠−𝑖 ≥ 0, 𝑠+

𝑟 ≥ 0. ∀𝑖, 𝑟, 𝑗, 𝑘

(2.6)

Here, s−𝑖 and s+
𝑟 are slack variables for aggregated inputs and outputs, respectively. Also, 𝜀 is the non-

Archimedean infinitesimal. In addition, 𝜆𝑘𝑗 is the proportion of new DMU𝑘 from the old DMU𝑗 . Now, if it
is assumed that (𝜃*, 𝜆*, s−*, s+*) is an optimal solution to model (2.5), the projection points represent 𝑛 new
efficient DMUs, which are formulated as follows:

x*𝑘 =
𝑛∑︁

𝑗=1

𝜆*
𝑘𝑗

x𝑗 , y*𝑘 =
𝑛∑︁

𝑗=1

𝜆*
𝑘𝑗

y𝑗 𝑘 = 1, 2, . . . , 𝑛
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3. Proposed model

Consider 𝑛 DMUs with coordinates (x𝑗 ,y𝑗), where:

x𝑗 ∈ R𝑚, x𝑗 > 0 𝑗 = 1, 2, . . . , 𝑛

y𝑗 ∈ R𝑠, y𝑗 > 0 𝑗 = 1, 2, . . . , 𝑛.

The inputs and outputs are aggregated as
𝑛∑︀

𝑗=1

𝑥𝑖𝑗 (𝑖 = 1, 2, . . . ,𝑚) and
𝑛∑︀

𝑗=1

𝑦𝑟𝑗 (𝑟 = 1, 2, . . . , 𝑠), respectively.

Then, the inputs and outputs are reallocated using the proposed model so that the new DMUs are MPSS. The
new MPSS DMUs are obtained by defining the decision variable 𝜆𝑘𝑗 and the proportion of new DMU (x̄𝑘, ȳ𝑘)

from the old unit (x𝑗 ,y𝑗). Thus,
𝑛∑︀

𝑗=1

𝜆𝑘𝑗 = 1 is supposed to be fulfilled for each 𝑘. Now, the following fractional

model is solved to obtain new MPSS DMUs.

𝑃 * = min
1
𝑚

∑︀𝑚
𝑖=1 𝜃𝑖

1
𝑠

∑︀𝑠
𝑟=1 𝜙𝑟

s.t
∑︀𝑛

𝑘=1

∑︀𝑛
𝑗=1 𝜆𝑖𝑗𝑥𝑖𝑗 ≤ 𝜃𝑖

∑︀𝑛
𝑗=1 𝑥𝑖𝑗 𝑖 = 1, 2, . . . ,𝑚∑︀𝑛

𝑘=1

∑︀𝑛
𝑗=1 𝜆𝑘𝑗𝑦𝑟𝑗 ≥ 𝜙𝑟

∑︀𝑛
𝑗=1 𝑦𝑟𝑗 𝑟 = 1, 2, . . . , 𝑠∑︀𝑛

𝑗=1 𝜆𝑘𝑗 = 1 𝑘 = 1, 2, . . . , 𝑛

𝜆𝑘𝑗 ≥ 0, 𝜃𝑖 ≥ 0, 𝜙𝑟 ≥ 0. ∀𝑖, 𝑟, 𝑗, 𝑘

(3.1)

Theorem 3.1. Model (3.1) is always feasible, and 𝑃 * ≤ 1.

Proof. See Appendix A–H. �

Theorem 3.2. All input and output constraints are binding in each optimal solution to model (3.1).

Proof. See Appendix A–H. �

Definition 3.3. Assume that (𝜆*, 𝜃*, 𝜙*) is an optimal solution to model (3.1). Then, the coordinates of new
DMUs, (x̄𝑘, ȳ𝑘) (𝑘 = 1, 2, . . . , 𝑛), is as follows:

x̄𝑘 =
𝑛∑︁

𝑗=1

𝜆*𝑘𝑗x𝑗 , ȳ𝑘 =
𝑛∑︁

𝑗=1

𝜆*𝑘𝑗y𝑗 𝑘 = 1, 2, . . . , 𝑛.

