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SUFFICIENT CONDITIONS FOR GRAPHS WITH {𝑃2, 𝑃5}-FACTORS

Guowei Dai1, Yicheng Hang2, Xiaoyan Zhang2, Zan-Bo Zhang3

and Wenqi Wang2,*

Abstract. For a graph 𝐺, a spanning subgraph 𝐹 of 𝐺 is called an {𝑃2, 𝑃5}-factor if every component
of 𝐹 is isomorphic to 𝑃2 or 𝑃5, where 𝑃𝑘 denotes the path of order 𝑘. It was proved by Egawa and
Furuya that if 𝐺 satisfies 3𝑐1(𝐺− 𝑆) + 2𝑐3(𝐺− 𝑆) ≤ 4|𝑆|+ 1 for all 𝑆 ⊆ 𝑉 (𝐺), then 𝐺 has a {𝑃2, 𝑃5}-
factor, where 𝑐𝑘(𝐺−𝑆) denotes the number of components of 𝐺−𝑆 with order 𝑘. By this result, we give
some other sufficient conditions for a graph to have a {𝑃2, 𝑃5}-factor by various graphic parameters
such as toughness, binding number, degree sums, etc. Moreover, we obtain some regular graphs and
some 𝐾1,𝑟-free graphs having {𝑃2, 𝑃5}-factors.
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1. Introduction

In this paper, we consider only finite and undirected graph without loops or multiple edges. Other basic
graph-theoretic terminologies not defined here can be found in [4]. Let 𝐺 = (𝑉 (𝐺), 𝐸(𝐺)) be a graph, where
𝑉 (𝐺) and 𝐸(𝐺) denote the vertex set and the edge set of 𝐺, respectively. A spanning subgraph of 𝐺 is a subgraph
𝐻 of 𝐺 such that 𝑉 (𝐻) = 𝑉 (𝐺) and 𝐸(𝐻) ⊆ 𝐸(𝐺). For 𝑋 ⊆ 𝑉 (𝐺), 𝐺−𝑋 denotes the graph obtained from 𝐺
by deleting all the vertices of 𝑋 and 𝐺[𝑋] denotes the subgraph of 𝐺 induced by 𝑋. For 𝑣 ∈ 𝑉 (𝐺), we use 𝑑𝐺(𝑣)
and 𝑁𝐺(𝑣) to denote the degree of 𝑣 and the set of vertices adjacent to 𝑣 in 𝐺, respectively. For 𝑆 ⊆ 𝑉 (𝐺),
we write 𝑁𝐺(𝑆) = ∪𝑣∈𝑆𝑁𝐺(𝑣). A graph 𝐺 is said to be 𝑟-regular if every vertex of 𝐺 has degree 𝑟. We denote
the minimum degree and the number of connected components of a graph 𝐺 by 𝛿(𝐺) and 𝜔(𝐺), respectively.
Define 𝜎2(𝐺) = min{𝑑𝐺(𝑢) + 𝑑𝐺(𝑣) : {𝑢, 𝑣} ⊆ 𝑉 (𝐺) is an independent set of 𝐺}.

For a connected graph 𝐺, its toughness, denoted by 𝜏(𝐺), was first introduced by Chvátal [5] as follows. If 𝐺
is complete, then 𝜏(𝐺) = +∞; otherwise,

𝜏(𝐺) = min
{︂

|𝑆|
𝜔(𝐺− 𝑆)

: 𝑆 ⊆ 𝑉 (𝐺), 𝜔(𝐺− 𝑆) ≥ 2
}︂

.
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The binding number is introduced by Woodall [21] and defined as

𝑏𝑖𝑛𝑑(𝐺) = min
{︂
|𝑁𝐺(𝑆)|
|𝑆|

: ∅ ≠ 𝑆 ⊆ 𝑉 (𝐺), 𝑁𝐺(𝑆) ̸= 𝑉 (𝐺)
}︂

.

