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ESTIMATION OF PORTFOLIO EFFICIENCY VIA STOCHASTIC DEA

HELU X1a0'®, XIN Liu!, TIANTIAN REN?3* AND ZHONGBAO ZHOU??3

Abstract. Traditional data envelopment analysis (DEA) and diversification DEA are two common
data-driven evaluation approaches, which have been widely used in the estimation of portfolio efficiency.
The above two DEA approaches usually use the risk and expected return indicators to build the input-
output process of portfolios. However, this input-output process derived from the risk and expected
return is inconsistent with the actual investment process, since the real input should be the initial
wealth, and the output should be the terminal wealth. To address this problem, we propose a novel
input-output process based on the initial and terminal wealth of portfolios. We transform the terminal
wealth into the rate of return and construct a stochastic attainable set by using portfolio returns. We
provide three deterministic estimation approaches to deal with the stochastic attainable set, and then
obtain three deterministic attainable sets. We further propose three stochastic DEA models to estimate
the portfolio efficiency by using the above three deterministic attainable sets. Finally, we provide an
empirical analysis to assess the portfolio efficiency of 50 open-ended funds in China. The results show
that there are some differences in the portfolio efficiency and its ranking between the proposed DEA
models and the existing DEA models, which further verify the rationality of the proposed DEA models.
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1. INTRODUCTION

Nowadays, the estimation of portfolio efficiency has always been one of the research hotspots in the field of
finance. How to estimate the portfolio efficiency has also been a concern of many researchers. DEA approach,
as a data-driven evaluation approach, has been considered as an effective tool to solve the efficiency evaluation
problem, because it does not need to specify the form of production function. This approach cannot only avoid
the setting error of production function, but also provide a benchmark for decision-makers. In recent years,
DEA has been widely used in the estimation of portfolio efficiency, among which the traditional DEA and
diversification DEA models are two common methods to solve this problem. The above two kinds of evaluation
methods need not make assumptions about the effectiveness of the capital market, but only need to use the multi-
dimensional financial indicators (e.g., transaction costs, and the expected return and risk indicators) to make
a relative assessment of portfolios. To the best of our knowledge, the existing researches usually use the above
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financial indicators to build the production possibility set of portfolios. However, the resulting input-output
process is also questioned by many researchers, since they believe that these financial indicators cannot fully
describe the actual input-output of portfolios (e.g., [25,26,31]). Therefore, how to define the actual input-output
of portfolios is an urgent problem to be solved in this paper.

In recent years, the traditional DEA from production theory has been gradually and partially transposed to
the analysis of portfolio performance by regarding these financial indicators as the inputs and outputs. To the
best of our knowledge, Murthi et al. [23] first applied traditional DEA to estimate the portfolio efficiency and
then treated the standard deviation of fund return as an input and the expected return as an output to construct
the corresponding DEA model. Basso and Funari [1] took different risk indicators as inputs and the expected
return as an output, and also showed the relationship between the proposed DEA model and the traditional
evaluation index. Chen and Lin [10] used VaR and CVaR instead of the traditional variance measurement to
measure the portfolio’s risk and then used them as the input indicators of the proposed DEA model. Basso and
Funari [2] proposed a social responsibility measurement index for the social responsibility investment funds,
combined the traditional expected return and risk indicators and constructed a DEA model suitable for the
evaluation of social responsibility investment funds. Ding et al. [14] studied the applicability of DEA in the
performance evaluation of portfolios with margin requirements. Liu et al. [20] proved the convergence of DEA
frontier under the generalized mean-risk framework. Basso and Funari [3] studied the relationship between fund
size and fund efficiency in combination with DEA and econometric models. Chen et al. [11] proposed three
kinds of DEA models to evaluate the performance of portfolios with fuzzy returns. Zhou et al. [30] provided
a DEA frontier improvement approach which can effectively improve the convergence speed of DEA frontier.
Allevi et al. [4] used a DEA approach to evaluate the performance of green mutual funds, among which the
environmental and financial indicators are both considered into the proposed DEA models.

Traditional DEA can be converted into a linear programming problem, in essence, and its calculation is
relatively simple, but many researchers have questioned the ability of traditional DEA in diversifying risks.
Since Markowitz [22] proposed that the portfolio can diversify risks, there is an ever-growing literature on
the different diversification DEA models to estimate the portfolio efficiency. Briec et al. [8] constructed a
diversification DEA model under the classical mean-variance criterion, and also distinguished the portfolio
efficiency and the allocation efficiency. Joro and Na [16] proposed a diversification DEA model within the
mean-variance-skewness framework, and then investigated the influence of skewness on the portfolio efficiency.
Inspired by the previous work, Briec et al. [9] further developed a diversification DEA model with consideration
of the high-order moment constraints, and also theoretically proved the global optimal solution availability of
the proposed model. Lamb and Tee [17] introduced a general class of diversification DEA models based on the
multi-return and multi-risk measures, and then systematically examined the relationship between the portfolio
diversification, coherent risk measurement and stochastic dominance. Branda [7] constructed several kinds of
diversification DEA models under the generalized mean-risk criterion, and also allowed that the negative values
of input and output indicators exist in these models. Lin and Li [18] proposed a super-efficiency diversification
DEA model based on the directional distance function measure to further distinguish the differences between
the effective investment funds.

It is not difficult to find that the production possibility sets of the above DEA models are constructed by using
the risk and return indicators. In the existing literature, the input-output property of the return and risk mainly
includes the following two viewpoints. The first viewpoint treats the portfolio risk as an input indicator and
the expected return as an output indicator. The second viewpoint considers that the expected return and risk
should be both treated as output indicators, because the expected return and risk are two evaluation indicators
derived from the portfolio return. However, the above two input-output assumptions are inconsistent with the
actual investment process. In fact, it is more reasonable to construct the input-output process of portfolios by
using the assumption that the initial wealth is an input and the terminal wealth is an output. This is also a
novel input-output assumption which is different from the existing literature. Since the terminal wealth of a
portfolio is a random variable on the portfolio return, thus the resulting production possibility set may also
be random. It is also called as the stochastic production possibility set. The stochastic production possibility
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set can be treated as an extension of the traditional deterministic production possibility set. Obviously, it is
unrealistic to estimate the portfolio efficiency directly based on the above stochastic production possibility set.
Therefore, how to make a deterministic estimation of this stochastic set is also the fundamental problem to be
solved.

To the best of our knowledge, the common method to deal with the stochastic production possibility set is
using the classical chance-constrained theory to construct the corresponding chance-constrained DEA models.
The related studies include Huang and Li [15], Cooper et al. [13], Tsionas and Papadakis [27], Olesen and
Petersen [24] and so on. Obviously, the chance-constrained theory can be used to estimate the stochastic pro-
duction possibility set of portfolios. In addition to this, the classical mean-risk portfolio optimization theory
can also be used to derive the estimation of stochastic production possibility set. In this framework, we can use
the return and risk measures (e.g., the expectation and standard deviation measures) to estimate the stochastic
constraint conditions in the stochastic set mentioned above. In this paper, we will investigate the determin-
istic estimation of the stochastic production possibility set of portfolios by using the chance-constrained and
mean-standard deviation theories.

Under the proposed input-output process based on the initial and terminal wealth, the difficulty in acquiring
the initial wealth of portfolios will make it difficult to estimate the portfolio efficiency. For the above reasons, we
standardize the initial and terminal wealth of portfolios, and then the initial wealth can be normalized to one
unit wealth and the terminal wealth can be converted into the portfolio return. Generally speaking, the portfolio
return (e.g., fund return) is usually observable. Therefore, it is more practical to estimate the portfolio efficiency
based on portfolio returns. As the characteristics of data described in Liu et al. [19], the portfolio returns can be
treated as the data without explicit inputs. And they proposed a DEA-WEI model to deal with this problem,
in which the proposed model needs not know the specific values of inputs, but only needs to use the index data
(e.g., the data of fund returns). Yang et al. [28] further proposed a DEA-WEI model with quadratic utility
terms, and also compared the difference between the benchmark obtained by the proposed DEA model and that
obtained by the traditional DEA model. However, the above studies on the DEA-WEI models all assume that
the outputs of decision-making units are the deterministic data, while the data of portfolio returns studied in
this paper is still stochastic one. Therefore, how to integrate the DEA-WEI model and stochastic DEA is also
the rest of our work.

