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A META HEURISTIC APPROACH FOR RELIABLE CAPACITATED FACILITY
JOINT INVENTORY-LOCATION PROBLEM WITH ROUND-TRIP

TRANSPORTATION UNDER IMPERFECT INFORMATION OF DISRUPTION
IN A FUZZY ENVIRONMENT
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Abstract. In today’s systems and networks, disruption is inevitable. Designing a reliable system to
overcome probable facility disruptions plays a crucial role in planning and management. This article
proposes a reliable capacitated facility joint inventory-location problem where location-independent dis-
ruption may occur in facilities. The system tries to satisfy customer’s demands and considers penalty
costs for unmet customer demand. The article aims to minimize total costs such as establishing inven-
tory, uncovered demand’s penalty, and transportation costs. While many articles in this area only use
exact methods to solve the problem, this article uses a metaheuristic algorithm, the red deer algorithm,
and the exact methods. Various numerical examples have shown the outstanding performance of the
red deer algorithm compared to exact methods. Sensitivity analyses show the impacts of various pa-
rameters on the objective function and the optimal facility layouts. Lastly, managerial insights will be
proposed based on sensitivity analysis.
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1. Introduction

Facility location problems are one of the most widely used issues in scientific topics, and so far, many studies
and research have been done in this field, and many models have been developed. Today, facility location
problems are considered alongside inventory problems. Since inventory control is essential in providing better
customer service, paying attention to such issues is important [7]. A typical location-inventory problem aims to
determine the optimum number and facilities’ location, allocate customers to facilities and optimize inventory
level at facilities with considered different costs such as fixed (opening) cost, operation cost, inventory cost, and
transportation cost. This problem combines both long-term and short-term decision-making together [16].

Keywords. Joint inventory-location problem, customers satisfaction, independent disruption, red deer algorithm, reliable capac-
itated facility location problem.

1 School of Industrial and Systems Engineering, College of Engineering, University of Tehran, Tehran, Iran.
2 Department of Management, Alborz Campous, University of Tehran, Tehran, Iran.
3 School of Industrial Engineering, K. N. Toosi University of Technology (KNTU), Tehran, Iran.
*Corresponding author: fjolai@ut.ac.ir

c○ The authors. Published by EDP Sciences, ROADEF, SMAI 2022

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1051/ro/2022110
https://www.rairo-ro.org
https://orcid.org/0000-0003-0175-2979
mailto:fjolai@ut.ac.ir
https://creativecommons.org/licenses/by/4.0


3312 A. ASADI DELIVAND ET AL.

Despite the significance of the standard location-inventory problem, the importance of planning to enhance
reliability and resilience against disruptions hasn’t been considered in the standard form. The occurrence of
various disruptions caused by natural and unnatural (human) factors is inevitable. The event of disruptions
leads to an increase in system’s costs. Therefore, by predicting and managing system’s disruptions, the effects
of unpredictable disruptions can be reduced. As the probability of a facility failure increases, so does the cost of
the total expected system and the number of facilities built [14]. Therefore, studying the joint inventory-location
problem with disruptions occurrence in facilities is required [29]. In such problems, which are a combination of
facility location and disruption problems, we seek to find suitable locations for the facilities to reduce system
costs. The possibility of disruption in the facility is usually independent of each other. Customers go to different
facilities to receive services. In the event of a facility disruption and failure to receive services, the customer will
go to the next facility to receive the services they need.

In today’s world, considering uncertainty is an essential part of planning. Over the past years, many studies
and research have been conducted to apply uncertainty modeling techniques in planning problem (e.g., [9,17]).
One of the critical uncertainties in any supply chain is the amount of customer demand, in which various
fluctuations can lead to extensive changes in the supply chain’s performance and impose a cost on to supply
chain [20]. For instance, in recent years, the coronavirus (COVID-19) outbreak has seriously affected the whole
world and led to many changes in the demand for various products [30]. However, the probability distribution
obtained from historical data recorded in the past cannot be easily accessible and reliable for use in various
issues. Hence, fuzzy set theory [10] is an excellent tool to show uncertainty in different problems. For this reason,
fuzzy numbers are used to express the uncertainty of customer demands.

Two types of assumptions have been used in the literature: perfect information problems and imperfect
information problems. Most research has concentrated on perfect information problems in which customers are
aware of the facility states and always choose the proper facility to visit. On the other hand, under imperfect
information, customers do not know facilities’ states. They have to visit a series of pre-assigned facilities until
they find a functioning facility to get the service or return with no service [56]. It is usual for customers not
to have enough information about the disruptions in facilities. Therefore, an imperfect information problem is
considered in this study.

The goal of the reliable uncapacitated facility location problem (RUFLP) is to meet customers’ demands
by determining the facility’s location while minimizing total system costs, including fixed costs and variable
network costs, so that the number of facilities is uncertain. RUFLPs are also referred to as simple facility
location problems. In these problems, it is assumed that the candidate locations for establishing the facilities
are predetermined, and the customer demands are determined. An essential feature of this type of location
problem is the possibility of deciding to determine the size of the facility without considering any constraints
such as physical and budgetary constraints. While applying such restrictions can lead to the proximity of the
problem to the real world. The UFLP that involves these constraints is called a reliable capacitated facility
location problem (RCFLP) [49]. RUFLP and RCFLP are the main problems related to the location of facilities
in the discrete state and the variety of articles and their variety in facility location problems indicates the
importance of this area. This article focuses on the former problems, the capacitated facility location problems,
unlike Asl-Najafi et al. [7], Chen et al. [14] and Liu et al. [29] researches.

This article discusses a fuzzy non-linear integer problem model for joint inventory-location facilities under
facility disruptions. It tries to minimize the system’s total costs, including the cost of creating facilities, trans-
portation costs, customers’ penalty costs, and inventory costs. In this article, we use a meta-heuristic method
that has been proposed in recent years. Although exact methods are commonly used for small-scale problems, in
solving the large-scale problem and NP-hard, heuristic and meta-heuristic methods are being used most often.
The red deer algorithm is one of the recent meta-heuristic methods used to solve large-scale problems in this
study.

Model contributions are as follows:

(1) Considering the inventory problem within the typical capacitated reliable facility location problem under
imperfect disruption information with fuzzy programming.
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(2) Using a minimum service level in the proposed model due to the high importance of customer satisfaction
under uncertainty in customer demand.

(3) Solving the model for large-scale sizes using a recent metaheuristics method, the red deer algorithm for
facility location problem.

The rest of this article is as follows: In Section 2, the literature review of the facility location problem, inventory
problem, reliable transportation system, and disruption types is discussed. In Section 3, the main assumptions
of the problem and first formulation of the model are presented, and then we use fuzzy programming methods
to convert our fuzzy mixed integer nonlinear programming model to a crisp integer linear programming model.
In Section 4, the solution method used in this article are introduced. In Section 5, we review some numerical
examples and the results of solving them. Sensitivity analysis, discussion, and managerial insights will be covered
in Section 6, and finally, the concluding remarks are given in Section 7.

2. Literature review

In this following section, some articles regarding the facility location problem have been reviewed, and their
features are mentioned as follows. In some facility location problems, due to the need of the problem and its
applicability in the real world, some other concepts such as inventory and routing are added to the research.
For the first time in the literature, Shen et al. [43] mixed the location problem with the concept of inventory
and presented them as an integrated problem. By combining these two concepts and determining the amount of
safety stock, they tried to provide an acceptable level of service to their customers. Zhang et al. [57] formulated an
integrated location and inventory problem with heterogeneous disruptions for the supply chain facilities. It finds
an optimal number of facilities and locations of them with considerate inventory management. It presented two
solution methods: (1) an exact approach like Special ordered sets of type two (SOS2) and (2) heuristic methods
like Lagrangian relaxation. Jalali et al. [23] proposed a bi-objective reliable location-routing problem in a supply
chain under different scenarios with the possibility of disruption in distribution centers. The first objective was
minimizing the total cost, and the second objective was maximizing the fill rate. Hiassat et al. [21] developed
an inventory-location-routing model for perishable products. They determined the number and location of
warehouses, the level of inventory at each retailer, and the routes traveled by vehicles. Xie et al. [51] developed
an integer linear programming for reliable location-routing design under probabilistic facility disruptions that
minimize total cost, including fixed setup costs and routing costs. It is solved by a combination of the LR with
a column generation (CG) algorithm. Rezaei et al. [38] proposed a bi-objective location-allocation-inventory
model to design a dual-channel, multi-level supply chain network. Salari et al. [40] developed a bi-objective
transportation–location–inventory–routing problem in three echelons with stochastic constraints.

The occurrence of a network disturbance is possible, and the exact time of its event cannot be determined.
But considering it in problems can play an essential role in the efficiency of research. These disruptions can be
dependent or independent depending on the definition of the problem. The source of disruption in the facility
location can be endogenous or exogenous [46]. Various natural and human factors such as unfavorable weather,
labor actions, breakdown of facilities and equipment lead to the disruption. These disruptions can have high
costs for the service network [45]. Also, in most cases, customers are not aware of these disruptions in advance
and do not have information about their occurrence.

Peng et al. [36] designed logistics networks with facility disruptions and it led to an increase in the reliability
of the supply chain network. The model was mixed-integer programming and a single objective that minimizes
costs when normal conditions and disruption costs when abnormal. Yun et al. [53] considered an integer pro-
gramming model for reliable facility location design considering disruption for each facility, and the distribution
of disruption is independent. This model strives to determine the facilities’ optimal location and allocates it to
customers to minimize overall costs and customers don’t know exact information about facilities. Li and Ouyang
[25] studied a reliable facility location model that disruptions are correlated, and when a disruption to one of
the facilities occurs, the customer’s need is used by another. Disruptions were location-dependent on where the
facility was located. It uses the continuum approximation approach to solve the model. Shishebori et al. [44]
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developed a reliability facility location-network design problem. In this model, if the facility fails, the closest
facility to the customer will be replaced to serve it. Sabahi and Parast [39] discussed that innovative companies
are more resilient to disruption because innovation can increase a company’s ability, such as flexibility, agility,
and share knowledge, and significantly positively affect its risk management ability. Snyder et al. [46] Focused
on endogenous disruptions and have examined the behavior of managers in conditions of disruption.

