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BOUNDED-DEGREE ROOTED TREE AND TDI-NESS

Herve L. M. Kerivin1 and Jinhua Zhao2,*

Abstract. This paper contributes to the polyhedral aspect of the Maximum-Weight Bounded-Degree
Rooted Tree Problem, where only edge-indexed variables are considered. An initial formulation is given,
followed by an analysis of the dimension and a facial study for the polytope. Several families of new
valid inequalities are proposed, which enables us to characterize the polytope on trees and cycles with
a totally dual integral system.
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1. Introduction

Given an undirected graph 𝐺 with node set 𝑉 and edge set 𝐸, and a specified node 𝑟 of 𝑉 , hereafter called
the root, a rooted tree is either the empty graph (∅, ∅) or a tree (i.e., a connected and acyclic subgraph) of 𝐺
containing node 𝑟. If a positive integer 𝑐𝑣 is associated with each node 𝑣 of 𝑉 , then a rooted tree 𝑇 of 𝐺 is called
bounded-degree whenever the degree of each node 𝑣 in 𝑇 does not exceed its degree requirement, or capacity, 𝑐𝑣.
This paper deals with the polyhedral structure of the Bounded-Degree Rooted Tree (BDRT) polytope, that is,
the convex hull of the incidence vectors of edge sets inducing bounded-degree rooted trees of 𝐺.

To the best of our knowledge, this polytope has not been previously studied in the literature. Actually,
the problem of considering bounded-degree rooted trees quite recently arises in the delivery of video streams in
under-provisioned peer-to-peer networks, where the scarce resources lie at the peers’ level (e.g., average available
upload capacity below the stream bit-rate) and not at the links’ one [1]. Such peer-to-peer networks usually
are represented by non-necessarily complete graphs (due to peering agreements, too-long transmission delays,
or too-high jitters) where the video stream’s source naturally corresponds to the root and for each peer, its
upload-capacity limit can be converted into an upper bound on the number of peers it can send the video
stream to [1]. The problem, considered in [1] and called the Maximum Bounded-Degree Rooted Tree (MBDRT)
problem, then consists of finding a rooted tree which respects the degree constraints and maximizes the number
of nodes it contains. In [14], the MBDRT problem was showed to be an NP-hard combinatorial optimization
problem by reducing the 3-SAT problem [9] to it, and polynomial-time algorithms were given on certain classes
of graphs such as trees, cycles and complete graphs.
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If a real-value edge-weight vector is given, the Maximum-Weight Bounded-Degree Rooted Tree Problem, here-
after denoted MWBDRTP, consists of finding a maximum-weight subset of edges which induces a bounded-
degree rooted tree of 𝐺. The NP-hardness of MWBDRTP is twofold since it comes from both the degree
restriction and the non-spanning property.

On the one hand, bounded-degree versions of combinatorial optimization problems have received a significant
amount of research interest over the last two decades. Several approximation algorithms have been devised for
the bounded-degree spanning tree problem (see [18] and the references therein), the bounded-degree Steiner tree
problem [8], and bounded-degree matroids and submodular flows [15], but no intensive polyhedral studies seem
to exist. Most of these algorithms are based on polyhedral combinatorics [17] in the sense that they use a linear
relaxation for the problem to first provide a dual bound and then use the optimal solution to this relaxation to
generate a primal solution.

On the other hand, combinatorial optimization problems with the non-spanning property, such as the Steiner
tree problem (see [4] and the references therein), the survivable network design problem [12], and the maximum-
weight edge-induced connected subgraph problem [5], have been considered in the literature for several decades.
The polyhedral structures of these problems have been intensively studied (see [4,5,12] and the references therein)
and some linear-relaxation based approximation algorithms have been designed (see, e.g., [11]). Besides, the
feasibility problem of MWBDRTP is not NP-complete, contrary to the case for other bounded-degree problems
such as bounded-degree spanning tree problem and bounded-degree Steiner tree problem.

This paper explores the polyhedral structure of MWBDRTP, and is organized as follows. In Section 2, the
Bounded-Degree Rooted Tree (BDRT) polytope, denoted ℬ(𝐺, 𝑟, c), is defined and its dimension is studied. An
initial formulation is provided, followed by some necessary and sufficient conditions for the inequalities in the
formulation to be facet-defining. Then in Section 3, two families of new valid inequalities are introduced. By
using these new valid inequalities, a complete polyhedral characterization of ℬ(𝐺, 𝑟, c) is given in Section 4 on
either trees and cycles. In fact, the proposed linear systems not only lead to integral polytopes but also are
Totally Dual Integral (TDI) [17].

This introduction is concluded with some definitions and notation, which have been mainly taken from [6,17].
Let 𝐺 be a simple, connected, and undirected graph with node set 𝑉 (𝐺) and edge set 𝐸(𝐺); when there

is no confusion on the graph from the context, the graph is labeled as 𝐺 = (𝑉,𝐸). If 𝑒 ∈ 𝐸 is an edge with
extremities 𝑢 and 𝑣, 𝑢𝑣 is also used to denote 𝑒.

Let 𝑈 be a subset of 𝑉 . The set of edges having one extremity in 𝑈 and the other one in 𝑈 = 𝑉 ∖𝑈 is called
a cut and is denoted by 𝛿(𝑈). If 𝑈 = {𝑣} for some 𝑣 ∈ 𝑉 , then we write 𝛿(𝑣) for 𝛿({𝑣}). We denote by 𝐸[𝑈 ]
the set of edges having both extremities in 𝑈 , and 𝐺[𝑈 ] the subgraph induced by 𝑈 (i.e., 𝐺[𝑈 ] = (𝑈, 𝐸[𝑈 ])).
Similarly, given 𝐹 ⊆ 𝐸, 𝑉 [𝐹 ] is used to denote the node set composed of extremities of edges in 𝐹 , and 𝐺[𝐹 ]
the subgraph induced by 𝐹 (i.e., 𝐺[𝐹 ] = (𝑉 [𝐹 ], 𝐹 )). Given two sets of nodes 𝑊 and 𝑈 with 𝑊 ⊆ 𝑉 ∖ 𝑈 , the
set of edges having one extremity in 𝑈 and the other one in 𝑊 is denoted by [𝑈, 𝑊 ]. If 𝜋 = {𝑉1, · · · , 𝑉𝑝}, 𝑝 ≥ 2,
is a partition of 𝑉 , then we denote by 𝐸(𝜋) the set of edges having their extremities in different classes of 𝜋.
For any node 𝑣 ∈ 𝑉 , let 𝑁(𝑣) ⊆ 𝑉 denote the set of neighbours of 𝑣 in 𝐺. Besides, in this paper we represent a
path by its edge set. For any node 𝑣 ∈ 𝑉 , let 𝑃𝑟𝑣 denote a path between 𝑟 and 𝑣. 𝑃𝑟𝑣 can also be refereed to as
an 𝑟–𝑣 path. Similarly, for any edge 𝑒 ∈ 𝐸, let 𝑃𝑟𝑒 denote a path between 𝑟 and 𝑒, and 𝑃𝑟𝑒 is also refereed to
as an 𝑟–𝑒 path. Given any edge subset 𝐹 ⊆ 𝐸, its incidence vector is the vector x𝐹 in {0, 1}𝐸 such that 𝑥𝐹

𝑒 = 1
if and only if 𝑒 ∈ 𝐹 . Given any vector x ∈ R𝐸 and any edge set 𝐹 ⊆ 𝐸, x(𝐹 ) is used for

∑︀
𝑒∈𝐹 𝑥𝑒.

Of all the nodes of 𝐺, we need to distinguish the non-root nodes having unit degree requirements from others,
for any of the former, if present in a bounded-degree rooted tree of 𝐺, always appears as a leaf. Thus the set of
these unit-capacity nodes is denoted by

𝑂 = {𝑣 ∈ 𝑉 ∖ {𝑟} : 𝑐𝑣 = 1}.

A node 𝑣 (edge 𝑒, respectively) of 𝐺 is unreachable from root 𝑟 if there does not exist any bounded-degree 𝑟–𝑣
path (𝑟–𝑒 path, respectively) in 𝐺 or equivalently, each 𝑟–𝑣 path (𝑟–𝑒 path, respectively) in 𝐺 contains an inner
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node in 𝑂. Let 𝑉𝑢 and 𝐸𝑢 be the sets composed of the unreachable nodes and edges of 𝐺, respectively. Notice
that there might exist edges in 𝐸𝑢 whose extremities do not belong to 𝑉𝑢, that is, {𝛿(𝑢) : 𝑢 ∈ 𝑉𝑢} ⊆ 𝐸𝑢.

Solving MBDRT problem on 𝐺 can hence be reduced to solving MBDRT problem on 𝐺′ = (𝑉 ∖ 𝑉𝑢, 𝐸 ∖𝐸𝑢),
the graph obtained from 𝐺 by deleting both unreachable nodes and edges. Notice that getting rid of the
unreachable elements in a graph can be performed in linear time by various search algorithms. We therefore
make the following assumption for the remainder of the paper.

Assumption 1.1. Graph 𝐺 contains no unreachable nodes or edges.

2. The BDRT polytope

Let 𝒮 ⊆ {0, 1}𝐸 be the set composed of all the incidence vectors of the edge sets inducing bounded-degree
rooted trees of 𝐺, that is,

𝒮 =
{︀
x𝐹 ∈ {0, 1}𝐸 : 𝐺[𝐹 ] is a bounded-degree rooted tree of 𝐺

}︀
.

The BDRT polytope hence is the convex hull of 𝒮 and hereafter is denoted ℬ(𝐺, 𝑟, c). The initially proposed
formulation consists of the following inequalities.

𝑥𝑒 − x(𝛿(𝑆)) ≤ 0 for all 𝑒 ∈ 𝐸[𝑆], 𝑆 ⊆ 𝑉 ∖ {𝑟}, (2.1)
x(𝐸[𝑆]) ≤ |𝑆| − 1 for all 𝑆 ⊆ 𝑉, |𝑆| ≥ 3, (2.2)
x(𝛿(𝑣)) ≤ 𝑐𝑣 for all 𝑣 ∈ 𝑉, (2.3)

𝑥𝑒 ≤ 1 for all 𝑒 ∈ 𝐸, (2.4)
𝑥𝑒 ≥ 0 for all 𝑒 ∈ 𝐸. (2.5)

The connectivity inequalities (2.1) guarantee that each selected edge is connected to root 𝑟 through a path.
The well-known subtour elimination inequalities (2.2) ensure that there is no cycles in the resulting graph [3].
The degree requirement imposed on each node is handled by the capacity inequalities (2.3). The bounds on the
variables are guaranteed by the trivial box inequalities (2.4) and (2.5).

These aforementioned inequalities clearly give a formulation for ℬ(𝐺, 𝑟, c), or equivalently they induce a
polytope 𝑃 (𝐺, 𝑟, c) whose integer hull is ℬ(𝐺, 𝑟, c).