Motivated by the aforementioned research line, we first define the input-output process of portfolios, and then
construct the stochastic attainable set without explicit inputs. Under the framework of the chance-constrained
and mean-standard deviation theories, we propose three deterministic estimation approaches to estimate the
above stochastic attainable set. Then, we construct three kinds of stochastic DEA models based on the direction
distance function measure, i.e., chance-constrained stochastic DEA model, and nonlinear and linear stochastic
DEA models under mean-standard deviation criterion. For the proposed chance-constrained DEA models, we
assume that the portfolio returns follow a joint normal distribution, and then transform the chance-constrained
DEA models into the deterministic quadratic programming problems. Further, we investigate the difference
between the proposed stochastic DEA models under mean-standard deviation criterion and the existing DEA
models. Finally, we apply the proposed stochastic DEA models to assess the portfolio efficiency of 50 growth
open-ended funds in China. The empirical results show that the proposed stochastic DEA models are different
from the traditional DEA models in the portfolio efficiency and its ranking. These further validate the rationality
of the proposed stochastic DEA models.

The remainder of this paper is organized as follows. In Section 2, we redefine the input-output process of
portfolios, and then construct a stochastic attainable set by using portfolio returns. In Section 3, we proposed
three deterministic estimation approaches to estimate the stochastic attainable set of portfolios. In Section 4, we
provide three stochastic DEA models to estimate the portfolio efficiency. In Section 5, we carry out an empirical
analysis to verify the validity of the proposed stochastic DEA models, and then show the difference between the
proposed DEA models and the existing DEA models. Finally, some concluding remarks are summarized here.
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FI1GURE 1. The input-output process of portfolios.

2. REVISITING THE INPUT-OUTPUT PROCESS OF PORTFOLIOS

Suppose that there are m portfolios to be evaluated in the financial market. Let r; denote the random return
of the j-th portfolio, where j = 1,--- ,m. Let 7; = E(r;) and o(r;) = 1/ Var(r;) be the expectation and standard
deviation of the j-th portfolio return, respectively, and €; ; = Cov(r;,r;) represent the covariance of portfolio
returns r; and r;, where 4,j = 1,--- ,m. Assume that T = [Fq,--- ,7m| is the vector of expected returns and
Q is the covariance matrix of portfolio return vector r = [r1,--- ,7,]". Based on the above m portfolios to be
evaluated, this paper aims to estimate the portfolio efficiency based on production theory, and it is crucial to
specify the input-output process of portfolios. Intuitively, for an investment activity in a financial asset, the
input should be the initial wealth (i.e., various costs) required to buy a certain amount of the asset and the
output should be the gain received when the asset is sold. To this end, we let wy and w; be the initial and
terminal wealth of a portfolio, respectively. Note that, wg is a deterministic value, while w; is a random value
on the portfolio return. Therefore, for an actual investment process, we can conclude that the real input is the
initial wealth and the output is the terminal wealth. In this case, the details about the input-output process of
portfolios are shown in Figure 1la.

As shown in Figure la, for an investor, the input is the amount of money spent to purchase the portfolio
(i.e., initial wealth shown in Figure la, which includes transaction costs), and the output is the wealth that
the investor will receive when the portfolio is sold (i.e., the terminal wealth shown in Fig. 1a). In practice, the
initial wealth of most portfolios (e.g., investment funds) is not always observable, which is also inconvenient for
evaluators. However, the initial wealth and the terminal wealth of a portfolio satisfy the following relationship:
wy = wo X (147), where r denotes the portfolio return. Then, the initial wealth of a portfolio can be normalized,
that is, its terminal wealth can be replaced by the portfolio return r. In this situation, the input of each portfolio
can be unified as 1 unit wealth, and the output is the random return r. Thus, the input-output process of
portfolios can be described by the portfolio return, and the detailed conversion process is shown in Figure 1b.
With the input-output setup shown in Figure 1b, the evaluation of different portfolios can be understood as
the investor spends 1 unit of wealth on each portfolio and ultimately compares which portfolio has a higher
terminal return. Compared with the existing studies (i.e., the DEA portfolio evaluation studies that use the
return measure and risk measure of the portfolio return to construct the input-output process of portfolios), it
is clear that the input-output process of portfolio defined in Figure 1 is a new understanding.

In this paper, we aims to build the DEA models based on the input-output process of portfolios in Figure 1b.
Liu et al. [19] treated the production process shown in Figure 1b as a production process without explicit inputs,
and then proposed a DEA-WEI model to deal with this problem. However, Liu et al. [19] assumed that the
outputs of decision-making units are all deterministic values, while the portfolio’s output r is a random variable.
Inspired by the work of Cooper et al. [12], we use the idea of stochastic DEA to construct the stochastic attainable
set without explicit inputs. Based on the above m portfolios to be evaluated and their portfolio returns (é.e., rj,
j=1,---,m), we can construct the following stochastic attainable set by using the assumptions of convexity
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and strong free disposability.
PPS=S7ry Nri=r D N =1X2>0j=1--,my, (2.1)
: =

where )\; denotes the intensity weight, which is used to construct the returns of some virtual portfolios based
on the observation portfolios, and r denotes the virtual portfolio return that can be generated based on the
observed portfolios.

From the expression of Set (2.1), we can find that Set (2.1) can be treated as the stochastic version of
the attainable set provided by Liu et al. [19]. Due to the randomness of the portfolio return r;, it is difficult
for evaluators to directly assess the portfolio efficiency within the framework of the stochastic attainable set
(2.1). Obviously, how to reasonably estimate the stochastic constraint in the stochastic attainable set (2.1) is the
premise for building an effective DEA model. Under the framework of stochastic DEA, we propose three methods
to construct the deterministic estimation of the above stochastic constraint, so as to create the corresponding
stochastic DEA model to assess the portfolio efficiency. Further, we analyze the differences and connections
between the proposed stochastic DEA models and the existing deterministic DEA models (i.e., traditional DEA
and diversification DEA models).

3. THE DETERMINISTIC ESTIMATION OF STOCHASTIC ATTAINABLE SET

In this section, we first use the chance-constrained theory to deal with the above stochastic attainable set
(2.1). In this case, the stochastic constraint shown in Set (2.1) only needs to be true at a given probability level
1 — (0 < a < 1). Then, the corresponding deterministic estimation of the stochastic attainable set (2.1) can
be expressed as

P(S A zr) 210, 0<a<1

pps) = {r (3.1)

Z_j:lAj:L )\jZO, j:17"'am

It is easy to find that PPS™) denotes the set of the virtual portfolio returns (i.e., r) that satisfy the above
chance-constrained condition. Inspired by the classical mean-standard deviation portfolio optimization theory,
we also provide a second method to deal with Set (2.1). Under the mean-standard deviation framework, we
quantify the stochastic constraint in Set (2.1) by using the mean and standard deviation measures. Under the
risk averse preference assumption, investors want the mean of portfolio return to be larger and the standard
deviation of portfolio return to be smaller. Similar to the assumption using in Set (2.1), we consider that the
mean and standard deviation of portfolio return satisfy the strong free disposability!. Then, the corresponding
deterministic estimation can be described as

E(Z}il )\ﬂ”j) > E(r), U(Z}n:l Am) < of(r),
Z;’n:l)\J :17 )\J ZO’ ]:L , M.

PPS® = { (3.2)

Difference from PPS(U, PPS® denotes the set of the virtual portfolio returns (i.e., r) that meet the above
mean-standard deviation framework. Referring to the traditional DEA models, the third method is to deal with
the stochastic constraint in Set (2.1) by linearizing the nonlinear constraints shown in PPS®). In this situation,
the corresponding deterministic estimation can be expressed as

— { ‘ TIANEIr) 2 B0, T wr-) <a(r), }

(3.3)
A=1,0>0, j=1,-

1The strong free disposability implies that virtual portfolios with smaller mean and larger variance than observed portfolios are
achievable. The question of whether the strong free disposability of DEA is applicable to the performance evaluation of portfolios
is more systematically analyzed by Lamb and Tee [17], who argue that the strong free disposability can still be retained in portfolio
evaluation except for some non-convex risk measures, such as value-at-risk (VaR) and third-order moment measures.
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The relationship between PPS® and PPS® is that the latter can be consider as a linear estimation of
the former, since the conclusions of E(Z;nzl )\jrj> =L AjE(r;) and O’(Zyll )\jrj) < Y00, Ajo(ry) hold.
Although ppPs® ignores the risk diversification, the resulting linear model is more convenient to be solved,
which is consistent with the characteristic of traditional DEA. Moreover, it follows from the conclusion of Liu
et al. [20] that as the portfolio sample size increases, ppPs® converges to PPS® with probability one. Therefore,
it is also worth considering PPS® as a feasible estimation of Set (3.1).

In the following, this paper will construct the corresponding stochastic DEA model based on the above
deterministic estimations, i.e., PPS(Y), PPS®) and PPS®).