The complete bipartite graph 𝐾1,𝑟 is called the star of order 𝑟+1. We call a graph 𝐺 is 𝐾1,𝑟-free if 𝐺 does not
contain an induced subgraph isomorphic to 𝐾1,𝑟. In particular, a graph is said to be claw-free if it is 𝐾1,3-free.

For a family of connected graphs ℱ , a spanning subgraph 𝐻 of a graph 𝐺 is called an ℱ-factor of 𝐺 if each
component of 𝐻 is isomorphic to some graph in ℱ . Let 𝑃𝑘 denote the path of order 𝑘. A spanning subgraph of a
graph 𝐺 is called a {𝑃2, 𝑃5}-factor of 𝐺 if its each component is isomorphic to 𝑃2 or 𝑃5. Similarly, {𝑃2, 𝑃3}-factor
means a graph factor in which every component is a path of order exactly two or three.

Since Tutte proposed the well-known Tutte 1-factor theorem [20], path-factors of graphs [3, 7, 8, 14, 17] and
path-factor covered graphs [6, 9, 23] have attracted a great deal of attention. More results on graph factors are
referred to the survey papers and books [1, 19,22].

Akiyama et al. [2] demonstrated the following classical result, which is a criterion for graphs with {𝑃2, 𝑃3}-
factors. We denote by 𝑖(𝐺) the number of isolated vertices of a graph 𝐺.

Theorem 1.1 ([2]). A graph 𝐺 has a {𝑃2, 𝑃3}-factor if and only if 𝑖(𝐺− 𝑆) ≤ 2|𝑆| for all 𝑆 ⊆ 𝑉 (𝐺).

For an integer 𝑘 ≥ 2, a {𝑃𝑖 : 𝑖 ≥ 𝑘}-factor is briefly denoted by 𝒫≥𝑘-factor. Note that a graph has 𝒫≥2-factors
if and only if it has {𝑃2, 𝑃3}-factors. Kaneko [13] gave a necessary and sufficient condition for the existence
of 𝒫≥3-factors. For 𝑘 ≥ 4, it is not known that whether the existence problem of 𝒫≥𝑘-factors is polynomially
solvable or not, though some results about such factors on special classes of graphs have been obtained (see, for
example, Kano et al. [16], Ando et al. [3], and Kawarabayashi et al. [17]).

A graph 𝐻 is hypomatchable if 𝐻 − 𝑥 has a perfect matching for every 𝑥 ∈ 𝑉 (𝐻). A graph is a propeller if
it is obtained from a hypomatchable graph 𝐻 by adding new vertices 𝑢, 𝑣 and edge 𝑢𝑣, and joining 𝑢 to some
vertices of 𝐻. Loebal and Poljak [18] proved the following theorem.

Theorem 1.2 ([18]). Let 𝐻 be a connected graph. If 𝐻 has a perfect matching, 𝐻 is hypomatchable, or 𝐻 is a
propeller, then the existence problem of a {𝑃2, 𝐻}-factor is polynomially solvable. The problem is NP-complete
for all other graphs 𝐻.

In particular, the existence problem of a {𝑃2, 𝑃2𝑘+1}-factor is NP-complete for 𝑘 ≥ 2. As {𝑃2, 𝑃2𝑘+1}-factor
is a useful tool for finding large matchings, Egawa et al. [12] investigated the existence of {𝑃2, 𝑃2𝑘+1}-factors
and obtained the following theorem.

For 𝑆 ⊆ 𝑉 (𝐺), let 𝒞𝑖(𝐺 − 𝑆) be the set of components of order 𝑖 in 𝐺 − 𝑆, where integer 𝑖 ≥ 1. Write
𝑐𝑖(𝐺 − 𝑆) = |𝒞𝑖(𝐺 − 𝑆)|. For 0 ≤ 𝑖 ≤ 𝑘 − 1, we use 𝑐𝑜

<2𝑘(𝐺 − 𝑆) to denote the number of odd components of
𝐺− 𝑆 with order less than 2𝑘, that is, 𝑐𝑜

<2𝑘(𝐺− 𝑆) =
∑︀

1≤𝑖≤𝑘 𝑐2𝑖−1(𝐺− 𝑆).