Proposition 2.1. Polytope 𝑃 (𝐺, 𝑟, c) = {x ∈ R𝐸 : x satisfies (2.1)–(2.5)} is a formulation for ℬ(𝐺, 𝑟, c), that
is, 𝑃 (𝐺, 𝑟, c) ∩ Z𝐸 = ℬ(𝐺, 𝑟, c) ∩ Z𝐸.

2.1. Dimension

We first establish a technical lemma that will come in handy in the forthcoming proofs of the dimension and
the facets of ℬ(𝐺, 𝑟, c).

Lemma 2.2. Given an undirected and connected graph 𝐺 = (𝑉,𝐸), a node 𝑟 ∈ 𝑉 , and a node-capacity vector
c, let 𝐹 be any nonempty subset of edges of 𝐺. For any 𝑒 ∈ 𝐹 , consider an 𝑟–𝑒 path 𝑃𝑟𝑒 in 𝐺 that satisfies the
capacity constraints and contains as few edges as possible. The vectors in the set {x𝑃𝑟𝑒 : 𝑒 ∈ 𝐹} are affinely
independent.

It is worth noting that here we intentionally avoid the notion of shortest path between 𝑟 and 𝑒 (or 𝑣) in 𝐺,
since a shortest path in 𝐺 does not necessarily satisfy the capacity constraints due to the nodes of 𝒪.

Proof of Lemma 2.2. 𝐺 being connected guarantees that 𝑃𝑟𝑒 exists for any edge 𝑒 ∈ 𝐹 . Moreover for any two
distinct edges 𝑒1, 𝑒2 ∈ 𝐹 , if |𝑃𝑟𝑒1 | ≥ |𝑃𝑟𝑒2 | then one trivially has 𝑒1 ̸∈ 𝑃𝑟𝑒2 .

Suppose that there exists a non-zero vector 𝜆 ∈ R𝐹 such that∑︁
𝑒∈𝐹

(︀
𝜆𝑒x𝑃𝑟𝑒

)︀
= 0.
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Let 𝐹+ = {𝑒 ∈ 𝐹 : 𝜆𝑒 ̸= 0} and let 𝑒𝑚 be an edge in 𝐹+ such that |𝑃𝑟𝑒𝑚
| ≥ |𝑃𝑟𝑒| for any 𝑒 ∈ 𝐹+. One

therefore has 𝑒𝑚 /∈ 𝑃𝑟𝑒 for any 𝑒 ∈ 𝐹+∖{𝑒𝑚}. Consequently one deduces 𝜆𝑒𝑚
= 0, a contradiction with 𝑒𝑚 ∈ 𝐹+.

The vectors in the set {x𝑃𝑟𝑒 : 𝑒 ∈ 𝐹} thus are linearly independent and hence affinely independent. �

The next theorem states that ℬ(𝐺, 𝑟, c) is full-dimensional.

Theorem 2.3. dimℬ(𝐺, 𝑟, c) = |𝐸|.

Proof. Let 𝐺𝑟 = (𝑉𝑟, 𝐸𝑟) be the connected component containing 𝑟 of the subgraph 𝐺[𝑉 ∖𝑂]. By Assumption 1.1
𝑂 is a stable set of 𝐺 and therefore, 𝑉𝑟 = 𝑉 ∖𝑂 and 𝐸𝑟 = 𝐸 ∖ 𝛿(𝑂).

Given any 𝑒 ∈ 𝐸𝑟, let 𝑃𝑟𝑒 be a shortest 𝑟–𝑒 path in 𝐺[𝑉𝑟]. Since 𝐺𝑟 contains no nodes in 𝒪, 𝑃𝑟𝑒 is a 𝑟–𝑒
path that satisfies the capacity constraints and contains as few edges as possible. According to Lemma 2.2, the
vectors in the set 𝑆𝑟 = {x𝑃𝑟𝑒 : 𝑒 ∈ 𝐸𝑟} are affinely independent. Each of these vectors also satisfies the capacity
requirement for no unit-capacity nodes are involved in those paths.

Consider any edge 𝑒𝑜 = 𝑣𝑣𝑜 ∈ 𝛿𝐺(𝑂) where 𝑣𝑜 ∈ 𝑂 and then 𝑣 ∈ 𝑉𝑟. Let 𝑃𝑟𝑣 denote an 𝑟–𝑣 path in 𝐺[𝑉𝑟]
and 𝑃𝑟𝑒𝑜

= 𝑃𝑟𝑣 ∪ {𝑣𝑣𝑜}. All the inner nodes of 𝑃𝑟𝑒𝑜
have capacity of value at least 2 for they belong to 𝑉𝑟.

𝑃𝑟𝑒𝑜 then is a bounded-degree rooted tree of 𝐺. Clearly the set 𝑆 = 𝑆𝑟 ∪ {x𝑃𝑟𝑒𝑜 : 𝑒𝑜 ∈ 𝛿𝐺(𝑂)} is composed of
|𝐸𝑟|+ |𝛿𝐺(𝑉𝑟)| = |𝐸| affinely independent vectors for x𝑃𝑟𝑒𝑜 is the only vector satisfying 𝑥𝑒𝑜

= 1.
Combining all these non-zero affinely independent vectors of 𝑆 with the zero vector gives a set of |𝐸| + 1

affinely independent vectors, each of which inducing a bounded-degree rooted tree of 𝐺. One therefore has
dimℬ(𝐺, 𝑟, c) ≥ |𝐸| and our proof is complete for |𝐸| is a trivial upper bound on dimℬ(𝐺, 𝑟, c). �

If Assumption 1.1 was dropped, we would clearly have dimℬ(𝐺, 𝑟, c) = |𝐸| − |𝐸𝑢| for any incidence vector of
the edge set of a bounded-degree rooted tree of 𝐺 straightforwardly would satisfy the following equations

𝑥𝑒 = 0 for all 𝑒 ∈ 𝐸𝑢. (2.6)

Moreover there would exist a one-to-one correspondence between the facet-defining inequalities of ℬ(𝐺, 𝑟, c)
and those of ℬ(𝐺′, 𝑟, c′), where c′ is the restriction of c to 𝐸′. In fact, any facet-defining inequality a𝑇 x ≤ 𝑏

of ℬ(𝐺, 𝑟, c) could be written as a′𝑇 x′ +
∑︀

𝑒∈𝐸𝑢
𝜆𝑒𝑥𝑒 ≤ 𝑏, where x′ is the restriction of x to 𝐸′, a′𝑇 x′ ≤ 𝑏 is

a facet-defining inequality of ℬ(𝐺′, 𝑟, c′), and 𝜆 ∈ R𝐸𝑢 . Consequently in terms of polyhedral characterizations
of BDRT polytope, any complete polyhedral characterization of ℬ(𝐺, 𝑟, c) could easily be deduced from any of
ℬ(𝐺′, 𝑟, c′), and vice-versa.

2.2. Properties of Facet-defining inequalities

Necessary and sufficient conditions for inequalities (2.1)–(2.5) to be facet-defining of ℬ(𝐺, 𝑟, c) have been
established. We refer to [20] for detailed statements of these conditions and for their proofs. The latter follow
standard techniques and are based on the following general properties facet-defining inequalities of ℬ(𝐺, 𝑟, c)
must satisfy. These properties will hereafter be used to devise new facet-defining inequalities and manage
redundancy in ℬ(𝐺, 𝑟, c) on trees and cycles.

The following lemma describes a property related to the mandatory nonnegative coefficients of the edges of
𝛿(𝑂) in any facet-defining inequalities.

Lemma 2.4. Let a𝑇 x ≤ 𝑏 be a valid inequality for ℬ(𝐺, 𝑟, c) different from a negative scalar multiple of any
nonnegativity inequality (2.5). Inequality a𝑇 x ≤ 𝑏 is facet-defining of ℬ(𝐺, 𝑟, c) only if 𝑎𝑒 ≥ 0 for any edge
𝑒 ∈ 𝛿(𝑂) or any pendant edge 𝑒 of 𝐺.

Proof. Suppose that a𝑇 x ≤ 𝑏 defines a facet ℱ of ℬ(𝐺, 𝑟, c) and there exists an edge 𝑒𝑜 ∈ 𝛿(𝑂) such that
𝑎𝑒𝑜

< 0. (The proof is similar if 𝑒𝑜 is a pendant edge of 𝐺.)
Theorem 2.3, combined with the assumption on a𝑇 x ≤ 𝑏, implies ℱ ̸= {x ∈ ℬ(𝐺, 𝑟, c) : 𝑥𝑒 = 0} for all 𝑒 ∈ 𝐸.

There then must exist an edge set 𝐹 ⊆ 𝐸 such that 𝑒𝑜 ∈ 𝐹 , 𝐺[𝐹 ] is a bounded-degree rooted tree of 𝐺, and
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a𝑇 xF = 𝑏. Edge 𝑒𝑜 is incident to a unit-capacity node, so 𝑒𝑜 is a pendant edge of 𝐺[𝐹 ]. Therefore 𝐺[𝐹 ∖ {𝑒𝑜}]
also is a bounded-degree rooted tree of 𝐺. One thus obtains 𝑏 ≤ a𝑇 xF∖{eo} = a𝑇 xF − 𝑎𝑒𝑜

= 𝑏 − 𝑎𝑒𝑜
< 𝑏, a

contradiction. �

A necessary and sufficient condition for the root node’s capacity inequality

x(𝛿(𝑟)) ≤ 𝑐𝑟 (2.7)

to be facet-defining was given in [20] as stated in the next proposition.

Proposition 2.5. Inequality (2.7) defines a facet of ℬ(𝐺, 𝑟, c) if and only if |𝛿(𝑟)| > 𝑐𝑟.

The capacity 𝑐𝑟 of the root node impacts the possible values the right-hand sides of facet-defining inequalities
take. If the root node has unit capacity, then the right-hand side of any facet-defining inequality of ℬ(𝐺, 𝑟, c)
but x(𝛿(𝑟)) ≤ 𝑐𝑟 must equal 0 as stated in the following lemma.

Lemma 2.6. Let a𝑇 x ≤ 𝑏 be a valid inequality for ℬ(𝐺, 𝑟, c) different from a negative scalar multiple of inequal-
ity (2.7). If 𝑐𝑟 = 1 inequality a𝑇 x ≤ 𝑏 is facet-defining of ℬ(𝐺, 𝑟, c) only if 𝑏 = 0.

Proof. Suppose that a𝑇 x ≤ 𝑏 defines a facet ℱ of ℬ(𝐺, 𝑟, c) and 𝑏 ̸= 0. Let ℱ𝑟 = {x ∈ ℬ(𝐺, 𝑟, c) : x(𝛿(𝑟)) = 1}.
Theorem 2.3, combined with the assumption on a𝑇 x ≤ 𝑏, implies ℱ ̸= ℱ𝑟 ̸= ℬ(𝐺, 𝑟, c).

