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BOUNDS ON THE DISJUNCTIVE DOMINATION NUMBER OF A TREE

Wei Zhuang*

Abstract. A set 𝐷 of vertices in a graph 𝐺 is a disjunctive dominating set in 𝐺 if every vertex not in 𝐷
is adjacent to a vertex of 𝐷 or has at least two vertices in 𝐷 at distance 2 from it in 𝐺. The disjunctive
domination number, 𝛾𝑑

2 (𝐺), of 𝐺 is the minimum cardinality of a disjunctive dominating set in 𝐺. We
show that if 𝑇 is a tree of order 𝑛 with 𝑙 leaves and 𝑠 support vertices, then 𝑛−𝑙+3

4
≤ 𝛾𝑑

2 (𝑇 ) ≤ 𝑛+𝑙+𝑠
4

·
Moreover, we characterize the families of trees which attain these bounds.
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1. Introduction

Let 𝐺 = (𝑉,𝐸) be a simple graph, and 𝑣 be a vertex in 𝐺. The open neighborhood of 𝑣 is 𝑁(𝑣) = {𝑢 ∈
𝑉 |𝑢𝑣 ∈ 𝐸} and the closed neighborhood of 𝑣 is 𝑁 [𝑣] = 𝑁(𝑣)∪{𝑣}. The degree of a vertex 𝑣 is 𝑑(𝑣) = |𝑁(𝑣)|. For
two vertices 𝑢 and 𝑣 in a connected graph 𝐺, the distance 𝑑(𝑢, 𝑣) between 𝑢 and 𝑣 is the length of a shortest
(𝑢, 𝑣)-path in 𝐺. The maximum distance among all pairs of vertices of 𝐺 is the diameter of a graph 𝐺 which
is denoted by 𝑑𝑖𝑎𝑚(𝐺). A leaf of 𝐺 is a vertex of degree 1 and a support vertex of 𝐺 is a vertex adjacent to a
leaf. Denote the sets of leaves and support vertices of 𝐺 by 𝐿(𝑇 ) and 𝑆(𝑇 ), respectively. Let 𝑙(𝑇 ) = |𝐿(𝑇 )| and
𝑠(𝑇 ) = |𝑆(𝑇 )|. A double star is a tree that contains exactly two vertices that are not leaves. A subdivided star
𝐾*

1,𝑡 is a tree obtained from a star 𝐾1,𝑡 on at least two vertices by subdividing each edge exactly once.
A dominating set in a graph 𝐺 is a set 𝑆 of vertices of 𝐺 such that every vertex in 𝑉 (𝐺) ∖ 𝑆 is adjacent

to at least one vertex in 𝑆. The domination number of 𝐺, denoted by 𝛾(𝐺), is the minimum cardinality of a
dominating set of 𝐺. The literature on the subject of domination parameters in graphs up to the year 1997 has
been surveyed and detailed in the two books [5, 6].

Motivated by the concepts of distance domination and exponential domination (see, [1,2,7]), Goddard et al.
[4] introduced and studied the concept of disjunctive domination in a graph. A set 𝑆 of vertices in a graph 𝐺
is a disjunctive dominating set, abbreviated 2𝐷𝐷-set, in 𝐺 if every vertex not in 𝑆 is adjacent to a vertex of 𝑆
or has at least two vertices in 𝑆 at distance 2 from it in 𝐺. We say a vertex 𝑣 in 𝐺 is disjunctively dominated,
abbreviated 2𝐷-dominated, by the set 𝑆, if 𝑁 [𝑣] ∩ 𝑆 ̸= ∅ or there exist at least two vertices in 𝑆 at distance
2 from 𝑣 in 𝐺. The disjunctive domination number of 𝐺, denoted by 𝛾𝑑

2 (𝐺), is the minimum cardinality of a
2𝐷𝐷-set in 𝐺. A disjunctive dominating set of 𝐺 of cardinality 𝛾𝑑

2 (𝐺) is called a 𝛾𝑑
2 (𝐺)-set. If the graph 𝐺 is
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clear from the context, we simply write 𝛾𝑑
2 -set rather than 𝛾𝑑

2 (𝐺)-set. Every dominating set is a 2𝐷𝐷-set. The
concept of disjunctive domination in graphs has been studied in [4, 8–12,18] and elsewhere.

An area of research in domination of graphs that has received considerable attention is to bound various
domination parameters, some related results can be referred to [3, 13–17, 19–24]. In Goddard et al. [4] proved
the following theorem:

Theorem 1.1 ([4]). If 𝐺 is a connected graph with 𝑛 ≥ 5, then 𝛾𝑑
2 (𝐺) ≤ 𝑛−1

2 ·

Moreover, they improved this bound when restrict the connected graph 𝐺 to be a claw-free graph.

Theorem 1.2 ([4]). If 𝐺 is a connected claw-free graph of order 𝑛, then 𝛾𝑑
2 (𝐺) ≤ 2𝑛

5 unless 𝐺 ∈
{𝐾1, 𝑃2, 𝑃4, 𝐶4, 𝐻3}, where 𝐻3 is the graph obtained from 𝐾*

1,3 by adding an edge joining two of these sup-
port vertices.

Our aim in this paper is to improve the bound of Theorem 1.1 when we restrict the graph 𝐺 to be a tree.
More precisely, we give a lower bound and an upper bound for the disjunctive domination number of a tree in
terms of its order, the number of leaves and support vertices in the tree. Further, we provide the constructive
characterization of trees that achieve equality in the two bounds.

2. Main results

We first present the following lemmas, which are helpful for our investgation.

Observation 2.1 ([8]). If 𝑇 is a tree of order at least 3, then we can choose a 𝛾𝑑
2 -set of 𝑇 contains no leaf.

Corollary 2.2. Let 𝑇 be a tree of order at least 3 and 𝐷 be a 𝛾𝑑
2 -set of 𝑇 contains no leaf, if a support vertex

has degree two, then it belongs to 𝐷.

As mentioned above, one of our aim is provide the constructive characterization of trees that achieve equality
in the upper bound and the lower bound. For our purpose, we define a labeling of a tree 𝑇 as a weak partition
𝑆 = (𝑆𝐴, 𝑆𝐵 , 𝑆𝐶 , 𝑆𝐷) of 𝑉 (𝑇 ) (Some of the subsets may be empty). We will refer to the pair (𝑇, 𝑆) as a labeled
tree. The label or status of a vertex 𝑣, denoted sta(𝑣), is the letter 𝑥 ∈ {𝐴, 𝐵,𝐶, 𝐷} such that 𝑣 ∈ 𝑆𝑥. Next,
we ready to give two families T1 and T2, each member of T1 (T2, respectively) is obtained from the labeled
tree (𝑃3, 𝑆

′) ((𝑃4, 𝑆
′′), respectively) by a series of operations (see Figs. 1a and 1b). Before this, we give two

definitions. If a labeled tree (𝑇, 𝑆) ∈ T2, the path 𝑃4 (which comes from the labeled tree (𝑃4, 𝑆
′′)) is an induced

path of 𝑇 , and we call it the basic path of 𝑇 . For a vertex 𝑣 ̸∈ 𝑆(𝑇 ), which has status 𝐴 and does not belong to
the basic path, if there exists a vertex 𝑢 such that 𝑣𝑣1𝑣2𝑢 is an induced path of 𝑇 and sta(𝑣1) = 𝐶, sta(𝑣2) = 𝐷,
sta(𝑢) = 𝐵, we call 𝑢 a corresponding vertex of 𝑣. In addition, for a vertex 𝑢, which has status 𝐵, if there exists
a vertex 𝑣 such that 𝑣𝑣1𝑣2𝑢 is an induced path of 𝑇 and sta(𝑣) = 𝐴, sta(𝑣1) = 𝐶, sta(𝑣2) = 𝐷, we also call 𝑣 a
corresponding vertex of 𝑢.

In what follows, we give four operations as follows:

Operation. O1: Let 𝑣 be a vertex with sta(𝑣) = 𝐴. Add a vertex 𝑢 and the edge 𝑢𝑣. Let sta(𝑢) = 𝐶.
Operation. O2: Let 𝑣 be a vertex with sta(𝑣) = 𝐵 that has a corresponding vertex of degree two. Add a path

𝑢1𝑢2 and the edge 𝑢1𝑣. Let sta(𝑢1) = 𝐴, sta(𝑢2) = 𝐶.
Operation. O3: Let 𝑣 be a vertex with sta(𝑣) = 𝐶 that has degree one. Add a path 𝑢1𝑢2𝑢3𝑢4 and the edge

𝑢1𝑣. Let sta(𝑢1) = 𝐷, sta(𝑢2) = 𝐵, sta(𝑢3) = 𝐴, sta(𝑢4) = 𝐶.
Operation. O4: Let 𝑣 be a vertex not in the basic path that has status 𝐴 and has a corresponding vertex of

degree two. Add a path 𝑢1𝑢2 and the edge 𝑢1𝑣. Let sta(𝑢1) = 𝐴, sta(𝑢2) = 𝐶.
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Figure 1. Two labeled trees and four operations.

The four operations O1, O2, O3 and O4 are illustrated in Figures 1c–1f.
Let T1 be the minimum family of labeled trees that: (i) contains (𝑃3, 𝑆

′) and 𝑆′ is the labeling that assigns
to the two leaves of the path 𝑃3 status 𝐶, and the central vertex status 𝐴; and (ii) is closed under the two
operations O1 and O3 that are listed as above, which extend the tree 𝑇 ′ to a tree 𝑇 by attaching a tree to the
vertex 𝑣 ∈ 𝑉 (𝑇 ′).

Let T2 be the minimum family of labeled trees that: (i) contains (𝑃4, 𝑆
′′) where 𝑆′′ is the labeling that assigns

to the two leaves of the path 𝑃4 status 𝐶, and the remaining vertices status 𝐴; and (ii) is closed under the three
operations O2, O3 and O4 that are listed as above, which extend the tree 𝑇 ′ to a tree 𝑇 by attaching a tree to
the vertex 𝑣 ∈ 𝑉 (𝑇 ′).

Let (𝑇, 𝑆) ∈ T1 (T2, respectively) be a labeled tree for some labeling 𝑆. Then there is a sequence of labeled
trees (𝑇0, 𝑆0), (𝑇1, 𝑆1), · · · , (𝑇𝑘−1, 𝑆𝑘−1), (𝑇𝑘, 𝑆𝑘) such that (𝑇0, 𝑆0) = (𝑃3, 𝑆

′) (or (𝑃4, 𝑆
′′)), (𝑇𝑘, 𝑆𝑘) = (𝑇, 𝑆).

The labeled tree (𝑇𝑖, 𝑆𝑖) can be obtained from (𝑇𝑖−1, 𝑆𝑖−1) by one of the operations O1 and O3 (O2, O3 and O4,
respectively), where 𝑖 ∈ {1, 2, · · · , 𝑘}. We call the number of terms in such a sequence of labeled trees that is
used to construct (𝑇, 𝑆), the length of the sequence. Clearly, the above sequence has length 𝑘. We remark that
a sequence of labeled trees used to construct (𝑇, 𝑆) is not necessarily unique.