Afterward, it is proved that these new DMUs are MPSS. In this regard, model (3.1) is first linearized using

the Charnes-Cooper transformation. We set 1
𝑠

𝑠∑︀
𝑟=1

𝜙𝑟 = 1
𝑡 Therefore, model (3.2) can be transformed into the

following formulation:

min 1
𝑚

∑︀𝑚
𝑖=1 𝜃𝑖

s.t
∑︀𝑛

𝑘=1

∑︀𝑛
𝑗=1 𝜇𝑘𝑗𝑥𝑖𝑗 ≤ 𝜃𝑖

∑︀𝑛
𝑗=1 𝑥𝑖𝑗 𝑖 = 1, 2, . . . ,𝑚∑︀𝑛

𝑘=1

∑︀𝑛
𝑗=1 𝜇𝑘𝑗𝑦𝑟𝑗 ≥ 𝜙𝑟

∑︀𝑛
𝑗=1 𝑦𝑟𝑗 𝑟 = 1, 2, . . . , 𝑠

1
𝑠

∑︀𝑠
𝑟=1 𝜙𝑟 = 1∑︀𝑛

𝑗=1 𝜇𝑘𝑗 = 𝑡 𝑘 = 1, 2, . . . , 𝑛

𝜇𝑘𝑗 ≥ 0, 𝜃𝑖 ≥ 0, 𝜙𝑟 ≥ 0. ∀𝑖, 𝑗, 𝑘, 𝑟

(3.2)

Here, 𝜙𝑟 = 𝑡𝜙𝑟∀𝑟, 𝜃𝑖 = 𝑡𝜃𝑖∀𝑖, 𝜇𝑘𝑗 = 𝑡𝜆𝑘𝑗∀𝑘, 𝑗.

Theorem 3.4. Assume that
(︁
𝜇*, 𝜃*, 𝜙*, 𝑡*

)︁
is an optimal solution to model (3.2). Then, 𝑡* > 0.
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Proof. See Appendix A–H. �

Theorem 3.5. If (𝜆*, 𝜃*, 𝜙*, 𝑃 *) is an optimal solution to model (3.1), then

𝐴) 𝜃*𝑖 > 0 𝑖 = 1, 2, . . . ,𝑚

𝐵) 𝜙*𝑟 > 0 𝑟 = 1, 2, . . . , 𝑠.

Now, the dual expression of the model (3.2) can be given as follows:

max 𝑤∑︀𝑠
𝑟=1 𝑢𝑟𝑦𝑟𝑗 −

∑︀𝑚
𝑖=1 𝑣𝑖𝑥𝑖𝑗 + 𝑑𝑘 ≤ 0 𝑘 = 1, 2, . . . , 𝑛 𝑗 = 1, 2, . . . , 𝑛

s.t 𝑣𝑖

∑︀𝑛
𝑗=1 𝑥𝑖𝑗 ≤ 1

𝑚 𝑖 = 1, 2, . . . ,𝑚
𝑢𝑟

∑︀𝑛
𝑗=1 𝑦𝑟𝑗 ≥ 𝑤

𝑠 𝑟 = 1, 2, . . . , 𝑠
𝑢𝑟, 𝑣𝑖, 𝑑𝑘 ≥ 0, ∀𝑖, 𝑘, 𝑟, 𝑤. free

(3.3)

Now, if
(︁
𝜇*, 𝜃*, 𝜙*, 𝑡*

)︁
is the optimal solution to model (3.2), considering 𝑡* > 0, then the optimal solution

to model (3.1) is as follows.

𝜃*𝑖 =
𝜃*𝑖
𝑡*

∀𝑖, 𝜆*𝑘𝑗 =
𝜇*𝑘𝑗

𝑡*
∀𝑘, 𝑗, 𝜙*𝑟 =

𝜙*𝑟
𝑡*

∀𝑟.

The coordinates of the new DMUs are as follows.⎧⎪⎪⎨⎪⎪⎩
x̄𝑘 =

𝑛∑︀
𝑗=1

𝜆*𝑘𝑗x𝑗

ȳ𝑘 =
𝑛∑︀

𝑗=1

𝜆*𝑘𝑗y𝑗

𝑘 = 1, 2, . . . , 𝑛 (𝑎)

Proof. See Appendix A–H. �

Theorem 3.6. If (𝑢*, 𝑣*, 𝑤*,d*) is an optimal solution to model (3.3), it is concluded that d*= 0.

Proof. See Appendix A–H. �

Theorem 3.7. Suppose that (𝑢*, 𝑣*, 𝑤*,d*) is the optimal solution to model (3.3), then is the 𝐻 =
{(x,y) |𝑢*y − 𝑣*x ≤ 0} supporting hyperplane of 𝑇𝑉 .

Proof. See Appendix A–H. �

Theorem 3.8. All new DMUs (𝑎) lie on the supporting hyperplane 𝐻 = {(x,y) |𝑢*y − 𝑣*x ≤ 0}, which (𝑢*, 𝑣*)
represents the optimal solution to model (3.3).

Proof. See Appendix A–H. �

Corollary 3.9. All new DMUs (𝑎) are MPSS.

