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BOUNDS ON THE DISJUNCTIVE DOMINATION NUMBER OF A TREE

WEI ZHUANG*

Abstract. A set D of vertices in a graph G is a disjunctive dominating set in G if every vertex not in D
is adjacent to a vertex of D or has at least two vertices in D at distance 2 from it in G. The disjunctive
domination number, v§(G), of G is the minimum cardinality of a disjunctive dominating set in G. We
show that if T is a tree of order n with [ leaves and s support vertices, then ”_TH"?’ < ’yg(T) < %H'S~
Moreover, we characterize the families of trees which attain these bounds.
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1. INTRODUCTION

Let G = (V,E) be a simple graph, and v be a vertex in G. The open neighborhood of v is N(v) = {u €
V]uv € E} and the closed neighborhood of v is N[v] = N(v)U{v}. The degree of a vertex v is d(v) = |N(v)|. For
two vertices u and v in a connected graph G, the distance d(u,v) between u and v is the length of a shortest
(u,v)-path in G. The maximum distance among all pairs of vertices of G is the diameter of a graph G which
is denoted by diam(G). A leaf of G is a vertex of degree 1 and a support vertex of G is a vertex adjacent to a
leaf. Denote the sets of leaves and support vertices of G by L(T') and S(T'), respectively. Let [(T') = |L(T)| and
s(T) = |S(T)]. A double star is a tree that contains exactly two vertices that are not leaves. A subdivided star
K7, is a tree obtained from a star K¢ on at least two vertices by subdividing each edge exactly once.

A dominating set in a graph G is a set S of vertices of G such that every vertex in V(G) \ S is adjacent
to at least one vertex in S. The domination number of G, denoted by v(G), is the minimum cardinality of a
dominating set of G. The literature on the subject of domination parameters in graphs up to the year 1997 has
been surveyed and detailed in the two books [5, 6].

Motivated by the concepts of distance domination and exponential domination (see, [1,2,7]), Goddard et al.
[4] introduced and studied the concept of disjunctive domination in a graph. A set S of vertices in a graph G
is a disjunctive dominating set, abbreviated 2D D-set, in G if every vertex not in S is adjacent to a vertex of S
or has at least two vertices in S at distance 2 from it in G. We say a vertex v in G is disjunctively dominated,
abbreviated 2D-dominated, by the set S, if N[v] NS # @ or there exist at least two vertices in S at distance
2 from v in G. The disjunctive domination number of G, denoted by 4(G), is the minimum cardinality of a
2D D-set in G. A disjunctive dominating set of G of cardinality v¢(G) is called a v§(G)-set. If the graph G is
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clear from the context, we simply write yg-set rather than v§(G)-set. Every dominating set is a 2D D-set. The
concept of disjunctive domination in graphs has been studied in [4,8-12,18] and elsewhere.

An area of research in domination of graphs that has received considerable attention is to bound various
domination parameters, some related results can be referred to [3,13-17,19-24]. In Goddard et al. [4] proved
the following theorem:

Theorem 1.1 ([4]). If G is a connected graph with n > 5, then v4(G) < 251
Moreover, they improved this bound when restrict the connected graph G to be a claw-free graph.

Theorem 1.2 ([4]). If G is a connected claw-free graph of order n, then 73(G) < 22 wunless G €
{K1, P5, Py,Cy4, H3}, where Hj is the graph obtained from K7 3 by adding an edge joining two of these sup-
port vertices.

Our aim in this paper is to improve the bound of Theorem 1.1 when we restrict the graph G to be a tree.
More precisely, we give a lower bound and an upper bound for the disjunctive domination number of a tree in
terms of its order, the number of leaves and support vertices in the tree. Further, we provide the constructive
characterization of trees that achieve equality in the two bounds.

2. MAIN RESULTS

We first present the following lemmas, which are helpful for our investgation.
Observation 2.1 ([8]). If T is a tree of order at least 3, then we can choose a Y§-set of T contains no leaf.

Corollary 2.2. Let T be a tree of order at least 3 and D be a v§-set of T' contains no leaf, if a support vertex
has degree two, then it belongs to D.

As mentioned above, one of our aim is provide the constructive characterization of trees that achieve equality
in the upper bound and the lower bound. For our purpose, we define a labeling of a tree T as a weak partition
S = (S4,58,5¢,Sp) of V(T) (Some of the subsets may be empty). We will refer to the pair (7,.5) as a labeled
tree. The label or status of a vertex v, denoted sta(v), is the letter x € {4, B,C, D} such that v € S,. Next,
we ready to give two families 7] and 5, each member of J; (5, respectively) is obtained from the labeled
tree (Ps,S’) ((Py,S"), respectively) by a series of operations (see Figs. la and 1b). Before this, we give two
definitions. If a labeled tree (T, S) € 9%, the path P, (which comes from the labeled tree (P, S”)) is an induced
path of T', and we call it the basic path of T. For a vertex v € S(T), which has status A and does not belong to
the basic path, if there exists a vertex u such that vv1vou is an induced path of T and sta(v;) = C, sta(vs) = D,
sta(u) = B, we call u a corresponding vertex of v. In addition, for a vertex u, which has status B, if there exists
a vertex v such that vvivou is an induced path of T and sta(v) = A, sta(v1) = C, sta(ve) = D, we also call v a
corresponding vertex of u.

In what follows, we give four operations as follows:

Operation. 0;: Let v be a vertex with sta(v) = A. Add a vertex u and the edge uv. Let sta(u) = C.

Operation. @5: Let v be a vertex with sta(v) = B that has a corresponding vertex of degree two. Add a path
ujug and the edge ujv. Let sta(uy) = A, sta(ug) = C.

Operation. Os: Let v be a vertex with sta(v) = C that has degree one. Add a path ujususus and the edge
uyv. Let sta(uy) = D, sta(us) = B, sta(uz) = A, sta(ug) = C.