Two main conclusions of our paper are listed as follows.

Theorem 2.3. If 𝑇 is a nontrivial tree of order 𝑛(𝑇 ) with 𝑙(𝑇 ) leaves, then 𝛾𝑑
2 (𝑇 ) ≥ 𝑛(𝑇 )−𝑙(𝑇 )+3

4 , with equality
if and only if (𝑇, 𝑆) ∈ T1 for some labeling 𝑆.

Theorem 2.4. If 𝑇 is a nontrivial tree of order 𝑛(𝑇 ) with 𝑙(𝑇 ) leaves and 𝑠(𝑇 ) support vertices, then 𝛾𝑑
2 (𝑇 ) ≤

𝑛(𝑇 )+𝑙(𝑇 )+𝑠(𝑇 )
4 , with equality if and only if (𝑇, 𝑆) ∈ T2 for some labeling 𝑆.

Next, we take some examples to make it easier for reader to understand the families T1, T2 and Theo-
rems 2.3 and 2.4. In Figure 2a, by a simple calculation, we have that 𝛾𝑑

2 (𝑇 ) = 2 = 𝑛(𝑇 )−𝑙(𝑇 )+3
4 . And moreover, it

is easy to see that (𝑇1, 𝑆
′
1) is obtained from (𝑃3, 𝑆

′) by operation O1, (𝑇2, 𝑆
′
2) is obtained from (𝑇1, 𝑆

′
1) by opera-

tion O3, (𝑇, 𝑆′3) is obtained from (𝑇2, 𝑆
′
2) by operation O1. It follows from the definition of T1 that (𝑇, 𝑆′3) ∈ T1.
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Figure 2. Two simple examples.

In Figure 2b, by a simple calculation, we have that 𝛾𝑑
2 (𝑇 ′) = 6 = 𝑛(𝑇 )+𝑙(𝑇 )+𝑠(𝑇 )

4 . And moreover, it is easy to
see that (𝑇 ′1, 𝑆

′′
1 ) is obtained from (𝑃4, 𝑆

′′) by operation O3, (𝑇 ′2, 𝑆
′′
2 ) is obtained from (𝑇 ′1, 𝑆

′′
1 ) by operation O2,

(𝑇 ′3, 𝑆
′′
3 ) is obtained from (𝑇 ′2, 𝑆

′′
2 ) by operation O4 and (𝑇 ′, 𝑆′′4 ) is obtained from (𝑇 ′3, 𝑆

′′
3 ) by operation O3. It

follows from the definition of T2 that (𝑇 ′, 𝑆′′4 ) ∈ T2.
Furthermore, we can slightly improve the upper bound of Theorem 2.4.

Corollary 2.5. If 𝑇 is a nontrivial tree of order 𝑛(𝑇 ) with 𝑙(𝑇 ) leaves and 𝑠(𝑇 ) support vertices, then 𝛾𝑑
2 (𝑇 ) ≤

𝑛(𝑇 )+3𝑠(𝑇 )−𝑙(𝑇 )
4 .

Proof. Let 𝑇 ′ be the tree obtained from 𝑇 by deleting all but one leaf from each support vertex of 𝑇 . Then,
𝑛(𝑇 ′) = 𝑛(𝑇 ) − [𝑙(𝑇 ) − 𝑠(𝑇 )], 𝑠(𝑇 ′) = 𝑠(𝑇 ), 𝑙(𝑇 ′) = 𝑠(𝑇 ) and 𝛾𝑑

2 (𝑇 ) = 𝛾𝑑
2 (𝑇 ′). By Theorem 2.4, we have that

𝛾𝑑
2 (𝑇 ) = 𝛾𝑑

2 (𝑇 ′) ≤ 𝑛(𝑇 ′)+𝑙(𝑇 ′)+𝑠(𝑇 ′)
4 = 𝑛(𝑇 )−[𝑙(𝑇 )−𝑠(𝑇 )]+2𝑠(𝑇 )]

4 = 𝑛(𝑇 )+3𝑠(𝑇 )−𝑙(𝑇 )
4 · �
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We conclude this section by comparing the bound of Theorem 1.1 with the bound of Corollary 2.5. We see
that 𝑛(𝑇 )+3𝑠(𝑇 )−𝑙(𝑇 )

4 < 𝑛(𝑇 )−1
2 when 𝑛(𝑇 ) > 3𝑠(𝑇 )− 𝑙(𝑇 ) + 2. It implies that for almost all trees, the bound of

Corollary 2.5 is better than that of Theorem 1.1.

3. Proof of Theorem 2.3

The following observation establishes properties of trees in the family T1.

Observation 3.1. If (𝑇, 𝑆) ∈ T1, then (𝑇, 𝑆) has the following properties.

(a) Every support vertex of 𝑇 has status 𝐴 and every leaf has status 𝐶.
(b) Let 𝑣 be a vertex has status 𝐴, then sta(𝑢) ∈ {𝐵, 𝐶} for 𝑢 ∈ 𝑁(𝑣).
(c) The set 𝑆𝐴 is a 2𝐷𝐷-set of 𝑇 .
(d) The set 𝑆𝐴, 𝑆𝐵, 𝑆𝐶 and 𝑆𝐷 are independent sets.
(e) If sta(𝑣) ̸= 𝐴, then 𝑑(𝑣) ≤ 2.

Lemma 3.2. If 𝑇 is a tree of order 𝑛(𝑇 ) ≥ 3 with 𝑙(𝑇 ) leaves, and (𝑇, 𝑆) ∈ T1 for some labeling 𝑆, then
𝛾𝑑
2 (𝑇 ) = |𝑆𝐴| = 𝑛(𝑇 )−𝑙(𝑇 )+3

4 , and the set 𝑆𝐴 is the unique 𝛾𝑑
2 -set of 𝑇 .

Proof. We proceed by induction on the length 𝑘 of a sequence required to construct the labeled tree (𝑇, 𝑆). Let
𝐷 be any 𝛾𝑑

2 -set of 𝑇 .
When 𝑘 = 0, (𝑇, 𝑆) = (𝑃3, 𝑆

′), 𝛾𝑑
2 (𝑇 ) = |𝑆𝐴| = 1, the set 𝑆𝐴 is the unique 𝛾𝑑

2 -set of 𝑇 . This establishes
the base case. Let 𝑘 ≥ 1 and assume that if the length of sequence used to construct a labeled tree (𝑇 ′, 𝑆*) ∈
T1 is less than 𝑘, then 𝛾𝑑

2 (𝑇 ′) = |𝑆*𝐴| = 𝑛(𝑇 ′)−𝑙(𝑇 ′)+3
4 , 𝑆*𝐴 is the unique 𝛾𝑑

2 -set of 𝑇 ′. Now, (𝑇, 𝑆) ∈ T1

and let (𝑇0, 𝑆0), (𝑇1, 𝑆1), · · · , (𝑇𝑘−1, 𝑆𝑘−1), (𝑇𝑘, 𝑆𝑘) be a sequence of length 𝑘 used to construct (𝑇, 𝑆), where
(𝑇0, 𝑆0) = (𝑃3, 𝑆

′), (𝑇𝑘, 𝑆𝑘) = (𝑇, 𝑆), (𝑇𝑖, 𝑆𝑖) can be obtained from (𝑇𝑖−1, 𝑆𝑖−1) by one of the operations O1

and O3, 𝑖 ∈ {1, 2, · · · , 𝑘}. Let 𝑇 ′ = 𝑇𝑘−1 and 𝑆* = 𝑆𝑘−1. Note that (𝑇 ′, 𝑆*) ∈ T1. By the inductive hypothesis,
𝛾𝑑
2 (𝑇 ′) = |𝑆*𝐴| = 𝑛(𝑇 ′)−𝑙(𝑇 ′)+3

4 , 𝑆*𝐴 is the unique 𝛾𝑑
2 -set of 𝑇 ′. (𝑇, 𝑆) can be obtained from (𝑇 ′, 𝑆*) by operation

O1 or O3.
In the former case, we have that 𝑛(𝑇 ) = 𝑛(𝑇 ′)+1, 𝑙(𝑇 ) = 𝑙(𝑇 ′)+1, and |𝑆𝐴| = |𝑆*𝐴|. It follows Observation 3.1c

that 𝛾𝑑
2 (𝑇 ) ≤ |𝑆𝐴| = |𝑆*𝐴| = 𝑛(𝑇 ′)−𝑙(𝑇 ′)+3

4 = 𝑛(𝑇 )−1−𝑙(𝑇 )+1+3
4 = 𝑛(𝑇 )−𝑙(𝑇 )+3

4 . On the other hand, assume that
𝑉 (𝑇 ) ∖ 𝑉 (𝑇 ′) = {𝑢}, and 𝑣 is the support vertex of 𝑢. Take a set 𝐷′ = (𝐷 ∖ (𝐿(𝑇 ) ∩ 𝑁(𝑣))) ∪ {𝑣} when
(𝐿(𝑇 ) ∩ 𝑁(𝑣)) ∩ 𝐷 ̸= ∅, otherwise, 𝐷′ = 𝐷. 𝐷′ is a 2𝐷𝐷-set of 𝑇 ′. That is, 𝛾𝑑

2 (𝑇 ) ≥ 𝛾𝑑
2 (𝑇 ′) = |𝑆*𝐴| = |𝑆𝐴|.

In summary, 𝛾𝑑
2 (𝑇 ) = |𝑆𝐴| = 𝑛(𝑇 )−𝑙(𝑇 )+3

4 . By the inductive hypothesis, 𝑆*𝐴 is the unique 𝛾𝑑
2 -set of 𝑇 ′. Hence,

𝐷′ = 𝑆*𝐴. In addition, if 𝑢 ∈ 𝐷, then 𝑣 ̸∈ 𝐷. It follows from (𝑇, 𝑆) ∈ T1 and Observations 3.1a and 3.1b
that 𝑣 has status 𝐴, and the non-leaf neighbor of 𝑣, say 𝑤, has status 𝐵 or 𝐶. From the choice of 𝐷′ and
𝐷′ = 𝑆*𝐴, 𝑢 is the unique vertex in 𝐷 which is within distance two from 𝑤. It conclude that 𝑤 is not 2𝐷-
dominated by 𝐷, a contradiction. Therefore, 𝑢 ̸∈ 𝐷. Similarly, all leaf-neighbors of 𝑣 do not belong to 𝐷, and
then 𝐷 = 𝐷′ = 𝑆*𝐴 = 𝑆𝐴.