4. Numerical examples

Example 4.1. A set of DMUs is considered with a single input and output. This set of DMUs is presented
in Table 1. In Table 1, 𝜃𝐶𝐶𝑅and 𝜃𝐵𝐶𝐶 are efficiency scores obtained from the input-oriented CCR and BCC
models, respectively.

Table 1 provides 10 DMUs denoted as A to J. DMUs of A, B, F, H, and I are BCC efficient, and DMUs of
F and H are CCR efficient. Therefore, DMUs of F and H and all points lying on line segment FH are MPSS.
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Table 1. Data of the original DMUs (Zhang et al. [37]).

DMU 𝐴 𝐵 𝐶 𝐷 𝐸 𝐹 𝐺 𝐻 𝐼 𝐽

𝑥 3 3.5 4 4.5 4.5 5 5.5 6 8 9
𝑦 1 2.5 2.4 2.7 3.6 5 4.4 6 7 7

𝜃𝐶𝐶𝑅 0.333 0.714 0.6 0.6 0.8 1 0.8 1 0.875 0.778
𝜃𝐵𝐶𝐶 1 1 0.867 0.804 0.924 1 0.844 1 1 0.889

Table 2. Data of new DMUs generated from the models proposed by Lozano and Villa [26],
Zhang et al. [37], and the proposed approach.

Lozano and Villa’s approach Zhang et al.’s approach Proposed approach

DMU 𝑥′ 𝑦′ 𝑥′′ 𝑦′′ 𝑥 𝑦
𝐴 3.5 2.5 5.33 5.33 6 6
𝐵 3.5 2.5 5.25 5.25 6 6
𝐶 3.5 2.5 5.41 3.90 6 6
𝐷 3.5 2.5 5.43 3.52 6 6
𝐸 3.5 2.5 5.32 4.60 6 6
𝐹 3.5 2.5 5.24 5.24 6 6
𝐺 3.5 2.5 5.31 4.25 6 6
𝐻 3.5 2.5 5.22 5.22 6 6
𝐼 3.5 2.5 5.25 5.25 6 6
𝐽 3.5 2.5 5.37 5.37 6 6

Figure 2. Distribution of the new DMUs generated from Lozano and Villa’s model.

According to Table 2, the approach proposed by Lozano and Villa [26] projects all DMUs onto 𝐷𝑀𝑈𝐵 .
Figure 2 depicts the projection of all DMUs with Lozano and Villas model. Also,𝐷𝑀𝑈𝐵 is BCC efficient, but
it is not CCR efficient. Therefore, 𝐷𝑀𝑈𝐵 /∈ 𝜕𝑇𝑉 ∩ 𝜕𝑇𝐶 . This situation demonstrated that Lozano and Villas
approach could not provide MPSS projections for DMUs.

Also, the proposed model by Zhang et al. [37] projects the efficient DMUs of A, B, F, H, and I and the weak
efficient 𝐷𝑀𝑈𝐽 onto the MPSS facet. But it does not project inefficient DMUs of C, D, E, and G onto the
frontier of the MPSS region. Figure 3 shows the projection of all DMUs using Zhang et al.’s model.

As shown in Figure 4, the proposed model in this research (model 8) projects all DMUs to point H. Also,
this figure indicates that 𝐷𝑀𝑈𝐻 ∈ 𝜕𝑇𝑉 ∩ 𝜕𝑇𝐶 , and thus 𝐷𝑀𝑈𝐻 is an MPSS point.
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Figure 3. Distribution of the new DMUs generated from Zhang et al.’s model.

Figure 4. Distribution of the new DMUs generated by the proposed approach.

Table 3. Data of DMUs (Lozano and Villa [26]).

𝐷𝑀𝑈 𝐴 𝐵 𝐶 𝐷 𝐸 𝐹 𝐺 𝐻 𝐼 𝐽

𝑥1 9 12 7 6 10 8 12 14 12 8
𝑥2 9 8 12 10 5 10 10 6 12 8
𝑦1 2 3 2 5 4 3 6 8 1 3
𝑦2 1 1 2 3 4 3 6 2 6 5

The optimal solution of model (3.3) with the DMUs of Table 1 is expressed as follows:

𝑢* = 0.019, 𝑣* = 0.019, 𝑑*𝑘 = 0 𝑘 = 1, 2, . . . , 10.

Therefore, the strong supporting hyperplane including new DMUs with the proposed approach is given by
the following equation: 𝐻 = {(𝑥, 𝑦) | 0.019𝑦 − 0.019𝑥 = 0}.

Example 4.2. Consider two DMUs with two inputs and a single output (Lozano and Villa [26]) as presented
in Table 3.