Operation. 0y: Let v be a vertex not in the basic path that has status A and has a corresponding vertex of
degree two. Add a path ujus and the edge ujv. Let sta(uy) = A, sta(us) = C.



BOUNDS ON THE DISJUNCTIVE DOMINATION NUMBER OF A TREE 2391

C A C C A A C

o——o—9o o ——o0—9o

(a) (b)

C A C
V has a corresponding vertex of degree two

(c) (d)

v is not in the basic path and has a
corresponding vertex of degree two

(e) (f)

FIGURE 1. Two labeled trees and four operations.

The four operations 07, 05, 03 and 0, are illustrated in Figures 1c—1f.

Let 71 be the minimum family of labeled trees that: (i) contains (Ps,S’) and S’ is the labeling that assigns
to the two leaves of the path Ps status C, and the central vertex status A; and (ii) is closed under the two
operations €7 and O3 that are listed as above, which extend the tree T” to a tree T by attaching a tree to the
vertex v € V(1).

Let 9 be the minimum family of labeled trees that: (i) contains (Py, S”) where S” is the labeling that assigns
to the two leaves of the path Py status C, and the remaining vertices status A; and (ii) is closed under the three
operations 0y, 03 and 0, that are listed as above, which extend the tree T to a tree T' by attaching a tree to
the vertex v € V/(T").

Let (T,S) € 7 (%, respectively) be a labeled tree for some labeling S. Then there is a sequence of labeled
trees (To, 50), (Tl, Sl), R ,(kal, Skfl), (Tk, Sk) such that (To, S()) = (]337 Sl) (or (1347 SH)), (Tk, Sk) = (T, S)
The labeled tree (73, .5;) can be obtained from (T;_1, S;—1) by one of the operations & and O3 (05, O3 and Oy,
respectively), where i € {1,2,--- ,k}. We call the number of terms in such a sequence of labeled trees that is
used to construct (T, 5), the length of the sequence. Clearly, the above sequence has length k. We remark that
a sequence of labeled trees used to construct (7, .5) is not necessarily unique.

Two main conclusions of our paper are listed as follows.

Theorem 2.3. If T is a nontrivial tree of order n(T) with I(T) leaves, then ¥§(T) > w, with equality
if and only if (T,S) € T for some labeling S.

Theorem 2.4. If T is a nontrivial tree of order n(T) with I[(T) leaves and s(T) support vertices, then ¥$(T) <
w, with equality if and only if (T',S) € P for some labeling S.

Next, we take some examples to make it easier for reader to understand the families 77, 95 and Theo-
rems 2.3 and 2.4. In Figure 2a, by a simple calculation, we have that v§(T) = 2 = w. And moreover, it
is easy to see that (77, S7) is obtained from (Ps, S”) by operation &1, (T», S4) is obtained from (77, S]) by opera-

tion O3, (T, S%) is obtained from (T, S%) by operation . It follows from the definition of .77 that (T, 5%) € 7.
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FIGURE 2. Two simple examples.

In Figure 2b, by a simple calculation, we have that y4(T") = 6 = w. And moreover, it is easy to

see that (77, S7) is obtained from (P4, S”) by operation s, (T5,.5%) is obtained from (77, S}) by operation 0%,
(T3%,5%) is obtained from (7%, S%) by operation &4 and (17,S5)) is obtained from (T3, S%) by operation Os. It
follows from the definition of % that (T7,5)) € .

Furthermore, we can slightly improve the upper bound of Theorem 2.4.

Corollary 2.5. IfT is a nontrivial tree of order n(T) with I(T) leaves and s(T) support vertices, then v$(T) <
n(T)+3s(T)—U(T)
e Bt

Proof. Let T" be the tree obtained from T by deleting all but one leaf from each support vertex of T. Then,
n(T") = n(T) — [(T) — s(T)], s(T") = s(T), (T") = s(T) and v4(T) = 44(T"). By Theorem 2.4, we have that

YA(T) = A4(T) < "EIHTN+(T) _ nDUD)=s(T)425(T)] _ nT)+53e(D)=UT) 0
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We conclude this section by comparing the bound of Theorem 1.1 with the bound of Corollary 2.5. We see

that "(T)+3S£T)_Z(T) < n(Tg—l when n(T) > 3s(T) — I(T') + 2. It implies that for almost all trees, the bound of

Corollary 2.5 is better than that of Theorem 1.1.

3. PROOF OF THEOREM 2.3

The following observation establishes properties of trees in the family 7.
Observation 3.1. If (T,S) € 7, then (T,S) has the following properties.

(a) FEvery support vertex of T has status A and every leaf has status C.
(b) Let v be a vertex has status A, then sta(u) € {B,C} for u € N(v).
(c) The set Sy is a 2DD-set of T.

(d) The set Sa, Sp, Sc and Sp are independent sets.

(e) If sta(v) # A, then d(v) < 2.

Lemma 3.2. If T is a tree of order n(T) > 3 with I(T) leaves, and (T,S) € F for some labeling S, then
YUT) = |Sa| = w, and the set Sa is the unique v§-set of T.

Proof. We proceed by induction on the length k of a sequence required to construct the labeled tree (T, .5). Let
D be any ~-set of T.

When k = 0, (T,5) = (Ps,5"), 94(T) = |Sa| = 1, the set S4 is the unique yg-set of T. This establishes
the base case. Let k > 1 and assume that if the length of sequence used to construct a labeled tree (T7,5*) €
T is less than k, then v$(T") = |S%| = w, S* is the unique v¢-set of 7. Now, (T,5) € A
and let (T, S0), (T1,51), -+ (Tk—1,5k—1), (Tk, Sk) be a sequence of length k used to construct (T, S), where
(To, So) = (Ps,S8"), (Tx,Sk) = (T,S), (T;,S;) can be obtained from (7T;_1,S5;_1) by one of the operations €
and O3, i€ {1,2,--- ,k}. Let T" = T},_; and S* = Sj_;. Note that (T”,5*) € Z;. By the inductive hypothesis,
V(T = |94 ] = w, S* is the unique v§-set of T”. (T, S) can be obtained from (7", S*) by operation
ﬁl or ﬁg.