In the latter case, the tree 𝑇 obtained from 𝑇 ′ by attaching a path 𝑃4 = 𝑢1𝑢2𝑢3𝑢4 to a leaf 𝑣 of 𝑇 ′, where 𝑢4

is a leaf in 𝑇 . We have that 𝑛(𝑇 ) = 𝑛(𝑇 ′) + 4, 𝑙(𝑇 ) = 𝑙(𝑇 ′) and |𝑆𝐴| = |𝑆*𝐴|+ 1. It follows Observation 3.1c that
𝛾𝑑
2 (𝑇 ) ≤ |𝑆𝐴| = |𝑆*𝐴| + 1 = 𝑛(𝑇 ′)−𝑙(𝑇 ′)+3

4 + 1 = 𝑛(𝑇 )−4−𝑙(𝑇 )+3
4 + 1 = 𝑛(𝑇 )−𝑙(𝑇 )+3

4 . Let 𝐷′ = (𝐷 ∖ {𝑢4}) ∪ {𝑢3}
when 𝑢4 ∈ 𝐷 and 𝐷′ = 𝐷 when 𝑢4 ̸∈ 𝐷, 𝐷′′ = (𝐷′ ∖ {𝑢1, 𝑢2}) ∪ {𝑣} when 𝑢1 or 𝑢2 belong to 𝐷′, otherwise,
𝐷′′ = 𝐷′. Then 𝑢3 ∈ 𝐷 and 𝐷′′ ∖ {𝑢3} is a 2𝐷𝐷-set of 𝑇 ′. That is, 𝛾𝑑

2 (𝑇 ) − 1 ≥ 𝛾𝑑
2 (𝑇 ′) = |𝑆*𝐴| = |𝑆𝐴| − 1.

In summary, 𝛾𝑑
2 (𝑇 ) = |𝑆𝐴| = 𝑛(𝑇 )−𝑙(𝑇 )+3

4 . By the inductive hypothesis, 𝑆*𝐴 is the unique 𝛾𝑑
2 -set of 𝑇 ′. Hence,

𝐷′′∖{𝑢3} = 𝑆*𝐴. If |{𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑣}∩𝐷| ≥ 2, the set (𝐷∖{𝑢1, 𝑢2, 𝑢3, 𝑢4})∪{𝑣} is a 2𝐷𝐷-set of 𝑇 ′. More precisely,
(𝐷 ∖ {𝑢1, 𝑢2, 𝑢3, 𝑢4})∪{𝑣} is a 𝛾𝑑

2 -set of 𝑇 ′. By the uniqueness of 𝛾𝑑
2 -set of 𝑇 ′, (𝐷 ∖ {𝑢1, 𝑢2, 𝑢3, 𝑢4})∪{𝑣} = 𝑆*𝐴,

a contradiction. Hence, |{𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑣} ∩𝐷| = 1. It implies that {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑣} ∩𝐷 = {𝑢3}. It is easy to
see that 𝐷 ∖ {𝑢3} is a 𝛾𝑑

2 -set of 𝑇 ′. By the uniqueness of 𝛾𝑑
2 -set of 𝑇 ′, 𝐷 ∖ {𝑢3} = 𝑆*𝐴. So, 𝐷 = 𝑆𝐴. �
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In what follows, we begin to prove Theorem 2.3.

Proof. The sufficiency follows immediately from Lemma 3.2. So we prove the necessity only. If 𝑑𝑖𝑎𝑚(𝑇 ) ≤ 2,
𝑇 is a star, 𝛾𝑑

2 (𝑇 ) = 1 ≥ 𝑛(𝑇 )−𝑙(𝑇 )+3
4 . Suppose that 𝛾𝑑

2 (𝑇 ) = 𝑛(𝑇 )−𝑙(𝑇 )+3
4 , it is easy to see that there exists

a labeling 𝑆 of the vertices of 𝑇 such that (𝑇, 𝑆) can be obtained from (𝑃3, 𝑆
′) by repeated applications of

operation O1. Hence, (𝑇, 𝑆) ∈ T1. If 𝑑𝑖𝑎𝑚(𝑇 ) = 3, 𝑇 is a double star, and then 𝛾𝑑
2 (𝑇 ) = 2 > 𝑛(𝑇 )−𝑙(𝑇 )+3

4 . So,
we assume that 𝑑𝑖𝑎𝑚(𝑇 ) ≥ 4. The proof is by induction on 𝑛(𝑇 ). The result is immediate for 𝑛(𝑇 ) ≤ 5. For the
inductive hypothesis, let 𝑛(𝑇 ) ≥ 6. Assume that for every nontrivial tree 𝑇 ′ of order less than 𝑛(𝑇 ), we have
that 𝛾𝑑

2 (𝑇 ′) ≥ 𝑛(𝑇 ′)−𝑙(𝑇 ′)+3
4 , with equality only if (𝑇 ′, 𝑆*) ∈ T1 for some labeling 𝑆*.

Let 𝐷 be a 𝛾𝑑
2 -set of 𝑇 which contains no leaf and 𝑃 = 𝑣1𝑣2 · · · 𝑣𝑡 be a longest path in 𝑇 such that 𝑑(𝑣3) as

large as possible.
We now proceed with a series of claims that we may assume are satisfied by the tree 𝑇 , for otherwise the

desired result holds.

Claim 3.3. Each support vertex in 𝑇 has exactly one leaf-neighbor.
If not, assume that there is a support vertex 𝑢 which is adjacent to at least two leaves. Deleting one of its

leaf-neighbors, say 𝑢1, and denote the resulting tree by 𝑇 ′. Observe that 𝑛(𝑇 ) = 𝑛(𝑇 ′) + 1, 𝑙(𝑇 ) = 𝑙(𝑇 ′) + 1 and
𝐷 is still a 2𝐷𝐷-set of 𝑇 ′. That is, 𝛾𝑑

2 (𝑇 ) ≥ 𝛾𝑑
2 (𝑇 ′) ≥ 𝑛(𝑇 ′)−𝑙(𝑇 ′)+3

4 = 𝑛(𝑇 )−1−𝑙(𝑇 )+1+3
4 = 𝑛(𝑇 )−𝑙(𝑇 )+3

4 .
In particular, if 𝛾𝑑

2 (𝑇 ) = 𝑛(𝑇 )−𝑙(𝑇 )+3
4 , then 𝛾𝑑

2 (𝑇 ′) = 𝑛(𝑇 ′)−𝑙(𝑇 ′)+3
4 . It means that (𝑇 ′, 𝑆*) ∈ T1 for some

labeling 𝑆*. By Observation 3.1a, 𝑢 has status 𝐴. Let 𝑆 be obtained from 𝑆* by labeling 𝑢1 with label 𝐶. Then
(𝑇, 𝑆) can be obtained from (𝑇 ′, 𝑆*) by operation O1. Thus, (𝑇, 𝑆) ∈ T1.

�

By Claim 3.3, we can assume that 𝑑(𝑣2) = 2. And by Corollary 2.2, 𝑣2 ∈ 𝐷. Now, we consider the vertex 𝑣3.

Claim 3.4. 𝑑(𝑣3) = 2.
Suppose that 𝑑(𝑣3) ≥ 3. If 𝑣3 ∈ 𝐷, let 𝑇 ′ = 𝑇 − {𝑣1, 𝑣2}. Clearly, 𝐷 ∖ {𝑣2} is a 2𝐷𝐷-set of 𝑇 ′. Note that

𝑛(𝑇 ) = 𝑛(𝑇 ′) + 2, 𝑙(𝑇 ) = 𝑙(𝑇 ′) + 1, then 𝛾𝑑
2 (𝑇 ) ≥ 𝛾𝑑

2 (𝑇 ′) + 1 ≥ 𝑛(𝑇 ′)−𝑙(𝑇 ′)+3
4 + 1 = 𝑛(𝑇 )−2−𝑙(𝑇 )+1+3

4 + 1 >
𝑛(𝑇 )−𝑙(𝑇 )+3

4 . So we assume that 𝑣3 ̸∈ 𝐷. If 𝑣3 is adjacent to a support vertex outside 𝑃 , say 𝑣′2. It follows
from Claim 3.3 and Corollary 2.2 that 𝑣′2 ∈ 𝐷. Moreover, (𝐷 ∖ {𝑣2, 𝑣

′
2}) ∪ {𝑣3} is a 2𝐷𝐷-set of the tree 𝑇 ′

obtained from 𝑇 by removing all leaf-neighbors of 𝑣2 and 𝑣′2. Hence, 𝛾𝑑
2 (𝑇 ) ≥ 𝛾𝑑

2 (𝑇 ′) + 1 ≥ 𝑛(𝑇 ′)−𝑙(𝑇 ′)+3
4 + 1 =

𝑛(𝑇 )−2−𝑙(𝑇 )+3
4 + 1 > 𝑛(𝑇 )−𝑙(𝑇 )+3

4 . Combining the assumption that 𝑑(𝑣3) ≥ 3, 𝑣3 is a support vertex of degree
three of 𝑇 . We remove its leaf-neighbor, say 𝑢, and 𝐷 is still a 2𝐷𝐷-set of the resulting tree 𝑇 ′ from 𝑢 ̸∈ 𝐷.
Hence, 𝛾𝑑

2 (𝑇 ) ≥ 𝛾𝑑
2 (𝑇 ′) ≥ 𝑛(𝑇 ′)−𝑙(𝑇 ′)+3

4 = 𝑛(𝑇 )−𝑙(𝑇 )+3
4 . We show that in fact 𝛾𝑑

2 (𝑇 ) > 𝑛(𝑇 )−𝑙(𝑇 )+3
4 . Suppose

to the contrary that 𝛾𝑑
2 (𝑇 ) = 𝑛(𝑇 )−𝑙(𝑇 )+3

4 . Then we have equality throughout the above inequality chain. In
particular, 𝛾𝑑

2 (𝑇 ) = 𝛾𝑑
2 (𝑇 ′) = 𝑛(𝑇 ′)−𝑙(𝑇 ′)+3

4 . By the inductive hypothesis, (𝑇 ′, 𝑆*) ∈ T1 for some labeling 𝑆*. By
Observations 3.1a and 3.1b, the vertex 𝑣3 has status 𝐵 or 𝐶 in 𝑆*. Since 𝐷 contains no leaf, 𝐷 is also a 𝛾𝑑

2 -set
of 𝑇 ′. On the other hand, by Lemma 3.2, 𝑆*𝐴 is the unique 𝛾𝑑

2 -set of 𝑇 ′. So, 𝐷 = 𝑆*𝐴. It implies that 𝑢 can not
be 2𝐷-dominated by 𝐷, a contradiction.

Claim 3.5. 𝑑(𝑣4) = 2.
Assume that 𝑑(𝑣4) ≥ 3 and 𝑣′3 is a neighbor of 𝑣4 outside 𝑃 . From Claim 3.3 and the choice of 𝑃 , one of the

three cases as following holds:

(1) 𝑣′3 is adjacent to a support vertex, say 𝑣′2, where 𝑣′2 and 𝑣′3 have degree two;
(2) 𝑣′3 is a support vertex of degree two in 𝑇 ;
(3) 𝑣′3 is a leaf.