The results of the CCR and BCC models for DMUs in Table 3 are presented in Table 4.
According to the solutions of CCR and BCC models, it is implied that DMUs D, E, G, H, and J are CCR

and BCC efficient. This shows that {𝐷,𝐸, 𝐺,𝐻, 𝐽} ∈ 𝜕𝑇𝐶 ∩ 𝜕𝑇𝑉 . Thus, by Definition 2.2, DMUs D, E, G, H,
and J are MPSS. Now, solving Model (2.6) proposed by Lozano and Villa [26] and Model (3.2) for DMUs in
Table 3, we obtain new DMUs according to Table 5.
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Table 4. Optimal solutions of CCR and BCC models.

𝐷𝑀𝑈 A B C D E F G H I J

𝜃𝐶𝐶𝑅 0.33 0.402 0.5 1 1 0.663 1 1 0.8 1
𝜃𝐵𝐶𝐶 0.86 0.76 0.85 1 1 0.87 1 1 0.9 1

Table 5. Data of new DMUs generated from the models proposed by Lozano and Villa [26],
Zhang et al. [37], and the proposed approach.

Lozano and Villa’s approach Proposed approach
DMU 𝑥1 𝑥2 𝑦1 𝑦2 𝑥1 𝑥2 𝑦1 𝑦2

6 10 5 3 10 5 4 4
6.71 9.12 4.82 3.18 10 5 4 4
6 10 5 3 10 5 4 4
6 10 5 3 10 5 4 4
6 10 5 3 10 5 4 4
10 5 4 4 10 5 4 4
10 5 4 4 10 5 4 4
10 5 4 4 10 5 4 4
10 5 4 4 10 5 4 4
10 5 4 4 10 5 4 4

Total 80.71 74.12 44.82 35.18 100 50 40 40

As seen, Lozano and Villa’s model [26] projects DMU B to the point (𝑥̄, 𝑦 = (6.71, 9.12, 4.82, 3.18), which is
BCC efficient but CCR inefficient. Therefore, (𝑥̄, 𝑦) /∈ 𝜕𝑇𝐶 ∩ 𝜕𝑇𝑉 , and, by Definition 2.2, the point (𝑥̄, 𝑦) is not
an MPSS, while the new DMUs built by the proposed approach are not MPSS. As a result, Lozano and Villa’s
model [26] cannot construct MPSS units, whereas the proposed approach provides new MPSS units.

5. Conclusions

In the present study, a new method has been proposed for the centralized resource reallocation to construct
new MPSS units. Since the input indices include rare and high-value equipment and resources, it is necessary
to achieve maximum productivity by reallocating and re-aggregating these resources. This situation prevents
wasting these resources and makes the best use of the potential of these resources. Thus, the re-aggregation and
reallocation of the centralized resources have been performed to construct new MPSS units. In this regard, we
proposed a method that yielded new MPSS units that would be homogeneous. Afterward, a dual model was
used to show that all the newly constructed units were located at the CCR-BCC joint frontiers. Also, the joint
boundary between CCR and BCC included the points with maximum productivity. The proposed model has
several advantages over conventional models, including (I) the new efficient units can be obtained by solving only
one linear and non-radial model and (II) unlike other prevalent used centralized resource reallocation models,
all the new units are homogeneous MPSS ones. Therefore, these units can provide the ground for full utilization
of the available potential of the inputs.

In this research, two numerical examples were presented. The first example, including a single input and a
single output and taken from Zhang et al. [37], aimed to compare the proposed approach with other centralized
resource reallocation approaches. Because the sum of inputs for the new MPSS units determined by Model (3.2)
is greater than that of DMUs, future studies may consider centralized resource reallocation focusing on the
lowest or highest point on the MPSS facet.
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Also, the second example, with two inputs and two outputs taken from Lozano and Villa [26], cannot construct
MPSS units, while the proposed approach can to provide new MPSS units using centralized resource reallocation.

Appendix A. Proof of Theorem 1

Let 𝜃𝑖 = 1 (𝑖 = 1, 2, . . . , 𝑛) and 𝜙𝑟 = 1 (𝑟 = 1, 2, . . . , 𝑠), and assume that 𝜆̄ is the unit matrix of order 𝑛× 𝑛.
Then,

(︀
𝜆̄, 𝜃, 𝜙

)︀
is a feasible solution to model (7). Further, we have:

𝑃 = 𝑚𝑖𝑛

1
𝑚

𝑚∑︀
𝑖=1

𝜃𝑖

1
𝑠

𝑠∑︀
𝑟=1

𝜙𝑟

= 1

If (𝜆*, 𝜃*, 𝜙*, 𝑃 *) is an optimal solution to model (7), we can conclude that 𝑃 * ≤ 𝑃 = 1.