Theorem 1.3 ([12]). Let 𝑘 ≥ 3 be an integer, and let 𝐺 be a graph. If 𝑐𝑜
<2𝑘(𝐺−𝑆) ≤ 5

6𝑘2 |𝑆| for all 𝑆 ⊆ 𝑉 (𝐺),
then 𝐺 has a {𝑃2, 𝑃2𝑘+1}-factor.

Recently, Egawa and Furuya [10,11] obtained stronger sufficient conditions for {𝑃2, 𝑃2𝑘+1}-factors with 𝑘 =
2, 3, 4. In particular, they proved the following theorem.

Theorem 1.4 ([10]). A graph 𝐺 has a {𝑃2, 𝑃5}-factor if 3𝑐1(𝐺−𝑆) + 2𝑐3(𝐺−𝑆) ≤ 4|𝑆|+ 1 for all 𝑆 ⊆ 𝑉 (𝐺).

Although a sufficient condition for the existence of {𝑃2, 𝑃5}-factors was proposed by Egawa and Furuya,
to check the condition in Theorem 1.4 is a non-trivial task. This paper is attempted to find more sufficient
conditions for the existence of {𝑃2, 𝑃5}-factors using various graphic parameters, or to determine special classes
of graphs to have {𝑃2, 𝑃5}-factors such as 𝑟-regular graphs, planar graphs and 𝐾1,𝑟-free graphs. The graphic
parameters been studied in this paper include minimum degree, toughness, binding number, etc.
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Theorem 1.5. Let 𝐺 be a connected graph of order 𝑛 ≥ 4. Then 𝐺 has a {𝑃2, 𝑃5}-factor if one of the following
statements holds: (i) 𝜏(𝐺) ≥ 3

4 ; (ii) 𝑏𝑖𝑛𝑑(𝐺) ≥ 5
2 ; (iii) 𝑛 ≥ 9 and 𝜎2(𝐺) ≥ 6𝑛

7 ; (iv) 𝑖(𝐺 − 𝑆) ≤ 2
5 |𝑆| for all

𝑆 ⊆ 𝑉 (𝐺).

Theorem 1.6. A connected graph 𝐺 has a {𝑃2, 𝑃5}-factor if 𝐺 is one of the following two special classes of
graphs: (i) 𝑟-regular graphs with 𝑟 ≥ 3; (ii) 𝐾1,𝑟-free graphs with 𝛿(𝐺) ≥ 3𝑟+5

4 .

2. Proof of Theorem 1.5

Suppose, to the contrary, that 𝐺 is a connected graph of order 𝑛 ≥ 4 and contains no {𝑃2, 𝑃5}-factor. By
Theorem 1.4, there exists 𝑆 ⊆ 𝑉 (𝐺) such that 3𝑐1(𝐺− 𝑆) + 2𝑐3(𝐺− 𝑆) > 4|𝑆|+ 1. Due to the integrality, we
obtain

𝑐1(𝐺− 𝑆) + 𝑐3(𝐺− 𝑆) ≥ 𝑐1(𝐺− 𝑆) +
2
3
𝑐3(𝐺− 𝑆) ≥ 4

3
|𝑆|+ 2

3
· (2.1)

Claim 2.1. 𝑆 ̸= ∅.