4. ESTIMATION OF PORTFOLIO EFFICIENCY VIA STOCHASTIC DEA

Because of the negative value of portfolio returns, we will construct the corresponding stochastic DEA model
based on the directional distance function. For any portfolio return r4, we assume that, r4 + g, € pps®),
rq + 0g, € PPS® and rq + 0g, € PPS(g), where g, > 0, and 6 denotes the proportion of the portfolio return
that can be expanded within different attainable sets. Under the three scenarios described above, the investor
wants to find the maximum expansion proportion under a given attainable set and treats it as a measure of
the scope for improvement in the portfolio to be evaluated. Then, we have the following evaluation models:

0; (o) = maX9{9|rd +0g, € PPS(l)}, 05 = maxe{9|rd +0g, € PPS(Q)} and 05 = maxe{9|rd +0g, € PPS(3)}.

The detailed forms of the above stochastic DEA models are shown in Sections 4.1-4.3.

4.1. Chance-constrained stochastic DEA model

For the first evaluation model 0f («) = maxe{9|rd +0g, € PPS(I)}, the details can be expressed as follows.

07 (o) = max 0
P{Z}ll AjTj Zrd+99r} >1-aq,
Z;'n:l)\j:L )‘j >0,0>0,j=1,---,m.

s.t. (4.1)

Here a is a predetermined parameter, and it satisfies that 0 < a < 1. Parameter o can be treated as
the modeler’s risk level, indicating the probability measure of the extent to which chance constraint violation
is admitted. According to Model (4.1), we can find that, the lower the value of «, the higher the modeler’s
confidence about the portfolio being evaluated and the lower the modeler’s risk, and wvice versa. Referring to
Zhou et al. [5], in most cases, the modeler’s confidence is relatively high. In the following, we further assume
that the predetermined parameter « satisfies a < 0.5.

Due to the existence of chance-constrained condition in Model (4.1), it is difficult for decision-makers to
directly solve it. The traditional method of solving this kind of problem is to assume that the random output
follows a given distribution function, and then transforms the chance constraint into the deterministic equivalent
constraint. In this case, the above chance-constrained DEA model can be transformed into the corresponding
equivalent model. Since the equivalent model only depends on the distribution of portfolio returns, we can esti-
mate the distribution parameters of portfolio returns by using the historical data. Then, the portfolio efficiency
can be assessed by using the equivalent model.

In the following, we assume that the portfolio returns follow a joint normal distribution, that is, r ~ N(F, ),
where r = [rq, - ,rm]/. Without loss of generality, this paper assumes that the direction g, can be respectively
valued in deterministic direction and exogenous random direction, and then Model (4.1) can be transformed into
the corresponding deterministic equivalent model?. The relevant conclusions are shown in Theorems 4.1 and 4.2.

°In fact, whether in a bear market or a bull market, investors always hope that the more wealth, the better, so the proposed
exogenous random direction can be considered as an idealized benchmark in the investors’ heart, which is an improvement direction
unrelated to the portfolios in the market. In addition, it is worth noting that the deterministic equivalent transformation of Model
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Theorem 4.1. Suppose that the portfolio returns satisfy r ~ N(T, Q) and the direction g, is a deterministic
value, and then Model (4.1) can be equivalent to the following deterministic programming problem.

07, () = max 6
YL N E(ry) + @7 H(@)d(N) = E(ra) + 09y,

st 9 6(N) = \/Var(zg.”_l )\jrj> + Var(rq) — 22?21 A;jCov(r;, ra), (4.2)
Z;nzl)‘j =1, )\j >0, 9207 J:l7 ,m

where A = (A, -+ ,)\m)/.

Proof. The chance constraint shown in Model (4.1), i.e. P{Z AjTj > 1q + GgT} > 1—a, can be transformed

7j=1
as follows.
poyia 1>\ rj—ra—0g-—[S7", XjE(rj)—E(ra)—6g:]
" \/Var 1T +Var(r,;) 2377, AjCov(rj,ra)
> N =ra+0gep =P _[Z N () Bira)—65,] >1—a (4.3)
=t \/Var AT +Var(rd) 23271 XjCov(r;,ra)

when the portfolio returns meet that r ~ N (F, Q), we can conclude that the random variable
S A —ra—0g, — [ 71 A E(r;) —0E(ra) —6g,]
\/Var DT AT +Var(rd) 2377 AjCov(rj,ra)
condition (4.3) can be equivalent to the following inequality condition.

follows the standard normal distribution. Then, the chance constraint

E(rj)+® '(a) |Var Z Ajr; | + Var(rg) — 2 Z A;jCov(rj,rq) > E(rq) + 0g,. (4.4)
j=1 j=1

11
S/

Further, let §(A) = \/Var(zm Aj 73) + Var(rg) — 22 1 AjCov(rj,rq), then Model (4.1) can be trans-

formed as

071 () = max 6

Yim AE(ry) + @7 H(@)d(X) = E(ra) + Ogr, )
s.t. .
Z;'nzlAj :1, )‘j 20, 920, j:17 ,m
To sum up, we can conclude that Theorem 4.1 is true here. O

Theorem 4.2. Assume that the portfolio return vector r ~ N (T, Q) and the direction g, is an exogenous ran-
dom variable, and then Model (4.1) can also be equivalent to the following deterministic programming problem.

075(a) = max 6
Y1 A E(r) + @7 He)d(A, 0) = E(ra) + 0E(gy),

s.t. 9 §(A, 0) =/ Var (Z:nzl )\jrj> + Var(ry) + 02Var(g,) — 2 Z;'L:1 A;jCov(r;,ra), (4.6)
Z;‘ll)‘j =1,X%2>0,0>0,j=1,---,m
Here X\= (A1, -+, Am)’.
(4.1) only needs to assume that the portfolio return vector follows a continuous distribution (see, [5]), but for comparison with the

traditional DEA and diversification DEA models in the mean-standard deviation framework, we suppose that the portfolio return
vector obeys a joint normal distribution.



2374 H. XIAO ET AL.

Proof. Since the direction g, is an exogenous variable, then we can derive the following conclusion: Cov(r;, g,) =
0,j =1,---,m. Similar to Theorem 4.1, the chance constraint condition P{Z?:l Ajry > 1rq + Ggr} >1—a«
can be transformed as follows.

Z)\jE(rj) + & a) |Var Z Ajrj | + Var(rq) + 62Var(g,) — 22 A;jCov(rj,rq) > E(rq) + 0E(gy). (4.7)

j=1 j=1 j=1

Let 6(A, 0) = \/Var(zgn_l )\jrj) + Var(rq) 4+ 62Var(g,) —23°7_, AjCov(r;,74), Model (4.1) can be trans-

formed as

075(a) = max 6

D N E(r) + @7 Ha)d(X, 0) = E(ra) + 0E(g,), 48)
S.t. .
Z;"Zl/\jzl,/\j20,920,j:1,~~,m.
Then, we can conclude that Theorem 4.2 holds here. O
In this section, we define ¥ = [rg, gy, 71, -+ ,7m) and Y = (1,0, =Xy, -, —\,) . In addition, we let Q

denote the covariance matrix of the random vector ¥, where £ is a semi-positive definite matrix. Due the fact
that Model (4.2) is an extreme case of Model (4.6) (i.e., Var(g,) = 0), then §(X) and §(X, ) can be uniformly

represented as
VY QY = Hﬁl/QYH (4.9)

where ||| denotes the standard Euclidean norm, and £2!/2 is the matrix that satisfies the condition Q1/2Q1/2 =
Q.

Therefore, Models (4.2) and (4.6) are respectively rewritten as the following second-order cone programming
(SOCP).

07, () = max 6

S A E(ry) + 071 (a) |82 2 Bra) + 09,

s.t. (4.10)
ZTZl/\j:L A;j>0,0>0,j=1,---,m.
075(a) = max 0
T NE(r) + 07 (@) |92y 2 B(ra) + 0B g,).
ot J 2ot ME) ( )‘ ‘ (ra) (9r) )

Z;rlzl)\j:L )\jZO, 920,]:17,m

Based on the findings in Lobo et al. [21] and Boyd and Vandenberghe [6] on SOCP and convex optimization,
it is clear that Models (4.10) and (4.11) are both the convex programming when o < 0.5.

Further, from the definition of stochastic effective shown in Cooper et al. [13] and Zhou et al. [29], for a given
risk level o, when the optimal value of Model (4.2)/(4.6) is equal to 0, then the portfolio being evaluated is called
as stochastic effective. Further, for any portfolio under evaluation, the portfolio efficiency can be expressed as
i (a) =1 — 07 (a) or nis(a) =1 — 075(a), and the corresponding ranking is denoted as Ry, (a) or Riy(a).