Appendix B. Proof of Theorem 2

Assume that (𝜆*, 𝜃*, 𝜙*, 𝑃 *) is an optimal solution to model (7). By contradiction, assume that

∃𝑡 1 ≤ 𝑡 ≤ 𝑚,

𝑛∑︁
𝑘=1

𝑛∑︁
𝑗=1

𝜆*𝑘𝑗𝑥𝑡𝑗 < 𝜃*𝑡

𝑛∑︁
𝑗=1

𝑥𝑡𝑗 .

Let:

𝜃𝑡 =

𝑛∑︀
𝑘=1

𝑛∑︀
𝑗=1

𝜆*𝑘𝑗𝑥𝑡𝑗

𝑛∑︀
𝑗=1

𝑥𝑡𝑗

𝜃𝑖 = 𝜃*𝑖 𝑖 = 1, 2, . . . ,𝑚 𝑖 ̸= 𝑡

𝜙𝑟 = 𝜙*𝑟 𝑟 = 1, 2, . . . , 𝑠

𝜇 =𝜆*.

Now,
(︀
𝜇̄, 𝜃, 𝜙

)︀
is a feasible solution to model (7). Since 𝜃𝑡 < 𝜃*𝑡 we have:

𝑃 =

1
𝑚

𝑚∑︀
𝑖=1

𝜃𝑖

1
𝑠

𝑠∑︀
𝑟=1

𝜙𝑟

<

1
𝑚

𝑚∑︀
𝑖=1

𝜃*𝑖

1
𝑠

𝑠∑︀
𝑟=1

𝜙*𝑟

= 𝑃 *.

This situation contradicts the optimality of (𝜆*, 𝜃*, 𝜙*) in the model (7).

Appendix C. Proof of Theorem 3

By contradiction, assume that 𝑡* = 0. Then, it is concluded from
𝑛∑︀

𝑗=1

𝜇*𝑘𝑗 = 𝑡* = 0(𝑘 = 1, 2, . . . , 𝑛) that 𝜇*𝑘𝑗 = 0

(∀𝑘, 𝑗). Also, if
𝑛∑︀

𝑘=1

𝑛∑︀
𝑗=1

𝜇*𝑘𝑗𝑦𝑟𝑗 ≥ 𝜙*𝑟
𝑛∑︀

𝑗=1

𝑦𝑟𝑗(∀𝑟), we can conclude that 𝜙*𝑟
𝑛∑︀

𝑗=1

𝑦𝑟𝑗 ≤ 0 (∀𝑟). Since
𝑛∑︀

𝑗=1

𝑦𝑟𝑗 > 0(∀𝑟)

𝜙*𝑟 = 0 (∀𝑟). This issue contradicts the constraint 1
𝑠

𝑠∑︀
𝑟=1

𝜙*𝑟 = 1. Thus, the proof is complete, and it is concluded

that 𝑡* > 0.
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Appendix D. Proof of Theorem 4

Proof (A): From the constraint
𝑛∑︀

𝑗=1

𝜆*𝑘𝑗 = 1 (∀𝑘), it is observed that 𝜆* ̸= 0 and x𝑗 > 0 (∀𝑗). Therefore, we

have:

𝑛∑︁
𝑘=1

𝑛∑︁
𝑗=1

𝜆*𝑘𝑗𝑥𝑖𝑗 ≤ 𝜃*𝑖

𝑛∑︁
𝑗=1

𝑥𝑖𝑗 ∀𝑖

𝜃*𝑖 ≥

𝑛∑︀
𝑘=1

𝑛∑︀
𝑗=1

𝜆*𝑘𝑗𝑥𝑖𝑗

𝑛∑︀
𝑗=1

𝑥𝑖𝑗

> 0 ∀𝑖

Proof (B): By contradiction, assume that 𝜙*𝑡 = 0 for some 𝑡 (1 ≤ 𝑡 ≤ 𝑠). Let:

𝜙𝑡 =

𝑛∑︀
𝑘=1

𝑛∑︀
𝑗=1

𝜆*𝑘𝑗𝑦𝑡𝑗

𝑛∑︀
𝑗=1

𝑦𝑡𝑗

> 0

𝜙𝑟 = 𝜙*𝑟 𝑟 = 1, 2, . . . , 𝑠 𝑟 ̸= 𝑡

𝜃𝑖 = 𝜃*𝑖 𝑖 = 1, 2, . . . ,𝑚

𝜆̄ =𝜆*.

Then,
(︀
𝜆̄, 𝜃, 𝜙

)︀
is a feasible solution to model (7), and we have:

𝑃 =

1
𝑚

𝑚∑︀
𝑖=1

𝜃𝑖

1
𝑠

𝑠∑︀
𝑟=1

𝜙𝑟

<

1
𝑚

𝑚∑︀
𝑖=1

𝜃*𝑖

1
𝑠

𝑠∑︀
𝑟=1

𝜙*𝑟

.