As 𝑐𝑟 = 1 any bounded-degree rooted tree of 𝐺 whose edge set is nonempty satisfies x(𝛿(𝑟)) = 1, that is,
ℬ(𝐺, 𝑟, c) ∖ {0} ⊆ ℱ𝑟. Moreover 0 /∈ ℱ for 𝑏 ̸= 0 and consequently, ℱ ⊆ ℬ(𝐺, 𝑟, c) ∖ {0} ⊆ ℱ𝑟. Combining these
inclusions with ℱ ̸= ℱ𝑟 ̸= ℬ(𝐺, 𝑟, c) gives ℱ ( ℱ𝑟 ( ℬ(𝐺, 𝑟, c), a contradiction with the maximality of ℱ . �

Besides, for those inequalities having only non-negative coefficients, the following lemma can be developed.

Lemma 2.7. Given a valid inequality ax ≤ 𝑏 for ℬ(𝐺, 𝑟, c) with a ≥ 0,a ̸= 0, 𝑏 > 0, let 𝐸+ := {𝑒 ∈ 𝐸 | 𝑎𝑒 > 0}.
If 𝑟 /∈ 𝑉 [𝐸+], then ax ≤ 𝑏 defines a facet of ℬ(𝐺, 𝑟, c) only if

(1) there does not exist an edge 𝑒𝑏 ∈ 𝐸 such that it is in each bounded-degree 𝑟–𝑒 path for any edge 𝑒 ∈ 𝐸+,
unless 𝐸+ = {𝑒𝑏};

(2) there does not exist a node 𝑣𝑎 ∈ 𝑉 ∖ {𝑟} with 𝑐𝑣𝑎 = 2 such that it is an inner node in each bounded-degree
𝑟−𝑒 path for any edge 𝑒 ∈ 𝐸+.

Proof. Suppose that there exists a valid inequality ax ≤ 𝑏 and an edge 𝑒𝑏 ∈ 𝐸 such that the first condition is
not satisfied. Consider any 𝐹 ⊆ 𝐸 with its incidence vector x𝐹 that satisfies ax = 𝑏 > 0. One must have 𝑒+ ∈ 𝐹
for some 𝑒+ ∈ 𝐸+. Since 𝐺[𝐹 ] is a bounded-degree rooted tree, it must contain a bounded-degree 𝑟−𝑒+, which
has to include 𝑒𝑏. Hence 𝑒𝑏 ∈ 𝐹 , which implies the inequality 𝑥𝑒𝑏

≤ 1 induces a larger face than the one defined
by ax ≤ 𝑏.

Now suppose there exists a node 𝑣𝑎 ∈ 𝑉 ∖ {𝑟} that is an inner node in every bounded-degree 𝑟−𝑒 path for
any edge 𝑒 ∈ 𝐸+. For any 𝐹 ⊆ 𝐸 with its incidence vector x𝐹 satisfying ax = 𝑏, x(𝛿(𝑣𝑎)) = 𝑐𝑣𝑎

is also satisfied.
As a result, x(𝛿(𝑣𝑎)) ≤ 𝑐𝑣𝑎 induces a larger face than the one defined by ax ≤ 𝑏. �

This lemma expresses that in the circumstances where the coefficients are non-negative and the right-hand
side of a facet-defining inequality are positive, the associated graph does not contain certain substructures,
specifically the bridges or articulation nodes with properties described above. It is worth noting that here the
notion of bridges and articulation nodes needs to respect the capacity factor. For instance, an edge might not
be a bridge in the graph, but regarding capacity, removing it might lead to the removal of all bounded-degree
paths between 𝑟 and some other edges. In this case, it can be deemed as a bridge regarding capacity.

To illustrate how these lemmas are reflected on previously introduced valid inequalities, we hereafter give an
example. According to Lemma 2.4, any connectivity inequality associated with a set 𝑆 ⊆ 𝑉 ∖ {𝑟} that satisfies
𝛿(𝑆) ∩ 𝛿(𝑂) ̸= ∅ is not facet-defining, as stated in the following proposition.
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Proposition 2.8. Given 𝑒 ∈ 𝐸[𝑆] with 𝑆 ⊆ 𝑉 ∖ {𝑟}, inequality 𝑥𝑒 − x(𝛿(𝑆)) ≤ 0 defines a facet of ℬ(𝐺, 𝑟, c)
only if 𝛿(𝑆) ∩ 𝛿(𝑂) = ∅.

Furthermore, based on Proposition 2.8, we propose a new version of the connectivity inequalities.

𝑥𝑒 − x(𝛿(𝑆) ∖ 𝛿(𝑂)) ≤ 0 for all 𝑒 ∈ 𝐸[𝑆], 𝑆 ⊆ 𝑉 ∖ {𝑟}. (2.8)

It is worth mentioning that (2.8) covers certain facets which (2.1) does not. Hence, in latter discussion (2.8) is
always considered instead of (2.1).

Necessary and sufficient conditions for each family of the inequalities (2.2)–(2.8) and their detailed proof can
be found in [20].

3. New valid inequalities

Besides the inequalities introduced previously, there are a few sets of new constraints that have been discovered
during our work.

Let 𝜋 = {𝑆0, 𝑆1, · · · , 𝑆𝑘}, 𝑘 ≥ 1, be a partition of 𝑉 with 𝑟 ∈ 𝑆0 and let 𝑀 = {𝑒1, · · · , 𝑒𝑘} be a matching of
𝐺 with 𝑒𝑖 ∈ 𝐸[𝑆𝑖] for all 𝑖 ∈ {1, · · · , 𝑘}. The pair (𝑀, 𝜋) is called a rooted matching-partition of 𝐺. The concept
of matching-partition originates from [5] for the connected subgraph problem.

Let ℳ𝒫(𝐺) denote the set composed of all the rooted matching-partitions of 𝐺, and denote by 𝐸(𝜋) the
set of edges having their extremities in different classes of partition 𝜋. With any rooted matching-partition
(𝑀,𝜋) ∈ℳ𝒫(𝐺), one can associate the following rooted matching-partition inequality

x(𝑀)− x(𝐸(𝜋) ∖ 𝛿(𝑂)) ≤ 0. (3.1)

Theorem 3.1. For any (𝑀,𝜋) ∈ℳ𝒫(𝐺), inequality (3.1) is valid for ℬ(𝐺, 𝑟, c).

Proof. Assume there exists an integral vector x* ∈ ℬ(𝐺, 𝑟, c) ∩ Z𝐸 with x*(𝑀)− x*(𝐸(𝜋) ∖ 𝛿(𝑂)) ≥ 1. Let the
support graph of x* be (𝑈, 𝐹 ). Since 𝑀 is a matching of 𝐺, one needs at least |𝑀 ∩𝐹 | edges among 𝐸(𝜋)∖ 𝛿(𝑂)
to connect all the edge in 𝑀 ∩ 𝐹 with 𝑟. Hence, (𝑈, 𝐹 ) is not connected, which forms a contradiction. �

The rooted matching-partition inequalities introduced here are different from those proposed by [5], mainly
due to the existence of the root and the capacity constraints.

It is worth noting that the rooted matching-partition inequalities generalizes the connectivity inequalities.
Particularly, the connectivity inequalities can be seen as a special case of the rooted matching-partition inequal-
ities where one always has |𝑀 | = 1. Thus, in the facial study we focus on the cases with |𝑀 | ≥ 2.

In order to facilitate the forthcoming discussion on the facial study results of rooted matching-partition
inequalities, some definition needs to be introduced beforehand. Given (𝑀, 𝜋) ∈ ℳ𝒫(𝐺), let 𝐺′𝜋 be the graph
obtained from 𝐺 by first removing 𝐸(𝜋)∩𝛿(𝑂) and then shrinking each 𝑆𝑖 ∈ 𝜋 into a node, and each non-empty
edge set [𝑆𝑖, 𝑆𝑗 ] ∖ 𝛿(𝑂) ⊆ 𝐸(𝜋) ∖ 𝛿(𝑂) into an edge, for any distinct 𝑖, 𝑗 ∈ {1, · · · , 𝑘}. The following theorem
gives the necessary and sufficient facet-defining conditions for the rooted matching-partition inequalities.

Theorem 3.2. Consider a rooted matching-partition (𝑀,𝜋) ∈ ℳ𝒫(𝐺) with |𝑀 | = 𝑘 ≥ 2. Inequality x(𝑀) −
x(𝐸(𝜋) ∖ 𝛿(𝑂)) ≤ 0 defines a facet of ℬ(𝐺, 𝑟, c) if and only if

(1) 𝐺[𝑆𝑖 ∖𝑂] is connected for 𝑖 ∈ {0, 1, · · · , 𝑘};
(2) 𝐺′𝜋 is 2-connected;
(3) 𝐸[𝑆𝑖] ∩ 𝛿(𝑣𝑜) ∖ {𝑒𝑖} = ∅ if 𝑒𝑖 ∈ 𝛿(𝑣𝑜), 𝑣𝑜 ∈ 𝑂 for 𝑖 ∈ {1, · · · , 𝑘};
(4) there does not exist 𝑤 ∈ 𝑆𝑖 ∩ 𝑁(𝑢𝑖) ∩ 𝑁(𝑣𝑖) with 𝑒𝑖 = 𝑢𝑖𝑣𝑖 such that removing {𝑢𝑖𝑤, 𝑣𝑖𝑤} ∪ 𝛿(𝑂) from 𝐺

disconnects 𝑒𝑖 and 𝑟 for 𝑖 ∈ {1, · · · , 𝑘};
(5) there does not exist any 𝑒 ∈ 𝐸[𝑆𝑖], such that removing {𝑒} ∪ 𝛿(𝑂) from 𝐺 disconnects 𝑒𝑖 and 𝑟;
(6) there does not exist any 𝑣 ∈ 𝑆𝑖 with 𝑐𝑣 = 2, such that removing 𝛿(𝑣) ∪ 𝛿(𝑂) from 𝐺 disconnects 𝑒𝑖 and 𝑟.
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The proof of the necessity and sufficiency of the conditions can be found in [20]. For each of these conditions,
if it were not satisfies, one could always construct another valid inequality that would induce a larger face of
ℬ(𝐺, 𝑟, c). For instance, if condition (1) or (2) were not satisfied, one could find a lower bound inequality (2.5) or
another distinct matching-partition inequality that would induce a larger face of ℬ(𝐺, 𝑟, c). Conversely, for the
sufficiency, we prove that if all the conditions are satisfied, the face induced by the matching-partition inequality
is not a proper face of any other proper faces of ℬ(𝐺, 𝑟, c).