4.2. Nonlinear stochastic DEA model under mean-standard deviation criterion

Section 4.1 mainly uses the chance-constrained theory to deal with Set (3.1). In fact, in addition to this,
the classical mean-standard deviation portfolio optimization theory can also be used to derive the deterministic
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estimation of Set (3.1). Under this framework, we have that 65 = rnaxe{9|rd +0g, € PPS(Q)}. The detailed
model can be described as

03 = max 6
E(S27 Ars) 2 B(ra+ 0g,),

s.t. a(z;n:l /\jTj) < o(rq+0g,), (4.12)
Z;'nzl)‘j :1, )‘j 20, 920, ]:17 ,m.

Similar to Models (4.2) and (4.6), we assume that the direction g, can be both evaluated in the deterministic
direction and exogenous random direction shown above. First, when g, is a deterministic value, then we obtain
the conclusion that E(rq+ 0g,) = E(rq) + 0g, and o(rq+0g,) = o(rq). Further, Model (4.12) can be simplified
to the following DEA model.

65, = max 0
B(SI, Ajry) = Era) + 0.

st o (X7 Ay ) < ora), (4.13)
SN =1,42>0,0>0, /=1, ,m.

Similarly, when the direction g, is an exogenous random variable, we have that E(ry+6g,) = E(rq) +0E(g,)
and o(rq+ 0g,) = o(rq) + 60 (g,). Then, Model (4.12) can be simplified as follows.

055 = max 0
B(S7 Agri) = B(ra) +0E(g,),

8.8 U(Z;'nzl /\ﬂ”j) < o(ra) +0o(gr), (4.14)
Z;nzl/\j :1, )\j 20, 920, j:L.-. ,m.

Under the mean-standard deviation criterion, when the optimal value of Model (4.13)/(4.14) is equal to 0,
the portfolio being evaluated is said to be stochastic effective. In addition to this, the portfolio efficiency can be
defined as n3; =1 — 605, and 155, = 1 — 03,. Then, the corresponding portfolio rankings are denoted as R3; and
R3,, respectively.

4.3. Linear stochastic DEA model under mean-standard deviation criterion

The above DEA evaluation models are all nonlinear in nature. Although they all consider the diversifica-
tion role of portfolios, they may not have advantages in solving these models. Referring to the traditional
linear DEA model, the stochastic DEA model with linear constraints can be constructed under the mean-
standard deviation criterion. For any portfolio being evaluated, the evaluation model can be expressed as

05 = maxa{ﬁ\rd +0g, € pPPs® } The details are shown as follows.
03 = max 0
St N E(ry) > E(rq + 0g,),
s.t. ZT:l Ajo(rj) < o(rq+0g.), (4.15)
Z;‘nzl)‘j = 1, )\j ZO, 920, j:L'-' ,m.
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Similarly, when g, is a deterministic value, Model (4.15) can be simplified as follows.
03, = max 0
Y1 A E(ry) = E(ra) + 0y,
s.b. 4 2ieg Ajo(ry) < a(ra), (4.16)
Z;'nzl)‘j :1, )\j ZO, 920, jZl,’“ ,m

when g, is an exogenous random variable, Model (4.15) can be rewritten as

05, = max 0
21 AiE(ry) = E(ra) + 0E(gr),

s.t. 4 2y Ajo(ry) < o(ra) + 00 (gy), (4.17)
Z}”:Mj =1,X>0,0>0,j=1,---,m.

In this case, for any portfolio being evaluated, its efficiency is defined as 73; =1 — 65, or 03, = 1 — 03, and
the corresponding portfolio ranking is denoted as R3; or R3,.

4.4. The proposed stochastic DEA models vs. the existing DEA models

In order to further investigate the difference between the proposed stochastic DEA models and the existing
DEA models, this paper will revisit the existing DEA models and their production possibility set. To the best
of our knowledge, the diversification DEA and traditional DEA are two common approaches used in estimating
the portfolio efficiency. However, different from the proposed models, the input-output process shown in the
existing studies is constructed by using the return and risk indicators of portfolio returns. Under the mean-
standard deviation criterion, the production possibility set of the diversification DEA and traditional DEA can
be respectively expressed as follows.

PPS™ = (7, 7) B(SiAm) 27 o (S <5 (4.18)
Z‘;n:1>\j :1, )\j 20, ]:1, ,m
ST NE(r) > F S No(r) <

” } (4.19)

Based on Sets PPS™ and PPS(5), we assume that Point (o4, r4) is made up of the standard deviation and
expected return of the portfolio under evaluation. From the existing literature, we find that the corresponding
DEA models are usually constructed by using Sets PPS™ and PPS(5), and the input and output indicators
are also characterized by the portfolio’s returns and risks. At present, there are two different viewpoints in the
selection of input and output indicators. The first viewpoint is that, the portfolio risk is regarded as an input
indicator, while the expected return of a portfolio is regarded as an output indicator. The second viewpoint is
that, the expected return and risk should be both treated as output indicators, because the expected return
and risk are two evaluation indicators derived from the portfolio return. In particular, the expected return is
treated as a desirable output and the risk is treated as an undesirable output. To further show the difference
between the proposed DEA models and the existing DEA models, we will compare the proposed models and
the existing DEA models under the different input-output assumptions. Since the proposed DEA models in this
paper are all output-oriented ones, thus we mainly focus on the comparative analysis under the output-oriented

pPPS®) = {(&, 7)

Z;n:1>‘j:15 )\jZO, jil,,m

measure.
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First, when the portfolio risk is regarded as an input indicator, and the expected return is regarded as an
output indicator, using Sets PPS™ and PPS(5), the following DEA models can be derived under the output-
oriented measure.

03, = max 0

E(Z;nzl )\j’l"j) > E(rq) + 090,

s.t. U(z;nzl /\jTj> < o(ra), (4.20)
YA =1,22>0,0>0,j=1,---,m

0z, = max 0

it NE(ry) = E(ra) + 090,

s.b. 4 2iey Ajo(ry) < a(ra), (4.21)
Z;'nzl)‘j :1, )\j ZO, 920, jZl,’” ,m

when the direction of Models (4.20) and (4.21) is taken as go = g, where g, is the deterministic direction
described in Sections 4.1-4.3, then we find that the Models (4.20) and (4.21) are consistent with the stochastic
DEA models (4.13) and (4.16) proposed in this paper.

On the other hand, we assume that the expected return and risk of a portfolio are both regarded as out-
put indicators. Referring to Zhou et al. [31], for a given direction § = (g9, g5)’, then we have that 6%, =

maX9{9|(o(rd) + 098, E(rq) +098) € PPS(4)} and 63, = maX9{9|(U(7“d) + 098, E(rq) +098) € PPS(5)}.
Specifically speaking, 03, and 0%, can be expressed as follows.

0}, = max 0

E(Z?ll )\ﬂ“g‘) > E(ra) + 098,

s.t. g(z;”zl )\jrj) < o(rq) + 099, (4.22)
SN =1, 42>0,0>0,j=1,,m

0%, = max 6

ZT:l NE(rj) > E(rq) + 698,

s.t. Z}n:l Ajo(ry) < o(ra)+ 9957 (4.23)
YA =1,420,0>0,5=1,--- ,m.

In order to further investigate the relationship between the proposed DEA models and the existing DEA
models, we assume that g, is an exogenous random direction and also let g4 = o(g,) and g5 = E(g,). In this
case, we can find that Models (4.22) and (4.23) are consistent with the stochastic DEA models (4.14) and (4.17)
proposed in this paper. This further verifies that the proposed DEA models have good uniformity.

In the existing literature, diversification DEA and traditional DEA models (4.22) and (4.23) are generally
assumed that gg < 0 and gg > 0, because decision-makers are willing to find a benchmark with higher expected
return and less risk as the goal for improvement. However, in the stochastic DEA models (4.13) and (4.16),
the exogenous random direction g, satisfies the following conditions: o(g,) > 0 and E(g,) > 0. At this time,
the benchmark provided by the proposed DEA models has the characteristics of higher return and higher risk
compared with the portfolio under evaluation. To analyze the difference between the proposed DEA models
and the existing DEA models more intuitively, the direction of Models (4.22) and (4.23) might as well be
G = (=o(gr), E(gy))’, and the improvement direction of risk and return derived from the exogenous random



2378 H. XIAO ET AL.

A
&
4= (0, E(g,))
g=(-0(g,). E(g,)
O Risk;

FIGURE 2. The difference between the projection directions of different DEA models.

direction g, in Models (4.13) and (4.16) is 1 = (o(g,), E(g-))". In this case, the detailed relationship between
g and g7 is shown in Figure 2. As can be seen from Figure 2, we can find that, the existing diversification DEA
and traditional DEA models usually adopt a more conservative improvement direction § = (—o(g,), E(g)),
because the benchmark of an ineffective portfolio has the characteristics of higher return and lower risk. However,
the benchmark sought by the proposed models (4.13) and (4.16) is characterized by higher return and higher
risk. Therefore, compared with the existing DEA models, the stochastic DEA models (4.13) and (4.16) are more
optimistic evaluation methods.