In the first case, let 𝑇 ′ be a tree obtained from 𝑇 by removing 𝑣1, 𝑣2, 𝑣3 and the leaf-neighbor of 𝑣′2. We have
that 𝑛(𝑇 ) = 𝑛(𝑇 ′)+4, 𝑙(𝑇 ) = 𝑙(𝑇 ′)+1 and 𝛾𝑑

2 (𝑇 ′) ≤ 𝛾𝑑
2 (𝑇 )−1. In the latter two cases, let 𝑇 ′ = 𝑇 −{𝑣1, 𝑣2, 𝑣3}.

We have that 𝑛(𝑇 ) = 𝑛(𝑇 ′) + 3, 𝑙(𝑇 ) = 𝑙(𝑇 ′) + 1 and 𝛾𝑑
2 (𝑇 ′) ≤ 𝛾𝑑

2 (𝑇 ) − 1. In either case, we always have
𝛾𝑑
2 (𝑇 ) > 𝑛(𝑇 )−𝑙(𝑇 )+3

4 by an argument similar to the proof of Claim 3.4. �
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Let 𝑇 ′ = 𝑇 − {𝑣1, 𝑣2, 𝑣3, 𝑣4}. Note that 𝑛(𝑇 ) = 𝑛(𝑇 ′) + 4, 𝛾𝑑
2 (𝑇 ′) ≤ 𝛾𝑑

2 (𝑇 )− 1. In addition, 𝑙(𝑇 ) = 𝑙(𝑇 ′) + 1
when 𝑑(𝑣5) ≥ 3, and 𝑙(𝑇 ) = 𝑙(𝑇 ′) when 𝑑(𝑣5) = 2. Hence, we always have that 𝛾𝑑

2 (𝑇 ) ≥ 𝛾𝑑
2 (𝑇 ′) + 1 ≥

𝑛(𝑇 ′)−𝑙(𝑇 ′)+3
4 + 1 ≥ 𝑛(𝑇 )−4−𝑙(𝑇 )+3

4 + 1 = 𝑛(𝑇 )−𝑙(𝑇 )+3
4 . Suppose that 𝛾𝑑

2 (𝑇 ) = 𝑛(𝑇 )−𝑙(𝑇 )+3
4 , then we have equality

throughout the above inequality chain. In particular, 𝑑(𝑣5) = 2 and 𝛾𝑑
2 (𝑇 )− 1 = 𝛾𝑑

2 (𝑇 ′) = 𝑛(𝑇 ′)−𝑙(𝑇 ′)+3
4 . By the

inductive hypothesis, (𝑇 ′, 𝑆*) ∈ T1 for some labeling 𝑆*. Since 𝑣5 is a leaf in 𝑇 ′, by Observation 3.1a, it has
status 𝐶. Let 𝑆 be obtained from the labeling 𝑆* by labeling the vertices 𝑣1, 𝑣2, 𝑣3, 𝑣4 with label 𝐶, 𝐴,𝐵, 𝐷,
respectively. Then, (𝑇, 𝑆) can be obtained from (𝑇 ′, 𝑆*) by operation O3. Thus, (𝑇, 𝑆) ∈ T1.

4. Proof of Theorem 2.4

The following observation establishes properties of trees in the family T2.

Observation 4.1. If (𝑇, 𝑆) ∈ T2, then (𝑇, 𝑆) has the following properties.

(a) Every support vertex of 𝑇 has status 𝐴 and every leaf has status 𝐶.
(b) The set 𝑆𝐴 is a 2𝐷𝐷-set of 𝑇 .
(c) Let 𝑣 be a vertex which has status 𝐴 or 𝐵, 𝑣 has at most one corresponding vertex. In particular, if there

is no corresponding vertex of degree two of 𝑣 in 𝑇 , then 𝑑(𝑣) = 2.
(d) If 𝑣 is a support vertex, then 𝑣 has degree two.
(e) Let 𝑣 be a vertex of degree two which has status 𝐶, then it is adjacent to two vertices, say 𝑢 and 𝑤, which

are labeled 𝐴 and 𝐷, respectively. In particular, if 𝑑(𝑢) = 2, the component of 𝑇 − 𝑣𝑤 containing 𝑣, say 𝑇 ′,
containing the basic path of 𝑇 , and (𝑇 ′, 𝑆*) ∈ T2 for some labeling 𝑆*.

Lemma 4.2. Let 𝑇 be a tree and 𝑆 be a labeling of 𝑇 such that (𝑇, 𝑆) ∈ T2. Then, 𝛾𝑑
2 (𝑇 ) = 𝑛(𝑇 )+𝑠(𝑇 )+𝑙(𝑇 )

4 .

Proof. By Observation 4.1b, 𝑆𝐴 is a 2𝐷𝐷-set of 𝑇 and 𝑆𝐴 = 𝑛(𝑇 )+𝑠(𝑇 )+𝑙(𝑇 )
4 (We can obtain this conclusion by

induction on 𝑛(𝑇 ), it is similar to the proof of Lemma 3.2, so we omit it). So, 𝛾𝑑
2 (𝑇 ) ≤ 𝑛(𝑇 )+𝑠(𝑇 )+𝑙(𝑇 )

4 . Since
(𝑇, 𝑆) ∈ T2, 𝑇 = 𝑃4 when 𝑛 ≤ 4, and 𝛾𝑑

2 (𝑇 ) = 2 = 𝑛(𝑇 )+𝑠(𝑇 )+𝑙(𝑇 )
4 . So, we assume that 𝑛(𝑇 ) ≥ 5. Combining

the definition of T2, we have that 𝑑𝑖𝑎𝑚(𝑇 ) ≥ 7. Suppose that 𝑇 is a tree with minimum order which satisfy the
two properties:

(1) (𝑇, 𝑆) ∈ T2;
(2) 𝛾𝑑

2 (𝑇 ) < 𝑛(𝑇 )+𝑠(𝑇 )+𝑙(𝑇 )
4 .

Let 𝐷 be a 𝛾𝑑
2 -set of 𝑇 which contains no leaf, 𝑢1𝑢2𝑢3𝑢4 be the basic path of 𝑇 , and 𝑣1 be a leaf of 𝑇 that

at maximum distance from 𝑢2, let 𝑃 = 𝑣1𝑣2𝑣3 · · · 𝑣𝑡𝑢2 be the path between 𝑣1 and 𝑢2. Note that 𝑣𝑡 = 𝑢1 or 𝑢3.
It follows from (𝑇, 𝑆) ∈ T2 and Observation 4.1d that 𝑑(𝑣2) = 2 and 𝑣1, 𝑣2 have status 𝐶, 𝐴, respectively. And
moreover, by the definition of T2, 𝑣3 has status 𝐴 or 𝐵.

In the form case, if 𝑑(𝑣3) = 2, then 𝑣1𝑣2𝑣3𝑣4 is the basic path of 𝑇 , a contradiction. So, 𝑑(𝑣3) ≥ 3. It implies
that there exists a sequence of length 𝑘 used to construct (𝑇, 𝑆): (𝑃4, 𝑆

′′), (𝑇1, 𝑆1), · · · , (𝑇𝑘−1, 𝑆𝑘−1), (𝑇, 𝑆),
such that (𝑇, 𝑆) is obtained from (𝑇𝑘−1, 𝑆𝑘−1) by operation O4. That is, 𝑇 is obtained from 𝑇𝑘−1 by adding the
path 𝑣1𝑣2 and joining 𝑣2 to 𝑣3. But in this case, by the definition of O4, we can always obtain a leaf which is
farther away from 𝑢2 than 𝑣1, contradicting the choice of 𝑣1. So we assume that 𝑣3 has status 𝐵.

If 𝑑(𝑣3) ≥ 3, by Observation 4.1d, 𝑣3 is not a support vertex. From the choice of 𝑣1 and the fact that
𝑑𝑖𝑎𝑚(𝑇 ) ≥ 7, 𝑣3 is adjacent to 𝑠 support vertices of degree two other than 𝑣2, where 𝑠 ≥ 1. These support
vertices are labeled 𝐴, and the leaf-neighbor of each of them is labeled 𝐶. From the choice of 𝐷 and Corollary 2.2,
𝑆(𝑇 ) ∩ 𝑁(𝑣3) ⊆ 𝐷. 𝑣4, 𝑣5, 𝑣6 has status 𝐷,𝐶, 𝐴, respectively, and 𝑑(𝑣4) = 𝑑(𝑣5) = 2. Moreover, there exists
no a corresponding vertex of degree two of 𝑣6 in 𝑇 , so 𝑑(𝑣6) = 2. Note that {𝑣3, 𝑣4, 𝑣5, 𝑣6} ∩ 𝐷 ̸= ∅, then
(𝐷 ∖ {𝑣3, 𝑣4, 𝑣5}) ∪ {𝑣6} is also a 𝛾𝑑

2 -set of 𝑇 . Hence, 𝐷′ = 𝐷 ∖ {𝑣2} is a 2𝐷𝐷-set of 𝑇 ′ with order at most
𝛾𝑑
2 (𝑇 )− 1, where 𝑇 ′ = 𝑇 − {𝑣1, 𝑣2}. On the other hand, note that (𝑇 ′, 𝑆*) ∈ T2 for some labeling 𝑆*, from the

choice of 𝑇 , 𝛾𝑑
2 (𝑇 ′) = 𝑛(𝑇 ′)+𝑠(𝑇 ′)+𝑙(𝑇 ′)

4 = 𝑛(𝑇 )+𝑠(𝑇 )+𝑙(𝑇 )
4 − 1 > 𝛾𝑑

2 (𝑇 )− 1. A contradiction.
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If 𝑑(𝑣3) = 2, from the definition of T2, 𝑣4 has status 𝐷, and furthermore, 𝑣5, 𝑣6 have status 𝐶, 𝐴, respectively.
In particular, 𝑑(𝑣4) = 𝑑(𝑣5) = 2. Note that 𝑣2 ∈ 𝐷, and {𝑣3, 𝑣4, 𝑣5, 𝑣6}∩𝐷 ̸= ∅, so the set 𝐷′ = (𝐷∖{𝑣3, 𝑣4, 𝑣5})∪
{𝑣6} is also a 𝛾𝑑

2 -set of 𝑇 . Now, we distinguish two cases as follows.

Case 1. 𝑑(𝑣6) = 2.
The set 𝐷′′ = 𝐷′ ∖ {𝑣2} is a 2𝐷𝐷-set of 𝑇 ′ with order at most 𝛾𝑑

2 (𝑇 ) − 1, where 𝑇 ′ = 𝑇 − {𝑣1, 𝑣2, 𝑣3, 𝑣4}.
On the other hand, from the choice of 𝑇 and the fact that (𝑇 ′, 𝑆*) ∈ T2 for some labeling 𝑆*, 𝛾𝑑

2 (𝑇 ′) =
𝑛(𝑇 ′)+𝑠(𝑇 ′)+𝑙(𝑇 ′)

4 = 𝑛(𝑇 )+𝑠(𝑇 )+𝑙(𝑇 )
4 − 1 > 𝛾𝑑

2 (𝑇 )− 1. A contradiction.
Case 2. 𝑑(𝑣6) ≥ 3.