Besides the rooted matching-partition inequalities, another new family of inequalities, the upload-capacity
inequalities, are also found to be facet-defining for ℬ(𝐺, 𝑟, c). Given a node set 𝑆 ⊂ 𝑉 ∖ {𝑟} and a node 𝑣 in
𝑆 ∖𝑂, the upload-capacity inequality is defined as follows.

x(𝛿(𝑣))− 𝑐𝑣x(𝛿(𝑆) ∖ 𝛿(𝑂)) ≤ 0 (3.2)

Theorem 3.3. For any 𝑣 ∈ 𝑆 ∖𝑂, 𝑆 ⊂ 𝑉 ∖ {𝑟}, inequality (3.2) is valid for ℬ(𝐺, 𝑟, c).

Proof. Assume x* ∈ ℬ(𝐺, 𝑟, c)∩Z𝐸 , and x*(𝛿(𝑣))−𝑐𝑣x*(𝛿(𝑆)∖𝛿(𝑂)) ≥ 1. If x*(𝛿(𝑆)∖𝛿(𝑂)) = 0, the connectivity
inequality associated with some edge in 𝛿(𝑣) is then violated. If x*(𝛿(𝑆) ∖ 𝛿(𝑂)) ≥ 1, the capacity of 𝑣 is then
exceeded by x*. �

The necessary and sufficient conditions for the upload-capacity inequalities to be facet-defining is described
in the following proposition.

Theorem 3.4. Inequality (3.2) defines a facet of ℬ(𝐺, 𝑟, c) if and only if

(1) |𝛿(𝑣) ∖ (𝛿(𝑆) ∖ 𝛿(𝑂))| ≥ 𝑐𝑣, |𝛿(𝑣)| ≥ 𝑐𝑣 + 1;
(2) 𝐺[𝑆 ∖𝑂] and 𝐺[𝑆 ∖𝑂] are connected respectively;
(3) if 𝛿(𝑣) ∩ 𝛿(𝑆) ∖ 𝛿(𝑂) = ∅ there does not exist an edge 𝑒𝑏 ∈ 𝐸[𝑆] ∪ 𝛿(𝑆) such that removing 𝛿(𝑂) ∪ {𝑒𝑏}

disconnects 𝑣 and 𝑆;
(4) if 𝛿(𝑣)∩𝛿(𝑆)∖𝛿(𝑂) = ∅ there does not exist a node 𝑣𝑎 ∈ 𝑆 ∖{𝑣} such that 𝑐𝑣𝑎 = 2 and removing 𝛿(𝑂)∪𝛿(𝑣𝑎)

disconnects 𝑣 and 𝑆.

Similar to the case of matching-partition inequalities, for each of these conditions, if it is violated, one can
always construct another valid inequality that induces a larger face of ℬ(𝐺, 𝑟, c). For instance, if condition (1)
or (2) is violated, one can find a connectivity inequality or a lower bound inequality that induces a larger face
of ℬ(𝐺, 𝑟, c). Conversely, for the sufficiency, we prove that if all the conditions are satisfied, the face induced by
the upload-capacity inequality is not a proper face of any other faces.

For the nodes in 𝑂, the presentation of upload-capacity inequalities is slightly different. Given a node set
𝑆 ⊆ 𝑉 ∖ {𝑟} with 𝑣𝑜 ∈ 𝑆 ∩𝑂, the upload-capacity inequality associated with 𝑆 and 𝑣𝑜 is as follows.

x(𝛿(𝑣𝑜) ∖ 𝛿(𝑆))− x(𝛿(𝑆) ∖ 𝛿(𝑂)) ≤ 0 (3.3)

Its validity can also be proved and is stated in the following theorem.

Theorem 3.5. Inequality (3.3) is valid for ℬ(𝐺, 𝑟, c).

Proof. Assume x* ∈ ℬ(𝐺, 𝑟, c) ∩ Z𝐸 , and x*(𝛿(𝑣𝑜) ∖ 𝛿(𝑆))− x*(𝛿(𝑆) ∖ 𝛿(𝑂)) ≥ 1. From the capacity inequality
of 𝑣𝑜, one has x*(𝛿(𝑣𝑜) ∖ 𝛿(𝑆)) ≤ x*(𝛿(𝑣𝑜)) ≤ 1. Moreover, since x* is non-negative, it can be deduced that
x*(𝛿(𝑣𝑜) ∖ 𝛿(𝑆)) = 1 and x*(𝛿(𝑆) ∖ 𝛿(𝑂)) = 0. For the edge 𝑒* ∈ 𝛿(𝑣𝑜) ∖ 𝛿(𝑆) with 𝑥*𝑒* = 1, the connectiv-
ity inequality associated with 𝑒* and 𝑆 is violated. Thus, it forms a contradiction, and hence completes the
proof. �

Given 𝑈𝑆 = {𝑣 ∈ 𝑆 ∖ 𝑂 : 𝛿(𝑣) ∩ 𝛿(𝑆) ̸= ∅}, the necessary and sufficient conditions for inequality (3.3) to be
facet-defining are as follows.
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Proposition 3.6. For any 𝑣𝑜 ∈ 𝑂, 𝑆 ⊆ 𝑉 ∖ {𝑟} with |𝛿(𝑣𝑜) ∖ 𝛿(𝑆)| ≥ 2, inequality (3.3) defines a facet of
ℬ(𝐺, 𝑟, c) if and only if

(1) 𝐺[𝑆 ∖𝑂] is connected, 𝐺[𝑆 ∖𝑂] is connected;
(2) there does not exist an edge 𝑒 ∈ 𝐸[𝑆] such that removing 𝑒 ∪ 𝛿(𝑂 ∖ 𝑣𝑜) from 𝐺 disconnects 𝑟 and 𝑣𝑜;
(3) there does not exist a node 𝑣 ∈ 𝑆 ∖ {𝑣𝑜} with 𝑐𝑣 = 2 such that removing 𝛿(𝑣)∪ 𝛿(𝑂 ∖ 𝑣𝑜) from 𝐺 disconnects

𝑟 and 𝑣𝑜;
(4) if 𝐸[𝑆 ∖𝑂] ∖ 𝐸[𝑈𝑆 ] ̸= ∅ there exists 𝑣 ∈ 𝑈𝑆 with 𝑐𝑣 ≥ 3.

The proof for the necessary and sufficient conditions is similar to the upload-capacity inequalities associated
with 𝑣 ∈ 𝑆 ∖𝑂. Detailed proof can be found in [20].

These two aforementioned families of inequalities play an important role in the characterization of ℬ(𝐺, 𝑐, 𝑟)
on trees and cycles.

4. Characterizations of ℬ(𝐺, 𝑐, 𝑟) and TDI-ness

In this section, we show that with the rooted matching-partition inequalities and upload-capacity inequalities
being introduced, ℬ(𝐺, 𝑟, c) can be characterized on trees and cycles with TDI systems.

4.1. On trees

4.1.1. Primal formulation and subproblems

According to the aforementioned results on valid inequalities and their facet-defining conditions, one can
deduce that some of these inequalities is redundant. After getting rid of the redundant inequalities, one can get
the following formulation for ℬ(𝐺, 𝑟, c) on trees,

max wx

s.t. 𝑥𝑒 − 𝑥𝑓𝑒
≤ 0 for all 𝑒 ∈ 𝐸 ∖ 𝛿(𝑟), (4.1)

x(𝛿(𝑣))− 𝑐𝑣𝑥𝑓𝑣 ≤ 0 for all 𝑣 ∈ 𝑉 ∖ {𝑟}, (4.2)
x(𝛿(𝑟)) ≤ 𝑐𝑟, (4.3)
𝑥𝑒 ≤ 1 for all 𝑒 ∈ 𝛿(𝑟), (4.4)
𝑥𝑒 ≥ 0 for all 𝑒 is a leaf edge, (4.5)

where 𝑓𝑣 denotes the edge in 𝛿(𝑣) and also in the 𝑟–𝑣 path 𝑃𝑟𝑣 for 𝑣 ∈ 𝑉 ∖ {𝑟} (i.e., 𝑓𝑣 ∈ 𝛿(𝑣) ∩ 𝑃𝑟𝑣), and 𝑓𝑒

denotes the edge that is adjacent to 𝑒 and also in the 𝑟–𝑒 path 𝑃𝑟𝑒 for 𝑒 ∈ 𝐸 ∖ 𝛿(𝑟).
Note that inequalities (4.1) and inequalities(4.2) are special cases of connectivity inequalities (2.8) and upload

capacity inequalities (3.2) respectively. Let the polytope defined by the linear system composed of (4.1)–(4.5)
be

𝑃𝑇 (𝐺, 𝑟, c) = {x ∈ R𝐸 : x satisfies (4.1)–(4.5)}.

We hereafter show that it is a ideal formulation for ℬ(𝐺, 𝑟, c) on trees and that the linear system defining
𝑃𝑇 (𝐺, 𝑟, c) is TDI. Note that since TDI-ness is a sufficient condition for integrality [7], the integrality of
𝑃𝑇 (𝐺, 𝑟, c) could be seen as a direct consequence of the next theorem.

Theorem 4.1. The linear system composed of (4.1)–(4.5) is TDI.

Consider the linear program
max{wx : x ∈ 𝑃𝑇 (𝐺, 𝑟, c)}, (4.6)

where w ∈ R𝐸 .
Theorem 4.1 is proved by showing that one can always obtain an optimal dual solution to (4.6) and this

solution is integral if w ∈ Z𝐸 . We break the proof of Theorem 4.1 into several technical lemmas and propositions,
and then provide a proof at the end of this section.
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Given any node 𝑣 ∈ 𝑉 , let 𝑔(𝑣) be the value of a maximum bounded-degree tree rooted at 𝑣 of the subgraph
𝐺[⌊𝑣⌋] (of 𝐺 induced by ⌊𝑣⌋, the up-closure of 𝑣), where the capacity vector c𝑣 ∈ Z⌊𝑣⌋+ satisfies

𝑐𝑣
𝑠 =

{︂
𝑐𝑣 − 1 if 𝑠 = 𝑣 and 𝑣 ̸= 𝑟,
𝑐𝑣 otherwise.

In other words,

𝑔(𝑣) = max{x(𝐹 ) : 𝐺[𝐹 ] is a tree of 𝐺[⌊𝑣⌋] rooted at 𝑣 and bounded by c𝑣}.

It is straightforward that
𝑔(𝑟) = max{wx : x ∈ ℬ(𝐺, 𝑟, c)}. (4.7)

For each node 𝑣 ∈ 𝑉 , let {𝑣1, · · · , 𝑣𝑞𝑣} be the set of nodes in ⌊𝑣⌋ adjacent to 𝑣, that is,

𝑁(𝑣) ∩ ⌊𝑣⌋ =
{︀
𝑣1, · · · , 𝑣𝑞𝑣

}︀
with 𝑞𝑣 ≥ 0. Note that if 𝑣 is a leaf, then 𝑞 = 0 and 𝑁(𝑣) ∩ ⌊𝑣⌋ = ∅.