This situation contradicts the optimality of (𝜆*, 𝜃*, 𝜙*, 𝑃 *) for model (7). Thus, our claim is proved, that is,
𝜙*𝑟 > 0 (𝑟 = 1, 2, . . . , 𝑠).

Appendix E. Proof of Theorem 5

Suppose that (𝜆*, 𝜃*, 𝜙*, 𝑃 *) is an optimal solution to model (7). Then:

𝑃 * = 𝑤* =

1
𝑚

𝑚∑︀
𝑖=1

𝜃*𝑖

1
𝑠

𝑠∑︀
𝑟=1

𝜙*𝑟

.

Also,(𝑢*, 𝑣*, 𝑤*, 𝑑*) is an optimal solution to model (9), and then we have:

𝑢*y𝑗−𝑣*x𝑗+𝑑*𝑘 ≤ 0 𝑘, 𝑗 = 1, 2, . . . , 𝑛

𝑢*𝜆*𝑘𝑗y𝑗−𝑣*𝜆*𝑘𝑗x𝑗+𝑑*𝑘𝜆*𝑘𝑗 ≤ 0 𝑘, 𝑗 = 1, 2, . . . , 𝑛

𝑢*
𝑛∑︁

𝑗=1

𝜆*𝑘𝑗y𝑗 − 𝑣*
𝑛∑︁

𝑗=1

𝜆*𝑘𝑗+𝑑*𝑘

𝑛∑︁
𝑗=1

𝜆*𝑘𝑗 ≤ 0 𝑘 = 1, 2, . . . , 𝑛



CENTRALIZED RESOURCE ALLOCATION TO CREATE NEW MOST PRODUCTIVE SCALE SIZE (MPSS) DMUS 2941

𝑢*
𝑛∑︁

𝑘=1

𝑛∑︁
𝑗=1

𝜆*𝑘𝑗y𝑗−𝑣*
𝑛∑︁

𝑘=1

𝑛∑︁
𝑗=1

𝜆*𝑘𝑗x𝑗+
𝑛∑︁

𝑘=1

𝑑*𝑘 ≤ 0 (𝑎)

𝑛∑︁
𝑘=1

𝑛∑︁
𝑗=1

𝑠∑︁
𝑟=1

𝑢*𝑟𝜆
*
𝑘𝑗𝑦𝑟𝑗 −

𝑛∑︁
𝑘=1

𝑛∑︁
𝑗=1

𝑚∑︁
𝑖=1

𝑣*𝑖 𝜆*𝑘𝑗𝑥𝑖𝑗 +
𝑛∑︁

𝑘=1

𝑑*𝑘 ≤ 0.

Also, we have:

𝑣*𝑖

𝑛∑︁
𝑗=1

𝑥𝑖𝑗 ≤
1
𝑚

𝑖 = 1, 2, . . . ,𝑚 ⇒ 𝜃*𝑖 𝑣*𝑖

𝑛∑︁
𝑗=1

𝑥𝑖𝑗 ≤
𝜃*𝑖
𝑚

𝑖 = 1, 2, . . . ,𝑚.

It is proved in Theorem 1 that
𝑛∑︀

𝑘=1

𝑛∑︀
𝑗=1

𝜆*𝑘𝑗𝑥𝑖𝑗 = 𝜃*𝑖
𝑛∑︀

𝑗=1

𝑥𝑖𝑗 (∀𝑖). Therefore, we can get:

𝑣*𝑖

𝑛∑︁
𝑘=1

𝑛∑︁
𝑗=1

𝜆*𝑘𝑗𝑥𝑖𝑗 ≤
𝜃*𝑖
𝑚

∀𝑖 (𝑏)

𝑛∑︁
𝑘=1

𝑛∑︁
𝑗=1

𝑚∑︁
𝑖=1

𝑣*𝑖 𝜆*𝑘𝑗𝑥𝑖𝑗 ≤
1
𝑚

𝑚∑︁
𝑖=1

𝜃*𝑖 .

Multiplying the two sides of the inequality 𝑢*𝑟
𝑛∑︀

𝑗=1

𝑦𝑟𝑗 ≥ 𝑤*

𝑠 (∀𝑟) by 𝜙*𝑟 , we have:

𝜙*𝑟𝑢
*
𝑟

𝑛∑︁
𝑗=1

𝑦𝑟𝑗 ≥
𝑤*

𝑠
𝜙*𝑟 ∀𝑟.