We have that sta(𝑣7) = 𝐴 or 𝐵. If sta(𝑣7) = 𝐵, then all neighbors of 𝑣6 outside 𝑃 have status 𝐴, and note
that these neighbors are support vertices of degree two (From the choice of 𝑣1 and the definition of T2).
We remove one of these support vertices, say 𝑢1, and its leaf-neighbor, say 𝑢2, denote the resulting tree
by 𝑇 ′. Clearly, (𝑇 ′, 𝑆*) ∈ T2 for some labeling 𝑆*. We know that 𝑣2, 𝑣6 ∈ 𝐷′, and {𝑢1, 𝑢2} ∩ 𝐷′ ̸= ∅, so
𝐷′′ = 𝐷′ ∖ {𝑢1, 𝑢2} is a 2𝐷𝐷-set of 𝑇 ′ with order at most 𝛾𝑑

2 (𝑇 )− 1, where 𝑇 ′ = 𝑇 −{𝑢1, 𝑢2}. On the other
hand, from the choice of 𝑇 , 𝛾𝑑

2 (𝑇 ′) = 𝑛(𝑇 ′)+𝑠(𝑇 ′)+𝑙(𝑇 ′)
4 = 𝑛(𝑇 )+𝑠(𝑇 )+𝑙(𝑇 )

4 − 1 > 𝛾𝑑
2 (𝑇 )− 1. A contradiction.

If sta(𝑣7) = 𝐴, then one of the two cases as following holds:
(1) There exists a neighbor of 𝑣6 outside 𝑃 , say 𝑢1, has status 𝐵.
(2) All neighbors of 𝑣6 outside 𝑃 have status 𝐴.
In the former case, there exists a neighbor 𝑢2 of 𝑢1 which has status 𝐷. Similarly, there exists a neighbor
𝑢3 of 𝑢2 which has status 𝐶, and there exists a neighbor 𝑢4 of 𝑢3 which has status 𝐴. Moreover, let 𝑢5 be a
neighbor of 𝑢4 other than 𝑢3, then 𝑢5 has status 𝐴 or 𝐵. In either case, 𝑢5 has degree at least two, which
contradicts the choice of 𝑣1.
In the latter case, we take any neighbor of 𝑣6 outside 𝑃 , say 𝑢1, and we have that 𝑢1 has a neighbor which
has status 𝐶, say 𝑢2. From the choice of 𝑣1, 𝑢2 is a leaf. By Observation 4.1d, 𝑑(𝑢1) = 2. And we can obtain
a contradiction by an argument similar to the case that sta(𝑣7) = 𝐵 as above.
In summary, if (𝑇, 𝑆) ∈ T2. Then, 𝛾𝑑

2 (𝑇 ) = 𝑛(𝑇 )+𝑠(𝑇 )+𝑙(𝑇 )
4 .

�

Lemma 4.3. Let 𝑇 be a tree and 𝑆 be a labeling of 𝑇 such that (𝑇, 𝑆) ∈ T2. Then for any leaf 𝑣, there exists
a set 𝐷 with order 𝑛(𝑇 )+𝑠(𝑇 )+𝑙(𝑇 )

4 − 1 such that each vertex of 𝑇 is 2𝐷-dominated by 𝐷 except for 𝑣, and the
non-leaf neighbor of the support vertex of 𝑣 belongs to 𝐷.

Proof. Take any leaf 𝑣1 of 𝑇 . We proceed by induction on the length 𝑘 of a sequence required to construct the
labeled tree (𝑇, 𝑆). When 𝑘 = 0, (𝑇, 𝑆) = (𝑃4, 𝑆

′′), the result is immediate. Let 𝑘 ≥ 1 and assume that if the
length of sequence used to construct a labeled tree (𝑇 ′, 𝑆*) ∈ T2 is less than 𝑘, the result holds. Since (𝑇, 𝑆) ∈ T2,
there exists always a sequence of length 𝑘 used to construct (𝑇, 𝑆): (𝑃4, 𝑆

′′), (𝑇1, 𝑆1), · · · , (𝑇𝑘−1, 𝑆𝑘−1), (𝑇, 𝑆).
First, we assume that 𝑣1 is in the basic path of 𝑇 . Since (𝑇𝑘−1, 𝑆𝑘−1) ∈ T2, 𝑣1 is still a leaf of 𝑇𝑘−1. By the

inductive hypothesis, there exists a set 𝐷′ with order 𝑛(𝑇𝑘−1)+𝑠(𝑇𝑘−1)+𝑙(𝑇𝑘−1)
4 − 1 such that each vertex of 𝑇𝑘−1

is 2𝐷-dominated by 𝐷′ except for 𝑣1, and 𝑣3 belongs to 𝐷′, where 𝑣3 is the neighbor of the support vertex of
𝑣1. We know that (𝑇, 𝑆) is obtained from (𝑇𝑘−1, 𝑆𝑘−1) by one of the operations O2, O3 and O4. In the first or
third case, let 𝐷 be the set consisting of 𝐷′ and the support vertex which belongs to 𝑉 (𝑇 ) ∖ 𝑉 (𝑇𝑘−1), and 𝐷
is the desired set. In the second case, the tree 𝑇 is obtained from 𝑇𝑘−1 by adding a path 𝑢1𝑢2𝑢3𝑢4 and joining
𝑢1 to a leaf 𝑢 of 𝑇𝑘−1. Note that 𝑢 has status 𝐶, and by Observation 4.1d, the neighbor of 𝑢 in 𝑇𝑘−1, say 𝑢′,
has degree two. By the inductive hypothesis, there exists a set 𝐷′ with order 𝑛(𝑇𝑘−1)+𝑠(𝑇𝑘−1)+𝑙(𝑇𝑘−1)

4 − 1 such
that each vertex of 𝑇𝑘−1 is 2𝐷-dominated by 𝐷′ except for 𝑣1, and 𝑣3 belongs to 𝐷′. Moreover, one of 𝑢 and 𝑢′

belongs to 𝐷′. Let 𝐷 be the set consisting of 𝐷′ and the vertex 𝑢3, and 𝐷 is the desired set.
Next, we consider the case that 𝑣1 is not in the basic path. Since (𝑇, 𝑆) ∈ T2, this leaf has status 𝐶 and

its support vertex 𝑣2 is labeled 𝐴. By Observation 4.1d, 𝑣2 has degree two. Let 𝑃 = 𝑣1𝑣2 · · · 𝑣𝑡𝑣 be the path
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between 𝑣1 and 𝑣, where 𝑣 is the vertex of basic path which has minimum distance from 𝑣1. Note that the
neighbor of 𝑣2, say 𝑣3, has status 𝐴 or 𝐵.

Next, we distinguish two cases as follows.

Case 1. sta(𝑣3) = 𝐴.
If 𝑑(𝑣3) = 2, then it is easy to see that 𝑣1𝑣2𝑣3𝑣4 is the basic path of 𝑇 , a contradiction.
If 𝑑(𝑣3) ≥ 3, from the definition of T2 and the fact that a sequence of labeled trees used to construct (𝑇, 𝑆)
is not necessarily unique, we have that there exists a sequence of length 𝑘 used to construct (𝑇, 𝑆): (𝑃4, 𝑆

′′),
(𝑇 ′1, 𝑆

′
1), · · · , (𝑇 ′𝑘−1, 𝑆

′
𝑘−1), (𝑇, 𝑆), such that (𝑇, 𝑆) is obtained from (𝑇 ′𝑘−1, 𝑆

′
𝑘−1) by O4. That is, the tree 𝑇

is obtained from 𝑇 ′𝑘−1 by adding the path 𝑣1𝑣2 and joining 𝑣2 to a vertex 𝑣3. Note that 𝑣3 has a neighbor
of degree two, say 𝑢, which is labeled 𝐶 (Otherwise, no vertex of 𝑇 is the corresponding vertex of 𝑣3).
By Observation 4.1e, the component of 𝑇 ′𝑘−1 − 𝑢𝑢′ containing 𝑢, say 𝑇 ′, containing the basic path, and
(𝑇 ′, 𝑆*) ∈ T2 for some 𝑆*, where 𝑢′ is the neighbor of 𝑢 other than 𝑣3. It implies that there always exists
a sequence of length 𝑘 used to construct (𝑇, 𝑆): (𝑃4, 𝑆

′′), (𝑇 ′′1 , 𝑆′′1 ), · · · , (𝑇 ′′𝑘−1, 𝑆
′′
𝑘−1), (𝑇, 𝑆), satisfying the

two conditions as follows:
(1) (𝑇 ′′𝑘−1, 𝑆

′′
𝑘−1) = (𝑇 ′𝑘−1, 𝑆

′
𝑘−1);

(2) There is a 𝑖 ∈ {1, 2, · · · , 𝑘 − 2} in this sequence such that (𝑇 ′′𝑖 , 𝑆′′𝑖 ) = (𝑇 ′, 𝑆*).

By the inductive hypothesis, there exists a set 𝐷′ with order 𝑛(𝑇 ′′𝑖 )+𝑠(𝑇 ′′𝑖 )+𝑙(𝑇 ′′𝑖 )
4 − 1 such that each vertex

of 𝑇 ′′𝑖 is 2𝐷-dominated by 𝐷′ except for 𝑢, and 𝑢′′ belongs to 𝐷′, where 𝑢′′ is a neighbor of 𝑣3 in 𝑇 ′′𝑖
other than 𝑢. Then 𝐷𝑖 = 𝐷′ ∪ {𝑣3} is a 𝛾𝑑

2 -set of 𝑇 ′′𝑖 . For each 𝑗 ∈ {𝑖, 𝑖 + 1, · · · , 𝑘 − 2}, we know that
(𝑇 ′′𝑗+1, 𝑆

′′
𝑗+1) is obtained from (𝑇 ′′𝑗 , 𝑆′′𝑗 ) by one of the operations O2, O3 and O4. Let 𝐷𝑗+1 = 𝐷𝑗 ∪{𝑤}, where

𝑤 ∈ 𝑉 (𝑇 ′′𝑗+1) ∖ 𝑉 (𝑇𝑗)′′ and has status 𝐴. It is easy to see that 𝐷𝑗+1 is a 𝛾𝑑
2 -set of 𝑇 ′′𝑗+1, and moreover, 𝐷𝑘−1

is the desired set.
Case 2. sta(𝑣3) = 𝐵.