5. EMPIRICAL ANALYSIS

In order to verify the effectiveness of the above DEA models and discuss the difference between the proposed
DEA models and the existing DEA models, this paper selects 50 growing open-ended funds from China’s fund
market, whose fund codes are shown in Table 1. The range of weekly historical returns is from January 1, 2017
to December 31, 2019, and the data is downloaded from RESSET database (http://db.resset.com/). Before
beginning the following empirical analysis, this paper still needs to check the normality of the fund returns
selected here. As far as we know, Jarque—Bera test is a common test method to check the normality. Here,
Jarque-Bera test (JB test for short) is conducted at the significance level of 5%. If the JB statistic is greater
than 5.99, the test result rejects the null hypothesis of normal distribution. The specific test results are shown
in Table 1.

According to the results in Table 1, we find that the historical weekly returns of the above funds are all
subject to normal distribution. This also indicates that the 50 funds selected here can be used to check the
effectiveness of the proposed DEA models.

5.1. Fund efficiency analysis under the deterministic direction

When the improvement direction g, is a deterministic value, this paper will discuss the difference between the
three proposed stochastic DEA models in the portfolio efficiency and its ranking. Since the chance-constrained
stochastic DEA model (4.2) has taken into account the risk preference of decision-makers, that is, the portfolio
efficiency obtained from Model (4.2) is dependent on the risk preference a. In this paper, it is assumed that «
can be respectively evaluated at 0.3, 0.35, 0.4, 0.45 and 0.5. In addition this, we might as well assume that the
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TABLE 1. The normality test of the return rates of funds being evaluated.

JB test JB test
Fund code JB statistic  p-value Fund code JB statistic  p-value
000534 0.2900** 0.5000 002783 2.7493** 0.1899
000535 1.7380** 0.3547 002980 1.1725** 0.5000
000729 3.2161" 0.1445 020003 1.8535*" 0.3318
000756 5.4371** 0.0528 110013 2.3025™* 0.2504
000880 1.7582** 0.3506 160216 3.2412™* 0.1425
000913 4.7620™" 0.0690 163409 1.8909** 0.3246
001018 2.3446™" 0.2433 163804 2.7026™* 0.1954
001060 4.1191** 0.0907 166801 3.0399** 0.1597
001069 3.4310™" 0.1282 168103 5.4568"* 0.0525
001097 2.6440" 0.2025 210010 1.9788** 0.3081
001272 3.2691*" 0.1403 210011 2.0224** 0.3001
001305 1.6082** 0.3822 233009 4.8008** 0.0679
001479 2.0594™* 0.2934 360011 3.3404™* 0.1348
001513 5.4835"* 0.0520 375010 5.1723** 0.0581
001543 5.4558** 0.0525 378546 2.5896™* 0.2092
001667 3.6884™" 0.1119 379010 1.3702** 0.4419
001676 4.0922** 0.0919 460001 5.2850"" 0.0557
001735 0.6131** 0.5000 519056 1.8950** 0.3238
001838 1.0733** 0.5000 519173 5.5303"" 0.0512
001933 0.9167** 0.5000 519918 1.5981** 0.3845
001986 0.4307** 0.5000 519975 2.9280"" 0.1705
002251 1.0494** 0.5000 519987 4.0989** 0.0916
002317 3.8162** 0.1049 530019 3.4660™" 0.1258
002450 5.0220™* 0.0619 630008 3.2529™* 0.1416
002577 3.7593** 0.1079 660010 2.8393** 0.1798

Notes. **5% significance level.

direction satisfies g, = max;(E(r;)) — min;(E(r;)). Based on Models (4.2), (4.13) and (4.16), the evaluation
results can be obtained as shown in Table 2.

It can be seen from Table 2 that when the risk preference of decision-makers « is lower (e.g., 0.3 and 0.35),
most of the funds being evaluated are stochastic effective. It also suggests that at a lower level of risk preference,
it is harder for decision-makers to judge the efficiency differences between the 50 funds selected above. This is
because the lower the level of risk preference, the more cautious decision-makers are, so that decision-makers
cannot find an absolute dominant investment fund among the 50 funds selected here. When the risk preference of
decision-makers is higher (e.g., 0.4, 0.45 and 0.5), the ability of chance-constrained DEA model (4.2) to identify
funds also increases. In addition, different from Model (4.2), the stochastic DEA models (4.13) and (4.16) do
not consider the risk preference of decision-makers, but only alone measure the expected return and the risk
of a portfolio under the mean-standard deviation framework. That is to say, Models (4.13) and (4.16) do not
consider the return and risk of a portfolio as a whole, and the evaluation results are more relaxed, therefore
they have a higher degree of differentiation of funds.

Next, we further quantify the differences between the efficiencies (or rankings) obtained from different DEA
models. Referring to the existing literature (e.g., [7,20]), we use the Pearson correlation test to analyze the fund
efficiencies and rankings in Table 2. Based on the efficiency series and ranking series in Table 2, the correlation
coefficients between the efficiency (or ranking) series obtained from different DEA models can be obtained, and
the results are shown in Tables 3 and 4.
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TABLE 2. Stochastic DEA efficiencies and rankings of funds being evaluated.