Additionally, for any leaf 𝑣 ∈ 𝑉 ∖ {𝑟}, it is straightforward to see that 𝑔(𝑣) = 0.
The following technical lemma is given as a support of our later results.

Lemma 4.2. If a maximum bounded-degree tree rooted at 𝑣 contains 𝑣𝑘, 𝑘 ∈ {1, · · · , 𝑞}, it also contains a
maximum bounded-degree tree rooted at 𝑣𝑘.

Proof. Suppose otherwise that a maximum bounded-degree tree 𝑇𝑣 rooted at 𝑣 contains a bounded-degree tree
𝑇𝑣𝑘 rooted at 𝑣𝑘 which is not maximum. By replacing 𝑇𝑣𝑘 in 𝑇𝑣 by a maximum bounded-degree tree rooted at
𝑣𝑘, one obviously obtains a bounded-degree tree rooted at 𝑣 whose weight is larger than 𝑇𝑣. Hence, it contradicts
with the assumption. �

Effectively, Lemma 4.2 reduces the MWBDRTP to a series of subproblems, which can be solved with a
dynamic programming approach. Details on a dynamic programming algorithm proposed for MWBDRTP on
trees can be found in [20]. In this paper, we emphasize on the algorithm that obtains the dual solution.

The following part provides some notation and parameters that will be crucial in the TDI-ness proof.
Given a non-leaf node 𝑣 ∈ 𝑉 , for any edge 𝑣𝑣𝑘 ∈ 𝐸 with 𝑣𝑘 ∈ 𝑁(𝑣) ∩ ⌊𝑣⌋, we define a function

ℎ
(︀
𝑣𝑘
)︀

= 𝑤𝑣𝑣𝑘 + 𝑔
(︀
𝑣𝑘
)︀
.

According to Lemma 4.2, the problem of calculating 𝑔(𝑣) reduces to

max

⎧⎨⎩∑︁
𝑣𝑘∈𝑆

ℎ
(︀
𝑣𝑘
)︀

: 𝑆 ⊆ 𝑁(𝑣) ∩ ⌊𝑣⌋, |𝑆| ≤ 𝑐𝑣
𝑣

⎫⎬⎭.

As it is a maximization problem over a uniform matroid if 𝑔
(︀
𝑣𝑘
)︀

is known for all 𝑘 ∈ {1, · · · , 𝑞𝑣}, it can be
easily solved by a greedy algorithm in linear time, where at each step one selects a node 𝑣𝑘 with the maximum
non-negative ℎ

(︀
𝑣𝑘
)︀

until there is no such nodes or 𝑐𝑣
𝑣 nodes have been selected. Without loss of generality,

assume that ℎ(𝑣1) ≥ ℎ(𝑣2) ≥ · · · ≥ ℎ(𝑣𝑡𝑣 ) > 0 ≥ ℎ(𝑣𝑡𝑣+1) ≥ · · · ≥ ℎ(𝑣𝑞𝑣 ). Let

𝑗𝑣 = min{𝑡𝑣, 𝑐𝑣
𝑣} for non-leaf node 𝑣 ∈ 𝑉.

The following equation holds.

𝑔(𝑣) =
𝑗𝑣∑︁

𝑘=1

ℎ
(︀
𝑣𝑘
)︀

for non-leaf node 𝑣 ∈ 𝑉. (4.8)
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4.1.2. Dual algorithm and TDI-ness

For any 𝑒 ∈ 𝐸, let 𝛼𝑒 be the dual variable corresponding to inequality (4.1) and (4.4) associated with 𝑒. For
any 𝑣 ∈ 𝑉 , let 𝛽𝑣 be the dual variable corresponding to inequality (4.2) and (4.3) associated with 𝑣. The dual
linear program of (4.6) is

min 𝑐𝑟𝛽𝑟 +
∑︁

𝑒∈𝛿(𝑟)

𝛼𝑒

s.t. 𝛼𝑒 + 𝛽𝑢𝑒 −
∑︁

𝑒′∈𝛿(𝑣𝑒)∖{𝑒}

𝛼𝑒′ − (𝑐𝑣𝑒 − 1)𝛽𝑣𝑒 = 𝑤𝑒 for all 𝑒 is not a leaf edge, (4.9)

𝛼𝑒 + 𝛽𝑢𝑒
≥ 𝑤𝑒 for all 𝑒 is a leaf edge, (4.10)

𝛼𝑒, 𝛽𝑣 ≥ 0 for all 𝑒 ∈ 𝐸, 𝑣 ∈ 𝑉, (4.11)

where for any edge 𝑒 ∈ 𝐸, one has 𝑒 ∈ 𝛿(𝑢𝑒) ∩ 𝐸[⌊𝑢𝑒⌋] and 𝑒 ∈ 𝛿(𝑣𝑒) ∩ 𝐸[⌈𝑣𝑒⌉], that is, 𝑒 = 𝑢𝑒𝑣𝑒 and 𝑣𝑒 is the
extremity of 𝑒 the further away from 𝑟. Note that the reason why we can only use two sets of dual variables
(𝛼 and 𝛽) is that although we need to define a dual variable for each inequality, equations (4.1) and (4.4) have
similar forms and are associated with edges, and (4.2) and (4.3) have similar forms and are associated with
nodes. As a result, we can combine them into only two sets rather than four.

Hereafter we provide a solution to the dual program, and prove its feasibility and optimality. First of all, the
value of 𝛽 can be first decided as follows

𝛽𝑣 =
{︂

ℎ(𝑣𝑗𝑣 ) if 𝑣 ∈ 𝑉, 𝑣 is not a leaf and 𝑗𝑣 = 𝑐𝑣
𝑣,

0 otherwise. (4.12)

By the definition of 𝑗𝑣, one can deduce that 𝛽𝑣 ≥ 0 for any 𝑣 ∈ 𝑉 . For any edge 𝑒 = 𝑢𝑒𝑣𝑒, let

𝛼′𝑢𝑒𝑣𝑒
= max{ℎ(𝑣𝑒)− 𝛽𝑢𝑒 , 0}. (4.13)

Note that for any leaf edge 𝑢𝑒𝑣𝑒 ∈ 𝐸, since 𝛽𝑢𝑒
= 0 one has

𝛼′𝑢𝑒𝑣𝑒
+ 𝛽𝑢𝑒

= max{ℎ(𝑣𝑒), 0}
= max{𝑤𝑢𝑒𝑣𝑒

, 0}.

Consider a non-leaf node 𝑣 ∈ 𝑉 . By the definition of 𝑗𝑣, 𝑗𝑣 ≤ 𝑐𝑣
𝑣 holds, whereas from the definition of 𝛽𝑣, one

also has 𝛽𝑣 = 0 if 𝑗𝑣 < 𝑐𝑣
𝑣. Thus

𝑗𝑣𝛽𝑣 = 𝑐𝑣
𝑣𝛽𝑣 (4.14)

always holds. For any 𝑖 > 𝑗𝑣, we have that ℎ(𝑣𝑖) ≤ ℎ(𝑣𝑗𝑣 ) = 𝛽𝑣 if 𝑗𝑣 = 𝑐𝑣
𝑣, whereas ℎ(𝑣𝑖) ≤ 0 = 𝛽𝑣 if 𝑗𝑣 < 𝑐𝑣

𝑣.
Hence ℎ(𝑣𝑖) ≤ 𝛽𝑣 holds and thus

𝛼′𝑣𝑣𝑖 = 0 for all 𝑖 > 𝑗𝑣. (4.15)

Similarly, for any 𝑖 ≤ 𝑗𝑣 it can be deduced from ℎ(𝑣𝑖) ≥ 𝛽𝑣 that

𝛼′𝑣𝑣𝑖 = ℎ(𝑣𝑖)− 𝛽𝑣 ≥ 0 for all 𝑖 ≤ 𝑗𝑣. (4.16)
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Therefore, for any non-leaf node 𝑣 ∈ 𝑉 , we have

𝑔(𝑣) =
𝑗𝑣∑︁

𝑖=1

ℎ(𝑣𝑖)

=
𝑗𝑣∑︁

𝑖=1

(𝛼′𝑣𝑣𝑖 + 𝛽𝑣) +
𝑞𝑣∑︁

𝑖=𝑗𝑣+1

𝛼′𝑣𝑣𝑖

= 𝑗𝑣𝛽𝑣 +
𝑞𝑣∑︁

𝑖=1

𝛼′𝑣𝑣𝑖

= 𝑐𝑣
𝑣𝛽𝑣 +

𝑞𝑣∑︁
𝑖=1

𝛼′𝑣𝑣𝑖 ,

(4.17)

where the first equality comes from (4.8), the second equality is from (4.15) and (4.16), and the last equality is
from (4.14).

Immediately, for any non-leaf edge 𝑒 = 𝑢𝑒𝑣𝑒 ∈ 𝐸, one has

ℎ(𝑣𝑒) = 𝑤𝑢𝑒𝑣𝑒
+ 𝑐𝑣𝑒

𝑣𝑒
𝛽𝑣𝑒

+
𝑞𝑣𝑒∑︁
𝑖=1

𝛼′𝑣𝑒𝑣𝑖
𝑒
.

Another result one can deduce from (4.17) is

𝑔(𝑟) = 𝑐𝑟𝛽𝑟 +
𝑞𝑟∑︁

𝑖=1

𝛼′𝑟𝑟𝑖 . (4.18)

Now we can construct a solution (𝛼, 𝛽) based on (𝛼′, 𝛽), and then prove that it is dual-feasible, optimal, and
is integral if w is integral.

For each non-leaf edge 𝑒 = 𝑢𝑒𝑣𝑒 ∈ 𝐸, the difference between the left-hand side and right-hand side of the
dual constraint (4.9) associated with 𝑒 and (𝛼′, 𝛽) is denoted as

𝑑(𝛼′,𝛽)(𝑒) = 𝛼′𝑢𝑒𝑣𝑒
+ 𝛽𝑢𝑒

−

(︃
𝑤𝑢𝑒𝑣𝑒

+ 𝑐𝑣𝑒
𝑣𝑒

𝛽𝑣𝑒
+

𝑞𝑣𝑒∑︁
𝑖=1

𝛼′𝑣𝑒𝑣𝑖
𝑒

)︃
= max{ℎ(𝑣𝑒)− 𝛽𝑢𝑒

, 0}+ 𝛽𝑢𝑒
− ℎ(𝑣𝑒)

= max{𝛽𝑢𝑒 − ℎ(𝑣𝑒), 0}.

Let the set of non-leaf edges that satisfy 𝑑(𝛼′,𝛽)(𝑒) = 𝛽𝑢𝑒
− ℎ(𝑣𝑒) > 0 be

𝐹 = {𝑒 ∈ 𝐸 : 𝑑(𝛼′,𝛽)(𝑒) > 0, 𝑒 is a non-leaf edge}.