In this case, if 𝑑(𝑣3) ≥ 3, there must be a neighbor of 𝑣3, say 𝑢, which has status 𝐴. From the definition of
T2, the component of 𝑇 − 𝑣3𝑢 containing 𝑣3, say 𝑇 ′, containing the basic path, and (𝑇 ′, 𝑆*) ∈ T2 for some
𝑆*. We can obtain the desired set by an argument similar to the case of sta(𝑣3) = 𝐴 and 𝑑(𝑣3) ≥ 3.
If 𝑑(𝑣3) = 2, then 𝑣4, 𝑣5, 𝑣6 have status 𝐷,𝐶, 𝐴, respectively, and 𝑑(𝑣4) = 𝑑(𝑣5) = 2. If 𝑑(𝑣6) = 2, let
𝑇 ′ = 𝑇 − {𝑣1, 𝑣2, 𝑣3, 𝑣4}. Note that (𝑇 ′, 𝑆*) ∈ T2 for some 𝑆*. By the inductive hypothesis, there exists a
set 𝐷′ with order 𝑛(𝑇 ′)+𝑠(𝑇 ′)+𝑙(𝑇 ′)

4 − 1 such that each vertex of 𝑇 ′ is 2𝐷-dominated by 𝐷′ except for 𝑣5,
and 𝑣7 belongs to 𝐷′, then the set 𝐷′ ∪ {𝑣3} is the desired set. So we consider the case of 𝑑(𝑣6) ≥ 3. From
the definition of T2, there must exist a neighbor of 𝑣6, say 𝑢, such that sta(𝑢) = 𝐴 and the component of
𝑇 − 𝑣6𝑢 containing 𝑣6, say 𝑇 ′, containing the basic path, and (𝑇 ′, 𝑆*) ∈ T2 for some 𝑆*. By the inductive
hypothesis, there exists a set 𝐷′ with order 𝑛(𝑇 ′)+𝑠(𝑇 ′)+𝑙(𝑇 ′)

4 −1 such that each vertex of 𝑇 ′ is 2𝐷-dominated
by 𝐷′ except for 𝑣1, and 𝑣3 belongs to 𝐷′, We can obtain the desired set by an argument similar to the case
of sta(𝑣3) = 𝐴 and 𝑑(𝑣3) ≥ 3.

�
In what follows, we begin to prove Theorem 2.3.

Proof. The sufficiency follows immediately from Lemma 4.2. So we prove the necessity only. If 𝑑𝑖𝑎𝑚(𝑇 ) ≤ 2, 𝑇 is
a star, and 𝛾𝑑

2 (𝑇 ) = 1 < 𝑛(𝑇 )+𝑠(𝑇 )+𝑙(𝑇 )
4 . If 𝑑𝑖𝑎𝑚(𝑇 ) = 3, 𝑇 is a double star, and then 𝛾𝑑

2 (𝑇 ) = 2 ≤ 𝑛(𝑇 )+𝑠(𝑇 )+𝑙(𝑇 )
4 .

Support that 𝛾𝑑
2 (𝑇 ) = 𝑛(𝑇 )+𝑠(𝑇 )+𝑙(𝑇 )

4 , it is easy to see that 𝑇 = 𝑃4, let 𝑆 be the labeling that assigns to the
two leaves of the path 𝑃4 status 𝐶, and the remaining vertices status 𝐴, then the label tree (𝑃4, 𝑆) ∈ T2. So we
assume that 𝑑𝑖𝑎𝑚(𝑇 ) ≥ 4. The proof is by induction on 𝑛(𝑇 ). The result is immediate for 𝑛(𝑇 ) ≤ 4. For the
inductive hypothesis, let 𝑛(𝑇 ) ≥ 5. Assume that for every nontrivial tree 𝑇 ′ of order less than 𝑛(𝑇 ), we have
that 𝛾𝑑

2 (𝑇 ′) ≤ 𝑛(𝑇 ′)+𝑠(𝑇 ′)+𝑙(𝑇 ′)
4 , with equality only if (𝑇 ′, 𝑆*) ∈ T2 for some labeling 𝑆*.

Let 𝐷 be a 𝛾𝑑
2 -set of 𝑇 which contains no leaf and 𝑃 = 𝑣1𝑣2 · · · 𝑣𝑡 be a longest path in 𝑇 such that

(i) 𝑑(𝑣5) as large as possible, and subject to this condition



2398 W. ZHUANG

(ii) 𝑑(𝑣4) as large as possible, and subject to this condition
(iii) 𝑑(𝑣3) as large as possible.

We now proceed with a series of claims that we may assume are satisfied by the tree 𝑇 , for otherwise the
desired result holds.

Claim 4.4. Each support vertex in 𝑇 has exactly one leaf-neighbor.
If not, assume that there is a support vertex 𝑢 which is adjacent to at least two leaves, say 𝑢1, 𝑢2. Deleting

𝑢1, and denote the resulting tree by 𝑇 ′. Take a 𝛾𝑑
2 -set of 𝑇 ′ contains no leaf, say 𝐷′. It follows that 𝑢 is

either contained in 𝐷′ or has at least two non-leaf neighbors in 𝐷′, and then 𝐷′ is also a 2𝐷𝐷-set of 𝑇 .
That is, 𝛾𝑑

2 (𝑇 ) ≤ 𝛾𝑑
2 (𝑇 ′). Observe that 𝑛(𝑇 ) = 𝑛(𝑇 ′) + 1, 𝑙(𝑇 ) = 𝑙(𝑇 ′) + 1 and 𝑠(𝑇 ) = 𝑠(𝑇 ′). We have that

𝛾𝑑
2 (𝑇 ) ≤ 𝛾𝑑

2 (𝑇 ′) ≤ 𝑛(𝑇 ′)+𝑠(𝑇 ′)+𝑙(𝑇 ′)
4 = 𝑛(𝑇 )−1+𝑠(𝑇 )+𝑙(𝑇 )−1

4 < 𝑛(𝑇 )+𝑠(𝑇 )+𝑙(𝑇 )
4 ·

�

By Claim 3.3, we can assume that 𝑑(𝑣2) = 2. And by Corollary 2.2, 𝑣2 ∈ 𝐷. Now, we consider the vertex 𝑣3.

Claim 4.5. 𝑣3 is not a support vertex.
In other words, all neighbors of 𝑣3 are support vertices of degree two, except possibly the vertex 𝑣4. If not,

support that 𝑣3 is a support vertex and 𝑢 is the leaf-neighbor. Let 𝑇 ′ = 𝑇−{𝑣1, 𝑣2}. Note that 𝑛(𝑇 ) = 𝑛(𝑇 ′)+2,
𝑙(𝑇 ) = 𝑙(𝑇 ′)+1 and 𝑠(𝑇 ) = 𝑠(𝑇 ′)+1, then 𝛾𝑑

2 (𝑇 ) ≤ 𝛾𝑑
2 (𝑇 ′)+1 ≤ 𝑛(𝑇 ′)+𝑠(𝑇 ′)+𝑙(𝑇 ′)

4 +1 = 𝑛(𝑇 )−2+𝑠(𝑇 )−1+𝑙(𝑇 )−1
4 +

1 = 𝑛(𝑇 )+𝑠(𝑇 )+𝑙(𝑇 )
4 . In particular, if 𝛾𝑑

2 (𝑇 ) = 𝑛(𝑇 )+𝑠(𝑇 )+𝑙(𝑇 )
4 , then 𝛾𝑑

2 (𝑇 ′) = 𝑛(𝑇 ′)+𝑠(𝑇 ′)+𝑙(𝑇 ′)
4 . It means that

(𝑇 ′, 𝑆*) ∈ T2 for some labeling 𝑆*. By Lemma 4.3, there exists a 2𝐷𝐷-set 𝑆 of 𝑇 ′ − {𝑢} with cardinality
𝛾𝑑
2 (𝑇 ′) − 1, and the non-leaf neighbor of 𝑣3 in 𝑇 ′ belongs to 𝑆. It is easy to see that 𝑆 ∪ {𝑣2} is a 2𝐷𝐷-set of

𝑇 with cardinality 𝛾𝑑
2 (𝑇 ′). That is, 𝛾𝑑

2 (𝑇 ) ≤ 𝛾𝑑
2 (𝑇 ′), Contradicting the fact that 𝛾𝑑

2 (𝑇 ) = 𝛾𝑑
2 (𝑇 ′) + 1. Hence, we

have that 𝛾𝑑
2 (𝑇 ) < 𝑛(𝑇 )+𝑠(𝑇 )+𝑙(𝑇 )

4 · �

Let (𝑆(𝑇 ) ∩𝑁(𝑣3)) ∖ {𝑣4} = {𝑤1, 𝑤2, · · · , 𝑤𝑡}, where 𝑤1 = 𝑣2, 𝑡 ≥ 1.

Claim 4.6. 𝑑(𝑣4) = 2.
Assume that 𝑑(𝑣4) ≥ 3, let 𝑇 ′ be the component of 𝑇−𝑣3𝑣4 containing 𝑣4. It follows from 𝑛(𝑇 ) = 𝑛(𝑇 ′)+1+2𝑡,

𝑙(𝑇 ) = 𝑙(𝑇 ′)+𝑡 and 𝑠(𝑇 ) = 𝑠(𝑇 ′)+𝑡 that 𝛾𝑑
2 (𝑇 ) ≤ 𝛾𝑑

2 (𝑇 ′)+𝑡 ≤ 𝑛(𝑇 ′)+𝑠(𝑇 ′)+𝑙(𝑇 ′)
4 +𝑡 = 𝑛(𝑇 )−1−2𝑡+𝑠(𝑇 )−𝑡+𝑙(𝑇 )−𝑡

4 +
𝑡 < 𝑛(𝑇 )+𝑠(𝑇 )+𝑙(𝑇 )

4 .

Claim 4.7. 𝑑(𝑣5) = 2.
Assume that 𝑑(𝑣5) ≥ 3 and 𝑣′4 be a neighbor of 𝑣5 outside 𝑃 . If 𝑡 = 2, from the choice of 𝑃 and Claim 3.3,

we only need to consider the two case as follows (In other cases, let 𝑇 ′ = 𝑇 − {𝑣1, 𝑣2, 𝑣3, 𝑣4}. We can always
obtain a 𝛾𝑑

2 -set of 𝑇 ′ which contains a vertex 𝑢 ∈ 𝑁 [𝑣5] ∩ 𝑉 (𝑇 ′). It means that 𝛾𝑑
2 (𝑇 ) ≤ 𝛾𝑑

2 (𝑇 ′) + 1. Observe
that 𝑛(𝑇 ) = 𝑛(𝑇 ′) + 4, 𝑙(𝑇 ) = 𝑙(𝑇 ′) + 1 and 𝑠(𝑇 ) = 𝑠(𝑇 ′) + 1. We always have that 𝛾𝑑

2 (𝑇 ) < 𝑛(𝑇 )+𝑠(𝑇 )+𝑙(𝑇 )
4 ):

(1) 𝑣5 is not a support vertex, 𝑣′4 is adjacent to a support vertex 𝑣′3, where 𝑣′3 and 𝑣′4 have degree two.
(2) 𝑣5 is not a support vertex and 𝑣′4 is adjacent to ℎ support vertices of degree two, where ℎ ≥ 2.