Fund Model (4.2 Model (4.2 Model (4.2 Model (4.2 Model (4.2 )
code (a:U.g}) : (Ly:().(SS)) (u:()él) ) (a:of;s)) (a:oé) ) Model (1.13) Model (1.16)
Efficiency Ranking Efficiency Ranking Efficiency Ranking Efficiency Ranking Efficiency Ranking Efficiency Ranking Efficiency Ranking
n11(0.3)  Ri:(0-3) nii(0.35) Ri1(0.35) ni1(04) Rii(0.4) nii(0.45) Ri1(045) n1a(0.5) Rii(0.5) ms R3, 51 R3
000534 1.0000 1 1.0000 1 0.9814 5 0.7559 19 0.4103 26 0.4103 30 0.4103 31
000535 1.0000 1 1.0000 1 0.8589 18 0.5558 39 0.1794 47 0.2038 44 0.2136 44
000729 1.0000 1 1.0000 1 0.8148 20 0.6078 37 0.2910 43 0.2910 43 0.2910 43
000756 1.0000 1 1.0000 1 0.8929 14 0.6826 27 0.3856 30 0.3856 33 0.3856 34
000880 1.0000 1 1.0000 1 0.9093 12 0.6990 25 0.4147 25 0.4199 29 0.4222 29
000913 1.0000 1 1.0000 1 1.0000 1 1.0000 1 0.6596 8 0.6596 10 0.6596 10
001018 1.0000 1 1.0000 1 1.0000 1 1.0000 1 0.7053 6 0.7053 8 0.7053 8
001060 1.0000 1 1.0000 1 1.0000 1 1.0000 1 0.7083 5 0.7533 6 0.7684 6
001069 1.0000 1 1.0000 1 1.0000 1 0.9046 5 0.5630 12 0.5630 17 0.5630 17
001097 1.0000 1 1.0000 1 1.0000 1 0.7255 20 0.3774 31 0.3774 34 0.3774 35
001272 1.0000 1 1.0000 1 0.9293 11 0.6654 30 0.3402 36 0.4267 28 0.4462 27
001305 1.0000 1 1.0000 1 0.9397 10 0.6632 31 0.3063 41 0.3063 41 0.3063 41
001479 1.0000 1 1.0000 1 0.9592 8 0.7242 21 0.4036 28 0.5226 19 0.5446 18
001513 1.0000 1 1.0000 1 1.0000 1 1.0000 1 0.7963 3 0.7963 5 0.7963 5
001543 1.0000 1 1.0000 1 1.0000 1 1.0000 1 0.7999 2 0.7999 4 0.7999 4
001667 1.0000 1 1.0000 1 0.9455 9 0.6690 29 0.3453 35 0.3656 37 0.3740 36
001676 1.0000 1 0.9388 5 0.7440 21 0.5313 40 0.2917 42 0.3940 32 0.4147 30
001735 1.0000 1 1.0000 1 0.8792 17 0.6410 35 0.3290 37 0.3594 39 0.3710 37
001838 1.0000 1 1.0000 1 1.0000 1 0.6583 32 0.0912 48 0.0912 46 0.0912 46
001933 1.0000 1 1.0000 1 0.8178 19 0.5948 38 0.2903 44 0.3715 35 0.3905 33
001986 1.0000 1 1.0000 1 1.0000 1 0.8879 7 0.5185 16 0.5185 20 0.5185 20
002251 1.0000 1 1.0000 1 1.0000 1 0.7009 24 0.2016 46 0.2016 45 0.2016 45
002317 1.0000 1 1.0000 1 0.8898 16 0.6422 34 0.3199 40 0.7118 7 0.7457 7
002450 1.0000 1 1.0000 1 1.0000 1 1.0000 1 0.7849 4 0.9015 3 0.9233 3
002577 1.0000 1 1.0000 1 0.9070 13 0.6427 33 0.2890 45 0.2993 42 0.3039 42
002783 1.0000 1 1.0000 1 1.0000 1 0.8274 9 0.4859 19 0.9265 2 0.9580 2
002980 1.0000 1 1.0000 1 1.0000 1 0.9044 6 0.5675 11 0.5675 16 0.5675 16
020003 1.0000 1 1.0000 1 0.8914 15 0.6722 28 0.3641 34 0.3641 38 0.3641 39
110013 1.0000 1 1.0000 1 0.9871 3 0.9421 3 0.6449 9 0.6449 11 0.6449 11
160216 1.0000 1 1.0000 1 1.0000 1 1.0000 1 0.4064 27 0.4064 31 0.4064 32
163409 1.0000 1 1.0000 1 1.0000 1 0.7959 15 0.4882 18 0.5040 22 0.5107 22
163804 1.0000 1 1.0000 1 1.0000 1 0.8103 12 0.5470 13 0.6024 13 0.6192 13
166801 1.0000 1 1.0000 1 1.0000 1 0.7911 18 0.4834 20 0.6035 12 0.6256 12
168103 1.0000 1 1.0000 1 0.9596 7 0.7019 23 0.3698 32 0.4524 25 0.4715 25
210010 1.0000 1 1.0000 1 1.0000 1 0.8151 10 0.4388 22 1.0000 1 1.0000 1
210011 0.9871 2 0.9848 3 0.9822 4 0.7948 16 0.4183 24 1.0000 1 1.0000 1
233009 1.0000 1 0.8938 6 0.6358 23 0.3579 42 0.0000 50 0.0000 48 0.0000 48
360011 1.0000 1 1.0000 1 0.9926 2 0.6908 26 0.3234 38 0.4274 27 0.4482 26
375010 1.0000 1 1.0000 1 1.0000 1 0.9303 4 0.5122 17 0.5122 21 0.5122 21
378546 1.0000 1 1.0000 1 1.0000 1 0.8108 11 0.3951 29 0.4689 24 0.4873 24
379010 1.0000 1 1.0000 1 1.0000 1 1.0000 1 0.5879 10 0.5879 14 0.5879 15
460001 1.0000 1 1.0000 1 0.9782 6 0.7938 17 0.5392 14 0.5394 18 0.5396 19
519056 1.0000 1 1.0000 1 1.0000 1 1.0000 1 1.0000 1 1.0000 1 1.0000 1
519173 1.0000 1 1.0000 1 1.0000 1 0.7066 22 0.3667 33 0.3667 36 0.3667 38
519918 1.0000 1 1.0000 1 1.0000 1 0.8024 14 0.4347 23 0.4347 26 0.4347 28
519975 1.0000 1 0.9445 4 0.6998 22 0.4361 41 0.0890 49 0.0890 47 0.0890 47
519987 1.0000 1 1.0000 1 1.0000 1 0.8031 13 0.4633 21 0.4847 23 0.4934 23
530019 1.0000 1 0.9888 2 0.8148 20 0.6108 36 0.3213 39 0.3460 40 0.3559 40
630008 1.0000 1 1.0000 1 1.0000 1 0.8483 8 0.5212 15 0.5830 15 0.6004 14
660010 1.0000 1 1.0000 1 1.0000 1 0.9734 2 0.6629 7 0.6777 9 0.6840 9

As shown in Table 3, under the framework of chance-constrained DEA model (4.2), the correlation coefficients
of fund efficiencies obtained at different risk levels are still quite different, especially when the risk preferences
of decision-makers are quite different (e.g., « = 0.3 and « = 0.5). This indicates that the decision-makers’
risk preference will have a greater impact on the fund efficiency. On the other hand, under the mean-standard
deviation criterion, we find that the fund efficiencies obtained by using the nonlinear and linear stochastic DEA
models (i.e., Models (4.13) and (4.16)) have a higher correlation (i.e., the correlation coefficient is 0.9992). This
also shows that, although Model (4.16) does not consider the diversification effect between portfolios, it can be
still better approximate the fund efficiency obtained from Model (4.13). Most importantly, as the risk preference
of decision-makers increases, the correlation coefficient between the fund efficiency from Model (4.2) and that
from Model (4.13) or Model (4.16) also increases.
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TABLE 3. The correlation of fund efficiencies from different stochastic DEA models.

Correlation

coefficient 711(0.3)  711(0.35)  7m71(0.4)  711(0.45) 71 (0.5)  n3 n51
nt1(0.3) 1.0000

151(0.35) 0.0786  1.0000

n71(0.4) —0.0573  0.7687 1.0000

nt1(0.45) —0.0175  0.5436 0.8020  1.0000

771(0.5) 0.0196  0.4385 0.6245  0.8952 1.0000

751 —0.3066  0.3701 0.5662  0.7325 0.8110  1.0000

i —0.2995  0.3691 0.5590  0.7199 0.8014  0.9992  1.0000

TABLE 4. The correlation of efficiency rankings from different stochastic DEA models.

oo™ RL03) RL(035) Ri(04) RaO45) RL(05) Rpo R
R11(0.3) 1.0000

R711(0.35) 0.2417 1.0000

R;1(0.4) —0.0476  0.5342 1.0000

R;1(0.45) ~0.0236  0.4269 0.8528  1.0000

R;1(0.5) —0.0148  0.3717 0.7111  0.9289 1.0000

R3, —0.2248  0.2744 0.6165  0.7903 0.8528  1.0000

R —0.2248  0.2632 0.5978  0.7742 0.8418  0.9984 1.0000

Table 4 shows that, for Model (4.2), the risk preference of decision-makers will also have a great impact on
the fund ranking. In addition, Models (4.13) and (4.16) have a good consistency in the fund ranking. Further,
the correlation coefficient between the fund ranking of Model (4.2) and that of Model (4.13) or Model (4.16) is
increasing with the risk preference of decision-makers. Obviously, the conclusion in Table 4 is also in line with
that in Table 3.

5.2. Fund efficiency analysis under the exogenous random direction

In this section, we assume that the improvement direction g, is an exogenous random variable. Similar to
Section 5.1, we will discuss the difference between the fund efficiencies/rankings of the three proposed DEA
models. In addition, we assume that a can be respectively evaluated at 0.3, 0.35, 0.4, 0.45 and 0.5. Further,
we also suppose that the random direction g, satisfies the conditions that E(g,) = max;(E(r;)) — min,;(E(r;))
and o(g,) = max;(o(r;)) — min;(o(r;))%. Using Models (4.6), (4.14) and (4.17), we can obtain the evaluation
results as shown in Table 5.

Similar to Section 5.1, this paper will make a correlation test of the fund efficiency and its ranking, and then
analyze the differences among different stochastic DEA models. The detailed results are shown in Tables 6 and 7.

For Model (4.6), Tables 6 and 7 show that decision-makers’ risk preference will also have a great impact
on both the fund efficiency and the fund ranking. In addition, from the results shown in Tables 6 and 7, we
find that Models (4.14) and (4.17) also have good consistency in the fund efficiency and its ranking. Further,
under the framework of Models (4.6), (4.14) and (4.17), the corresponding correlation coefficient of between
fund efficiencies/rankings increases with the increase of decision-makers’ risk preference. It is not difficult to

31t is worth noting that we only take the mean and variance of the exogenous random direction at the values given above and
are not trying to show that there is a relationship between the random direction and the portfolio returns. In fact, under our
assumption we can arbitrarily give the mean and variance of the random direction.
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TABLE 5. Stochastic DEA efficiencies and rankings of funds being evaluated.