Some authors considered disruption under uncertainty. Lu et al. [31] proposed robust mathematical program-
ming for reliable facility location design under uncertain correlated disruptions. It minimizes the total expected
costs under the worst-case distribution. Yun et al. [54] formulated a nonlinear integer programming for reliable
facility location. Some binary variables in their research are the relocation of customers between facilities. Facil-
ities have disruption, and it is related to their site. The information of customers is imperfect, and they don’t
know about real-time transportation. Abazari et al. [1], in their proposed model, have considered relief centers
as facilities to provide services in disaster time. This model aims to minimize total costs such as locating and
establishing relief centers’ costs before a disaster, fixed transportation costs, and inventory costs. Lim et al. [27]
presented a stylized continuous approximation model to determine optimal locations of facilities. It considered
each facility has disruption with random distribution, and information of customers is imperfect. The results
showed investing in preventing disruption leads to increased costs but increases the level of customer satisfac-
tion. Tran et al. [48] proposed a mixed-integer nonlinear programming model for hub location planning with
random facility disruption and minimize travel costs and satisfy demands. They considered a penalty if all hubs
fail. Yun et al. [55] developed a continuous model for reliable facility location problems considering round-trip
transportation. The model was suitable for a large scale, and it is proposed for situations where information is
imperfect. The model is designed so that the customer returns to his starting point after receiving the service
or lacking it. The objective function of this model was to minimize shipping and transportation costs.

Various researches on facility location problems have been conducted in this field over the past decades.
Berman et al. [12] analyzed the effects of failure probabilities, availability of information, correlations, and
problem objectives on finding the optimal location for facilities. They studied both complete and incomplete
customer information. Alfandari [5] studied a general soft-capacitated facility location problem in which con-
nection costs don’t systematically satisfy the property of triangle inequality. Aboolian et al. [2] addressed a
reliable facility location problem (RFLP) that more than one facility can assign to customers, and facilities have
different failure rates. This model aims to minimize the total cost, including transportation costs and fixed costs.
An et al. [6] studied a robust optimization for reliable p-median facility location problems. It was two-stage
and considered two features for contribution: (1) demand changes due to disruptions and (2) facility capacities.
Li et al. [26] formulated mixed-integer stochastic programming for reliable facility location design problems.
The facility’s failures are related, and the model presented a structure considered independent and identically
distributed disruptions facility failure risks. Xie et al. [51] presented mathematical programming for a reliable
location routing problem (RLRP) with the risk of disruptions. The model determined optimal facility locations
and outbound delivery routing, and backup plans.

Zheng et al. [58] formulated a two-level mathematical programming model to find the optimal location for
charging stations position that provides service to electric vehicles (EVs). Ma et al. [32] believe that one of the
sustainability factors in urban transportation networks is bicycle-sharing, and they evaluate the quality of the
bicycle-sharing system. Also, Zhou et al. [59] believe that since environmental issues and cost reduction are of
great importance to people today, shared bikes can significantly impact these goals. Tellez et al. [47] formulated
a model to reduce transportation costs and increase the quality of transportation in a healthy transportation
network. This model seeks to optimize transportation strategies in a geographical area, including social and
Medico-Social Institutions (MSI).

In totally, research on facility location problems can be divided into two general categories: (1) capacitated
facility location problem (UFLP) and uncapacitated facility location problem (UFLP). Benedyk et al. [11] stud-
ied mixed-integer linear programming for facility locations with capacity limitations. The facility had uncertain
demand. Therefore, they assigned an optimal strategic intermodal facility in their scenario-based study. San-
tiváñez and Carlo [41] proposed a linear mixed-integer model for reliable capacitated facility location (RCFL)
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problems that meet the expected minimum level of customer service. The model was presented in an uncertain
environment, and it used the worst-case method for service-level in different disruption scenarios

Snyder and Daskin [45] presented various mathematical models based on the P-median problem (PMP) and
the uncapacitated fixed-charge location problem (UFLP). They assumed that system costs would increase due
to uncertainty factors such as equipment failures imposed on the customer. Cui et al. [15] proposed the reliable
uncapacitated fixed charge location problem (RUFL), which reduces initial setup cost and transportation cost
on their scenario-based study to determine the optimal facility locations and customer assignments. The model
considered possible customer reassignment and unexpected failures with site-dependent probabilities. Shen et al.
[42] presented two uncapacitated reliable facility location problems (URFLP): (1) a scenario-based stochastic
programming (SP) model for random parameters and a nonlinear integer programming (NIP) model for high
data numbers problems. This model is intended to replace another facility when a facility fails to service the
customer again.

There are two general approaches to expressing uncertainty: (1) fuzzy mathematical programming and (2)
Stochastic programming. Each of these two approaches can be used to describe the uncertainty following the
problem. Inuiguchi and Ramik [22] have pointed out two main differences between stochastic and fuzzy mathe-
matical programming approaches. First, If the random vector has a normal distribution, stochastic programming
offers a better solution. But if the random vector has a general distribution, fuzzy mathematical programming
has a better solution than stochastic programming. Second, If the uncertain variables are independent of each
other, fuzzy programming is better than stochastic programming because only a few decision variables take on
non-zero values. Given the reasons mentioned, using a fuzzy approach to express uncertainty in the amount of
customer demand may be more appropriate.

Different methods have been used to solve facility location problems in the literature. Frequently facility
location problem is an NP-hard problem, and if the dimensions of the problem increase, it requires the use
of meta-heuristic methods to solve the problem until reducing the time to solve it to find the solution. In
some research, exact methods have also been used. An et al. [6] used the column-and-constraint generation
method for reliable p-median facility location problems. The result showed this method performs better than the
Benders cutting plane method. Also, Marufuzzaman and Ekşioğlu [33] presented mixed-integer programming
for designing a reliable transportation network for biofuel supply chains. They used an integrated Benders
decomposition algorithm and a hybrid rolling horizon algorithm to solve this problem.

Kratica et al. [24] considered a simple plant location problem that they solved it with a genetic algorithm.
Chauhan et al. [13] formulated an integer linear programming model that includes range and power consumption.
The objective function was to maximize the area to cover more areas. It was NP-hard and used greedy and three-
stage heuristics (3SH) to solve it. Mohammadi et al. [35] have designed a single problem-allocation hub location
so that uncertainties in society, such as natural disasters, are taken into account in the model. The first objective
function minimizes total transportation costs, and the second objective function reduces transportation time.
The model was complex and NP-hard. It considered an efficient approximation method for defining a lower
bound and used a hybrid meta-heuristic algorithm, including the genetic algorithm (GN) and VNS algorithm
(SGV-II) to solve the problem. Peng et al. [37] proposed an approximation of discrete spatial data used for
continuous facility location design and can be applied to discrete facility location problems. The model used a
Voronoi diagram and discrete data to calculate the total cost and optimal facility location. Also, it presented
a disk model for finding a near-optimum facility location. Liu and Wang [28] presented a location problem for
charging stations that use charge battery electric vehicles (BEV). One of the major global issues is reducing
greenhouse gas emissions, and this article tries to reduce travel costs and time by appropriately locating charging
stations. The model is solved by an efficient surface response approximation model-based solution algorithm.

According to Table 1, the review of the above articles has shown that most of the existing articles in this field
focus on a certain environment and less on the uncertainty in the parameters. So that in case of considering
uncertainty, they have paid more attention to stochastic programming. In addition, location problems have less
inventory concept in their model, while the shortage of inventory is one of the important reasons for the lack
of service to customers and their dissatisfaction. Many articles in this area have focused on perfect information
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Table 1. Summary of literature review.
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2 Yun et al. 2015 * * * * * * * Lagrangian relaxation
3 Xie et al. 2016 * * * * * * * Column generation algorithm
4 Jalali et al. 2016 * * * * * * Multi-objective

biogeography-based
optimization

5 Zhang et al. 2016 * * * * * * * Lagrangian relaxation
6 Xie et al. 2016 * * * * * * * Lagrangian relaxation with

embedded column generation
and local search

7 Yun et al. 2017 * * * * * * CPLEX
8 Marufuzzaman

& Ekşioğlu
2017 * * * * * * Integrated Benders decompo-

sition algorithm and a hybrid
rolling horizon algorithm

9 Tran et al. 2017 * * * * * * * Tabu search algorithm
10 Zheng et al. 2017 * * * * * *
11 Liu & Wang 2017 * * * * * * Approximation model-based

solution
12 Santiváñez &
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2018 * * * * * * * * Worst-case method

13 Xie et al. 2019 * * * * * * Lagrangian relaxation
14 Yun et al. 2019 * * * * * *
15 Mohammadi

et al.
2019 * * * * * * Genetic algorithm and VNS

algorithm
16 Chauhan

et al.
2019 * * * * * * Greedy and three-stage

heuristics (3SH)
17 This Research 2021 * * * * * * * Red deer algorithm

about the occurrence of disruptions. However, it is not possible to know enough about these disruptions in the
real world. We proposed a novel mathematical model for the joint location-inventory problem in an uncertain
environment to minimize the system’s total costs, including construction costs of facilities, inventory costs, and
transportation costs. We use fuzzy programming for present uncertainty, such as customer demand. Customer
refers to the facility to receive the services they want. We considered site-independent disruption for facilities.
In case of disruption in the facility, refer to the following facilities, and after receiving the service, return
to her/his original location. We consider penalty cost if the customer demand doesn’t meet, and the cost of
transportation to the dummy facility is equal to the penalty cost imposed on the system. Each facility has the
capacity and minimum level demand for the establishment, and if the demand for the facility is under minimum
level demand, that facility doesn’t establish. To meet customer demand, a maximum time has been set for the
customer to present service level in the system so that the customer’s presence in the system should not exceed
that time. We also used a new meta-heuristic method, the red deer algorithm, to solve problems on a large scale
to reduce solution time. Table 1 presented the characteristics of some of the Pervious researches in the literature
review such as “Terms of objective function”, “Disruption”, “Type of information”, “Uncertainty” and “Model
Features”.

3. Problem description and formulation

In this article, we try to find optimal locations for the facilities from among the candidate locations and
optimally allocate the available facilities to the customers. Simultaneously, we want to minimize the total
system costs: (1) facility construction costs, (2) transportation costs, (3) penalty costs, and (4) inventory costs.
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Figure 1. Transportation system.

In this model, the probability of site-dependent disruption is considered for facilities. This model assumes
that one of the facilities will initially be allocated to the customer. In this case, if a disruption occurs in the
assigned facility, another facility will be assigned to the customer. This work will continue until the customer
receives their service. The facilities are assigned to the customer in advance, and the customer is not aware of
the occurrence of these disruptions and the lack of service provided by the facilities. On the other hand, if the
customer finally cannot receive the desired services, the penalty cost is charged.

Usually, people return to their first location after receiving services and meeting their demands or not receiving
services. As a result, this model assumes that customers return to their first location. The transportation system
in this article is round-trip transportation. In this type of transportation system, it is assumed that the customer
will return to his first location whether they received services or not. Therefore, the proposed transportation
system is divided into two categories: (1) outbound transportation (customer movement from its first location
to the facility) and (2) inbound transportation (customer return to its first location). Figure 1 shows the
transportation system.