Let 𝑇 ′ is the component of 𝑇 − 𝑣5𝑣
′
4 containing 𝑣5. In the former case, 𝑛(𝑇 ) = 𝑛(𝑇 ′) + 3, 𝑙(𝑇 ) = 𝑙(𝑇 ′) + 1,

𝑠(𝑇 ) = 𝑠(𝑇 ′) + 1 and 𝛾𝑑
2 (𝑇 ) ≤ 𝛾𝑑

2 (𝑇 ′) + 1. In the latter case, note that it is possible that 𝑣′4 is a support vertex,
then 𝑛(𝑇 ′) + 2ℎ + 1 ≤ 𝑛(𝑇 ) ≤ 𝑛(𝑇 ′) + 2ℎ + 2, 𝑙(𝑇 ′) + ℎ ≤ 𝑙(𝑇 ) ≤ 𝑙(𝑇 ′) + ℎ + 1, 𝑠(𝑇 ′) + ℎ ≤ 𝑠(𝑇 ) ≤ 𝑠(𝑇 ′) + ℎ + 1
and 𝛾𝑑

2 (𝑇 ) ≤ 𝛾𝑑
2 (𝑇 ′) + ℎ. In either case, we conclude that 𝛾𝑑

2 (𝑇 ) < 𝑛(𝑇 )+𝑠(𝑇 )+𝑙(𝑇 )
4 .

If 𝑡 ≥ 3, let 𝑇 ′ be the component of 𝑇 − 𝑣4𝑣5 containing 𝑣5. Observe that 𝑛(𝑇 ) = 𝑛(𝑇 ′) + 2 + 2𝑡, 𝑙(𝑇 ) =
𝑙(𝑇 ′) + 𝑡 and 𝑠(𝑇 ) = 𝑠(𝑇 ′) + 𝑡 and 𝛾𝑑

2 (𝑇 ) ≤ 𝛾𝑑
2 (𝑇 ′) + 𝑡. Analogous to the proof of Case 3, we have that

𝛾𝑑
2 (𝑇 ) < 𝑛(𝑇 )+𝑠(𝑇 )+𝑙(𝑇 )

4 .
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Claim 4.8. 𝑑(𝑣6) = 2 or all neighbors of 𝑣6 outside 𝑃 are support vertices of degree two.
First, we show that 𝑣6 is not a support vertex. If not, it follows from Claim 3.3 that 𝑣6 has one leaf-

neighbor, and construct a tree 𝑇 ′ which is obtained from 𝑇 by removing the leaf-neighbor of 𝑣6 and joining
a new vertex to 𝑣2. Let 𝐷′ be a 𝛾𝑑

2 -set of 𝑇 ′ which contains no leaf, then 𝑁(𝑣3) ∩ 𝑆(𝑇 ) ⊆ 𝐷′. We take a set
𝐷′′ = (𝐷′ ∖ {𝑣3, 𝑣4, 𝑣5}) ∪ {𝑣6} when 𝐷′ ∩ {𝑣3, 𝑣4, 𝑣5} ̸= ∅, and otherwise, 𝐷′′ = 𝐷′. Note that 𝐷′′ is also
a 2𝐷𝐷-set of 𝑇 , and moreover, 𝑛(𝑇 ) = 𝑛(𝑇 ′), 𝑙(𝑇 ) = 𝑙(𝑇 ′), 𝑠(𝑇 ) = 𝑠(𝑇 ′) + 1. Hence, 𝛾𝑑

2 (𝑇 ) ≤ 𝛾𝑑
2 (𝑇 ′) ≤

𝑛(𝑇 ′)+𝑠(𝑇 ′)+𝑙(𝑇 ′)
4 = 𝑛(𝑇 )+𝑠(𝑇 )−1+𝑙(𝑇 )

4 < 𝑛(𝑇 )+𝑠(𝑇 )+𝑙(𝑇 )
4 .

Let 𝑢1 be a leaf outside 𝑃 that at maximum distance from 𝑣6, and 𝑃1 = 𝑢1𝑢2 · · ·𝑢𝑠−1𝑢𝑠 be the path between
𝑢1 and 𝑣6, where 𝑢𝑠 = 𝑣6. Clearly, 𝑠 ≤ 6.

If 𝑠 = 4, then we have that 𝑢3 is adjacent to 𝑎 support vertices of degree two, where 𝑎 ≥ 1. Suppose
that 𝑢3 is not a support vertex, let 𝑇 ′ be the component of 𝑇 − 𝑢3𝑣6 containing 𝑣6. It follows from 𝑛(𝑇 ) =
𝑛(𝑇 ′) + 2𝑎 + 1, 𝑙(𝑇 ) = 𝑙(𝑇 ′) + 𝑎 and 𝑠(𝑇 ) = 𝑠(𝑇 ′) + 𝑎 that 𝛾𝑑

2 (𝑇 ) ≤ 𝛾𝑑
2 (𝑇 ′) + 𝑎 ≤ 𝑛(𝑇 ′)+𝑠(𝑇 ′)+𝑙(𝑇 ′)

4 + 𝑎 =
𝑛(𝑇 )−2𝑎−1+𝑠(𝑇 )−𝑎+𝑙(𝑇 )−𝑎

4 + 𝑎 < 𝑛(𝑇 )+𝑠(𝑇 )+𝑙(𝑇 )
4 . So, we assume that 𝑢3 has a leaf-neighbor, say 𝑢, and in this

case, let 𝑇 ′ = 𝑇 − {𝑢1, 𝑢2}. Note that 𝑛(𝑇 ) = 𝑛(𝑇 ′) + 2, 𝑙(𝑇 ) = 𝑙(𝑇 ′) + 1 and 𝑠(𝑇 ) = 𝑠(𝑇 ′) + 1, then
𝛾𝑑
2 (𝑇 ) ≤ 𝛾𝑑

2 (𝑇 ′) + 1 ≤ 𝑛(𝑇 ′)+𝑠(𝑇 ′)+𝑙(𝑇 ′)
4 + 1 = 𝑛(𝑇 )−2+𝑠(𝑇 )−1+𝑙(𝑇 )−1

4 + 1 ≤ 𝑛(𝑇 )+𝑠(𝑇 )+𝑙(𝑇 )
4 . In particular, if

𝛾𝑑
2 (𝑇 ) = 𝑛(𝑇 )+𝑠(𝑇 )+𝑙(𝑇 )

4 , then 𝛾𝑑
2 (𝑇 ′) = 𝑛(𝑇 ′)+𝑠(𝑇 ′)+𝑙(𝑇 ′)

4 . It means that (𝑇 ′, 𝑆*) ∈ T2 for some labeling 𝑆*. By
Lemma 4.3, there exists a 2𝐷𝐷-set 𝑆 of 𝑇 ′−{𝑢} with cardinality 𝛾𝑑

2 (𝑇 ′)−1, and a non-leaf neighbor of 𝑢3 in 𝑇 ′

belongs to 𝑆. It is easy to see that 𝑆 ∪{𝑢2} is a 2𝐷𝐷-set of 𝑇 with cardinality 𝛾𝑑
2 (𝑇 ′). That is, 𝛾𝑑

2 (𝑇 ) ≤ 𝛾𝑑
2 (𝑇 ′),

Contradicting the fact that 𝛾𝑑
2 (𝑇 ) = 𝛾𝑑

2 (𝑇 ′) + 1.
If 𝑠 = 5, by an argument similar to that of Claims 3.3, 3.4 and 3.5, we have that 𝑑(𝑢2) = 𝑑(𝑢4) = 2, 𝑢3 is

not a support vertex and adjacent to 𝑎 support vertices of degree two, where 𝑎 ≥ 1. Let 𝑇 ′ be the component
of 𝑇 − 𝑢4𝑣6 containing 𝑣6 and 𝐷′ be a 𝛾𝑑

2 -set of 𝑇 ′ contains no leaf. If 𝑎 ≥ 2, Observe that 𝐷′ ∪ (𝑆(𝑇 )∩𝑁(𝑢3))
is a 2𝐷𝐷-set of 𝑇 . Combining the fact that 𝑛(𝑇 ) = 𝑛(𝑇 ′) + 2𝑎 + 2, 𝑙(𝑇 ) = 𝑙(𝑇 ′) + 𝑎, 𝑠(𝑇 ) = 𝑠(𝑇 ′) + 𝑎. We have
that 𝛾𝑑

2 (𝑇 ) ≤ 𝛾𝑑
2 (𝑇 ′) + 𝑎 ≤ 𝑛(𝑇 ′)+𝑠(𝑇 ′)+𝑙(𝑇 ′)

4 + 𝑎 = 𝑛(𝑇 )−2𝑎−2+𝑠(𝑇 )−𝑎+𝑙(𝑇 )−𝑎
4 + 𝑎 < 𝑛(𝑇 )+𝑠(𝑇 )+𝑙(𝑇 )

4 .
So we consider the case of 𝑎 = 1. If there is a vertex belonging to 𝑁 [𝑣6] ∩𝐷′, then 𝐷′ ∪ {𝑢2} is a 2𝐷𝐷-set

of 𝑇 , and so 𝛾𝑑
2 (𝑇 ) ≤ 𝛾𝑑

2 (𝑇 ′) + 1 ≤ 𝑛(𝑇 ′)+𝑠(𝑇 ′)+𝑙(𝑇 ′)
4 + 1 = 𝑛(𝑇 )−4+𝑠(𝑇 )−1+𝑙(𝑇 )−1

4 + 1 < 𝑛(𝑇 )+𝑠(𝑇 )+𝑙(𝑇 )
4 . So we

can assume that 𝑁 [𝑣6] ∩𝐷′ = ∅. If {𝑣3, 𝑣4} ∩𝐷′ ̸= ∅, then (𝐷′ ∖ {𝑣3, 𝑣4}) ∪ {𝑣5} is also a 𝛾𝑑
2 -set of 𝑇 ′, and we

are done. If 𝑣3, 𝑣4 ̸∈ 𝐷′, it follows from 𝑑(𝑣5) = 2 and 𝑁 [𝑣6] ∩ 𝐷′ = ∅ that 𝑣5 is not 2𝐷-dominated by 𝐷′, a
contradiction.