Fund Model (4.6 Model (4.6 Model (4.6 Model (4.6 Model (4.6
code (a:U.g}) : (Ly:().(SS)) (u:()él) ) (a:of;s)) (a:oé) ) Model (1.14) Model (4.17)
Efficiency Ranking Efficiency Ranking Efficiency Ranking Efficiency Ranking Efficiency Ranking Efficiency Ranking Efficiency Ranking
7i2(0.3)  Ri»(0.3) 772(0.35) Ri»(0.35) ni2(0.4) Ris(0.4) 7i2(0.45) Riy(0.45) ni»(0.5) Ris(0.5) m32 R, 32 R,

000534 1.0000 1 1.0000 1 0.9820 5 0.7869 19 0.4103 26 0.4103 26 0.4103 25
000535 1.0000 1 1.0000 1 0.8772 18 0.6244 39 0.1794 47 0.1794 47 0.1794 46
000729 1.0000 1 1.0000 1 0.8527 21 0.6773 37 0.2910 43 0.2910 43 0.2910 42
000756 1.0000 1 1.0000 1 0.9078 15 0.7324 25 0.3856 30 0.3856 30 0.3856 29
000880 1.0000 1 1.0000 1 0.9205 12 0.7447 22 0.4147 25 0.4147 25 0.4147 24
000913 1.0000 1 1.0000 1 1.0000 1 1.0000 1 0.6596 8 0.6596 9 0.6596 10
001018 1.0000 1 1.0000 1 1.0000 1 1.0000 1 0.7053 6 0.7053 7 0.7053 8
001060 1.0000 1 1.0000 1 1.0000 1 1.0000 1 0.7083 5 0.7083 6 0.7083 6
001069 1.0000 1 1.0000 1 1.0000 1 0.9099 6 0.5630 12 0.5630 15 0.5630 14
001097 1.0000 1 1.0000 1 1.0000 1 0.7581 21 0.3774 31 0.3774 31 0.3774 30
001272 1.0000 1 1.0000 1 0.9354 11 0.7124 30 0.3402 36 0.3402 36 0.3402 35
001305 1.0000 1 1.0000 1 0.9440 10 0.7095 31 0.3063 41 0.3063 41 0.3063 40
001479 1.0000 1 1.0000 1 0.9616 8 0.7598 20 0.4036 28 0.4036 28 0.4036 27
001513 1.0000 1 1.0000 1 1.0000 1 1.0000 1 0.7963 3 0.7963 3 0.7963 4
001543 1.0000 1 1.0000 1 1.0000 1 1.0000 1 0.7999 2 0.7999 2 0.7999 3
001667 1.0000 1 1.0000 1 0.9490 9 0.7140 29 0.3453 35 0.3453 35 0.3453 34
001676 1.0000 1 0.9471 5 0.8055 22 0.6210 40 0.2917 42 0.2917 42 0.2917 41
001735 1.0000 1 1.0000 1 0.8960 17 0.6972 32 0.3290 37 0.3290 37 0.3290 36
001838 1.0000 1 1.0000 1 1.0000 1 0.6903 35 0.0912 48 0.0912 48 0.0912 47
001933 1.0000 1 1.0000 1 0.8531 19 0.6637 38 0.2903 44 0.2903 44 0.2903 43
001986 1.0000 1 1.0000 1 1.0000 1 0.8958 7 0.5185 16 0.5185 19 0.5185 18
002251 1.0000 1 1.0000 1 1.0000 1 0.7303 26 0.2016 46 0.2016 46 0.2016 45
002317 1.0000 1 1.0000 1 0.9082 14 0.6911 34 0.3199 40 0.3199 40 0.3199 39
002450 1.0000 1 1.0000 1 1.0000 1 1.0000 1 0.7849 4 0.7849 4 0.7849 5
002577 1.0000 1 1.0000 1 0.9168 13 0.6949 33 0.2890 45 0.2890 45 0.2890 44
002783 1.0000 1 1.0000 1 1.0000 1 0.8409 9 0.4859 19 0.5710 13 0.7063 7
002980 1.0000 1 1.0000 1 1.0000 1 0.9106 5 0.5675 11 0.5675 14 0.5675 13
020003 1.0000 1 1.0000 1 0.9063 16 0.7228 28 0.3641 34 0.3641 34 0.3641 33
110013 1.0000 1 1.0000 1 0.9884 4 0.9476 3 0.6449 9 0.6449 11 0.6449 11
160216 1.0000 1 1.0000 1 1.0000 1 1.0000 1 0.4064 27 0.4064 27 0.4064 26
163409 1.0000 1 1.0000 1 1.0000 1 0.8180 16 0.4882 18 0.4882 21 0.4882 20
163804 1.0000 1 1.0000 1 1.0000 1 0.8321 10 0.5470 13 0.5470 16 0.5470 15
166801 1.0000 1 1.0000 1 1.0000 1 0.8129 17 0.4834 20 0.4834 22 0.4834 21
168103 1.0000 1 1.0000 1 0.9618 7 0.7408 24 0.3698 32 0.3698 32 0.3698 31
210010 1.0000 1 1.0000 1 1.0000 1 0.8284 11 0.4388 22 0.7643 5 1.0000 1
210011 0.9944 2 0.9925 2 0.9888 3 0.8109 18 0.4183 24 0.6507 10 0.8588 2
233009 1.0000 1 0.9117 6 0.7269 24 0.4841 42 0.0000 50 0.0000 50 0 49
360011 1.0000 1 1.0000 1 0.9926 2 0.7286 27 0.3234 38 0.3234 38 0.3234 37
375010 1.0000 1 1.0000 1 1.0000 1 0.9326 4 0.5122 17 0.5122 20 0.5122 19
378546 1.0000 1 1.0000 1 1.0000 1 0.8236 12 0.3951 29 0.3951 29 0.3951 28
379010 1.0000 1 1.0000 1 1.0000 1 1.0000 1 0.5879 10 0.5879 12 0.5879 12
460001 1.0000 1 1.0000 1 0.9791 6 0.8198 15 0.5392 14 0.5392 17 0.5392 16
519056 1.0000 1 1.0000 1 1.0000 1 1.0000 1 1.0000 1 1.0000 1 1.0000 1
519173 1.0000 1 1.0000 1 1.0000 1 0.7414 23 0.3667 33 0.3667 33 0.3667 32
519918 1.0000 1 1.0000 1 1.0000 1 0.8202 14 0.4347 23 0.4347 24 0.4347 23
519975 1.0000 1 0.9503 4 0.7697 23 0.5428 41 0.0890 49 0.0890 49 0.0890 48
519987 1.0000 1 1.0000 1 1.0000 1 0.8231 13 0.4633 21 0.4633 23 0.4633 22
530019 1.0000 1 0.9893 3 0.8529 20 0.6794 36 0.3213 39 0.3213 39 0.3213 38
630008 1.0000 1 1.0000 1 1.0000 1 0.8607 8 0.5212 15 0.5212 18 0.5212 17
660010 1.0000 1 1.0000 1 1.0000 1 0.9738 2 0.6629 7 0.6629 8 0.6629 9

find that the conclusions in Tables 6 and 7 are consistent with those in Tables 3 and 4. This also indicates that
the different improvement directions will not change the properties of the stochastic DEA models.

5.3. Comparative analysis of different DEA models

Sections 5.1 and 5.2 mainly focus on the analysis of the differences between the proposed stochastic DEA
models. In the following, we will investigate the difference between the stochastic DEA models and the existing
DEA models. To keep consistent with the directions selected in Sections 5.1 and 5.2, we assume that the
directions of traditional DEA models (4.20)—(4.23) satisfy that go = g5 = max;(E(r;)) — min;(E(r;)) and
98 = max;(o(r;)) —min;(co(r;)). Based on Models (4.20)—(4.23), the empirical results can be obtained as shown
in Table 8.
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TABLE 6. The correlation of fund efficiencies from different stochastic DEA models.

Correlation

coefficient 712(0.3)  712(0.35)  7m72(0.4)  772(0.45)  ni2(0.5)  n3e 32
1t2(0.3) 1.0000

172(0.35) 0.0301  1.0000

n72(0.4) —0.0675  0.7425 1.0000

1%2(0.45) —~0.0052 0.5134 0.7776  1.0000

1772(0.5) 0.0196  0.4409 0.6336  0.9055 1.0000

132 —0.1382  0.4301 0.6467  0.8794 0.9593  1.0000

i —0.2563  0.4003 0.6254  0.8160 0.8811  0.9781 1.0000

TABLE 7. The correlation of efficiency rankings from different stochastic DEA models.

comelation  pia(0.8) Ria(035) RL(04) Ris(045) Ris(05) Ri  Ri
R;5(0.3) 1.0000

R12(0.35) 0.0995 1.0000

R;5(0.4) —0.0672  0.5909 1.0000

R15(0.45) —0.0023  0.4595 0.8229  1.0000

R;5(0.5) —0.0148  0.3923 0.7046  0.9434 1.0000

R3, —0.1534  0.3730 0.7033  0.9234 0.9705  1.0000

R3, —0.2235  0.3638 0.7019  0.9046 0.9468  0.9947  1.0000

It can be seen from Table 8 that both Models (4.20) and (4.21) take the standard deviation of the fund
return as an input and the expected return as an output. Under this input-output assumption, diversification
DEA model (4.20) and traditional DEA model (4.21) are consistent in both the fund efficiency and the fund
ranking. On the other hand, Models (4.22) and (4.23) treat the expectation and standard deviation of fund
returns as output indicators. From Table 8, we find that Models (4.22) and (4.23) are also consistent in the
fund efficiency and its ranking. For the above reasons, we only select the diversification DEA models (4.20) and
(4.22) to compare with the proposed stochastic DEA models.