It was proved in equation (7) that
𝑛∑︀

𝑘=1

𝑛∑︀
𝑗=1

𝜆*𝑘𝑗𝑦𝑟𝑗 = 𝜙*𝑟
𝑛∑︀

𝑗=1

𝑦𝑟𝑗 (∀𝑟). Therefore, we have:

𝑢*𝑟

𝑛∑︁
𝑘=1

𝑛∑︁
𝑗=1

𝜆*𝑘𝑗𝑦𝑟𝑗 ≥
𝑤*

𝑠
𝜙*𝑟 ∀𝑟 (𝑐)

𝑛∑︁
𝑘=1

𝑛∑︁
𝑗=1

𝑠∑︁
𝑟=1

𝑢*𝑟𝜆
*
𝑘𝑗𝑦𝑟𝑗 ≥

𝑤*

𝑠

𝑠∑︁
𝑟=1

𝜙*𝑟 .

From Equations (a), (b), and (c), we can conclude that:

𝑤*

𝑠

𝑠∑︁
𝑟=1

𝜙*𝑟 −
1
𝑚

𝑚∑︁
𝑖=1

𝜃*𝑖 +
𝑛∑︁

𝑘=1

𝑑*𝑘 ≤
𝑛∑︁

𝑘=1

𝑛∑︁
𝑗=1

𝑠∑︁
𝑟=1

𝑢*𝑟𝜆
*
𝑘𝑗𝑦𝑟𝑗

−
𝑛∑︁

𝑘=1

𝑛∑︁
𝑗=1

𝑚∑︁
𝑖=1

𝜆*𝑘𝑗𝑣
*
𝑖 𝑥𝑖𝑗 +

𝑛∑︁
𝑘=1

𝑑*𝑘 ≤ 0

𝑤*

𝑠

𝑠∑︁
𝑟=1

𝜙*𝑟 ≤
1
𝑚

𝑚∑︁
𝑖=1

𝜃*𝑖 −
𝑛∑︁

𝑘=1

𝑑*𝑘

𝑤* =

1
𝑚

𝑚∑︀
𝑖=1

𝜃*𝑖 −
𝑛∑︀

𝑘=1

𝑑*𝑘

1
𝑠

𝑠∑︀
𝑟=1

𝜙*𝑟

.
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Since 𝑤* =
1
𝑚

𝑚∑︀
𝑖=1

𝜃*𝑖

1
𝑠

𝑠∑︀
𝑟=1

𝜙*𝑟

we have
𝑛∑︀

𝑘=1

𝑑*𝑘 = 0. On the other hand, we have 𝑑*𝑘 ≥ 0 (∀𝑘). Therefore, it is concluded that

𝑑*𝑘 = 0 (𝑘 = 1, 2, . . . , 𝑛).

Appendix F. Proof of Theorem 6

First, we prove that 𝑇𝑣 ⊆ 𝐻̄ = {(x,y) |𝑢*y − 𝑣*x ≤ 0}. In this regard, it is assumed that (𝑥̂, 𝑦) ∈ 𝑇𝑣. Then,
we have:

∃𝜇 ≥ 0,

𝑛∑︁
𝑗=1

𝜇̄𝑗x𝑗 ≤ x̂,

𝑛∑︁
𝑗=1

𝜇̄𝑗y𝑗 ≥ ŷ,

𝑛∑︁
𝑗=1

𝜇̄𝑗 = 1

𝑣*
𝑛∑︁

𝑗=1

𝜇̄𝑗x𝑗 ≤ 𝑣*x̂, 𝑢*
𝑛∑︁

𝑗=1

𝜇̄𝑗y𝑗 ≥ 𝑢*ŷ

𝑢*ŷ − 𝑣*x̂ ≤ 𝑢*
𝑛∑︁

𝑗=1

𝜇̄𝑗y𝑗 − 𝑣*
𝑛∑︁

𝑗=1

𝜇̄𝑗x𝑗 =
𝑛∑︁

𝑗=1

𝜇̄𝑗 (𝑢*y𝑗 − 𝑣*x𝑗) ≤ 0.

Thus, (𝑥̂, 𝑦) ∈ 𝐻̄. Now, we show that 𝐻 ∩ 𝑇𝑣 ̸= 𝜑. Suppose that
(︁
𝜇*, 𝜃*, 𝜙*, 𝑡*

)︁
is an optimal solution to model

(8), Since 𝑡* > 0, therefore, ∀𝑘∃𝑝 𝜇*𝑘𝑝 > 0. The complementary slackness condition yields 𝑢*y𝑝− 𝑣*x𝑝 = 0, and
consequently, 𝐻 ∩ 𝑇𝑣 ̸= 𝜑. Now, it is shown that 𝑢*>0 and 𝑣* > 0. Since 𝑡* > 0, therefore, an optimal solution
to model (7) is obtained as follows:

𝜃*𝑖 =
𝜃*𝑖
𝑡*

∀𝑖 , 𝜙*𝑟 =
𝜙*𝑟
𝑡*

∀𝑟 , 𝜆*𝑘𝑗 =
𝜇*𝑘𝑗

𝑡*
∀𝑘, 𝑗.