In the former case, we have that n(T) = n(T")+1, I(T) = I(T")+1, and |Sa| = |5%]. It follows Observation 3.1c
that v4(T) < |Sa| = |S4| = ”(T/)_i(T/)JF?’ = ”(T)_l_i(T)+1+3 = "(T)_i(T)JF?’. On the other hand, assume that
V(T)\ V(T') = {u}, and v is the support vertex of u. Take a set D' = (D \ (L(T) N N(v))) U {v} when
(L(T) N N(v)) N D # 0, otherwise, D' = D. D' is a 2DD-set of T'. That is, ¥$(T) > v4(T") = |S%| = |Sal.
In summary, v4(T) = |Sa| = w. By the inductive hypothesis, S% is the unique v4-set of 7. Hence,
D’ = S%. In addition, if v € D, then v ¢ D. It follows from (T,S) € 73 and Observations 3.1a and 3.1b
that v has status A, and the non-leaf neighbor of v, say w, has status B or C. From the choice of D’ and
D’ = S%, u is the unique vertex in D which is within distance two from w. It conclude that w is not 2D-
dominated by D, a contradiction. Therefore, u ¢ D. Similarly, all leaf-neighbors of v do not belong to D, and
then D =D" = S% = Sa.

In the latter case, the tree T obtained from T’ by attaching a path Py = ujususuy to a leaf v of T', where uy
is a leaf in T". We have that n(T) = n(T")+4, (T) = I(T") and |S4| = |S%| + 1. It follows Observation 3.1c that
YAT) < |Sa] = |83] +1 = “EISIDES g - A8 g 2D et D' = (D {ua}) U {us}
when uy € D and D' = D when ug ¢ D, D" = (D’ \ {u1,u2}) U {v} when u; or uz belong to D', otherwise,
D" = D'. Then uz € D and D" \ {uz} is a 2DD-set of T". That is, v4(T) — 1 > v4(T') = |S%| = |Sa| — 1.
In summary, v4(T) = |Sa| = w. By the inductive hypothesis, S% is the unique v4-set of 7”. Hence,
D'"\{us} = S%. If |{u1, ug, us, ug, v}ND| > 2, the set (D\{u1, ug, us, us})U{v} is a 2D D-set of T'. More precisely,
(D\ {u1,u2,uz,us}) U{v} is a v4-set of T". By the uniqueness of yd-set of 7', (D \ {u1,uz, us,us}) U{v} = S%,
a contradiction. Hence, |{u1, ug, us,uqs,v} N D| = 1. It implies that {uy,us,us, us,v} N D = {us}. It is easy to
see that D\ {u3} is a y¢-set of T’. By the uniqueness of v4-set of 77, D\ {usz} = S%. So, D = Sa. O
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In what follows, we begin to prove Theorem 2.3.

Proof. The sufficiency follows immediately from Lemma 3.2. So we prove the necessity only. If diam(T) < 2,
T is a star, ¥4(T) = 1 > w. Suppose that v4(T) = w, it is easy to see that there exists
a labeling S of the vertices of T such that (7,S) can be obtained from (Ps3,S’) by repeated applications of
operation ;. Hence, (T,S) € . If diam(T) = 3, T is a double star, and then v4(T) = 2 > w. So,
we assume that diam(T') > 4. The proof is by induction on n(T"). The result is immediate for n(7T") < 5. For the
inductive hypothesis, let n(T) > 6. Assume that for every nontrivial tree 7" of order less than n(T'), we have
that v4(1T") > %, with equality only if (77, 5*) € Z for some labeling S*.

Let D be a 'yg-set of T which contains no leaf and P = vyvs - - - vy be a longest path in T such that d(vs) as
large as possible.

We now proceed with a series of claims that we may assume are satisfied by the tree T, for otherwise the
desired result holds.

Claim 3.3. Each support vertex in T" has exactly one leaf-neighbor.
If not, assume that there is a support vertex u which is adjacent to at least two leaves. Deleting one of its

leaf-neighbors, say 1, and denote the resulting tree by T”. Observe that n(T) = n(T")+1, I(T) = I(T") + 1 and
D is still a 2D D-set of T'. That is, 44(T) > &(T") > ME=MINE3 _ n=Z1-UDF145 _ a(f)-UT)+5.

In particular, if v4(T) = w, then v4(T") = w. It means that (77,5*) € 2 for some
labeling S*. By Observation 3.1a, u has status A. Let S be obtained from S* by labeling u; with label C. Then

(T, S) can be obtained from (7", 5*) by operation ¢,. Thus, (T,S) € 7.

O
By Claim 3.3, we can assume that d(v2) = 2. And by Corollary 2.2, vo € D. Now, we consider the vertex vs.

Claim 3.4. d(v3) = 2.