Now we show that there exists a vector ∆ ∈ R𝐸
+ such that 𝛼 = 𝛼′ + ∆ and (𝛼, 𝛽) is dual-feasible and optimal.

Algorithm 1 computes the vector ∆.
The feasibility and optimality of (𝛼, 𝛽) can then be proved.

Proposition 4.3. (𝛼, 𝛽) is an optimal dual solution to (4.6).

Proof. For each non-leaf edge 𝑒 = 𝑢𝑒𝑣𝑒, one clearly has

𝑑(𝛼,𝛽)(𝑒) = 𝑑(𝛼′,𝛽)(𝑒) + ∆𝑢𝑒𝑣𝑒
−

𝑞𝑣𝑒∑︁
𝑖=1

∆𝑣𝑒𝑣𝑖
𝑒
.

For any non-leaf edge 𝑒 = 𝑢𝑒𝑣𝑒, Algorithm 1 guarantees that
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Algorithm 1: Algorithm on trees to obtain ∆.
Input : Tree 𝐺 = (𝑉, 𝐸) and ℎ(𝑣) for all 𝑣 ∈ 𝑉 .
Output : Δ.
begin

1 Set Δ = 0.
while 𝐹 ̸= ∅ do

2 Take an edge 𝑒 = 𝑢𝑒𝑣𝑒 ∈ 𝐹 such that 𝑃𝑟𝑢𝑒 ∩ 𝐹 = ∅.
3 Pick one path 𝑃𝑣𝑒𝑣𝑙 between 𝑣𝑒 and any leaf 𝑣𝑙 ∈ ⌊𝑣𝑒⌋.
4 For each edge in 𝑒′ ∈ 𝑃𝑣𝑒𝑣𝑙

5 Set Δ𝑒′ = Δ𝑒′ + 𝑑(𝛼′,𝛽)(𝑒).
6 Set 𝐹 = 𝐹 ∖ {𝑒}.

∆𝑒 + 𝑑(𝛼′,𝛽)(𝑒) =
𝑞𝑣𝑒∑︁
𝑖=1

∆𝑣𝑒𝑣𝑖
𝑒
.

As a result, one has

𝑑(𝛼,𝛽)(𝑒) = 𝑑(𝛼′,𝛽)(𝑒) + ∆𝑢𝑒𝑣𝑒
−

𝑞𝑣𝑒∑︁
𝑖=1

∆𝑣𝑒𝑣𝑖
𝑒

= 0.

Hence, all the equations in (4.9) are satisfied by (𝛼, 𝛽).
Furthermore, for any leaf edge 𝑒 = 𝑢𝑒𝑣𝑒 ∈ 𝐸, as 𝛽𝑢𝑒

= 0, 𝛼′𝑒 = max{𝑤𝑒, 0} and ∆𝑒 ≥ 0, we then have

𝛼𝑒 + 𝛽𝑢𝑒 = 𝛼′𝑒 + ∆𝑒

≥ 𝑤𝑒,

which indicates that all inequalities (4.10) are satisfied.
In addition, for any 𝑒 ∈ 𝐸, 𝛼′𝑒, ∆𝑒 ≥ 0 leads to 𝛼𝑒 ≥ 0. Therefore, (𝛼, 𝛽) is dual-feasible.
Notice that for any edge 𝑟𝑟𝑖 ∈ 𝛿(𝑟), Algorithm 1 also guarantees ∆𝑟𝑟𝑖 = 0. Combining with (4.17) and (4.18)

gives us the following equation

𝑐𝑟𝛽𝑟 +
𝑞𝑟∑︁

𝑖=1

𝛼𝑟𝑟𝑖 = 𝑐𝑟𝛽𝑟 +
𝑞𝑟∑︁

𝑖=1

𝛼′𝑟𝑟𝑖

= 𝑔(𝑟).

This implies that (𝛼, 𝛽) is dual-optimal according to (4.7). �

Theorem 4.1 can then be proved based on Proposition 4.3.

Proof of Theorem 4.1. According to Proposition 4.3, (𝛼, 𝛽) is an optimal dual solution to (4.6). Moreover, 𝛼
and 𝛽 are obtained by additions and subtractions involving only the components of w. So (𝛼, 𝛽) is integral if
w is integral, which completes our proof. �

To summarize, MWBDRTP on trees can be reduced to a series of subproblems, and it thus can be solved
using dynamic programming. An enhanced formulation incorporating some of the proposed new constraints has
been proved to be TDI by showing that a integral dual optimal solution can always be obtained using a dual
algorithm whenever the weights are integral.
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Furthermore, in the characterization of ℬ(𝐺, 𝑟, c) on trees, the upload capacity inequalities (3.2) play a
important role, which is present in the form of (4.2). On the other hand, rooted matching-partition inequalities
contribute little to the characterization, as the only facet-defining ones are a subset of connectivity inequalities
in the form of (4.1).

4.2. On cycles

On cycles, the characterization of ℬ(𝐺, 𝑟, c) needs to be considered in the following four different cases
depending on the capacity of 𝑟 and and whether the node set 𝑂 is empty:

(1) 𝑐𝑟 = 1 and 𝑂 = {𝑣𝑜};
(2) 𝑐𝑟 ≥ 2 and 𝑂 = {𝑣𝑜};
(3) 𝑐𝑟 ≥ 2 and 𝑂 = ∅;
(4) 𝑐𝑟 = 1 and 𝑂 = ∅.

Note that according to Assumption 1.1, 𝑂 ≤ 1 holds for cycles.
First of all, some notation needs to be introduced as preparation for the proof. For any edge 𝑒 ∈ 𝐸, let

ℳ𝑒 = {(𝑀,𝜋) ∈ℳ𝒫(𝐺) : 𝑒 ∈ 𝑀},
𝒫𝑒 = {(𝑀,𝜋) ∈ℳ𝒫(𝐺) : 𝑒 ∈ 𝐸(𝜋) ∖ 𝛿(𝑂)}.

Intuitively, ℳ𝑒 consists of all rooted matching-partitions in which 𝑒 is present as a matching edge, whereas 𝒫𝑒

consists of all rooted matching-partitions in which 𝑒 is present in the cut between partitions and is not in 𝛿(𝑂).
Since 𝐺 is a cycle, we can assume without loss of generality that

𝑉 = {𝑟, 𝑣1, · · · , 𝑣𝑛−1},
𝐸 = {𝑒1 = 𝑟𝑣1, 𝑒𝑛 = 𝑟𝑣𝑛−1} ∪ {𝑒𝑖 = 𝑣𝑖−1𝑣𝑖 : 𝑖 ∈ {2, · · · , 𝑛− 1}}.

The methodology of the proof is similar to the one for the case on trees. Particularly, for the first case, the
same TDI-system composed of (4.1)–(4.5) can be used to characterized ℬ(𝐺, 𝑟, c). For the other three cases, an
algorithm is devised for each of them to obtain a dual solution that is proved to be optimal and integral if the
edge weights are integral.

The proof of the third case is demonstrated in the next part as an example. Proofs for the other cases are
constituted of similar process, and can be found in [20].

4.2.1. Primal and dual formulations

In the case with 𝑐𝑟 ≥ 2 and 𝑂 = ∅, all the capacity constraints (2.3) are redundant because |𝛿(𝑣)| ≤ 𝑐𝑣

for all 𝑣 ∈ 𝑉 . The only pertinent subtour elimination inequality in (2.2) is 𝑥(𝐸) ≤ |𝐸| − 1, while the others
are redundant. Thus, the primal linear program for MWBDRTP which include inequalities (2.1)–(2.5) and the
rooted matching-partition inequalities (3.1) can be rewritten as follows.

max wx

s.t. x(𝐸) ≤ |𝐸| − 1, (4.19)
x(𝑀)− x(𝐸(𝜋)) ≤ 0 for all (𝑀,𝜋) ∈ℳ𝒫(𝐺), (4.20)
𝑥𝑒 ≤ 1 for all 𝑒 ∈ 𝐸, (4.21)
𝑥𝑒 ≥ 0 for all 𝑒 ∈ 𝐸. (4.22)

Therefore the polytope

𝑃𝐶(𝐺, 𝑟, c) =
{︀
x ∈ R𝐸 : x satisfies (4.19)–(4.22)

}︀
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is a formulation for ℬ(𝐺, 𝑟, c) if 𝐺 is a cycle, 𝑐𝑟 ≥ 2 and 𝑂 = ∅. Hereafter we show that the system composed
of (4.19)–(4.22) is TDI.

Consider the linear program
max{wx : x ∈ 𝑃𝐶(𝐺, 𝑟, c)}, (4.23)

where w ∈ R𝐸 . Let 𝛼 be the dual variable corresponding to constraint (4.19). For any rooted matching-partition
(𝑀,𝜋) ∈ ℳ𝒫(𝐺), let 𝛽(𝑀,𝜋) be the dual variable corresponding to constraint (4.20) associated with (𝑀,𝜋).
For any 𝑒 ∈ 𝐸, let 𝛾𝑒 be the dual variable corresponding to constraint (4.21) associated with 𝑒. The dual linear
program of (4.23) is as follows.

min (|𝐸| − 1)𝛼 +
∑︁
𝑒∈𝐸

𝛾𝑒

s.t. 𝛼 +
∑︁

(𝑀,𝜋)∈ℳ𝑒

𝛽(𝑀,𝜋) −
∑︁

(𝑀,𝜋)∈𝒫𝑒

𝛽(𝑀,𝜋) + 𝛾𝑒 ≥ 𝑤𝑒 for all 𝑒 ∈ 𝐸, (4.24)

𝛼, 𝛽, 𝛾 ≥ 0. (4.25)

Given an edge-weight vector w ∈ R𝐸 , let the set of edges with positive weights be

𝐸+(w) = {𝑒 ∈ 𝐸 : 𝑤𝑒 > 0},

and let the set of edges with negative weights be

𝐸−(w) = {𝑒 ∈ 𝐸 : 𝑤𝑒 < 0},

and

𝐸0(w) = {𝑒 ∈ 𝐸 : 𝑤𝑒 = 0}.

4.2.2. Dual algorithm

In order to present the dual algorithm, we introduce a notion called alternating edge set. An alternating edge
set 𝐹 (w) regarding the weight vector w ∈ R𝐸 is defined as

𝐹 (w) = 𝐹+(w) ∪ 𝐹−(w),

with

𝐹+(w) =
{︀
𝑒𝑗1 , · · · , 𝑒𝑗𝑞

}︀
,

𝐹−(w) =
{︀
𝑒𝑘1 , · · · , 𝑒𝑘𝑞+1

}︀
,

such that it satisfies the following conditions

𝑞 ≥ 1,

𝐹+(w) ⊆ 𝐸+(w),
𝐹−(w) ⊆ 𝐸−(w),
𝑘𝑖 < 𝑗𝑖 < 𝑘𝑖+1 for 𝑖 ∈ {1, · · · , 𝑞}.