In Theorem (4), it was proved that 𝜃*𝑖 > 0 (∀𝑖) and 𝜙*𝑟 > 0 (∀𝑟). Thus, 𝜃*𝑖 > 0 (∀𝑖) and 𝜙*𝑟 > 0 (∀𝑟). Therefore,
the complementary slackness condition gives the following expression:

𝑣*𝑖

𝑛∑︁
𝑗=1

𝑥𝑖𝑗 =
1
𝑚

⇒ 𝑣*𝑖 =
1

𝑚
𝑛∑︀

𝑗=1

𝑥𝑖𝑗

> 0 ∀𝑖

Also, 𝑤* = 1
𝑠

𝑠∑︀
𝑟=1

𝜙*𝑟 > 0. Thus,

𝑢*𝑟

𝑛∑︁
𝑗=1

𝑦𝑟𝑗 =
𝑤*

𝑠
⇒ 𝑢*𝑟 =

𝑤*

𝑠
𝑛∑︀

𝑗=1

𝑦𝑟𝑗

> 0 ∀𝑟.

Appendix G. Proof of Theorem 7

Suppose that
(︁
𝜇*, 𝜃*, 𝜙*, 𝑡*

)︁
is an optimal solution to model (8). Let 𝐸 =

{︁
𝑗
⃒⃒⃒
𝜇*𝑘𝑗 > 0

}︁
. An optimal solution

to model (7) is obtained as follows:

𝜃*𝑖 =
𝜃*𝑖
𝑡*

∀𝑖, 𝜙*𝑟 =
𝜙*𝑟
𝑡*

∀𝑟, 𝜆*𝑘𝑗 =
𝜇*𝑘𝑗

𝑡*
∀𝑘, 𝑗.

Also,(𝑢*, 𝑣*, 𝑤*) is an optimal solution to model (9). Thus, the complementary slackness condition gives the
following expressions:

𝑢*y𝑗 − 𝑣*x𝑗 = 0 𝑗 ∈ 𝐸
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𝑢*𝜆*𝑘𝑗y𝑗 − 𝑣*𝜆*𝑘𝑗x𝑗 = 0 𝑗 ∈ 𝐸 𝑘 = 1, 2, . . . , 𝑛.

Considering the equation 𝜇*𝑘𝑗 = 𝑡𝜆*𝑘𝑗 (∀𝑘, 𝑗), we have:

𝑢*𝜆*𝑘𝑗y𝑗 − 𝑣*𝜆*𝑘𝑗x𝑗 = 0 𝑗 ∈ 𝐸, 𝑘 = 1, 2, . . . , 𝑛

𝑢*
∑︁
𝑗∈𝐸

𝜆*𝑘𝑗y𝑗 − 𝑣*
∑︁
𝑗∈𝐸

𝜆*𝑘𝑗x𝑗 = 0 𝑘 = 1, 2, . . . , 𝑛.

The coordinates of new DMUs (x̄𝑘, ȳ𝑘) are as follows:

x𝑘 =
∑︁
𝑗∈𝐸

𝜆*𝑘𝑗x𝑗 , y𝑘 =
∑︁
𝑗∈𝐸

𝜆*𝑘𝑗y𝑗 𝑘 = 1, 2, . . . , 𝑛.

Therefore, it is implied that 𝑢*ȳ𝑘 − 𝑣*x̄𝑘 = 0 (𝑘 = 1, 2, . . . , 𝑛). This issue shows that (x̄𝑘, ȳ𝑘) ∈ 𝐻 (𝑘 =
1, 2, . . . , 𝑛).

Appendix H. Proof of corollary

Suppose that (𝑢*, 𝑣*, 𝑤*, 𝑑*) is an optimal solution to model (8). Also, it was proved in Theorem (5) that
d*= 0, thus the hyperplane 𝐻 was obtained as 𝐻 = {(x,y) |𝑢*y − 𝑣*x = 0}. Besides, it was shown in The-
orem (6) that 𝐻 was a strong supporting hyperplane. Also, Theorem (7) proves that all new units lie on the
strong supporting hyperplane 𝐻. Since d*= 0, therefore, 𝐻 ∩𝑇𝑣 is an MPSS facet. Thus, all new units obtained
from model (7) are MPSS.
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