The penalty cost is imposed on the system if the customer does not receive the service. This cost is applied
when the last facility allocated to the customer fails to meet the customer’s needs. Dummy facilities are provided
to integrate transportation costs and penalty costs. Visiting a dummy facilitated by the customer does not mean
meeting the customer’s needs.

For example, suppose a customer intends to receive fuel from a city gas station. After referring to the nearest
gas station, the customer, if he cannot receive the desired fuel due to disruption and breakdown in that gas
station, will refer to the next gas station. The customer repeats this operation until he gets the preferred fuel.
Customers refer to different facilities and receive the services they need, as shown in Figure 2.

Another issue considered in the model is the inventory problem. Each facility can increase the level of its
inventory if needed. There is also a cost for storing. On the other hand, some facilities are limited in providing
services. One of these important constraints is capacity constraints, and each facility can ultimately meet the
demand of a certain number of customers. Therefore, it is very important to consider the capacity constraint.
Also, considering that the cost of establishing and creating some of these facilities is very high, it is important
to consider that the condition for establishing these facilities is to have at least a certain amount of demand for
services.

3.1. Assumptions

(1) Customers will return to their first location if they receive a service or give up their service Such as refueling
centers such as gas stations.

(2) There is a specific capacity for each facility to provide services.
(3) The demand parameter is an uncertain and fuzzy number.
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Figure 2. Network of the model.

(4) The proposed model is a single period.
(5) The possibility of disruption in the facilities is independent of each other.
(6) It is possible to order and maintain inventory for facilities.
(7) The duration in which customers spend on the system should not exceed the service level threshold

3.2. Notations

Sets

𝑖 ∈ 𝐼 Set of customer locations
𝑗 ∈ 𝐽 Set of candidate facility locations
𝑘 ∈ 𝐾 Set of locations (𝐼, 𝐽 ⊂ 𝐾)
𝐾+

𝑗 ⊂ 𝐾 Set of candidate facility locations that can visited before visiting facility 𝑗

𝐾−
𝑗 ⊂ 𝐾 Set of candidate facility locations that can visited after visiting facility 𝑗

𝑟 ∈ 𝑅 Facility rank for a customer, the maximum facility rank is 𝑅

Parameters̃︀𝑑𝑖 Demand level of customer 𝑖; ̃︀𝑑𝑖 = (𝑑𝑖1, 𝑑𝑖2, 𝑑𝑖3)
𝑓𝑗 Fixed opening cost for facility 𝑖
𝜋𝑖 Penalty cost when customer 𝑖 gives up on the service
𝑞𝑗 Disruption probability of facility 𝑗
𝑐𝑖𝑗 Unit-demand transportation cost from customer 𝑖 to facility 𝑗
𝑡𝑖𝑗 Unit-demand transportation time from customer 𝑖 to facility 𝑗
𝑗𝑟
𝑖 Facility for customer 𝑖 at rank 𝑟

𝑐𝑖𝑗𝑗′𝑟 Unit-demand transportation cost from facility 𝑗 to facility 𝑗′ for customer 𝑖 at rank 𝑟
𝑐𝑎𝑝𝑗 Maximum capacity of facility 𝑗
𝑆𝑗 Minimum demand threshold from facility 𝑗 to build it
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𝑏𝑗 Fixed ordering cost in facility 𝑗
𝑣𝑗 Variable ordering cost per unit in facility 𝑗
ℎ𝑗 Inventory (holding) cost in facility 𝑗
𝑝𝑖𝑗𝑗′𝑟 Probability that customer 𝑖 visits facility 𝑗 at rank 𝑟 after visiting facility 𝑗′

𝑇 Maximum acceptable time threshold for service level

The parameter 𝑐𝑖𝑗 represents the cost of transportation from the first location of customer 𝑖 to the facility 𝑗.
Similarly, 𝑐𝑖𝑗𝑗′𝑟 is equal to the cost of transportation from the facility 𝑗 to the facility 𝑗′ at rank 𝑟. We consider
𝑐𝑖𝑗𝑗0𝑟 equal to 𝜋𝑖. Because the customer’s referral to dummy facilities means that the previous facility does not
receive service in advance, for this reason, the cost of a penalty is considered by referring the customer to the
dummy facility.

Decision variables

𝑧𝑗 Decision of facility location, if 𝑧𝑗 = 1 denotes facility 𝑗 is open, 𝑧𝑗 = 0 otherwise
𝑥𝑖𝑗 Decision of customer assignment, if 𝑥𝑖𝑗 = 1 denotes customer 𝑖 is assigned to facility 𝑗 at rank 0,

𝑥𝑖𝑗 = 0 otherwise
𝑦𝑖𝑗𝑗′𝑟 Decision of customer assignment, if 𝑦𝑖𝑗𝑗′𝑟 = 1 denotes customer 𝑖 is assigned to facility 𝑗 at rank

𝑟 − 1 and to facility 𝑗′ at rank 𝑟, 𝑦𝑖𝑗𝑗′𝑟 = 1 otherwise
𝑄𝑗 Ordering quantity for facility 𝑗

As explained above, 𝑝𝑖𝑗𝑗′𝑟 is the probability that customer 𝑖 visits facility 𝑗 at rank 𝑟 after visiting facility
𝑗′. When the 𝑟 = 1 the 𝑝𝑖𝑗𝑗′𝑟 would simply be 𝑞𝑗 . However, for 𝑟 > 1 the probability of visit facility 𝑗 at rank 𝑟
would rely on the probability of visit facility 𝑗′ at rank 𝑟− 1 multiplied by the disruption probability of facility
𝑗. Therefore the value of 𝑝𝑖𝑗𝑗′𝑟 would be as follows [55].

𝑝𝑖𝑗𝑗′𝑟 =

{︃
𝑞𝑗 , 𝑟 = 1
𝑞𝑗

∑︀
𝑗′∈𝐾+

𝑗
𝑝𝑖𝑗′𝑗(𝑟−1)𝑦𝑖𝑗′𝑗(𝑟−1), 𝑟 > 1.

3.3. Model formulation

3.3.1. Objective function

The fixed cost of establishing the facility is as follows:

TFC =
∑︁
𝑗∈𝐽

𝑓𝑗𝑧𝑗 . (3.1)

Transportation costs are divided into two expressions. In the first term, it is assumed that the customer will
receive the required services in the first facility that he/she refers to it. In the second term, we assume that the
customer does not find her/her services in the first facility assigned to it and refers to other pre-assignments
facilities.

The first expression is related to the time when the customer receives the desired services if she refers to the
first facility and then returns to her original location.∑︁

𝑖∈𝐼

̃︀𝑑𝑖

∑︁
𝑗∈𝐾

(2− 𝑞𝑗)𝑐𝑖𝑗𝑥𝑖𝑗 . (3.2)

The second expression refers to the time when the first facility allocated to the customer is disrupted and the
customer refers to other services to receive services.

∑︁
𝑖∈𝐼

̃︀𝑑𝑖

∑︁
𝑗∈𝐾

⎛⎜⎝ ∑︁
𝑗′∈𝐾−𝑗

∑︁
𝑟∈𝑅

𝑝𝑖𝑗𝑗′𝑟(𝑐𝑖𝑗𝑗′𝑟 + (1− 𝑞𝑗′)𝑐𝑖𝑗′)𝑦𝑖𝑗𝑗′𝑟

⎞⎟⎠. (3.3)
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Therefore, total transportation cost for facility 𝑗 is:

TTC =
∑︁
𝑖∈𝐼

̃︀𝑑𝑖

∑︁
𝑗∈𝐾

⎛⎜⎝(2− 𝑞𝑗)𝑐𝑖𝑗𝑥𝑖𝑗 +
∑︁

𝑗′∈𝐾−𝑗

∑︁
𝑟∈𝑅

𝑝𝑖𝑗𝑗′𝑟(𝑐𝑖𝑗𝑗′𝑟 + (1− 𝑞𝑗′)𝑐𝑖𝑗′)𝑦𝑖𝑗𝑗′𝑟

⎞⎟⎠. (3.4)

Inventory cost is divided into two types of costs: (1) holding cost and (2) ordering cost. For a facility at 𝑗, its
demand is: ∑︁

𝑖∈𝐼

̃︀𝑑𝑖(1− 𝑞𝑗)𝑥𝑖𝑗 +
∑︁

𝑗′∈𝐾+
𝑗

∑︁
𝑖∈𝐾

∑︁
𝑟∈𝑅

̃︀𝑑𝑖𝑝𝑖𝑗′𝑗𝑟(1− 𝑞𝑗)𝑦𝑖𝑗′𝑗𝑟. (3.5)

Theorem 3.1. Let 𝐵 and 𝑉 be the fixed and variable ordering costs, then, the optimum order quantity would

be 𝑄 =
√︁

2𝐵
ℎ .

Proof. Similar to the theorem of Vujošević et al. [50] the total inventory costs would be:

inventory cost =
1

𝑄𝑗
𝐵 + 𝑉 +

ℎ𝑗𝑄𝑗

2
(3.6)

by calculating the derivative of total inventory costs with respect to ordering quantity, the optimum quantity
would be:

d
d𝑄𝑗

inventory cost = − 𝐵

𝑄2
𝑗

+
ℎ𝑗

2
= 0 → 𝑄*𝑗 =

√︂
2𝐵

ℎ
· (3.7)

Base on Theorem 3.1, inventory cost for facility 𝑗 is:

1
𝑄𝑗

⎛⎜⎝∑︁
𝑖∈𝐼

̃︀𝑑𝑖𝑏𝑗(1− 𝑞𝑗)𝑥𝑖𝑗 +
∑︁

𝑗′∈𝐾+
𝑗

∑︁
𝑖∈𝐼

∑︁
𝑟∈𝑅

̃︀𝑑𝑖𝑏𝑗𝑝𝑖𝑗′𝑗𝑟(1− 𝑞𝑗)𝑦𝑖𝑗′𝑗𝑟

⎞⎟⎠
+

⎛⎜⎝∑︁
𝑖∈𝐼

̃︀𝑑𝑖𝑣𝑗(1− 𝑞𝑗)𝑥𝑖𝑗 +
∑︁

𝑗′∈𝐾+
𝑗

∑︁
𝑖∈𝐼

∑︁
𝑟∈𝑅

̃︀𝑑𝑖𝑣𝑗𝑝𝑖𝑗′𝑗𝑟(1− 𝑞𝑗)𝑦𝑖𝑗′𝑗𝑟

⎞⎟⎠ +
ℎ𝑗𝑄𝑗

2
(3.8)

where the first and second part of it is associated with ordering cost and the third term is holding cost. The
optimal order quantity would be as follows:

𝑄*𝑗 =

⎡⎢⎣2𝑏𝑗

ℎ𝑗

⎛⎜⎝∑︁
𝑖∈𝐼

̃︀𝑑𝑖(1− 𝑞𝑗)𝑥𝑖𝑗 +
∑︁

𝑗′∈𝐾+
𝑗

∑︁
𝑖∈𝐼

∑︁
𝑟∈𝑅

̃︀𝑑𝑖𝑝𝑖𝑗′𝑗𝑟(1− 𝑞𝑗)𝑦𝑖𝑗′𝑗𝑟

⎞⎟⎠
⎤⎥⎦

1
2

. (3.9)

Therefore, total inventory costs are:

TIC =
∑︁
𝑗∈𝐾

⎛⎜⎜⎝
⎛⎜⎝2𝑏𝑗ℎ𝑗

⎛⎜⎝∑︁
𝑖∈𝐼

̃︀𝑑𝑖(1− 𝑞𝑗)𝑥𝑖𝑗 +
∑︁

𝑗′∈𝐾+
𝑗

∑︁
𝑖∈𝐼

∑︁
𝑟∈𝑅

̃︀𝑑𝑖𝑝𝑖𝑗′𝑗𝑟(1− 𝑞𝑗)𝑦𝑖𝑗′𝑗𝑟

⎞⎟⎠
⎞⎟⎠

1
2

+

⎛⎜⎝∑︁
𝑖∈𝐼

̃︀𝑑𝑖𝑣𝑗(1− 𝑞𝑗)𝑥𝑖𝑗 +
∑︁

𝑗′∈𝐾+
𝑗

∑︁
𝑖∈𝐼

∑︁
𝑟∈𝑅

̃︀𝑑𝑖𝑣𝑗𝑝𝑖𝑗′𝑗𝑟(1− 𝑞𝑗)𝑦𝑖𝑗′𝑗𝑟

⎞⎟⎠
⎞⎟⎠. (3.10)
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Final objective function for this problem is:

min
𝑋,𝑌,𝑍,𝑄

∑︁
𝑗∈𝐽

𝑓𝑗𝑧𝑗 +
∑︁
𝑖∈𝐼

̃︀𝑑𝑖

∑︁
𝑗∈𝐾

⎛⎜⎝(2− 𝑞𝑗)𝑐𝑖𝑗𝑥𝑖𝑗 +
∑︁

𝑗′∈𝐾−𝑗

∑︁
𝑟∈𝑅

𝑝𝑖𝑗𝑗′𝑟(𝑐𝑖𝑗𝑗′𝑟 + (1− 𝑞𝑗′)𝑐𝑖𝑗′)𝑦𝑖𝑗𝑗′𝑟

⎞⎟⎠

+
∑︁
𝑗∈𝐾

⎛⎜⎜⎝
⎛⎜⎝2𝑏𝑗ℎ𝑗

⎛⎜⎝∑︁
𝑖∈𝐼

̃︀𝑑𝑖(1− 𝑞𝑗)𝑥𝑖𝑗 +
∑︁

𝑗′∈𝐾+
𝑗

∑︁
𝑖∈𝐼

∑︁
𝑟∈𝑅

̃︀𝑑𝑖𝑝𝑖𝑗′𝑗𝑟(1− 𝑞𝑗)𝑦𝑖𝑗′𝑗𝑟

⎞⎟⎠
⎞⎟⎠

1
2

+

⎛⎜⎝∑︁
𝑖∈𝐼

̃︀𝑑𝑖𝑣𝑗(1− 𝑞𝑗)𝑥𝑖𝑗 +
∑︁

𝑗′∈𝐾+
𝑗

∑︁
𝑖∈𝐼

∑︁
𝑟∈𝑅

̃︀𝑑𝑖𝑣𝑗𝑝𝑖𝑗′𝑗𝑟(1− 𝑞𝑗)𝑦𝑖𝑗′𝑗𝑟

⎞⎟⎠
⎞⎟⎠. (3.11)

Objective function equation (3.11) aims to minimize total costs, such as (1) fixed construction cost and (2)
transportation costs. �

3.3.2. Constraints

𝑥𝑖𝑗 =
∑︁

𝑗′∈𝐾−𝑗

𝑦𝑖𝑗𝑗′1, ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐾 (3.12)

∑︁
𝑗′∈𝐾+

𝑗

𝑦𝑖𝑗′𝑗(𝑟−1) =
∑︁

𝑗′∈𝐾−𝑗

𝑦𝑖𝑗𝑗′𝑟, ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐾, 𝑟 ∈ 𝑅 (3.13)

∑︁
𝑗∈𝐾

𝑦𝑖𝑗𝑗0(𝑅+1) = 1, ∀𝑖 ∈ 𝐼 (3.14)

𝑆𝑗𝑧𝑗 ≤
∑︁
𝑖∈𝐼

̃︀𝑑𝑖(1− 𝑞𝑗)𝑥𝑖𝑗 +
∑︁

𝑗′∈𝐾+
𝑗

∑︁
𝑖∈𝐼

∑︁
𝑟∈𝑅

̃︀𝑑𝑖𝑝𝑖𝑗′𝑗𝑟(1− 𝑞𝑗)𝑦𝑖𝑗′𝑗𝑟, 𝑗 ∈ 𝐾 (3.15)

∑︁
𝑗∈𝐾

𝑥𝑖𝑗 = 1, ∀𝑖 ∈ 𝐼 (3.16)

𝑥𝑖𝑗 +
∑︁
𝑟∈𝑅

∑︁
𝑗′∈𝐾+

𝑖

𝑦𝑖𝑗′𝑗(𝑟−1) ≤ 𝑧𝑗 , ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (3.17)

∑︁
𝑖∈𝐼

̃︀𝑑𝑖(1− 𝑞𝑗)𝑥𝑖𝑗 +
∑︁

𝑗′∈𝐾+
𝑗

∑︁
𝑖∈𝐼

∑︁
𝑟∈𝑅

̃︀𝑑𝑖𝑝𝑖𝑗′𝑗𝑟(1− 𝑞𝑗)𝑦𝑖𝑗′𝑗𝑟 ≤ 𝑐𝑎𝑝𝑗 , 𝑗 ∈ 𝐾 (3.18)

𝑝𝑖𝑗𝑗′1 = 𝑞𝑗 , ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐾, 𝑗′ ∈ 𝐾−
𝑗 (3.19)

𝑝𝑖𝑗𝑗′𝑟 = 𝑞𝑗

∑︁
𝑗′∈𝐾+

𝑗

𝑝𝑖𝑗′𝑗(𝑟−1)𝑦𝑖𝑗′𝑗(𝑟−1), ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐾, 𝑗′ ∈ 𝐾−
𝑗 , 𝑟 ∈ 𝑅 (3.20)

∑︁
𝑗∈𝐾

⎛⎝𝑡𝑖𝑗𝑥𝑖𝑗 +
∑︁

𝑗′∈𝐾−𝑖

∑︁
𝑟∈𝑅

𝑝𝑖𝑗𝑗′𝑟𝑡𝑖𝑗𝑗′𝑟𝑦𝑖𝑗𝑗′𝑟

⎞⎠ ≤ 𝑇, ∀𝑖 ∈ 𝐼 (3.21)

𝑥𝑖𝑗 ∈ {0, 1}, ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐾 (3.22)
𝑦𝑖𝑗𝑗′𝑟 ∈ {0, 1}, ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐾, 𝑗′ ∈ 𝐾−

𝑗 , 𝑟 ∈ 𝑅 (3.23)
𝑧𝑗 ∈ {0, 1}, ∀𝑗 ∈ 𝐽 (3.24)
𝑄𝑗 ≥ 0, ∀𝑗 ∈ 𝐽. (3.25)
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Constraints (3.12)–(3.14) ensure that in the event of a facility 𝑗 assigned to customer 𝑖, the subsequent facilities
will be assigned consecutively until the dummy facility is assigned to their ranks. Constraint (3.15) ensures that
facility 𝑗 is created when there is a minimum amount of demand to receive service by the customer in facilities.
Constraint (3.16) indicates that a facility must be assigned to the customer. Constraint (3.17) ensures that
the facility is built if the customer visits the facility. Constraint (3.18) guarantees that the facilities’ demand
should not exceed their capacity (capacity constraint). Constraints (3.19) and (3.20) indicate the probability of
disruption in the facilities. Constraint (3.21) ensures that every customer’s transportation time will not exceed
the defined service level threshold. Constraints (3.22)–(3.24) are related to binary decision variables. Constraint
(3.25) is related to nonnegative variable.

3.4. Fuzzy programming

As discussed in the earlier stages, the uncertainty of demand is taken care of using fuzzy numbers. To solve the
proposed mathematical model, we have to convert the fuzzy representation to the crisp representation. For this
purpose, we used the hybrid expected value and chance constraint programming (CCP) approach. Therefore,
the expected value of the objective function should be used in the crisp model instead, which would be like this:

min
𝑋,𝑌,𝑍,𝑄

EV[OF] =
∑︁
𝑗∈𝐽

𝑓𝑗𝑧𝑗 +
∑︁
𝑖∈𝐼

EV
(︁̃︀𝑑𝑖

)︁ ∑︁
𝑗∈𝐾

⎛⎜⎝(2− 𝑞𝑗)𝑐𝑖𝑗𝑥𝑖𝑗 +
∑︁

𝑗′∈𝐾−𝑗

∑︁
𝑟∈𝑅

𝑤𝑖𝑗𝑗′𝑟(𝑐𝑖𝑗𝑗′𝑟 + (1− 𝑞𝑗′)𝑐𝑖𝑗′)

⎞⎟⎠

+
∑︁
𝑗∈𝐾

⎛⎜⎜⎝
⎛⎜⎝2𝑏𝑗ℎ𝑗

⎛⎜⎝∑︁
𝑖∈𝐼

EV
(︁̃︀𝑑𝑖

)︁
(1− 𝑞𝑗) 𝑥𝑖𝑗 +

∑︁
𝑗′∈𝐾+

𝑗

∑︁
𝑖∈𝐼

∑︁
𝑟∈𝑅

EV
(︁̃︀𝑑𝑖

)︁
𝑤𝑖𝑗𝑗′𝑟(1− 𝑞𝑗)

⎞⎟⎠
⎞⎟⎠

1
2

+

⎛⎜⎝∑︁
𝑖∈𝐼

EV
(︁̃︀𝑑𝑖

)︁
𝑣𝑗(1− 𝑞𝑗)𝑥𝑖𝑗 +

∑︁
𝑗′∈𝐾+

𝑗

∑︁
𝑖∈𝐼

∑︁
𝑟∈𝑅

EV
(︁̃︀𝑑𝑖

)︁
𝑣𝑗w𝑖𝑗𝑗′𝑟(1− 𝑞𝑗)

⎞⎟⎠
⎞⎟⎠. (3.26)

Constraints (3.15) and (3.18) have still fuzzy numbers within them. Suppose that ̃︀𝑑𝑖 is a trapezoidal fuzzy
number (𝑑𝑖1, 𝑑𝑖2, 𝑑𝑖3) and we want the credibility of these constraints to be more than parameters 𝜗1, 𝜗2.