Suppose that d(vs) > 3. If vs € D, let T" = T — {v1,v2}. Clearly, D \ {v2} is a 2D D-set of T”. Note that
n(T) = n(T") + 2, T) = UT") + 1, then 43(T) > 4(T") + 1 > MO g — nlD2fHES 4 g
w. So we assume that vs € D. If vy is adjacent to a support vertex outside P, say vh. It follows

from Claim 3.3 and Corollary 2.2 that vy € D. Moreover, (D \ {vq,v5}) U {vs} is a 2D D-set of the tree T"
n(T/),i(T/)JrS +1=

+1> w. Combining the assumption that d(vs) > 3, vs is a support vertex of degree
three of T. We remove its leaf-neighbor, say u, and D is still a 2D D-set of the resulting tree 7" from u ¢ D.
Hence, v4(T) > ~4(1") > & )_i(T )3 — "(T)_i(T)JF?’. We show that in fact y4(T) > w. Suppose
to the contrary that v¢(T) = w
particular, ¥¢(T) = v(T") = w. By the inductive hypothesis, (17, 5*) € 7 for some labeling S*. By
Observations 3.1a and 3.1b, the vertex vz has status B or C in S*. Since D contains no leaf, D is also a 74-set
of T’. On the other hand, by Lemma 3.2, S% is the unique y¢-set of 7. So, D = S%. It implies that u can not
be 2D-dominated by D, a contradiction.

obtained from T by removing all leaf-neighbors of vy and vj. Hence, v$(T) > ~4(T") + 1 >
n(T)=2-1(T)+3
7

. Then we have equality throughout the above inequality chain. In

Claim 3.5. d(v4) = 2.
Assume that d(v4) > 3 and v} is a neighbor of vy outside P. From Claim 3.3 and the choice of P, one of the
three cases as following holds:

(1) v4 is adjacent to a support vertex, say vy, where v} and v} have degree two;
(2) v} is a support vertex of degree two in T’
(3) v4 is a leaf.

In the first case, let 77 be a tree obtained from T' by removing vy, vo, v3 and the leaf-neighbor of v}. We have
that n(T) = n(T")+4, I(T) = I(T") +1 and v4(T") < v4(T) — 1. In the latter two cases, let T/ = T — {vy,v2, v3}.
We have that n(T) = n(T") + 3, I(T) = I(T") + 1 and v$(T") < ¥$(T) — 1. In either case, we always have
V(T > w by an argument similar to the proof of Claim 3.4. O
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Let 7" = T — {vy,v2,v3,v4}. Note that n(T) = n(T") + 4, v4(T") < A¢(T) — 1. In addition, I(T) = I(T") + 1
when d(vs) > 3, and I(T) = I(T') when d(vs) = 2. Hence, we always have that v$(T) > ~4(T') +1 >
(T )j(T )3 41> n(T)fzjl(T)JrS +1= "(T)fi(T)JrS. Suppose that v$(T) = w, then we have equality
nID-UT)45 By the

throughout the above inequality chain. In particular, d(vs) = 2 and ¥4(T) — 1 = 14(T") =
inductive hypothesis, (T7,5*) € 7 for some labeling S*. Since vs is a leaf in 7", by Observation 3.1a, it has
status C. Let S be obtained from the labeling S* by labeling the vertices vy, va, v3,v4 with label C, A, B, D,
respectively. Then, (T, S) can be obtained from (7”,.5*) by operation €. Thus, (T, S) € 9.

4. PROOF OF THEOREM 2.4

The following observation establishes properties of trees in the family 7.
Observation 4.1. If (T,S) € %, then (T,S) has the following properties.

(a) FEvery support vertex of T has status A and every leaf has status C.

(b) The set Sa is a 2DD-set of T.

(¢) Let v be a vertex which has status A or B, v has at most one corresponding vertex. In particular, if there
is no corresponding vertex of degree two of v in T, then d(v) = 2.

(d) If v is a support vertex, then v has degree two.

(e) Let v be a vertex of degree two which has status C, then it is adjacent to two vertices, say u and w, which
are labeled A and D, respectively. In particular, if d(u) = 2, the component of T —vw containing v, say T',
containing the basic path of T, and (T',S*) € F for some labeling S*.

Lemma 4.2. Let T be a tree and S be a labeling of T such that (T, S) € F5. Then, ¥3(T) = w.

Proof. By Observation 4.1b, S4 is a 2D D-set of T and Sy = w (We can obtain this conclusion by
induction on n(7), it is similar to the proof of Lemma 3.2, so we omit it). So, v¢(T") < w
(T,S) € Z5, T = Py when n < 4, and 74(T) =2 = w. So, we assume that n(7T") > 5. Combining
the definition of 7, we have that diam(T") > 7. Suppose that 7" is a tree with minimum order which satisfy the
two properties:

(1) (T,5) € T;

. Since

Let D be a 'yg—set of T which contains no leaf, ujususus be the basic path of T', and vy be a leaf of T' that
at maximum distance from uso, let P = v1v9v3 - - - vius be the path between v; and us. Note that v, = uq or ug.
It follows from (7T, S) € 5 and Observation 4.1d that d(ve) = 2 and vy, vy have status C, A, respectively. And
moreover, by the definition of %5, vs has status A or B.

In the form case, if d(vs) = 2, then vjvav3v4 is the basic path of T, a contradiction. So, d(vs) > 3. It implies
that there exists a sequence of length k used to construct (7,5): (Py,S”), (11,51), s (Tk-1,Sk-1), (T,S),
such that (T, S) is obtained from (Ty_1, Skx—1) by operation &,. That is, T is obtained from T;_; by adding the
path vyve and joining vy to vz. But in this case, by the definition of &4, we can always obtain a leaf which is
farther away from us than vy, contradicting the choice of v1. So we assume that vz has status B.