Additionally, since the above chance-constrained DEA models with the lower risk preference has a poor
ability to identify the above 50 funds, this paper only selects o = 0.45 as the unique risk preference of decision-
makers. Under this given risk preference, we also take the corresponding chance-constrained DEA models (i.e.,
Models (4.2) and (4.6)) as the comparison with the traditional DEA models. Furthermore, as shown in Sec-
tions 5.1 and 5.2, we can find that Models (4.13) and (4.16), Models (4.14) and (4.17) are both consistent in the
fund efficiency and its ranking. For this reason, Models (4.13) and (4.14) are also included in the comparison
with the traditional DEA models. Based on the DEA models selected above, we can obtain the test results as
shown in Tables 9 and 10.

As shown in Table 9, by comparing the chance-constrained DEA models (4.2) and (4.6) and the traditional
DEA models (4.16) and (4.17), it is not difficult to find that the correlation coefficients between the efficiencies
obtained by Models (4.2) and (4.6) and the efficiencies obtained by Models (4.16) and (4.17) are not very
high. These indicate that there are differences between Models (4.2) and (4.6) and Models (4.16) and (4.17).
In particular, the difference between Models (4.2) and (4.6) and Model (4.17) is more obvious. In addition,
compared with Models (4.2) and (4.6), the correlations between the stochastic DEA models (4.13) and (4.14)
and the existing DEA models (4.16) and (4.17) are higher, but there are still some differences between them.
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TABLE 8. The fund efficiencies and rankings derived from traditional DEA models.

Fund Model (4.20) Model (4.21) Model (4.22) Model (4.23)
Efficiency Ranking Efficiency Ranking Efficiency Ranking Efficiency Ranking
i R 751 Ry iz Ris M52 52

000534 0.4103 30 0.4103 31 0.6573 27 0.6737 27
000535 0.2038 44 0.2136 44 0.5581 43 0.5765 43
000729 0.2910 43 0.2910 43 0.5755 41 0.5929 41
000756 0.3856 33 0.3856 34 0.6259 35 0.6421 35
000880 0.4199 29 0.4222 29 0.6721 25 0.6888 24
000913 0.6596 10 0.6596 10 0.6808 24 0.6854 25
001018 0.7053 8 0.7053 8 0.7857 9 0.7960 10
001060 0.7533 6 0.7684 6 0.8620 4 0.8753 4

001069 0.5630 17 0.5630 17 0.6882 21 0.7003 23
001097 0.3774 34 0.3774 35 0.6321 33 0.6488 33
001272 0.4267 28 0.4462 27 0.6834 23 0.7018 22
001305 0.3063 41 0.3063 41 0.5745 42 0.5915 42
001479 0.5226 19 0.5446 18 0.7366 15 0.7548 14
001513 0.7963 5 0.7963 5 0.7963 8 0.7963 9

001543 0.7999 4 0.7999 4 0.8267 6 0.8323 6

001667 0.3656 37 0.3740 36 0.6451 29 0.6629 29
001676 0.3940 32 0.4147 30 0.6665 26 0.6848 26
001735 0.3594 39 0.3710 37 0.6433 30 0.6613 30
001838 0.0912 46 0.0912 46 0.3352 48 0.3515 48
001933 0.3715 35 0.3905 33 0.6534 28 0.6718 28
001986 0.5185 20 0.5185 20 0.6111 37 0.6218 38
002251 0.2016 45 0.2016 45 0.4463 46 0.4627 46
002317 0.7118 7 0.7457 7 0.8569 5 0.8630 5

002450 0.9015 3 0.9233 3 0.9452 3 0.9587 3

002577 0.2993 42 0.3039 42 0.6071 38 0.6251 37
002783 0.9265 2 0.9580 2 0.9627 2 0.9774 2

002980 0.5675 16 0.5675 16 0.7076 18 0.7203 19
020003 0.3641 38 0.3641 39 0.6307 34 0.6477 34
110013 0.6449 11 0.6449 11 0.7507 13 0.7620 13
160216 0.4064 31 0.4064 32 0.5235 44 0.5353 44
163409 0.5040 22 0.5107 22 0.7205 16 0.7365 16
163804 0.6024 13 0.6192 13 0.7789 11 0.7949 11
166801 0.6035 12 0.6256 12 0.7807 10 0.7984 8

168103 0.4524 25 0.4715 25 0.6973 20 0.7154 20
210010 1.0000 1 1.0000 1 1.0000 1 1.0000 1

210011 1.0000 1 1.0000 1 1.0000 1 1.0000 1

233009 0.0000 48 0.0000 48 0.4299 47 0.4473 47
360011 0.4274 27 0.4482 26 0.6845 22 0.7029 21
375010 0.5122 21 0.5122 21 0.5998 39 0.6103 40
378546 0.4689 24 0.4873 24 0.7060 19 0.7239 18
379010 0.5879 14 0.5879 15 0.6215 36 0.6283 36
460001 0.5394 18 0.5396 19 0.7372 14 0.7521 15
519056 1.0000 1 1.0000 1 1.0000 1 1.0000 1

519173 0.3667 36 0.3667 38 0.5983 40 0.6143 39
519918 0.4347 26 0.4347 28 0.6406 31 0.6558 31
519975 0.0890 47 0.0890 47 0.4594 45 0.4778 45
519987 0.4847 23 0.4934 23 0.7107 17 0.7272 17
530019 0.3460 40 0.3559 40 0.6352 32 0.6531 32
630008 0.5830 15 0.6004 14 0.7684 12 0.7848 12

660010 0.6777 9 0.6840 9 0.8166 7 0.8299 7
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TABLE 9. The correlation of fund efficiencies from different DEA models.

Correlation

coefficient Uf1(0~45) ﬁf2(0-45) 751 732 Ni1 a2
n71(0.45) 1.0000

n72(0.45) 0.9979 1.0000

n51 0.7325 0.7288 1.0000

5 0.8747 0.8794 0.9154  1.0000

ni1 0.7325 0.7288 1.0000 0.9154  1.0000

iz 0.5312 0.5275 0.9433  0.8098 0.9433  1.0000

TABLE 10. The correlation of efficiency rankings from different DEA models.

Comelation  pi(045) RL(045) Ry R Ri Ri
R;:1(0.45) 1.0000

R75(0.45) 0.9968 1.0000

R3, 0.7903 0.7942 1.0000

R, 0.9147 0.9234 0.9072  1.0000

Ry 0.7903 0.7942 1.0000 0.9072  1.0000

R}, 0.5498 0.5583 0.8955 0.7525 0.8955  1.0000

Table 10 shows the difference between the efficiency rankings of stochastic DEA models and those of the
existing DEA models. It can be seen from Table 10 that there are also certain differences between the above
stochastic DEA models and the existing DEA models in the efficiency ranking. This further validates the
conclusions in Table 9. Since the proposed stochastic DEA models are all derived from the actual input-output
process of portfolios, they can better reflect the real portfolio efficiency. Therefore, the results in Tables 9 and 10
further indicate the rationality of the stochastic DEA models proposed in this paper.

6. CONCLUSION

Portfolio efficiency evaluation has always been one of the research hotspots in the financial field. To the best
of our knowledge, traditional DEA and diversification DEA models are two common nonparametric evaluation
methods, which have been widely used in the portfolio efficiency evaluation. The existing researches usually
use the expected return and risk indicators to build the input-output process of portfolios. At present, there
are mainly two viewpoints on this issue. The first viewpoint considers the portfolio’s risk as an input and the
expected return as an output. The second viewpoint is that the expected return and risk of a portfolio should
be both regarded as output indicators, because they are two evaluation indicators derived from the portfolio
return. It is not difficult to find that these existing input-output assumptions are inconsistent with the actual
investment process, because the real input should be the initial wealth and the output be the terminal wealth. In
this input-output framework, this paper standardizes the initial wealth of a portfolio and converts the terminal
wealth value into the form of return rate, which is usually observable.

In this paper, we first clarify the actual input-output process of portfolios, and then construct the corre-
sponding stochastic production possibility set. In the following, we propose three estimation methods to deal
with the stochastic production possibility sets constructed above, and then propose three deterministic sets as
the estimations of the above stochastic production possibility set. Using the above three kinds of deterministic
estimation, three kinds of stochastic DEA models are directly constructed, including the chance-constrained
DEA model, and the nonlinear and linear stochastic DEA models under the mean-standard deviation criterion.
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Finally, the proposed stochastic DEA models are used to assess the efficiency of 50 open growth models in
China’s fund market. By comparing with the existing DEA models, the effectiveness of the proposed stochastic
DEA models is further verified.
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