𝐶𝑟

⎛⎜⎝𝑆𝑗𝑧𝑗 ≤
∑︁
𝑖∈𝐼

̃︀𝑑𝑖(1− 𝑞𝑗)𝑥𝑖𝑗 +
∑︁

𝑗′∈𝐾+
𝑗

∑︁
𝑖∈𝐼

∑︁
𝑟∈𝑅

̃︀𝑑𝑖𝑤𝑖𝑗𝑗′𝑟(1− 𝑞𝑗)

⎞⎟⎠ ≥ 𝜗1, 𝑗 ∈ 𝐾 (3.27)

𝐶𝑟

⎛⎜⎝∑︁
𝑖∈𝐼

̃︀𝑑𝑖(1− 𝑞𝑗)𝑥𝑖𝑗 +
∑︁

𝑗′∈𝐾+
𝑗

∑︁
𝑖∈𝐼

∑︁
𝑟∈𝑅

̃︀𝑑𝑖𝑤𝑖𝑗𝑗′𝑟(1− 𝑞𝑗) ≤ 𝑐𝑎𝑝𝑗

⎞⎟⎠ ≥ 𝜗2, 𝑗 ∈ 𝐾. (3.28)

Consequently, the equivalent crisp parametric constraint can be written as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑆𝑗𝑧𝑗 ≤

∑︀
𝑖∈𝐼 [(2− 2𝜗1)𝑑𝑖2 + (2𝜗1 − 1)𝑑𝑖1] (1− 𝑞𝑗) 𝑥𝑖𝑗

+
∑︀

𝑗′∈𝐾+
𝑗

∑︀
𝑖∈𝐼

∑︀
𝑟∈𝑅 [(2− 2𝜗1)𝑑𝑖2 + (2𝜗1 − 1)𝑑𝑖1] 𝑤𝑖𝑗𝑗′𝑟(1− 𝑞𝑗) if 𝜗1 ≥ 0.5

𝑆𝑗𝑧𝑗 ≤
∑︀

𝑖∈𝐼 [(1− 2𝜗1)𝑑𝑖3 + 2𝜗1𝑑𝑖2] (1− 𝑞𝑗) 𝑥𝑖𝑗

+
∑︀

𝑗′∈𝐾+
𝑗

∑︀
𝑖∈𝐼

∑︀
𝑟∈𝑅 [(1− 2𝜗1)𝑑𝑖3 + 2𝜗1𝑑𝑖2] 𝑤𝑖𝑗𝑗′𝑟(1− 𝑞𝑗) if 𝜗1 ≤ 0.5

, 𝑗 ∈ 𝐾 (3.29)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑐𝑎𝑝𝑗 ≥

∑︀
𝑖∈𝐼 [(2𝜗2 − 1)𝑑𝑖3 + (2− 2𝜗2)𝑑𝑖2](1− 𝑞𝑗)𝑥𝑖𝑗

+
∑︀

𝑗′∈𝐾+
𝑗

∑︀
𝑖∈𝐼

∑︀
𝑟∈𝑅 [(2𝜗2 − 1)𝑑𝑖3 + (2− 2𝜗2)𝑑𝑖2]𝑤𝑖𝑗𝑗′𝑟(1− 𝑞𝑗) if 𝜗2 ≥ 0.5

𝑐𝑎𝑝𝑗 ≥
∑︀

𝑖∈𝐼 [2𝜗2𝑑𝑖2 + (1− 2𝜗2)𝑑𝑖1](1− 𝑞𝑗)𝑥𝑖𝑗

+
∑︀

𝑗′∈𝐾+
𝑗

∑︀
𝑖∈𝐼

∑︀
𝑟∈𝑅 [2𝜗2𝑑𝑖2 + (1− 2𝜗2)𝑑𝑖1]𝑤𝑖𝑗𝑗′𝑟(1− 𝑞𝑗) if 𝜗2 ≥ 0.5

, 𝑗 ∈ 𝐾. (3.30)
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3.5. Final model after linearization

As a result, the final linear model is as follows based on the content about linearization presented in the
appendix:

min
𝑋,𝑌,𝑍,𝑄

EV[𝑂𝐹 ] =
∑︁
𝑗∈𝐽

𝑓𝑗𝑧𝑗 +
∑︁
𝑖∈𝐼

EV
(︁̃︀𝑑𝑖

)︁ ∑︁
𝑗∈𝐾

⎛⎜⎝(2− 𝑞𝑗)𝑐𝑖𝑗𝑥𝑖𝑗 +
∑︁

𝑗′∈𝐾−𝑗

∑︁
𝑟∈𝑅

𝑤𝑖𝑗𝑗′𝑟(𝑐𝑖𝑗𝑗′𝑟 + (1− 𝑞𝑗′)𝑐𝑖𝑗′)

⎞⎟⎠

+
∑︁
𝑗∈𝐾

⎛⎜⎜⎝
⎛⎜⎝2𝑏𝑗ℎ𝑗

⎛⎜⎝∑︁
𝑖∈𝐼

EV
(︁̃︀𝑑𝑖

)︁
(1− 𝑞𝑗)𝑥𝑖𝑗 +

∑︁
𝑗′∈𝐾+

𝑗

∑︁
𝑖∈𝐼

∑︁
𝑟∈𝑅

EV
(︁̃︀𝑑𝑖

)︁
𝑤𝑖𝑗𝑗′𝑟(1− 𝑞𝑗)

⎞⎟⎠
⎞⎟⎠

1
2

+

⎛⎜⎝∑︁
𝑖∈𝐼

EV
(︁̃︀𝑑𝑖

)︁
𝑣𝑗(1− 𝑞𝑗)𝑥𝑖𝑗 +

∑︁
𝑗′∈𝐾+

𝑗

∑︁
𝑖∈𝐼

∑︁
𝑟∈𝑅

EV
(︁̃︀𝑑𝑖

)︁
𝑣𝑗𝑤𝑖𝑗𝑗′𝑟(1− 𝑞𝑗)

⎞⎟⎠
⎞⎟⎠. (3.31)

Subject to:
Constraints (3.12)–(3.14), (3.16), (3.17), (3.19), (3.22)–(3.25),

𝑆𝑗𝑧𝑗 ≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑︀
𝑖∈𝐼 [(2− 2𝜗1)𝑑𝑖2 + (2𝜗1 − 1)𝑑𝑖1] (1− 𝑞𝑗) 𝑥𝑖𝑗

+
∑︀

𝑗′∈𝐾+
𝑗

∑︀
𝑖∈𝐼

∑︀
𝑟∈𝑅 [(2− 2𝜗1)𝑑𝑖2 + (2𝜗1 − 1)𝑑𝑖1] 𝑤𝑖𝑗𝑗′𝑟(1− 𝑞𝑗) if 𝜗1 ≥ 0.5∑︀

𝑖∈𝐼 [(1− 2𝜗1)𝑑𝑖3 + 2𝜗1𝑑𝑖2] (1− 𝑞𝑗) 𝑥𝑖𝑗

+
∑︀

𝑗′∈𝐾+
𝑗

∑︀
𝑖∈𝐼

∑︀
𝑟∈𝑅 [(1− 2𝜗1)𝑑𝑖3 + 2𝜗1𝑑𝑖2] 𝑤𝑖𝑗𝑗′𝑟(1− 𝑞𝑗) if 𝜗1 ≤ 0.5

, 𝑗 ∈ 𝐾 (3.32)

𝑐𝑎𝑝𝑗 ≥

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑︀
𝑖∈𝐼 [(2𝜗2 − 1)𝑑𝑖3 + (2− 2𝜗2)𝑑𝑖2](1− 𝑞𝑗)𝑥𝑖𝑗

+
∑︀

𝑗′∈𝐾+
𝑗

∑︀
𝑖∈𝐼

∑︀
𝑟∈𝑅 [(2𝜗2 − 1)𝑑𝑖3 + (2− 2𝜗2)𝑑𝑖2]𝑤𝑖𝑗𝑗′𝑟(1− 𝑞𝑗) if 𝜗2 ≥ 0.5∑︀

𝑖∈𝐼 [2𝜗2𝑑𝑖2 + (1− 2𝜗2)𝑑𝑖1](1− 𝑞𝑗)𝑥𝑖𝑗

+
∑︀

𝑗′∈𝐾+
𝑗

∑︀
𝑖∈𝐼

∑︀
𝑟∈𝑅 [2𝜗2𝑑𝑖2 + (1− 2𝜗2)𝑑𝑖1]𝑤𝑖𝑗𝑗′𝑟(1− 𝑞𝑗) if 𝜗2 ≥ 0.5

, 𝑗 ∈ 𝐾 (3.33)

𝑤𝑖𝑗𝑗′𝑟 ≤ 𝑝𝑖𝑗𝑗′𝑟 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐾, 𝑗′ ∈ 𝐾−
𝑗 , 𝑟 ∈ 𝑅 (3.34)

𝑤𝑖𝑗𝑗′𝑟 ≤ 𝑦𝑖𝑗𝑗′𝑟 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐾, 𝑗′ ∈ 𝐾−
𝑗 , 𝑟 ∈ 𝑅 (3.35)

𝑤𝑖𝑗𝑗′𝑟 ≥ 0 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐾, 𝑗′ ∈ 𝐾−
𝑗 , 𝑟 ∈ 𝑅 (3.36)

𝑤𝑖𝑗𝑗′𝑟 ≥ 𝑝𝑖𝑗𝑗′𝑟 + 𝑦𝑖𝑗𝑗′𝑟 − 1 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐾, 𝑗′ ∈ 𝐾−
𝑗 , 𝑟 ∈ 𝑅 (3.37)

𝑝𝑖𝑗𝑗′𝑟 = 𝑞𝑗

∑︁
𝑗′∈𝐾+

𝑗

𝑤𝑖𝑗𝑗′(𝑟−1) ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐾, 𝑗′ ∈ 𝐾−
𝑗 , 𝑟 ∈ 𝑅 (3.38)

∑︁
𝑗∈𝐾

⎛⎜⎝𝑡𝑖𝑗𝑥𝑖𝑗 +
∑︁

𝑗′∈𝐾+
𝑗

∑︁
𝑟∈𝑅

𝑡𝑖𝑗𝑗′𝑟𝑤𝑖𝑗𝑗′𝑟

⎞⎟⎠ ≤ 𝑇, ∀𝑖 ∈ 𝐼 (3.39)

𝑤𝑖𝑗𝑗′𝑟 ∈ {0, 1} ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐾, 𝑗′ ∈ 𝐾−
𝑗 , 𝑟 ∈ 𝑅. (3.40)

Constraints (3.34)–(3.37) have been added to the model for linearization. Constraints (3.40) are related to binary
decision variable.