If d(vs) > 3, by Observation 4.1d, vz is not a support vertex. From the choice of v; and the fact that
diam(T) > 7, vs is adjacent to s support vertices of degree two other than ve, where s > 1. These support
vertices are labeled A, and the leaf-neighbor of each of them is labeled C'. From the choice of D and Corollary 2.2,
S(T) N N(vs) C D. vy,vs,vs has status D, C, A, respectively, and d(vy) = d(vs) = 2. Moreover, there exists
no a corresponding vertex of degree two of vg in T, so d(vg) = 2. Note that {vs,vs,v5,06} N D # 0, then
(D \ {vs,vs4,v5}) U {vg} is also a yd-set of T. Hence, D' = D \ {vz} is a 2DD-set of T’ with order at most
¥4(T) — 1, where T’ = T — {vy,v2}. On the other hand, note that (7", 5*) € % for some labeling S*, from the
choice of T, 44(T") = ”(T/)"'S(ALT/)H(T/) = ”(THSELT)H(T) —1>+4(T) — 1. A contradiction.
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If d(vs) = 2, from the definition of 9%, vy has status D, and furthermore, vs, vg have status C, A, respectively.
In particular, d(vs) = d(vs) = 2. Note that va € D, and {vs, v4, vs,vs}ND # 0, so the set D' = (D\{v3, v4,v5})U
{ve} is also a yd-set of T. Now, we distinguish two cases as follows.

Case 1. d(vg) = 2.

The set D" = D'\ {vy} is a 2D D-set of T' with order at most 7¢(T) — 1, where 7" = T — {vy,va,v3,v4}.
On the other hand, from the choice of T and the fact that (77,S*) € J for some labeling S*, 44(T") =
”(T’HS(AIT/)H(T/) = n(T)+S(4T)+l(T) —1>~4(T) — 1. A contradiction.

Case 2. d(vg) > 3.
We have that sta(v7) = A or B. If sta(vy) = B, then all neighbors of vg outside P have status A, and note
that these neighbors are support vertices of degree two (From the choice of v; and the definition of ).
We remove one of these support vertices, say uy, and its leaf-neighbor, say us, denote the resulting tree
by T’. Clearly, (T7,5*) € 5 for some labeling S*. We know that vy, vg € D', and {uy,us} N D" # 0, so
D" = D'\ {uy,us} is a 2D D-set of T' with order at most v§(T) — 1, where T’ = T — {uy,u3}. On the other
hand, from the choice of T, v§(T") = MT(HS(Z’)H(T/) = "(T)+S(4T)+Z(T) —1>~4(T) — 1. A contradiction.
If sta(vy) = A, then one of the two cases as following holds:

(1) There exists a neighbor of vg outside P, say wuj, has status B.
(2) All neighbors of vg outside P have status A.

In the former case, there exists a neighbor us of u; which has status D. Similarly, there exists a neighbor
ug of uy which has status C, and there exists a neighbor u4 of uz which has status A. Moreover, let us be a
neighbor of uy other than wugz, then us has status A or B. In either case, us has degree at least two, which
contradicts the choice of v.

In the latter case, we take any neighbor of vg outside P, say u1, and we have that u; has a neighbor which
has status C, say us. From the choice of vy, ugy is a leaf. By Observation 4.1d, d(u;) = 2. And we can obtain
a contradiction by an argument similar to the case that sta(v;) = B as above.

In summary, if (T, S) € 2. Then, v4(T) = w

]

Lemma 4.3. Let T be a tree and S be a labeling of T such that (T,S) € F5. Then for any leaf v, there exists
a set D with order w — 1 such that each vertex of T is 2D-dominated by D except for v, and the
non-leaf neighbor of the support vertex of v belongs to D.

Proof. Take any leaf v; of T. We proceed by induction on the length k of a sequence required to construct the
labeled tree (T,S). When k = 0, (T,S) = (P4, S”), the result is immediate. Let k£ > 1 and assume that if the
length of sequence used to construct a labeled tree (17, .5*) € 5 is less than k, the result holds. Since (7', S) € %,
there exists always a sequence of length k used to construct (T, 5): (Ps, S”), (T1,51),-+ , (Tk—1,S%-1), (T,.5).

First, we assume that v is in the basic path of T Since (Ty—_1,Sk—1) € Fa, v is still a leaf of Tj,_;. By the
inductive hypothesis, there exists a set D’ with order Z n(Th— 1)+5(T’“ VF(Tk=1) _ 1 gych that each vertex of Ty 1
is 2D-dominated by D’ except for v1, and v3 belongs to D’, Where vg is the neighbor of the support vertex of
v1. We know that (T, .5) is obtained from (Tj_1,Sk—1) by one of the operations s, €3 and &4. In the first or
third case, let D be the set consisting of D’ and the support vertex which belongs to V/(T') \ V(Tk—1), and D
is the desired set. In the second case, the tree T is obtained from Tj_; by adding a path wjususus and joining

uy to a leaf u of Tx_1. Note that u has status C, and by Observation 4.1d, the neighbor of u in Ty_1, say v/,
n(Te—1)+s(Te—)+U(Th-1)

has degree two. By the inductive hypothesis, there exists a set D’ with order = 1 1 such
that each vertex of T),_; is 2D-dominated by D’ except for v1, and v3 belongs to D’. Moreover, one of u and u’
belongs to D’. Let D be the set consisting of D’ and the vertex usz, and D is the desired set.

Next, we consider the case that v is not in the basic path. Since (T,S) € J,, this leaf has status C' and
its support vertex v, is labeled A. By Observation 4.1d, vo has degree two. Let P = vyvs - - - v;v be the path
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between vy and v, where v is the vertex of basic path which has minimum distance from v;. Note that the
neighbor of vs, say vz, has status A or B.
Next, we distinguish two cases as follows.

Case 1. sta(vs) = A.
If d(v3) = 2, then it is easy to see that vjvav3v4 is the basic path of T, a contradiction.
If d(v3) > 3, from the definition of Z% and the fact that a sequence of labeled trees used to construct (7, .5)
is not necessarily unique, we have that there exists a sequence of length k used to construct (T, S): (Py, S”),
(T7,81),-- , (T} _1,S,_41), (T,S), such that (T,S) is obtained from (T}_,,S;_;) by 4. That is, the tree T
is obtained from T} _; by adding the path viv, and joining vy to a vertex vs. Note that vs has a neighbor
of degree two, say u, which is labeled C' (Otherwise, no vertex of T is the corresponding vertex of v3).
By Observation 4.le, the component of T} , — uu' containing u, say T”, containing the basic path, and
(T",5*) € F for some S*, where u’ is the neighbor of u other than vs. It implies that there always exists
a sequence of length & used to construct (T, 5): (P4, S”), (I7,S7), -, (T¥_1,Sk_1), (T, S), satisfying the
two conditions as follows:
(1) (Tlg/—hsl/c/—l) = (Tlé—hsllc—l);
(2) Thereisai € {1,2,---,k — 2} in this sequence such that (T, S) = (T', S*).