The alternating edge set 𝐹 (w) can then be written as

𝐹 (w) =
{︀
𝑒𝑘1 , 𝑒𝑗1 , · · · , 𝑒𝑘𝑞

, 𝑒𝑗𝑞
, 𝑒𝑘𝑞+1

}︀
.

Since in the remaining part of this paper, the weight vector w is always clear from the context, therefore 𝐹 (or
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𝐹+, 𝐹−, respectively) is used instead of 𝐹 (w) (or 𝐹+(w), 𝐹−(w), respectively) for the sake of simplicity.
It is trivial to see that there exists a rooted matching-partition (𝑀,𝜋) ∈ ℳ𝒫(𝐺) such that 𝑀 = 𝐹+

and 𝐸(𝜋) = 𝐹−. Particularly, one can obtain such a rooted matching-partition by setting 𝑀 = 𝐹+ and 𝜋 =
{𝑆0, 𝑆1, · · · , 𝑆𝑞} with 𝑆𝑖 = {𝑣𝑘𝑖

, · · · , 𝑣𝑘𝑖+1−1} for 𝑖 ∈ {1, · · · , 𝑞}, and 𝑆0 = 𝑉 ∖ (𝑆1 ∪ 𝑆2 ∪ · · · ∪ 𝑆𝑞). Herein, such
rooted matching-partition is referred to as the rooted matching-partition associated with the alternating edge
set 𝐹 .

Algorithm 2: Algorithm to obtain an alternating edge set on a cycle.
Input : Cycle 𝐺 = (𝑉, 𝐸) and w ∈ R𝐸 .
Output : Alternating edge set 𝐹 .
begin

1 Set 𝑖 = 1, 𝑠𝑖𝑔𝑛 = −1 and 𝐹+ = 𝐹− = ∅.
while 𝑖 ≤ 𝑛 do

if 𝑠𝑖𝑔𝑛 * 𝑤𝑒𝑖 > 0 then
if 𝑤𝑒𝑖 > 0 then

2 Add 𝑒𝑖 to 𝐹+

else
3 Add 𝑒𝑖 to 𝐹−

4 Set 𝑠𝑖𝑔𝑛 = 𝑠𝑖𝑔𝑛 * −1

5 Set 𝑖 = 𝑖 + 1

if |𝐹−| ≤ 1 then
6 Set 𝐹 = 𝐹+ = 𝐹− = ∅.

else
if |𝐹+| = |𝐹−| then

7 Remove the last edge added to 𝐹+.

8 𝐹 = 𝐹+ ∪ 𝐹−.

Algorithm 2 computes an alternating edge set with maximal cardinality. Note that if 𝐹 = ∅ is obtained from
Algorithm 2, it implies that either 𝐸−(w) = ∅ or the connected component containing 𝑟 in 𝐺[𝐸 ∖ 𝐸−(w)] also
contains all edges in 𝐸+(w).

Based on Algorithm 2, Algorithm 3 is proposed to obtain a dual-feasible solution to (4.23).

Proposition 4.4. Algorithm 3 computes a dual-feasible solution to (4.23).

Proof. Algorithm 3 guarantees that for any edge 𝑒 ∈ 𝐸, one has

𝑤𝑒 = 𝛼 + 𝛾𝑒 − 𝛿𝑒 +
∑︁

(𝑀,𝜋)∈ℳ𝑒

𝛽(𝑀,𝜋) −
∑︁

(𝑀,𝜋)∈𝒫𝑒

𝛽(𝑀,𝜋),

where 𝛿𝑒 = max{−𝑤𝑘
𝑒 , 0} for any 𝑒 ∈ 𝐸. Moreover, as all variables are non-negative according to Algorithm 3,

it gives us
𝑤𝑒 ≤ 𝛼 + 𝛾𝑒 +

∑︁
(𝑀,𝜋)∈ℳ𝑒

𝛽(𝑀,𝜋) −
∑︁

(𝑀,𝜋)∈𝒫𝑒

𝛽(𝑀,𝜋).

Therefore, (𝛼, 𝛽, 𝛾) is a dual-feasible solution to (4.23). �

Additionally, for any edge 𝑒 ∈ 𝐸0(w), one has∑︁
(𝑀,𝜋)∈ℳ𝑒

𝛽(𝑀,𝜋) =
∑︁

(𝑀,𝜋)∈𝒫𝑒

𝛽(𝑀,𝜋) = 𝛾𝑒 = 𝛿𝑒 = 0.



2196 H. L. M. KERIVIN AND J. ZHAO

Algorithm 3: Dual algorithm on cycles with 𝑐𝑟 ≥ 2 and 𝑂 = ∅.
Input : Cycle 𝐺 = (𝑉, 𝐸) and w ∈ R𝐸 .
Output : Dual-feasible solution (𝛼, 𝛽, 𝛾).
begin

1 Set 𝛼 = max{0, min{𝑤𝑒, 𝑒 ∈ 𝐸}}.
2 Initialize 𝛽 = 0

3 Set 𝑤1
𝑒 = 𝑤𝑒 − 𝛼 for all 𝑒 ∈ 𝐸.

4 Compute an alternating edge set 𝐹 1 according to w1 using Algorithm 2.
5 Set 𝑘 = 1.

while 𝐹 𝑘 ̸= ∅ do
6 Set 𝛽(𝑀𝑘,𝜋𝑘) = min{|𝑤𝑘

𝑒 | : 𝑒 ∈ 𝐹 𝑘}, where (𝑀𝑘, 𝜋𝑘) is the rooted matching-partition (𝑀𝑘, 𝜋𝑘) associated

with the alternating edge set 𝐹 𝑘.

7 Set w𝑘+1 as

𝑤𝑘+1
𝑒 =

⎧
⎨

⎩

𝑤𝑘
𝑒 − 𝛽(𝑀𝑘,𝜋𝑘), for 𝑒 ∈ 𝑀𝑘,

𝑤𝑘
𝑒 + 𝛽(𝑀𝑘,𝜋𝑘), for 𝑒 ∈ 𝐸(𝜋𝑘),

𝑤𝑘
𝑒 , otherwise.

8 Compute an alternating edge set 𝐹 𝑘+1 according to w𝑘+1 using Algorithm 2.
9 Set 𝑘 = 𝑘 + 1.

10 Set 𝛾𝑒 = max{𝑤𝑘
𝑒 , 0} and 𝛿𝑒 = max{−𝑤𝑘

𝑒 , 0} for all 𝑒 ∈ 𝐸.

Note that 𝐸0(w) ̸= ∅ implies 𝛼 = 0. Correspondingly, for any edge 𝑒 ∈ 𝐸+(w), one has∑︁
(𝑀,𝜋)∈𝒫𝑒

𝛽(𝑀,𝜋) = 𝛿𝑒 = 0,

whereas for any edge 𝑒 ∈ 𝐸−(w), one has ∑︁
(𝑀,𝜋)∈ℳ𝑒

𝛽(𝑀,𝜋) = 𝛾𝑒 = 0. (4.26)

4.2.3. Primal solution and TDI-ness

Now we are ready to to prove the TDI-ness of the system composed of (4.19)–(4.22) by showing that (𝛼, 𝛽, 𝛾)
is dual-optimal, and is integral if the weights are integral.

Theorem 4.5. The linear system composed of (4.19)–(4.22) is TDI.

Proof. Based on the dual solution, a primal feasible solution can be calculated through Algorithm 4. First, it is
straightforward to see 𝐸* induces a bounded-degree rooted tree of 𝐺 in all the cases.

If 𝛼 > 0, according to Algorithms 3 and 4, 𝐸* = 𝐸 ∖ {𝑒} with 𝛾𝑒 = 0 for some 𝑒 ∈ 𝐸, 𝛿𝑒 = 0 for any 𝑒 ∈ 𝐸,
and 𝛽(𝑀,𝜋) = 0 for any (𝑀,𝜋) ∈ℳ𝒫(𝐺). Hence x𝐸* satisfies

wx𝐸* =
∑︁

𝑒∈𝐸*

𝑤𝑒

=
∑︁

𝑒∈𝐸*

(𝛼 + 𝛾𝑒)

= (|𝐸| − 1)𝛼 +
∑︁
𝑒∈𝐸

𝛾𝑒.

Thus, x𝐸* and (𝛼, 𝛽, 𝛾) are optimal.
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Algorithm 4: Dual algorithm on cycles with 𝑐𝑟 ≥ 2 and 𝑂 = ∅.
Input : Cycle 𝐺 = (𝑉, 𝐸), weight vector w ∈ R𝐸 and dual-feasible solution (𝛼, 𝛽, 𝛾)

Output : Primal-feasible solution x𝐸* .
begin

if 𝛼 > 0 then
1 𝐸* = 𝐸 ∖ {𝑒}, where 𝑒 is an arbitrary edge with 𝛾𝑒 = 0.

else if max{𝛾𝑒 : 𝑒 ∈ 𝐸} = 0 then
2 Set 𝐸* = ∅.

else
3 W.l.o.g., let 𝑒 = 𝑒𝑎, 𝑎 ∈ {1, · · · , 𝑛− 1} be the edge with 𝛾𝑒𝑎 > 0 such that 𝛾𝑒𝑖 ≥ 0 for 𝑖 ∈ {1, · · · , 𝑎} and 𝑎

is maximized.
4 Then let 𝑒𝑏, 𝑏 ∈ {𝑎, · · · , 𝑛− 1} be the edge in 𝐸+(w) such that 𝑤𝑒𝑖 ≥ 0 for 𝑖 ∈ {𝑎, 𝑎 + 1, · · · , 𝑏} and 𝑏 is

maximized.
5 Let 𝑃𝑟𝑒𝑏 = {𝑒1, · · · , 𝑒𝑏}.
6 Due to the symmetry of cycle, one can reverse the indices of the edges and apply the previous process to

obtain 𝑃𝑟𝑒𝑏′ = {𝑒𝑛, 𝑒𝑛−1, · · · , 𝑒𝑏′}. For the sake of homogeneity, we set 𝑃𝑟𝑒𝑏′ = ∅ if such path does not exist.
if 𝑃𝑟𝑒𝑏 ∩ 𝑃𝑟𝑒𝑏′ = ∅ then

7 𝐸* = 𝑃𝑟𝑒𝑏 ∪ 𝑃𝑟𝑒𝑏′ .

else
8 𝐸* = 𝑃𝑟𝑒𝑏 .

If 𝛼 = 0 and max{𝛾𝑒 : 𝑒 ∈ 𝐸} = 0, since 𝐸* = ∅ according to Algorithm 4, one immediately gets

wx𝐸* = (|𝐸| − 1)𝛼 +
∑︁
𝑒∈𝐸

𝛾𝑒 = 0.