4. Solution method

The proposed model in this study is a mixed-integer nonlinear mathematical model with uncertain parameters.
While we took care of nonlinearity and uncertainty in the previous section and turned the MINLP model to
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a MILP model, solving the transformed model with exact methods is still a computationally expensive task.
Because the remained problem is an NP-hard problem, using heuristic and metaheuristic algorithms seems to
be a reasonable alternative for large instances. Therefore, after defining five numerical examples (one small size,
one medium size, and three large-size instances), a new metaheuristic algorithm named red deer optimizer will
be solved. In order to validate our answers, we will also solve the small and medium-size problems using exact
methods with GAMS software.

4.1. Computation of the reliability of the system

A system’s reliability can be defined as the probability of operating successfully over a specific period. Any
system comprises many units, subsystems, and components arranged and connected in series, parallel or meshed
structure. A set of 𝑛 components is said to be in series (or non-redundant) if the system’s success depends on
the success of all the components. If we assume that the unit failures are independent within the system, then
the reliability and unreliability of a series system would be as follows [8]:

𝑅 = 𝑅1𝑅2 . . . 𝑅𝑛 =
𝑛∏︁

𝑖=1

𝑅𝑖

𝑄 = 1−𝑅 = 1−
𝑛∏︁

𝑖=1

𝑅𝑖 = 1−
𝑛∏︁

𝑖=1

(1−𝑄𝑖)

where 𝑅 and 𝑄 are reliability and unreliability, respectively. On the other hand, a set of components is said to
be parallel (or completely redundant system) if the system can succeed when at least one component succeeds.
The reliability and unreliability of a parallel system with individual units are as follows [19]:

𝑅 = 1− (1−𝑅1)(1−𝑅2) . . . (1−𝑅𝑛) = 1−
𝑛∏︁

𝑖=1

𝑄𝑖

𝑄 =
𝑛∏︁

𝑖=1

𝑄𝑖 =
𝑛∏︁

𝑖=1

(1−𝑅𝑖).

The system in the proposed model follows the parallel system design.

4.2. Red deer algorithm

In this study, due to the high dimensions of location problems, the use of integer and binary variables,
and the problem is NP-hard, the use of exact solution methods leads to an increase in solution time and
consequently causes inefficiency of the proposed model. For this reason, the use of the metaheuristic method
can be a reasonable alternative for large instances and lead to reduced solution time [34]. The RDA method
is one of the new methods that has been introduced in recent years. Based on the results of previous studies,
the proposed RDA can explore areas of promising search and, in most cases, find global solutions. In general,
setting the RDA was simple and could be ordered for various real-world problems. By changing or adjusting the
RDA parameters, the interaction between the in intensification and diversification phases is applied according
to the type and dimensions of the problem [18].

This section will first briefly introduce the red deer algorithm and discuss the equations in this method.
Then, we examine a few numerical examples and the results obtained in the next section and finally analyze
the problem parameters’ sensitivity.

The proposed mathematical model will be solved by a novel metaheuristic algorithm named red deer algo-
rithms. Red Deer algorithm is one the newest and most efficient Darwinian evolutionary algorithms reported
so far [18]. Therefore, we will use this algorithm to solve the joint location-inventory-routing problem for the
real-size problems. The red deer algorithm’s procedure is as follows.
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Figure 3. Flowchart of Red Deer Algorithm.

At first, a set of red deers would generate the initial solutions. The initial red deers have a set of male deers
(stag) and female deers (hind). All red deers will be initialized randomly and better solutions will be tagged as
stags and the others will be hinds. Afterward, there is a roaring step for stags to evaluate their neighbors and try
to move their location to a better position. Then, a portion of the male deers would be selected as commanders,
and after that, each commander would fight with stags randomly to increase its fitness. Like crossover in the
genetic algorithm, the fighting of commander and stag generates two new locations. The commander moves to
the best location among all four locations in the fight (which are the commander’s position itself, the fighting
stag, and two new positions). After that, the Harems should be formed based on the objective function of each
commander. The better objective function commander has, the more hinds would be on his harem. Commander
would mate with a portion of hinds in his harem to generate new solutions. Additionally, he will randomly
choose one other harem and mate, which hinders new solutions. Non-commander deers would also mate with
the nearest hind no matter what harem they are in, in order to generate new solutions. Finally, in selecting the
algorithm to generate new populations, commanders and stages simply go to the next generations and for the
reminder population, which consists of both hinds and new generated solutions, one of the fitness tournaments
or roulette wheel mechanisms can be used. The flowchart of the algorithm can be seen in Figure 3.

There are three forms of operators in this algorithm which are being marked with various colors. Blue
procedures are intensification operators, red procedures are diversification operators, and the green procedure
is for escaping local optimum. We have used the following matrix that shows in Figure 4, representation to use
a solution as a red deer in the algorithm. For 𝐼 number of customers and 𝐽 number of facilities, we have a
((𝐼 + 1), 𝐽) size matrix.

The first row, which only contains binary values, represent whether the 𝑗th facility is open or not (𝑧𝑗). Other
rows, which are a permutation of a number of facilities, show the order in which the customer visits without
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Figure 4. Solution representation in the Red deer algorithm.

Figure 5. Solution representation sample for the Red deer algorithm.

considering that the facility is open or close. For example, for a 2 customer and 5 facility problem, we will have
the representation in Figure 5.

The order in which the customer 𝑖 = 1 will visit facilities is (1−4−2−3−5). But as the facilities 2 and 5 are
not open the order visit of customer 𝑖 = 1 will be (1−4−3). The same thing will be applied for customer 𝑖 = 2
with the facility order of (4−3−1).

Having this representation will help the algorithm to handle a variety of the problem constraints. However,
some of the constraints cannot be covered using this representation. Constraint (3.35) for minimum demand
threshold, constraint (3.38) for facilities’ capacity, and constraint (3.39) for required service level needs to be
taken care of differently in the algorithm. Therefore, we have defined a penalty function that will get value
when one of these three containers is not satisfied. The relation between penalty function and the deviation
from acceptable values of this constraints is exponential. Finally, the algorithm’s fitness function will be the
summation of both the objective function and the penalty function.

As mentioned above, there are three Phases in the red deer algorithm: roaring, fighting, and mating. In the
roaring phase, we generate neighbors using 2-opt algorithm. In this phase, for each male red deer, we set the
facility row as constant and by changing the values of customers’ order two by two, generate new neighbors
and select the best-found neighbor for the new location of the red deer. We generate two new solutions using
RRC crossover (which is being used for binary chromosomes in the genetic algorithm). The best solution found
between two existing answers and two new answers will be the commander’s new location. In the mating phase,
we use RRC crossover for facility row and PMX crossover (which is being used for order-based chromosomes
in the genetic algorithm) for customer rows to generate new offspring. After generating new offspring, the new
generation will be formed using tournament selection.

5. Numerical examples

In this section, we look at five different numerical examples, two of which are discussed in more detail. In
these cases, we used the information published by Iran’s Transport and Fuel Management Organization. This
information, which indicates the amount of fuel demand, the cost of setting up a gas station, etc., have been
used to bring the examples produced closer to the real world.
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Table 2. Test problems’ sizes.

Test problem
number

Test problem
size

Number of
customers (𝐼)

Number of
facilities (𝐽)

1 Small 2 8
2 Medium 3 12
3 Large 3 18
4 Large 4 24
5 Large 5 28

Table 3. Source of randomly generated parameters.

Parameter Ranges (unit) Parameter Ranges (unit)

𝑓𝑗 ∼ 𝑈(1000−2900) ℎ𝑗 ∼ 𝑈(1−4)
𝑞𝑗 ∼ 𝑈(0−1) 𝑇 ∼ 𝑈(350−700)
𝑐𝑎𝑝𝑗 ∼ 𝑈(200−550) 𝜋𝑖 ∼ 𝑈(200−300)
𝑆𝑗 ∼ 𝑈(40−150) 𝑐𝑖𝑗 ∼ 𝑈(5−40)
𝑏𝑗 ∼ 𝑈(100−160) 𝑐𝑖𝑗𝑗′𝑟 ∼ 𝑈(10−400)
𝑣𝑗 ∼ 𝑈(1−2) 𝜗1, 𝜗2 ∼ 𝑈(0.45−0.85)
𝑡𝑖𝑗 ∼ 𝑈(10−300) 𝑡𝑖𝑗𝑗′𝑟 ∼ 𝑈(4−30)
̃︀𝑑𝑖 ∼ 𝑈((150, 200, 250)−(300, 350, 400))

Before turning into the metaheuristic algorithm for solving the problem, we evaluate our proposed model by
calculating the gap between the RDA method results and the exact method with CPLEX solver only for small
and medium-size instances. To understand the accuracy of the RDA method, we use equation (5.1). The gap
shows the difference between the best possible objective and the best-found objective.

𝐺𝑎𝑝 =
best found objective− best possible objective

best possible objective
× 100%. (5.1)

After ensuring the model’s validation, we run the proposed algorithm for all instances, including large-sized
problems. The Table 2 shows the size and characteristics of each test problem. The algorithm was executed on a
laptop, with an Intel(R) Core (TM) i7-8550U CPU @1.80 GHz 1.99 GHz processor and 8 GB RAM of memory.

Table 3 depicts the values of defined parameters in test problems generated randomly, based on uniform
distribution.

In following, the first two instances will be discussed in detail. The first example has two customers and eight
facilities. Initially, each customer must be assigned to a facility. If the customer’s needs are not met, the customer
can refer to the pre-determined facilities to receive the services they want. Finally, in case of disruption in all
facilities, a penalty cost will be added to the systems cost regarding not meeting the demand. The Tables 4–6
show the values of the various parameters such as facility parameters, customer parameters and transportation
parameters in this example 1.

As shown in Figure 6, the second facility is initially assigned to the first customer. However, due to the
occurrence of a disruption in the second facility, refer to the fourth facility, and after the event of a disorder in
the fourth facility, refer to dummy facility (facility 8) then return to its initial location. The customer reference
to the eighth facility shows that the customer demand is not met, and a penalty cost is imposed on the system.

Additionally, the third facility is assigned to the second customer. After having a disruption in the third
facility, the customer refers to the sixth facility, and after receiving services in the sixth facility, returns to its
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Table 4. Facility parameters for test problem 1.