Proof. Suppose that 𝑆 = ∅, then by (2.1), we have 𝑐1(𝐺)+𝑐3(𝐺) = 𝑐1(𝐺−𝑆)+𝑐3(𝐺−𝑆) ≥ 2
3 . According to the

integrality, 𝑐1(𝐺)+𝑐3(𝐺) ≥ 1. Note that 𝑐1(𝐺)+𝑐3(𝐺) ≤ 𝜔(𝐺) = 1 since 𝐺 is connected. Then, 𝐺 ∈ {𝐾1, 𝐾3, 𝑃3}
and thus |𝐺| ≤ 3, a contradiction. �

(i) If 𝐺 is complete, then 𝐺 has a Hamilton path 𝑃 and |𝑃 | ≥ 4. Obviously, 𝑃 has a {𝑃2, 𝑃5}-factor which is
also a {𝑃2, 𝑃5}-factor of 𝐺, a contradiction. In the following, we assume that 𝐺 is not complete.
By Claim 2.1 and (2.1), we have that

|𝑆| ≤ 3× (𝑐1(𝐺− 𝑆) + 𝑐3(𝐺− 𝑆))
4

− 1
2

<
3
4
× (𝑐1(𝐺− 𝑆) + 𝑐3(𝐺− 𝑆)).

By the definition of 𝜏(𝐺), it follows that

𝜏(𝐺) ≤ |𝑆|
𝜔(𝐺− 𝑆)

<
3
4 × (𝑐1(𝐺− 𝑆) + 𝑐3(𝐺− 𝑆))

𝑐1(𝐺− 𝑆) + 𝑐3(𝐺− 𝑆)
=

3
4
·

This contradiction completes the proof of Statement (i) of Theorem 1.5.
(ii) We choose one vertex from each component of 𝐺−𝑆 with order 3, and denote by 𝑆′ the set of such vertices.

Let 𝑆′′ be the set of isolated vertices of 𝐺− 𝑆. By (2.1), we have that

|𝑆| ≤ 3
4
×

(︂
𝑐1(𝐺− 𝑆) +

2
3
𝑐3(𝐺− 𝑆)− 2

3

)︂
=

3
4
𝑐1(𝐺− 𝑆) +

1
2
𝑐3(𝐺− 𝑆)− 1

2
·

Then,

|𝑁𝐺(𝑆′ ∪ 𝑆′′)| ≤ |𝑆|+ 2× 𝑐3(𝐺− 𝑆)

≤ 3
4
𝑐1(𝐺− 𝑆) +

1
2
𝑐3(𝐺− 𝑆)− 1

2
+ 2× 𝑐3(𝐺− 𝑆)

=
3
4
𝑐1(𝐺− 𝑆) +

5
2
𝑐3(𝐺− 𝑆)− 1

2

<
3
4
𝑐1(𝐺− 𝑆) +

5
2
𝑐3(𝐺− 𝑆).
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It follows that
5
2
≤ 𝑏𝑖𝑛𝑑(𝐺) ≤ |𝑁𝐺(𝑆′ ∪ 𝑆′′)|

|𝑆′ ∪ 𝑆′′|
<

3
4𝑐1(𝐺− 𝑆) + 5

2𝑐3(𝐺− 𝑆)
𝑐1(𝐺− 𝑆) + 𝑐3(𝐺− 𝑆)

≤ 5
2
·

This contradiction completes the proof of Statement (ii) of Theorem 1.5.
(iii) By Claim 2.1 and (2.1), we have that

𝑐1(𝐺− 𝑆) + 𝑐3(𝐺− 𝑆) ≥ 4
3
|𝑆|+ 2

3
≥ 2. (2.2)

Case 1. 𝑐1(𝐺− 𝑆) ≥ 2.
Let {𝑥, 𝑦} be two distinct isolated vertices of 𝐺−𝑆. Since 𝜎2(𝐺) ≥ 6𝑛

7 and 𝑁𝐺(𝑥)∪𝑁𝐺(𝑦) ⊆ 𝑆, we have
that

|𝑆| ≥ 1
2
𝜎2(𝐺) ≥ 3𝑛

7
·

It follows from (2.2) that

𝑐1(𝐺− 𝑆) + 𝑐3(𝐺− 𝑆) ≥ 4
3
× 3𝑛

7
+

2
3

=
4𝑛

7
+

2
3

and thus
𝑛 ≥ |𝑆|+ 𝑐1(𝐺− 𝑆) + 3× 𝑐3(𝐺− 𝑆) ≥ 3𝑛

7
+

4𝑛

7
+

2
3

> 𝑛,

a contradiction.
Case 2. 𝑐1(𝐺− 𝑆) ≤ 1.