If 𝑠 = 6, from Claims 3.3 and 3.4 and the choice of 𝑇 , we have that 𝑑(𝑢2) = 𝑑(𝑢4) = 𝑑(𝑢5) = 2, and 𝑢3 is
not a support vertex and adjacent to 𝑎 support vertices of degree two, where 𝑎 ≤ 𝑡. Let 𝑇 ′ be the component of
𝑇 −𝑣5𝑣6 containing 𝑣6 and 𝐷1 be a 𝛾𝑑

2 -set of 𝑇 ′ contains no leaf. Note that 𝑆(𝑇 )∩𝑁(𝑢3) ⊆ 𝐷1. Take a set 𝐷′ =
(𝐷1∖{𝑢3, 𝑢4, 𝑢5})∪{𝑣6} when {𝑢3, 𝑢4, 𝑢5}∩𝐷1 ̸= ∅, and otherwise, 𝐷′ = 𝐷1. Observe that 𝐷′∪{𝑤1, 𝑤2, · · · , 𝑤𝑡}
is a 2𝐷𝐷-set of 𝑇 . Combining the fact that 𝑛(𝑇 ) = 𝑛(𝑇 ′) + 2𝑡 + 3, 𝑙(𝑇 ) = 𝑙(𝑇 ′) + 𝑡, 𝑠(𝑇 ) = 𝑠(𝑇 ′) + 𝑡. We have
that 𝛾𝑑

2 (𝑇 ) ≤ 𝛾𝑑
2 (𝑇 ′) + 𝑡 ≤ 𝑛(𝑇 ′)+𝑠(𝑇 ′)+𝑙(𝑇 ′)

4 + 𝑡 = 𝑛(𝑇 )−2𝑡−3+𝑠(𝑇 )−𝑡+𝑙(𝑇 )−𝑡
4 + 𝑡 < 𝑛(𝑇 )+𝑠(𝑇 )+𝑙(𝑇 )

4 . �

We assume that |𝑁(𝑣6) ∖ {𝑣5, 𝑣7}| = 𝑎, then 𝑎 ≥ 0. In addition, by the claims as above, we have that
𝑑(𝑣2) = 𝑑(𝑣4) = 𝑑(𝑣5) = 2, 𝑣3 is not a support vertex and adjacent to 𝑡 support vertices of degree two, where
𝑡 ≥ 1.

If 𝑎 = 0, then 𝑑(𝑣6) = 2. Let 𝑇 ′ be the component of 𝑇 − 𝑣4𝑣5 containing 𝑣5 and 𝐷′ be a 𝛾𝑑
2 -set of

𝑇 ′ contains no leaf. Observe that 𝑣6 ∈ 𝐷′ and 𝐷′ ∪ {𝑤1, 𝑤2, · · · , 𝑤𝑡} is a 2𝐷𝐷-set of 𝑇 . It follows from
𝑛(𝑇 ) = 𝑛(𝑇 ′)+2𝑡+2, 𝑙(𝑇 ) = 𝑙(𝑇 ′)+𝑡−1 and 𝑠(𝑇 ) = 𝑠(𝑇 ′)+𝑡−1 that 𝛾𝑑

2 (𝑇 ) ≤ 𝛾𝑑
2 (𝑇 ′)+𝑡 ≤ 𝑛(𝑇 ′)+𝑠(𝑇 ′)+𝑙(𝑇 ′)

4 +𝑡 =
𝑛(𝑇 )−2𝑡−2+𝑠(𝑇 )−𝑡+1+𝑙(𝑇 )−𝑡+1

4 + 𝑡 = 𝑛(𝑇 )+𝑠(𝑇 )+𝑙(𝑇 )
4 . Suppose that 𝛾𝑑

2 (𝑇 ) = 𝑛(𝑇 )+𝑠(𝑇 )+𝑙(𝑇 )
4 , then we have equality

throughout the above inequality chain. In particular, 𝛾𝑑
2 (𝑇 ′) = 𝑛(𝑇 ′)+𝑠(𝑇 ′)+𝑙(𝑇 ′)

4 . By the inductive hypothesis,
(𝑇 ′, 𝑆*) ∈ T2 for some labeling 𝑆*. Since 𝑣5 is a leaf in 𝑇 ′, by Observation 4.1a, it has status 𝐶, and then 𝑣6 has
status 𝐴. Let 𝑆 be obtained from the labeling 𝑆* by labeling the vertices 𝑣3, 𝑣4 with label 𝐵, 𝐷, respectively.
And moreover, labeling 𝑤1, 𝑤2, · · · , 𝑤𝑡 with label 𝐴, and label their leaf-neighbors with label 𝐶. Then, (𝑇, 𝑆)
can be obtained from (𝑇 ′, 𝑆*) by doing the operation O3 for one time and the operation O2 for 𝑡 − 1 times.
Thus, (𝑇, 𝑆) ∈ T2.
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Next we consider the case of 𝑎 ≥ 1. Let 𝑢1, 𝑢2, · · · , 𝑢𝑎 be all neighbors of 𝑣6 outside 𝑃 and 𝑢′𝑖 be the
leaf-neighbor of 𝑢𝑖 (𝑖 = 1, 2, · · · , 𝑎). Let 𝑇 ′ = 𝑇 − {𝑢1, 𝑢2, · · · , 𝑢𝑎, 𝑢′1, 𝑢

′
2, · · · , 𝑢′𝑎} and 𝐷′ be a 𝛾𝑑

2 -set of 𝑇 ′

contains no leaf. Note that 𝑣6 has degree two in 𝑇 ′, and 𝐷′ ∪{𝑢1, 𝑢2, · · · , 𝑢𝑎} is a 2𝐷𝐷-set of 𝑇 . It follows from
𝑛(𝑇 ) = 𝑛(𝑇 ′) + 2𝑎, 𝑙(𝑇 ) = 𝑙(𝑇 ′) + 𝑎 and 𝑠(𝑇 ) = 𝑠(𝑇 ′) + 𝑎 that 𝛾𝑑

2 (𝑇 ) ≤ 𝛾𝑑
2 (𝑇 ′) + 𝑎 ≤ 𝑛(𝑇 ′)+𝑠(𝑇 ′)+𝑙(𝑇 ′)

4 + 𝑎 =
𝑛(𝑇 )−2𝑎+𝑠(𝑇 )−𝑎+𝑙(𝑇 )−𝑎

4 + 𝑎 = 𝑛(𝑇 )+𝑠(𝑇 )+𝑙(𝑇 )
4 . Suppose that 𝛾𝑑

2 (𝑇 ) = 𝑛(𝑇 )+𝑠(𝑇 )+𝑙(𝑇 )
4 , then we have equality

throughout the above inequality chain. In particular, 𝛾𝑑
2 (𝑇 ′) = 𝑛(𝑇 ′)+𝑠(𝑇 ′)+𝑙(𝑇 ′)

4 . By the inductive hypothesis,
(𝑇 ′, 𝑆*) ∈ T2 for some labeling 𝑆*.

If 𝑡 ≥ 2, by Lemma 4.3, there exists a set 𝐷1 with order 𝑛(𝑇 ′)+𝑠(𝑇 ′)+𝑙(𝑇 ′)
4 − 1 such that each vertex of 𝑇 ′ is

2𝐷-dominated by 𝐷1 except for 𝑣1, and 𝑣3 belongs to 𝐷1. Since leaf-neighbor of each 𝑤𝑖 (𝑖 = 2, 3, · · · , 𝑡) is 2𝐷-
dominated by 𝐷1, without loss of generality, we can assume that each 𝑤𝑖 (𝑖 = 2, 3, · · · , 𝑡) belongs to 𝐷1. Note that
𝑑(𝑣4) = 𝑑(𝑣5) = 𝑑(𝑣6) = 2 in 𝑇 ′ and {𝑣4, 𝑣5, 𝑣6, 𝑣7} ∩𝐷1 ̸= ∅, we construct a set 𝐷2 = (𝐷1 ∖ {𝑣4, 𝑣5, 𝑣6})∪ {𝑣7},
each vertex of 𝑇 ′ is 2𝐷-dominated by 𝐷2 except for 𝑣1 and |𝐷2| ≤ |𝐷1|. Let 𝐷3 be a set which is obtained from
𝐷2 by deleting 𝑣3, and adding all neighbors of 𝑣6 outside 𝑃 and 𝑣2. It is easy to see that 𝐷3 is a 2𝐷𝐷-set of 𝑇 ,
and |𝐷3| ≤ 𝑛(𝑇 )+𝑠(𝑇 )+𝑙(𝑇 )

4 − 1, it is impossible.
If 𝑡 = 1, the vertices 𝑣1 and 𝑣2 have status 𝐶 and 𝐴, respectively, in 𝑆*. And so, 𝑣3 has status 𝐴 or 𝐵.
In the former case, it follows from 𝑑(𝑣1) = 𝑑(𝑣2) = 𝑑(𝑣3) = 𝑑(𝑣4) = 2 and the definition of T2 that 𝑣1𝑣2𝑣3𝑣4

is the basic path of 𝑇 ′, and then 𝑣4 has status 𝐶. Moreover, 𝑣5, 𝑣6 have status 𝐷,𝐵, respectively. Let 𝑆 be
obtained from the labeling 𝑆* by labeling each 𝑢𝑖 with label 𝐴, and each 𝑢′𝑖 with label 𝐶. Then, (𝑇, 𝑆) can be
obtained from (𝑇 ′, 𝑆*) by doing the operation O2 for 𝑎 times. Thus, (𝑇, 𝑆) ∈ T2.

In the latter case, from the definition of T2, 𝑣4, 𝑣5, 𝑣6 have status 𝐷,𝐶, 𝐴, respectively. And 𝑣7 has status 𝐴
or 𝐵. Assume that sta(𝑣7) = 𝐴. If 𝑑(𝑣7) = 2, we have that 𝑣5𝑣6𝑣7𝑣8 is the basic path of 𝑇 ′. Let 𝑆*1 be obtained
from 𝑆* by changing the status 𝑣3, 𝑣4, 𝑣5, 𝑣6 to 𝐴, 𝐶,𝐷, 𝐵, respectively, and clearly, (𝑇 ′, 𝑆*1 ) ∈ T2. Let 𝑆 be
obtained from the labeling 𝑆*1 by labeling each 𝑢𝑖 with label 𝐴, and each 𝑢′𝑖 with label 𝐶. Then, (𝑇, 𝑆) can be
obtained from (𝑇 ′, 𝑆*1 ) by doing the operation O2 for 𝑎 times. Thus, (𝑇, 𝑆) ∈ T2. If sta(𝑣7) = 𝐴 and 𝑑(𝑣7) ≥ 3,
or sta(𝑣7) = 𝐵, let 𝑆 be obtained from the labeling 𝑆* by labeling each 𝑢𝑖 with label 𝐴, and each 𝑢′𝑖 with label
𝐶. Then, (𝑇, 𝑆) can be obtained from (𝑇 ′, 𝑆*) by doing the operation O4 for 𝑎 times. Thus, (𝑇, 𝑆) ∈ T2. �

5. Summary

A network can be modeled by a graph 𝐺 = (𝑉,𝐸) with the vertices representing nodes such as processors or
stations, and the edges representing links between the nodes. We often need to select some special nodes in the
computer network to monitor the communication of the entire network. These special nodes correspond to the
dominating set we mentioned above. It is well known that in the process of designing and managing computer
networks, cost control is a key issue. Hence, we hope that the number of these special nodes to be as small as
possible. This requires us to calculate the relevant domination parameters on the computer network, or give the
upper and lower bounds of the relevant domination parameters.

Over the last few decades, many new domination parameters were proposed to meet various network design
requirements, and disjunctive domination is one of them.

As the tree structure is one of the most important network topology structures, we take it as the research
object of this article. We believe that our work will promote the development of computer networks.

Acknowledgements. The research is supported by NSFC (No. 11301440), Natural Science Foundation of Fujian Province
(CN)(2015J05017).
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