Facilities
Parameters 1 2 3 4 5 6 7 8

𝑓𝑗 1280 1900 1430 2290 1020 1310 1420 1000
𝑞𝑗 1 0.5 0.5 1 1 0 1 0
𝑐𝑎𝑝𝑗 200 500 420 500 340 410 250 200
𝑆𝑗 70 80 90 140 110 120 70 40
𝑏𝑗 110 100 120 150 160 150 130 120
𝑣𝑗 1 2 1.5 2 1 1.5 2 1
ℎ𝑗 2 4 3 4 2 3 2 1

Table 5. Customers parameters for test problem 1.

Customers
Parameters A B

̃︀𝑑𝑖 (203, 210, 218) (266, 280, 293)
𝜋𝑖 200 300

Table 6. Transportation parameters for test problem 1.

𝑐𝑖𝑗 Facility
1

Facility
2

Facility
3

Facility
4

Facility
5

Facility
6

Facility
7

Facility
8

Customer A 20 15 19 20 19 18 12 200
Customer B 18 14 17 20 19 18 13 300

initial location. Failure to apply the customer to the eighth facility indicates that the customer has received the
services they want, and there is no need for a penalty cost.

Figure 7 shows the different costs in the objective function, including the cost of establishing the facility, the
cost of transportation, and the cost of inventory separately.

In the next instance, we look at an example with larger dimensions. The assumptions of the second example
are the same as the first example. In this example, three customers and 12 facilities (along with a dummy
facility) are considered. The results of the numerical example are shown in Figure 8. As shown, Facility 5 is
assigned to the first customer, Facility 3 to the second customer, and Facility 4 to the third customer. The
customer first goes to facility 8 and then to facility 10 due to disruption in facility 5, and returns to the initial
location after receiving his services. The second customer, after the disruption of facility 3, refers to facility 6 to
receive services. Finally, after not receiving services in the facilities allocated to it, customer 3 refers to facility
12 (dummy facility), which imposes a penalty cost on the system.

After verifying and validating our model using the exact method, we have used Red Deer Algorithm to solve
the bigger size problems. To evaluate the accuracy and efficiency of the RDA algorithm we have compared
its results with exact method’s results. As shown in the following Table 7, the gap between the metaheuristic
method and the exact method is promising, which lets us use it for the large size instances.

The results from solving all the defined test problems from Table 2 can be seen in Table 8.
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Figure 6. Results of example 1.

Figure 7. Values of different cost expressions for example 1.
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Figure 8. Results of example 2.

6. Sensitivity analysis and managerial insights

6.1. Sensitivity analysis

To perform the sensitivity analysis, we select five parameters such as the customer demand, capacity of
facilities, disruption probability of facilities, maximum acceptable time threshold for service level, and unit-
demand transportation cost and evaluate their impact on order quantity and objective function that including
the total costs (TTL) such as total fixed cost of establishing the facilities (TFC), total inventory cost (TIC),
total transportation cost (TTC), and total penalty cost (TPC).

The first parameter that is analyzed is the parameter related to the amount of customer demand. This
parameter is essential in all models and issues because all systems worldwide are trying to meet demand. This
section increases the expected value of the demand parameter in each step to examine the effect of changes
related to this parameter on the objective function and various cost types. The results of changes in the demand
parameter are shown in Table 9.

The demand sensitivity analysis of different cost types in the objective function is shown in Figure 9. As
shown, if demand increases, the amount of transportation and inventory will increase. As a result, the costs
associated with them also increase. Also, if demand increases, the need to establish new facilities to meet demand
will increase. Of course, this happens if the facility’s total vacant capacity is less than the increment in demand.
As a result, the cost of establishing a facility is more sensitive to changes in demand than other costs.
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Table 7. Results’ coparison between exact and metaheuristic’s method.

Test
problem
number

Test
problem
size

Opened
facilities
(Exact)

Opened
facilities
(RDA)

Customers’
routing
(Exact)

Customers’
routing
(RDA)

Total cost
(Exact)

Total cost
(RDA)

Gap

1 Small 1–3–7 0–1 [1 3 7]
[3 7 1]

[1 0]
[0 1]

16 240.03 16 457.65 1.34%

2 Medium 4–7–9 0–1–9 [4 7 9]
[7 9 4]
[9 4 7]

[1 9 0]
[9 1 0]
[0 1 9]

19 833.11 20 257.54 2.14%

Table 8. Results’ coparison between exact and metaheuristic’s method.

Test
problem
number

Test
problem
size

Number of
customers
(𝐼)

Number of
facilities
(𝐽)

Opened facilities Customers’
routing

Total cost Facility
construction
costs

Transportation
and penalty
costs

Holding,
ordering and
inventory
costs

1 Small 2 8 0–1 [1 0]
[0 1]

16 457.64 3455 12 288.01 714.64

2 Medium 3 12 0–1–9 [1 9 0]
[9 1 0]
[0 1 9]

20 257.51 5932 13 152.11 1173.42

3 Large 3 18 9–12–14–17 [12 9 14 17]
[9 12 17 14]
[14 17 9 12]

29 076.923 7174 20 395.10 1507.81

4 Large 4 24 1–10–11–20 [20 1 10 11]
[1 10 20 11]
[20 11 1 10]
[10 1 11 20]

29 986.810 8659 19 715.15 1612.65

5 Large 5 28 8–11–15–20–21–24 [20 11 21 24 8 15]
[21 24 20 15 8 11]
[20 24 21 8 11 15]
[15 11 8 20 24 21]
[21 8 11 20 24 15]

50 743.140 11 577 36 704.34 2461.79

The second parameter that is analyzed to examine the effect of its changes on the objective function is the
parameter related to the capacity of the facility. In this step, we increase the value of the parameter in steps.
The results are shown in Table 10.

Different values for different types of costs in exchange for variable variation in facility capacity are shown
in Figure 10. The results show that by increasing the established facilities’ capacity, the system’s total cost
decreases. The cost associated with establishing the facility plays a vital role in reducing total costs. By increasing
the facility’s capacity, a facility can meet the demand of more customers, and the need to establish a new facility
is reduced. Also, as facility capacity increases, inventory, transportation and penalty costs will almost remain
the same.

In the following, we analyze the sensitivity of the disruption probability parameter for facility 𝑗 and its effect
on the objective function and the ordering quantity. The results are shown in Table 11.

The results obtained for the objective function and the order value due to the exchange in the probability
of disruption in facility 𝑗 are shown in Figure 11. As the results show, when the probability of disruption of a
facility increases, transportation costs increase due to customers turning to more facilities to meet their demand.
Also, due to the rise in the probability of disruption, the cost of establishing facilities will increase. On the other
hand, inventory cost will decrease, and penalty cost will increase because customer demand will not be met.
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Table 9. Results of customer demand parameter sensitivity analysis.

Test
number

Rang of fuzzy
demand
parameter

Expected
value
demand

Objective
function

1 210–280 245 5257
2 260–330 295 5583
3 310–380 345 5904
4 360–430 395 6251

Figure 9. Customer demand parameter sensitivity analysis.

Table 10. Results of capacity of facility parameter sensitivity analysis.

Test
number

Rang of
capacity

Average of
capacity

Objective
function

1 200–500 350 5257
2 250–550 400 4334
3 275–575 425 3977
4 300–600 450 3448

Table 11. Results of disruption probability parameter sensitivity analysis.

Test
number

Average of
probability

Objective
function

1 0.1 3041
2 0.3 4148
3 0.5 6158
4 0.7 8354
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Figure 10. Capacity of facility parameter sensitivity analysis.

Figure 11. Disruption probability parameter sensitivity analysis.

As shown in Figure 12, as the probability of disruption in each facility increases, the order quantity in
each facility decreases because it meets fewer customer demands. With an increase in the facility’s disruption
probability, the ordering quantity will decrease because higher disruptions in a facility make the model rely
more on reliable facilities with lower disruptions. In that case, the model will cover demand mostly with reliable
facilities, which causes the demand coverage of unreliable facilities to decrease and, consequently, lower the
ordering quantity value.

The maximum acceptable time threshold for service level is the fourth parameter that is analyzed the effect
of its changes on the objective function. In this step, we increase the value of the parameter in steps. The results
are shown in Table 12.

The results obtained from the change value of the maximum acceptable time threshold for service level on
the objective function are shown in Figure 13. If we want to increase customer satisfaction with the system’s
services, we must reduce the time of service and customer expectations in the network. By reducing the maximum
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Figure 12. Impact of disruption probability parameter on order quantity.

Table 12. Results of maximum acceptable time threshold parameter sensitivity analysis.

Test
number

Rang of
maximum
acceptable
time
threshold

Average of
maximum
acceptable
time
threshold

Objective
function

1 600–700 650 6496
2 500–600 550 5454
3 400–500 450 4330
4 300–400 350 3440

acceptable time for service, the cost of transportation in the system is reduced, and establishing the facility’s
cost is increased so that customers can receive their service in the shortest possible time. Penalty cost is also
reduced.

One of the interesting points in Figure 14 is the correlations between transportation cost and ordering
quantity. More unit-demand transportation costs cause the model to decrease total transportation costs by
reducing transportation units, lowering the number of facilities and even having higher unsatisfied demand and
more shortage cost. Therefore, the ordering quantity will drop due to the effect of unit-demand transportation
on-demand coverage.

6.2. Discussion and managerial insights

Most studies have only focused on the location problem of reliable systems, while this study considers the
inventory problem within the typical reliable facility location problem and proposes a facility joint inventory-
location problem. A minimum service level is considered because of the high importance of customer satisfaction.
Proposing facilities’ capacity and minimum economic demand limit for each facility in the mathematical model
are also some of this research’s contributions. Although most studies in this area have used deterministic
parameters in the proposed model, this parameter is considered a fuzzy number due to demand’s imperfect
information and its uncertain nature. Additionally, few studies used metaheuristics algorithms to solve real-world
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Figure 13. Maximum acceptable time threshold parameter sensitivity analysis.

Figure 14. Impact of unit-demand parameter on order quantity.

size problems. We have taken care of large-size problems by solving the model using a recent metaheuristics
method, the red deer algorithm.

Regarding the results from the first sensitivity analysis (demand parameter), the growth rate of construction
(establishing) cost would be more than the growth rate of penalty costs when the demand increases. This happens
because the model’s defined penalty cost is high, and the model prefers to establish an additional facility instead
of not meeting customers’ demands. A high value for penalty cost was being used in the model. Due to the
new era’s competitive economy and business, all companies are customer-oriented. Therefore, unsatisfying a
customer’s need will cause a huge amount of costs in the long run. Therefore, each business should consider
its future demand and growth over time before constructing its facilities and starting its business. When the
demand exceeds the business’s capacity, they can add more facilities or increase their existing facilities’ capacity.
The same thing can be seen in the fourth sensitivity analysis. As the customers are the most critical stakeholder
for each business, satisfying customers means providing higher and better service levels which causes more
construction costs. If managers aim to acquire more customers, they need to improve service level, which means
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they have to invest more and increase their costs. Therefore, it is rational to calculate the opportunity cost of
this decision first and evaluate whether the added value of acquiring more customers can outweigh the added
cost or not before taking any action.