In this case, by (2.2), we have 𝑐3(𝐺− 𝑆) ≥ 1. Let 𝐶1, 𝐶2, . . . , 𝐶𝑡 be the components of 𝐺− 𝑆 such that
|𝐶1| = 1 or 3 and |𝐶𝑖| = 3 for 2 ≤ 𝑖 ≤ 𝑡. We take a vertex 𝑐𝑖 ∈ 𝑉 (𝐶𝑖) for every 1 ≤ 𝑖 ≤ 𝑡. Obviously,
𝑐1𝑐2 /∈ 𝐸(𝐺). Then 𝑑𝐺(𝑐1) + 𝑑𝐺(𝑐2) ≥ 𝜎2(𝐺) ≥ 6𝑛

7 . Here we assume 𝑑𝐺(𝑐2) ≥ 𝑑𝐺(𝑐1)+𝑑𝐺(𝑐2)
2 ≥ 3𝑛

7 . Note
that in the case were 𝑑𝐺(𝑐2) ≥ 3𝑛

7 , the following argument can be applied. Then 𝑑𝐶2(𝑐2) ≤ 2 and so

|𝑆| ≥ 𝑑𝐺(𝑐2)− 𝑑𝐶2(𝑐2) ≥ 3𝑛

7
− 2.

Since 𝑛 ≥ 9 and (2.2),

𝑛 ≥ |𝑆|+ 𝑐1(𝐺− 𝑆) + 3× 𝑐3(𝐺− 𝑆)
= |𝑆|+ 3× (𝑐1(𝐺− 𝑆) + 𝑐3(𝐺− 𝑆))− 2× 𝑐1(𝐺− 𝑆)

≥ |𝑆|+ 3×
(︂

4
3
|𝑆|+ 2

3

)︂
− 2

= 5|𝑆|

≥ 15𝑛

7
− 10 > 𝑛.

This contradiction completes the proof of Statement (iii) of Theorem 1.5.
(iv) We choose two vertex from each nontrivial component of 𝐺 − 𝑆 with order 3, and denote the set of such

vertices by 𝑋. Let 𝑆′ = 𝑆 ∪𝑋, then

𝑖(𝐺− 𝑆′) = 𝑐1(𝐺− 𝑆) + 𝑐3(𝐺− 𝑆).

It follows from (2.1) that 3𝑐1(𝐺− 𝑆) + 2𝑐3(𝐺− 𝑆) ≥ 4|𝑆|+ 2 > 4|𝑆|. Thus we have

|𝑆| < 3
4
𝑐1(𝐺− 𝑆) +

1
2
𝑐3(𝐺− 𝑆).
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Furthermore, it follows that

|𝑆′| = |𝑆|+ |𝑋|

<
3
4
𝑐1(𝐺− 𝑆) +

1
2
𝑐3(𝐺− 𝑆) + 2𝑐3(𝐺− 𝑆)

=
3
4
𝑐1(𝐺− 𝑆) +

5
2
𝑐3(𝐺− 𝑆)

≤ 5
2

(𝑐1(𝐺− 𝑆) + 𝑐3(𝐺− 𝑆))

=
5
2
𝑖(𝐺− 𝑆′).

This contradicts the condition that 𝑖(𝐺 − 𝑆′) ≤ 2
5 |𝑆

′| for all 𝑆′ ⊆ 𝑉 (𝐺). This completes the proof of
Statement (iv) of Theorem 1.5.