By the inductive hypothesis, there exists a set D’ with order "(Tiﬁ)“(?ﬂ)ﬂ(ﬂ/) — 1 such that each vertex

of T!" is 2D-dominated by D’ except for u, and u” belongs to D’, where u” is a neighbor of vz in T}

other than u. Then D; = D' U {v3} is a v§-set of T". For each j € {i,i +1,---,k — 2}, we know that
(T 4,5, ;) is obtained from (T, S?) by one of the operations &, 3 and 0. Let D11 = D;U{w}, where

J+L~g+1 VR
w e V(T ;)\ V(T;)" and has status A. It is easy to see that D1 is a 7é-set of T}, and moreover, Dj_;

is the desired set.

Case 2. sta(vs) = B.
In this case, if d(vs) > 3, there must be a neighbor of vs, say u, which has status A. From the definition of
5, the component of T'— vsu containing vs, say T’ containing the basic path, and (7”,5*) € % for some
S*. We can obtain the desired set by an argument similar to the case of sta(vs) = A and d(vs) > 3.
If d(vs) = 2, then w4, vs,v6 have status D, C, A, respectively, and d(vs) = d(vs) = 2. If d(ve) = 2, let
T =T — {v1,v2,v3,v4}. Note that (T7,5*) € F for some S*. By the inductive hypothesis, there exists a
set D’ with order w — 1 such that each vertex of T is 2D-dominated by D’ except for vs,
and v7 belongs to D', then the set D’ U {vs} is the desired set. So we consider the case of d(vg) > 3. From
the definition of 7%, there must exist a neighbor of vg, say u, such that sta(u) = A and the component of
T — vgu containing vg, say T’, containing the basic path, and (77, 5*) € 5 for some S*. By the inductive
hypothesis, there exists a set D’ with order w — 1 such that each vertex of T” is 2D-dominated
by D’ except for vy, and vz belongs to D’, We can obtain the desired set by an argument similar to the case
of sta(vs) = A and d(vs) > 3.

O
In what follows, we begin to prove Theorem 2.3.

Proof. The sufficiency follows immediately from Lemma 4.2. So we prove the necessity only. If diam(T) < 2, T is
astar, and v4(T) =1 < w. If diam(T) = 3, T is a double star, and then v§(T) = 2 < w.
Support that v4(T) = w, it is easy to see that T = Py, let S be the labeling that assigns to the
two leaves of the path Py status C, and the remaining vertices status A, then the label tree (P4, S) € Z5. So we
assume that diam(T) > 4. The proof is by induction on n(7). The result is immediate for n(7") < 4. For the
inductive hypothesis, let n(T) > 5. Assume that for every nontrivial tree 7" of order less than n(T'), we have
that 4¢(T") < w, with equality only if (77, 5*) € Z for some labeling S*.
Let D be a Wg—set of T which contains no leaf and P = vjv3 ---v; be a longest path in 7" such that

(i) d(vs) as large as possible, and subject to this condition
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(ii) d(v4) as large as possible, and subject to this condition
(iii) d(vs) as large as possible.

We now proceed with a series of claims that we may assume are satisfied by the tree T, for otherwise the
desired result holds.

Claim 4.4. Each support vertex in T has exactly one leaf-neighbor.

If not, assume that there is a support vertex u which is adjacent to at least two leaves, say uj,us. Deleting
uy, and denote the resulting tree by T’. Take a vJ-set of 1" contains no leaf, say D’. It follows that wu is
either contained in D’ or has at least two non-leaf neighbors in D’, and then D’ is also a 2D D-set of T.
That is, v4(T) < v4(T"). Observe that n(T) = n(T") + 1, I(T) = I(T') + 1 and s(T) = s(T"). We have that

Wg(T) < Wg(T/) < n(T/)-i-s(I')-‘rl(T/) _ n(T)—1+s(4T)+l(T)—1 < n(T)+s(4T)+l(T)_

O
By Claim 3.3, we can assume that d(ve) = 2. And by Corollary 2.2, vo € D. Now, we consider the vertex vs.

Claim 4.5. v3 is not a support vertex.

In other words, all neighbors of v3 are support vertices of degree two, except possibly the vertex v4. If not,
support that vz is a support vertex and u is the leaf-neighbor. Let T" = T'— {v1, v2 }. Note that n(T) = n(T")+2,
UT) = UT")+1 and s(T) = s(T")+1, then 7§(T) < 8 (1")+1 < 2IVECOHID 4 g — nlD=20eD)- LI
1 = 2OEOHD 1 particular, if v4(T) = “EEOHD) - then 44(T7) = w. It means that
(T",5%) € Z, for some labeling S*. By Lemma 4.3, there exists a 2DD-set S of 7' — {u} with cardinality
7v4(T") — 1, and the non-leaf neighbor of vz in 7" belongs to S. It is easy to see that S U {vs} is a 2D D-set of
T with cardinality v¢(T"). That is, v4(T) < 74(T"), Contradicting the fact that v4(T) = v4(T") + 1. Hence, we
have that v4(T) < w- O

Let (S(T)N N(v3)) \ {va} = {w1,wa, -+ ,ws}, where wy = vg, t > 1.

Claim 4.6. d(vg) = 2.