As suggested by the second sensitivity analysis (capacity of facilities), if we use the second approach, it takes
care of customers’ demands. It decreases the construction of facilities costs, which results in a reduction in total
expenses. As the model suggests, if businesses do not consider increasing their capacity while their demand is
rising, they will face a lot more costs due to unsatisfied customers. Based on the third sensitivity analysis, we
witnessed that having lower disruption rates leads to huge money saving and huge cost reductions. This analysis
definitely will show the importance of preventive maintenance. Although preventive maintenance may sound
like an additional cost for the company, it will reduce costs.

Additionally, this sensitivity analysis suggests that to optimize the costs of the system, managers and decision-
makers should rely more on reliable facilities. If there is an unreliable facility, it is better to reduce its disruptions
before increasing orders cover a high range of customers’ demand. Also, due to the high sensitivity of total costs
to disruption rate changes, it is probably better for management to assign a separate budget to deal with the
disruptions.

The most crucial managerial insight from all these analyses was that managers and leaders should concentrate
more on financial funding to establish new facilities costs than other costs when facing demand uplift.

7. Conclusions

Customers are the most critical stakeholder in each company, and the main goal of all systems and supply
chains is to meet customers’ demand. One of the factors in not meeting these demands is the occurrence of
disruption. This article presented a reliable joint inventory-location problem with round-trip transportation and
imperfect information of disruption consideration. This model’s objective function was to minimize the system’s
total costs, including the cost of establishing the facility, transportation, inventory (holding and ordering costs),
and penalty cost of unmet demand.

In this model, facilities are allocated to customers in advance. As mentioned before, disruption is inevitable, so
the possibility of disruption of the facility is considered beforehand, and these disruptions are site-dependent. As
customers do not have information about the facility’s disruption, in case of disruption in the facility allocated
to the customer, the customers refer to the next facility assigned to them. If any of the facilities do not meet the
customer’s request, the cost will be imposed on the system as a penalty cost. Customers, in the end, whether
they have met their demand or not, will return to their initial location. In the real world, facilities have a
limited and different capacity, which is included in this model. A minimum demand threshold has been set for
each facility establishment, and a minimum service level has been set to take care of customers’ satisfaction.
Demand is also considered as a fuzzy number, and fuzzy programming and linearization methods are being used
to convert the fuzzy MINLP to a crisp ILP.

The model presented in this article is NP-hard. One of the meta-heuristic methods called red deer algorithm
(RDA), has been used to solve the model. In this article, several different numerical examples in different
dimensions are examined. This algorithm is suitable for medium and large-scale. Finally, we investigated the
effect of parameters on the results and sensitivity analysis. One of the sensitivity analysis results was that
customers’ demands should be forecasted in advance before taking any action or constructing any facilities. If
the predicted customers’ demand is underestimated or invalid or the company provides fewer facilities than the
actual demand, the unmet demand’s penalty cost will be higher than other costs. It will negatively affect the
business in the long run. The next important thing which is discussed in the managerial insight part is the
importance of preventive maintenance.

The lack of information on demand also limits the study. Data mining and deep learning algorithms were
being used more often to predict and estimate customers’ needs and demand more accurately in the last decade.

We suggest some directions for future research:
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(1) Develop the model by considering other types of disruption, such as transportation disruption that customer
uses it.

(2) Combining the model presented in this article with other supply chain problems such as pricing, routing,
maintenance.

(3) Considering a queueing-inventory model in the facilities to serve the arrival customers [3, 4].
(4) To tackle the data’s uncertainty issue, introduce the model to other uncertain environments like robust or

probabilistic methods.
(5) Use machine learning and time-series approaches to estimate customers’ demand.

Appendix A.

Linearization

The model is a mixed non-linear integer programming and it is difficult to solve it with commercial solvers,
so after presenting the model, the method for linearization of the model is performed so that it can be easily
solved with the help of commercial solvers like GAMS and LINGO.

According to the model presented in the previous Section 3.4, the expression 𝑝𝑖𝑗𝑗′𝑟×𝑦𝑖𝑗𝑗′𝑟 in objective function
and the constraints has led to the non-linearization of the model of MINLP. Therefore, we linearize the model
with the method.

We assume 𝑌 is a binary variable and 𝑋 is a non-negative continuous variable between 0 to 1 and we define
binary variable 𝑊 as follows:

𝑊 = 𝑋 × 𝑌.

Then we define these constraints:

(1) 𝑊 ≤ 𝑋.
(2) 𝑊 ≤ 𝑌 .
(3) 𝑊 ≥ 𝑋 + 𝑌 − 1.
(4) 𝑊 ≥ 0.

As a result, with the help of the structure presented above, the expression 𝑝𝑖𝑗𝑗′𝑟 × 𝑦𝑖𝑗𝑗′𝑟 can be replaced by
the following expressions:

𝑤𝑖𝑗𝑗′𝑟 = 𝑝𝑖𝑗𝑗′𝑟 × 𝑦𝑖𝑗𝑗′𝑟.

(1) 𝑤𝑖𝑗𝑗′𝑟 ≤ 𝑝𝑖𝑗𝑗′𝑟.
(2) 𝑤𝑖𝑗𝑗′𝑟 ≤ 𝑦𝑖𝑗𝑗′𝑟.
(3) 𝑤𝑖𝑗𝑗′𝑟 ≥ 𝑝𝑖𝑗𝑗′𝑟 + 𝑦𝑖𝑗𝑗′𝑟 − 1.
(4) 𝑤𝑖𝑗𝑗′𝑟 ≥ 0.

Acknowledgements. The authors would like to thank the editor-in-chief and the anonymous reviewers for their valuable
comments and helpful suggestions on a previous draft of this paper to improve its quality. This work was supported by
the Iranian National Science Foundation (91049559).

References

[1] S.R. Abazari, A. Aghsami and M. Rabbani, Prepositioning and distributing relief items in humanitarian logistics with uncertain
parameters. Soc.-Econ. Planning Sci. 74 (2020) 100933.

[2] R. Aboolian, T. Cui and Z.J.M. Shen, An efficient approach for solving reliable facility location models. INFORMS J. Com-
put. 25 (2013) 720–729.

[3] A. Aghsami, Y. Samimi and A. Aghaei, A novel Markovian queueing-inventory model with imperfect production and inspection
processes: a hospital case study. Comput. Ind. Eng. 162 (2021) 107772.

[4] A. Aghsami, Y. Samimi and A. Aghaei, An integrated Markovian queueing-inventory model in a single retailer-single supplier
problem with imperfect quality and destructive testing acceptance sampling. Adv. Ind. Eng. 55 (2021) 367–401.

[5] L. Alfandari, Improved approximation of the general soft-capacitated facility location problem. RAIRO: Oper. Res. 41 (2007)
83–93.



3338 A. ASADI DELIVAND ET AL.

[6] Y. An, B. Zeng, Y. Zhang and L. Zhao, Reliable 𝑝-median facility location problem: two-stage robust models and algo-
rithms. Transp. Res. Part B: Methodol. 64 (2014) 54–72.

[7] J. Asl-Najafi, B. Zahiri, A. Bozorgi-Amiri and A. Taheri-Moghaddam, A dynamic closed-loop location-inventory problem under
disruption risk. Comput. Ind. Eng. 90 (2015) 414–428.

[8] A. Azadeh, M. Sheikhalishahi and A. Aghsami, An integrated FTA-DFMEA approach for reliability analysis and product
configuration considering warranty cost. Prod. Eng. 9 (2015) 635–646.

[9] A. Bakhshi and J. Heydari, An optimal put option contract for a reverse supply chain: case of remanufacturing capacity
uncertainty. Ann. Oper. Res. (2021) 1–24. DOI: 10.1007/s10479-021-04050-y.

[10] R.E. Bellman and L.A. Zadeh, Decision-making in a fuzzy environment. Manage. Sci. 17 (1970) B-141.

[11] I.V. Benedyk, S. Peeta, H. Zheng, Y. Guo and A.V. Iyer, Dynamic model for system-level strategic intermodal facility invest-
ment planning. Transp. Res. Record 2548 (2016) 24–34.

[12] O. Berman, D. Krass and M.B. Menezes, Location and reliability problems on a line: impact of objectives and correlated
failures on optimal location patterns. Omega 41 (2013) 766–779.

[13] D. Chauhan, A. Unnikrishnan and M. Figliozzi, Maximum coverage capacitated facility location problem with range constrained
drones. Transp. Res. Part C: Emerg. Technol. 99 (2019) 1–18.

[14] Q. Chen, X. Li and Y. Ouyang, Joint inventory-location problem under the risk of probabilistic facility disruptions. Transp.
Res. Part B: Methodol. 45 (2011) 991–1003.

[15] T. Cui, Y. Ouyang and Z.J.M. Shen, Reliable facility location design under the risk of disruptions. Oper. Res. 58 (2010)
998–1011.

[16] M.S. Daskin, C.R. Coullard and Z.J.M. Shen, An inventory-location model: formulation, solution algorithm and computational
results. Ann. Oper. Res. 110 (2002) 83–106.

[17] M. Dehghan-Bonari, A. Bakhshi, A. Aghsami and F. Jolai, Green supply chain management through call option contract and
revenue-sharing contract to cope with demand uncertainty. Cleaner Logistics Supply Chain 2 (2021) 100010.

[18] A.M. Fathollahi-Fard, M. Hajiaghaei-Keshteli and R. Tavakkoli-Moghaddam, Red deer algorithm (RDA): a new nature-inspired
meta-heuristic. Soft Comput. 24 (2020) 14637–14665.

[19] M. Gen and R. Cheng, Genetic Algorithm and Engineering Design. John Wiley & Sons, Inc., New York (1997).

[20] J. Heydari and A. Bakhshi, Contracts between an e-retailer and a third party logistics provider to expand home delivery
capacity. Comput. Ind. Eng. 163 (2022) 107763.

[21] A. Hiassat, A. Diabat and I. Rahwan, A genetic algorithm approach for location-inventory-routing problem with perishable
products. J. Manuf. Syst. 42 (2017) 93–103.

[22] M. Inuiguchi and J. Ramık, Possibilistic linear programming: a brief review of fuzzy mathematical programming and a com-
parison with stochastic programming in portfolio selection problem. Fuzzy Sets Syst. 111 (2000) 3–28.

[23] S. Jalali, M. Seifbarghy, J. Sadeghi and S. Ahmadi, Optimizing a bi-objective reliable facility location problem with adapted
stochastic measures using tuned-parameter multi-objective algorithms. Knowl.-Based Syst. 95 (2016) 45–57.
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