3. Proof of Theorem 1.6

Suppose, to the contrary, that 𝐺 is a connected graph and contains no {𝑃2, 𝑃5}-factor. By Theorem 1.4, there
exists 𝑆 ⊆ 𝑉 (𝐺) such that 3𝑐1(𝐺− 𝑆) + 2𝑐3(𝐺− 𝑆) > 4|𝑆|+ 1. Due to the integrality, we obtain

𝑐1(𝐺− 𝑆) + 𝑐3(𝐺− 𝑆) ≥ 𝑐1(𝐺− 𝑆) +
2
3
𝑐3(𝐺− 𝑆) ≥ 4

3
|𝑆|+ 2

3
· (3.1)

It follows immediately that

|𝑆| ≤ 3
4

(𝑐1(𝐺− 𝑆) + 𝑐3(𝐺− 𝑆))− 1
2
· (3.2)

(i) We first argue that |𝑆| ≥ 1.

Claim 3.1. 𝑆 ̸= ∅.

Proof. Suppose that 𝑆 = ∅, then by (3.1), we have 𝑐1(𝐺) + 𝑐3(𝐺) = 𝑐1(𝐺− 𝑆) + 𝑐3(𝐺− 𝑆) ≥ 2
3 . According

to the integrality, 𝑐1(𝐺) + 𝑐3(𝐺) ≥ 1. Note that 𝑐1(𝐺) + 𝑐3(𝐺) ≤ 𝜔(𝐺) = 1 since 𝐺 is connected. Then,
𝐺 ∈ {𝐾1, 𝐾3, 𝑃3}, which contradicts that 𝐺 is 𝑟-regular where 𝑟 ≥ 3. �

Let 𝒞 be the set of component of 𝐺 − 𝑆 with order 1 or 3, and let 𝑋 := ∪𝐶∈𝒞𝑉 (𝐶). Let 𝐻 := [𝑋, 𝑆] be a
bipartite graph such that 𝑉 (𝐻) = 𝑋 ∪𝑆 and 𝑥𝑠 ∈ 𝐸(𝐻) if and only if 𝑥𝑠 ∈ 𝐸(𝐺) for any 𝑥 ∈ 𝑋 and 𝑠 ∈ 𝑆.
Let 𝑎 = 𝑐1(𝐺− 𝑆) and 𝑏 = 𝑐3(𝐺− 𝑆). Since 𝑋 is an independent set of 𝐻 and 𝑁𝐻(𝑋) ⊆ 𝑆, we have that
|𝐸(𝐻)| ≤ 𝑟|𝑆|. Then, by (3.2),

𝑟 × 𝑎 + 3(𝑟 − 2)× 𝑏 ≤ |𝐸(𝐻)| ≤ 𝑟|𝑆| ≤ 𝑟 ×
(︂

3
4

(𝑎 + 𝑏)− 1
2

)︂
·

That is
1
4
𝑟𝑎 +

9
4
𝑟𝑏 +

1
2
𝑟 ≤ 6𝑏. (3.3)

It follows from (3.3) and 𝑟 ≥ 3 that

6𝑏 ≥ 1
4
𝑟𝑎 +

9
4
𝑟𝑏 +

1
2
𝑟 ≥ 3

4
𝑎 +

27
4

𝑏 +
3
2

> 6𝑏 + 1,

a contradiction. This completes the proof of Statement (i) of Theorem 1.6.
(ii) We distinguish two cases below to show that 𝐺 has a {𝑃2, 𝑃5}-factor, which is a contradiction.
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Case 1. 𝑆 = ∅.
In this case, by (3.1), we have 𝑐1(𝐺) + 𝑐3(𝐺) = 𝑐1(𝐺− 𝑆) + 𝑐3(𝐺− 𝑆) ≥ 2

3 . According to the integrality,
𝑐1(𝐺) + 𝑐3(𝐺) ≥ 1. On the other hand, 𝑐1(𝐺) + 𝑐3(𝐺) ≤ 𝜔(𝐺) = 1 since 𝐺 is connected. So, we obtain
that 𝐺 ∈ {𝐾1, 𝐾3, 𝑃3}, which contradicts the minimum degree of 𝐺.