Assume that d(vq) > 3, let T” be the component of T'—v3v,4 containing vs. It follows from n(T) = n(T")+1+2t,
UT) = U(T')+t and s(T) = s(T")+¢ that v&(T) < y&(T") +t < 2IFTOHAT) 4y nl)Z1-2es(D)—t+T) =t |
t < n(T)+s(T)+I(T)

Ly

Claim 4.7. d(vs) = 2.

Assume that d(vs) > 3 and v} be a neighbor of vs outside P. If ¢t = 2, from the choice of P and Claim 3.3,
we only need to consider the two case as follows (In other cases, let 77 = T — {v1, va, vs,v4}. We can always
obtain a v¢-set of 7" which contains a vertex u € Nvs] N V(T"). It means that v4(T) < v4(T") + 1. Observe

that n(T) = n(T") + 4, I(T) = I(T") + 1 and s(T) = s(T") + 1. We always have that »§(T) < 2Ty,

1) vy is not a support vertex, v} is adjacent to a support vertex v5, where v5 and v} have degree two.
4 3 3 4 g
2) vy is not a support vertex and v/ is adjacent to h support vertices of degree two, where h > 2.
4

Let T’ is the component of T' — v5v) containing vs. In the former case, n(T) = n(T") + 3, I(T) = I(T") + 1,
s(T) = s(T") + 1 and ¥¢(T) < v4(T") + 1. In the latter case, note that it is possible that v} is a support vertex,
then n(T")+2h+1 < n(T) <n(T")+2h+2, (T)+h <UT) <UT")+h+1,s(T")+h <s(T)<s(T)+h+1
and v¢(T) < v4(T") + h. In either case, we conclude that v4(T) < w.

If t > 3, let 7" be the component of T — vyvs containing vs. Observe that n(T) = n(T’) + 2 + 2t, I(T) =

UT') +t and s(T) = s(T") +t and v§(T) < A4(T") + t. Analogous to the proof of Case 3, we have that
’Yéi(T) < n(T)+S(4T)+l(T).
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Claim 4.8. d(vg) = 2 or all neighbors of vg outside P are support vertices of degree two.

First, we show that vg is not a support vertex. If not, it follows from Claim 3.3 that vg has one leaf-
neighbor, and construct a tree 7" which is obtained from T by removing the leaf-neighbor of vg and joining
a new vertex to vy. Let D’ be a v¢-set of T" which contains no leaf, then N(v3) N S(T) C D’. We take a set
D" = (D' \ {vs,v4,v5}) U {vg} when D’ N {vs,vg,v5} # 0, and otherwise, D" = D’. Note that D" is also
a 2DD-set of T, and moreover, n(T) = n(T"), (T) = I(T"), s(T) = s(T") + 1. Hence, v4(T) < ~¢(T") <
n(T)+s(TH+HUT') _ n(T)+s(1:l)—1+l(T) < n(T)+sElT)+l(T).

7]
Let uy be a leaf outside P that at maximum distance from vg, and P; = ujus - - - us_1us be the path between
w1 and vg, where us = vg. Clearly, s < 6.
If s = 4, then we have that us is adjacent to a support vertices of degree two, where a > 1. Suppose
that us is not a support vertex, let 7" be the component of T' — usgvg containing vg. It follows from n(T) =

n(T") +2a + 1, (T) = I(T') + a and s(T) = s(T") + a that Y$(T) < v4(T") + a < w ta=
n(T)imesiT)iaH(T)*a +a< w. So, we assume that us has a leaf-neighbor, say u, and in this
case, let 7" = T — {uj,uz}. Note that n(T) = n(T") + 2, (T) = (T') + 1 and s(T) = s(T’) + 1, then
’de(T) < ’yg(T/) +1 < w +1 = "(T)—Q-‘rs(j;)—l-‘rl(T)—l 11 < w

. In particular, if
A4(T) = M) e A4 (T7) = w. It means that (17, S*) € Z for some labeling S*. By
Lemma 4.3, there exists a 2D D-set S of T” — {u} with cardinality v§(7") — 1, and a non-leaf neighbor of u3 in T"
belongs to S. It is easy to see that SU {us} is a 2D D-set of T with cardinality v4(T"). That is, v¢(T) < ~4(T"),
Contradicting the fact that v¢(T") = v4(T") + 1.

If s =5, by an argument similar to that of Claims 3.3, 3.4 and 3.5, we have that d(us) = d(ug) = 2, ug is
not a support vertex and adjacent to a support vertices of degree two, where a > 1. Let 7" be the component
of T' — uyvg containing vg and D’ be a v§-set of T” contains no leaf. If a > 2, Observe that D’ U (S(T) N N (u3))
is a 2D D-set of T. Combining the fact that n(T) = n(T")+2a+2, (T) = U(T") + a, s(T) = s(T’) + a. We have
that 74(T) < 44(T") + a < w ta= n(T)*2a72+S£T)fa+l(T)*a ta< w'

So we consider the case of @ = 1. If there is a vertex belonging to N[vg] N D’, then D’ U {us} is a 2D D-set
of T, and so /4(T) < A4(T') +1 < n(T’ )+s(4T JHT) | g (D)= 4+5(T) 14U(T)—1 11 < n(T)—i—aElT)-H(T) So we
can assume that N{vg] N D’ = (. If {v3,v4} N D" # @, then (D' \ {’Ug,U4}) U {vs} is also a yd-set of 77, and we
are done. If vg,vq € D', it follows from d(vs) = 2 and N[vg] N D’ = () that vs is not 2D-dominated by D' a
contradiction.