Case 2. |𝑆| ≥ 1.
Let 𝑆 = {𝑥1, 𝑥2, . . . , 𝑥𝑘}, where |𝑆| = 𝑘 ≥ 1. Let {𝐶1, 𝐶2, . . . , 𝐶𝑡} be the set of components of 𝐺 − 𝑆
with order 1 or 3. Then, by (3.1), we have that

𝑡 = 𝑐1(𝐺− 𝑆) + 𝑐3(𝐺− 𝑆) ≥ 4𝑘 + 2
3

· (3.4)

For any 𝑖 ∈ [1, 𝑡], there exists 𝑦𝑖 ∈ 𝑉 (𝐶𝑖) such that 𝑑𝐶𝑖
(𝑦𝑖) ≤ 2. Let 𝑌 = {𝑦1, 𝑦2, . . . , 𝑦𝑡}. Then we

construct a bipartite subgraph 𝐻 ⊆ 𝐺 such that 𝑉 (𝐻) = 𝑆 ∪ 𝑌 and 𝑥𝑖𝑦𝑗 ∈ 𝐸(𝐻) if and only if
𝑥𝑖𝑦𝑗 ∈ 𝐸(𝐺) for any 𝑖 ∈ [1, 𝑘], 𝑗 ∈ [1, 𝑡]. Since for any 𝑗 ∈ [1, 𝑡], 𝑑𝐶𝑗

(𝑦𝑗) ≤ 2, we have

𝑑𝐻(𝑦𝑗) = 𝑑𝐺(𝑦𝑗)− 𝑑𝐶𝑗 (𝑦𝑗) ≥ 3𝑟 + 5
4

− 2 =
3𝑟 − 3

4
· (3.5)

It follows from (3.5) that

|𝑋| ≥ 𝑑𝐻(𝑦𝑗) ≥ 3𝑟 − 3
4

·

Then, by (3.4) and (3.5), we have that

|𝐸(𝐻)| =
𝑡∑︁

𝑗=1

𝑑𝐻(𝑦𝑗)

≥ 𝑡× 3𝑟 − 3
4

≥ 4𝑘 + 2
3

× 3𝑟 − 3
4

= 𝑘(𝑟 − 1) +
𝑟 − 1

2
·

Since 𝑘(𝑟 − 1) + 𝑟−1
2 ≤ |𝐸(𝐻)| =

∑︀𝑘
𝑖=1 𝑑𝐻(𝑥𝑖), there exists 𝑥𝑏 ∈ 𝑆 such that 𝑑𝐻(𝑥𝑏) ≥ 𝑟. Then

𝐻[{𝑥𝑏} ∪𝑁𝐻(𝑥𝑏)] = 𝐺[{𝑥𝑏} ∪𝑁𝐻(𝑥𝑏)] includes 𝐾1,𝑟. This is a contradiction and completes the proof of
Statement (ii) of Theorem 1.6.

Acknowledgements. This work is supported by the National Natural Science Foundation of China (Grant Nos.
11871239, 11971196, 11871280 and U1811461), the Natural Science Foundation of Guangdong Province (Grant
No. 2020B1515310009).

References

[1] J. Akiyama and M. Kano, Factors and factorizations of graphs – a survey. J. Graph Theory 9 (1985) 1–42.

[2] J. Akiyama, D. Avis and H. Era, On a {1,2}-factor of a graph. TRU Math. 16 (1980) 97–102.

[3] K. Ando, Y. Egawa, A. Kaneko, K.I. Kawarabayashi and H. Matsuda, Path factors in claw-free graphs. Discrete Math. 243
(2002) 195–200.

[4] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications. North-Holland, New York-Amsterdam-Oxford (1982).
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