If s = 6, from Claims 3.3 and 3.4 and the choice of T, we have that d(us) = d(us) = d(us) = 2, and ug is
not a support vertex and adjacent to a support vertices of degree two, where a < t. Let T be the component of
T — vsv6 containing vg and Dy be a v§-set of T contains no leaf. Note that S(T) NN (us) C D;. Take a set D' =
(D1\{us, ua, us })U{ve} when {ug, uq, us}N D1 # 0, and otherwise, D' = D;. Observe that D' U{ws, we, -+ ,w}
is a 2DD-set of T. Combining the fact that n(T) = n(T") + 2t + 3, I(T) = (T") + t, s(T) = s(T") + t. We have
that A4(T) < v4(T") +t < n(T’)+s(4T’)+l(T’) L= n(T)72t73+s4(T)7t+l(T)7t i< n(T)+s(4T)+l(T). O

We assume that |N(vs) \ {vs,v7}| = a, then @ > 0. In addition, by the claims as above, we have that
d(vg) = d(vq) = d(vs) = 2, v3 is not a support vertex and adjacent to ¢ support vertices of degree two, where
t>1.

If @ = 0, then d(vs) = 2. Let T’ be the component of T — v4vs containing vs and D’ be a yd-set of
T’ contains no leaf. Observe that vg € D' and D' U {wy,wa, -+ ,w;} is a 2DD-set of T. Tt follows from

n(T) = n(T')4+2t42, I(T) = I(T')+t—1 and s(T) = s(T")+t—1 that 1§(T) < A¢(T")+t < “EFTIHIT 4y
"(T)_2t_2+s(Ti_t+1+l(T)_t+l +t= "(T)“(f)H(T). Suppose that fyg(T) = 7"””3?)””) then we have equality

throughout the above inequality chain. In particular, v§$(7") = w

. By the inductive hypothesis,
(T, 5%) € F, for some labeling S*. Since vs is a leaf in 77, by Observation 4.1a, it has status C, and then vg has
status A. Let S be obtained from the labeling S* by labeling the vertices vs, vy with label B, D, respectively.
And moreover, labeling wq,wa, -+ ,w; with label A, and label their leaf-neighbors with label C. Then, (T}, 5)
can be obtained from (7”,5*) by doing the operation €3 for one time and the operation &5 for ¢t — 1 times.
Thus, (T,S5) € .
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Next we consider the case of a > 1. Let uj,ug, - ,uq be all neighbors of vg outside P and u; be the
leaf-neighbor of u; (i = 1,2,--- ,a). Let T" = T — {uy,ug, -+ ,uq,uy,uh,--- ,u,} and D’ be a yd-set of T’
contains no leaf. Note that vg has degree two in 77, and D' U {uy,ug, -+ ,u.} is a 2D D-set of T It follows from
n(T) = n(T') + 2a, (T) = I(T') + a and s(T) = s(T") + a that v(T) < 4(T") +a < w +a=

n(T)72a+S(?7a+l(T)7a +a = w. Suppose that v4(T) = w, then we have equality
throughout the above inequality chain. In particular, v§(T") = w. By the inductive hypothesis,

(T, 5*) € P for some labeling S*.

If t > 2, by Lemma 4.3, there exists a set D; with order w — 1 such that each vertex of T" is
2D-dominated by D; except for vy, and v3 belongs to D;. Since leaf-neighbor of each w; (i = 2,3,--- ,t) is 2D-
dominated by Dy, without loss of generality, we can assume that each w; (i = 2,3, -+ , ) belongs to D;. Note that
d(vs) = d(vs) = d(vg) =2 in T" and {v4, vs,ve,v7} N Dy # B, we construct a set Dy = (Dy \ {vg, v5,v6}) U {v7},
each vertex of 7" is 2D-dominated by Dy except for v; and |Ds| < |D;|. Let D3 be a set which is obtained from
Dy by deleting v3, and adding all neighbors of vg outside P and wvs. It is easy to see that D3 is a 2D D-set of T,
and |Ds| < w — 1, it is impossible.

If t = 1, the vertices v; and vy have status C' and A, respectively, in S*. And so, v3 has status A or B.

In the former case, it follows from d(v;) = d(v2) = d(v3) = d(v4) = 2 and the definition of F% that vivav3v4
is the basic path of T”, and then v4 has status C. Moreover, vs,vg have status D, B, respectively. Let S be
obtained from the labeling S* by labeling each w; with label A, and each u; with label C. Then, (7, S) can be
obtained from (7”,5*) by doing the operation &, for a times. Thus, (T,5) € .

In the latter case, from the definition of J5, vy, vs5, vg have status D, C, A, respectively. And vy has status A
or B. Assume that sta(vy) = A. If d(v7) = 2, we have that vsvgvrvg is the basic path of T”. Let S} be obtained
from S* by changing the status vs, vy, vs,v6 to A, C, D, B, respectively, and clearly, (T7”,57) € . Let S be
obtained from the labeling S} by labeling each w; with label A, and each u; with label C. Then, (T, S) can be
obtained from (7", S7) by doing the operation &5 for a times. Thus, (T,5) € %. If sta(vy) = A and d(v7) > 3,
or sta(vy) = B, let S be obtained from the labeling S* by labeling each u; with label A, and each u; with label
C. Then, (T, S) can be obtained from (7", S*) by doing the operation &, for a times. Thus, (T, S) € . O

5. SUMMARY

A network can be modeled by a graph G = (V, E) with the vertices representing nodes such as processors or
stations, and the edges representing links between the nodes. We often need to select some special nodes in the
computer network to monitor the communication of the entire network. These special nodes correspond to the
dominating set we mentioned above. It is well known that in the process of designing and managing computer
networks, cost control is a key issue. Hence, we hope that the number of these special nodes to be as small as
possible. This requires us to calculate the relevant domination parameters on the computer network, or give the
upper and lower bounds of the relevant domination parameters.

Over the last few decades, many new domination parameters were proposed to meet various network design
requirements, and disjunctive domination is one of them.

As the tree structure is one of the most important network topology structures, we take it as the research
object of this article. We believe that our work will promote the development of computer networks.
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