Thus, x𝐸* and (𝛼, 𝛽, 𝛾) are also optimal in this case.
If 𝛼 = 0 and max{𝛾𝑒 : 𝑒 ∈ 𝐸} > 0, Algorithm 4 guarantees that for all (𝑀,𝜋) ∈ ℳ𝒫 with 𝛽(𝑀,𝜋) > 0, the

following equation holds,

|𝑃𝑟𝑒𝑏
∩ 𝐸(𝜋)| = |𝑃𝑟𝑒𝑏

∩𝑀 |.

Detailed proof of this equation can be found in [20]. Consequently, one also has

|𝐸* ∩ 𝐸(𝜋)| = |𝐸* ∩𝑀 |,

which leads to

∑︁
𝑒∈𝐸*

⎛⎝ ∑︁
(𝑀,𝜋)∈ℳ𝑒

𝛽(𝑀,𝜋) −
∑︁

(𝑀,𝜋)∈𝒫𝑒

𝛽(𝑀,𝜋)

⎞⎠ =
∑︁

(𝑀,𝜋)∈ℳ𝒫(𝐺)

(|𝐸* ∩𝑀 | − |𝐸* ∩ 𝐸(𝜋)|)𝛽(𝑀,𝜋)

= 0.

Hence it can be deduced that

(|𝐸| − 1)𝛼 +
∑︁
𝑒∈𝐸

𝛾𝑒 =
∑︁
𝑒∈𝐸

𝛾𝑒

=
∑︁

𝑒∈𝐸*

𝛾𝑒
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=
∑︁

𝑒∈𝐸*

⎛⎝𝑤𝑒 −
∑︁

(𝑀,𝜋)∈ℳ𝑒

𝛽(𝑀,𝜋) +
∑︁

(𝑀,𝜋)∈𝒫𝑒

𝛽(𝑀,𝜋)

⎞⎠
=
∑︁

𝑒∈𝐸*

𝑤𝑒.

Therefore, x𝐸* and (𝛼, 𝛽, 𝛾) are always feasible and optimal. Finally, vectors 𝛼, 𝛽 and 𝛾 are obtained by additions
and subtractions involving only the components of w. So (𝛼, 𝛽, 𝛾) is integral if w is integral, which completes
our proof. �

Besides, in [20] it is shown that there exist upload-capacity inequalities and rooted matching-partition inequal-
ities on trees and cycles with Chvátal-Gomory rank at least 2. This indicates that the characterization of
ℬ(𝐺, 𝑟, c) on trees and cycles cannot be trivially obtained as the first Chvátal closure of the polytope defined
by (2.1)–(2.5).

5. Decomposition at the root

Consider a connected graph 𝐺 = (𝑉,𝐸) where 𝑟 is an articulation node, such that 𝐺 is a 1-sum of 𝐺1 =
(𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2) at 𝑟. Given a vector x in R𝐸 , let x𝑖 be the restriction of x to 𝐺𝑖, 𝑖 = 1, 2. Additionally,
let the capacity vector on graph 𝐺𝑖 be c𝑖 ∈ Z𝑉𝑖 , such that 𝑐𝑖

𝑣 = 𝑐𝑣 for any 𝑣 ∈ 𝑉𝑖, 𝑖 = 1, 2. The following polytope

𝑃𝑅(𝐺, 𝑟, c) =
{︀
x ∈ R𝐸 : x1 ∈ ℬ

(︀
𝐺1, 𝑟, c1

)︀
,x2 ∈ ℬ

(︀
𝐺2, 𝑟, c2

)︀
,x(𝛿(𝑟))− 𝑐𝑟 ≤ 0

}︀
and ℬ(𝐺, 𝑟, c) can be proved to be identical in this case.

Theorem 5.1. 𝑃𝑅(𝐺, 𝑟, c) = ℬ(𝐺, 𝑟, c).

Proof. It is straightforward to see that 𝑃𝑅(𝐺, 𝑟, c)∩Z𝐸 = ℬ(𝐺, 𝑟, c)∩Z𝐸 , or in other words, a bounded-degree
rooted tree of 𝐺 is composed of two bounded-degree rooted trees of 𝐺1 and 𝐺2 respectively.

Assume that there exists a fractional extreme point x in 𝑃𝑅(𝐺, 𝑟, c). Let 𝑆(x) be the linear system of equations
that defines x. Without loss of generality, assume that 𝑆(x) contains |𝐸| equations (whose coefficient matrix
has full rank).

It can be deduced that x(𝛿(𝑟)) − 𝑐𝑟 = 0 is in 𝑆(x). Otherwise, 𝑆(x) must contain |𝐸1| and |𝐸2| equations
with respect to 𝐺1 and 𝐺2 respectively. From the integrality of ℬ(𝐺1, 𝑟, c1) and ℬ(𝐺2, 𝑟, c2), one has x1 and x2

are integral and thus x is integral which forms a contradiction.
Therefore, 𝑆(x) contains x(𝛿(𝑟)) − 𝑐𝑟 = 0 and other |𝐸| − 1 equations with respect to only 𝐺1 or 𝐺2.

Without loss of generality, assume that 𝑆(x) contains |𝐸1| equations with respect to 𝐺1 and |𝐸2| − 1 equations
with respect to 𝐺2, which is denoted by 𝑆1(x) and 𝑆2(x). Since ℬ(𝐺1, 𝑟, c1) is integral, 𝑆1(x) must define
an integral point, that is, x1 is integral, and hence x1(𝛿(𝑟)) is also integral. Furthermore, since 𝑆2(x) and
x(𝛿𝐺2(𝑟)) − (𝑐𝑟 − x1(𝛿(𝑟))) = 0 admits a feasible solution x2, there must also exist an integral solution x2,*

which satisfies the same equations. Combining x1 and x2,* gives us an integral point that satisfies 𝑆(x) which
forms a contradiction.

Thus 𝑃𝑅(𝐺, 𝑟, c) is integral and therefore 𝑃𝑅(𝐺, 𝑟, c) = ℬ(𝐺, 𝑟, c). �

On the other hand, if the articulation node is not 𝑟, this decomposition will not work as straightforwardly.
Take the graph in Figure 1 as an example. The following inequality

𝑥𝑒 − x(𝛿(𝑆)) ≤ 0 (5.1)

defines a facet of ℬ(𝐺, 𝑟, c). Inequality (5.1) has variables associated with edges in both 𝐺1 and edges in 𝐺2.
Hence if one wants to decompose 𝐺 into 𝐺1 and 𝐺2, inequalities such as (5.1) should be included in addition
to the simple combination of polytopes respecting 𝐺1 and 𝐺2.
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Figure 1. Counter example of decomposition involving two 2-connected components.

Figure 2. Counter example of decomposition involving rooted matching-partition inequalities.

Similarly, it can also be deduced that the inequality

x(𝐸[𝑆])− (|𝑆| − 1)x(𝛿(𝑆)) ≤ 0

defines another facet of ℬ(𝐺, 𝑟, c) and it involves edges in both 𝐺1 and 𝐺2 as well.
Furthermore, consider the graph in Figure 2. Denote an edge set 𝑀 as 𝑀 = {𝑒1, 𝑒2, 𝑒3}, a partition of 𝑉 as

𝜋 = {𝑆0, 𝑆1, 𝑆2, 𝑆3}. Let the set of edges between two different partition classes be 𝐸(𝜋) = {𝑒4, 𝑒5, 𝑒6, 𝑒7}. Even
when disregarding the capacity factor, it can be proved that the following rooted matching-partition inequality

x(𝑀)− x(𝐸(𝜋)) ≤ 0 (5.2)

defines a facet of ℬ(𝐺, 𝑟, c).
Beside the inequalities introduced previously, there are more inequalities can be found to be facet-defining,

which involves the factor of capacity. Given a graph as demonstrated in Figure 3A with 𝑐𝑢 = 𝑐𝑣 = 2 and capacity
of any other nodes being sufficiently large, one has an inequality

𝑥𝑒1 + 𝑥𝑒2 − 𝑥𝑓1 − 𝑥𝑓2 ≤ 0,

which is facet-defining.
Additionally, if the edge 𝑒3 is expanded into a path as in Figure 3B, one can also get a facet-defining inequality

as the following one.
𝑥𝑒1 + 𝑥𝑒2 + 𝑥𝑒5 − 𝑥𝑒3 − 𝑥𝑓1 − 𝑥𝑓2 ≤ 0.

Nonetheless, it is found out that the following series of inequalities can be obtained in this case and are all
facet-defining.

𝑥𝑒1 + 𝑥𝑒2 + 𝑥𝑒3 − 𝑥𝑒5 − 𝑥𝑓1 − 𝑥𝑓2 ≤ 0,

𝑥𝑒1 + 𝑥𝑒2 + 2𝑥𝑒4 − 𝑥𝑒3 − 𝑥𝑒5 − 𝑥𝑓1 − 𝑥𝑓2 ≤ 0,
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(A)

(B)

Figure 3. Counter example of decomposition involving other inequalities.

𝑥𝑒1 + 𝑥𝑒2 + 𝑥𝑒3 + 𝑥𝑒5 − 2𝑥𝑒4 − 𝑥𝑓1 − 𝑥𝑓2 ≤ 0.

It can be noticed that the four aforementioned inequalities only differ in the coefficients of 𝑒3, 𝑒4, and 𝑒5.
Furthermore, they do not belong to any set of inequalities that have been introduced previously, and their
graphical interpretation is yet to be revealed. Thus, the decomposition over an arbitrary articulation node is
hitherto unlikely to work to the best of our knowledge.

6. Concluding remarks

In this paper, the polytope associated with MWBDRTP is studied. The dimension of the polytope is examined
first. Several sets of valid inequalities and their facet-defining conditions are discussed. With two families of newly
proposed facet-defining inequalities, the polytope is proved to be characterizable with a TDI system in each
case on trees and cycles. Additionally, the decomposition of the polytope with respect to the articulation nodes
is proved to be feasible if the articulation node is the root.

Besides the aspects examined in this paper, there are a few directions can be further explored for MWBDRTP.
On the one hand, the application of MWBDRTP in the telecommunication field considers a packing of potentially
more than one rooted trees. This problem is called the Maximum-Weight Bounded-Degree Rooted Tree Packing
Problem (MWBDRTPP). Preliminarily, we have looked into the case of 2 rooted trees as the first step. The
polyhedral structure turns out to be much more complicated. With a formulation also considering only edge-
indexed variables, we have characterized some fractional extreme points in the case where 2 rooted trees are
considered and the graph 𝐺 is a star, which can be cut by the following constraint

x1(𝛿(𝑣)) + x2(𝛿(𝑣))− x1(𝛿(𝑆))− x2(𝛿(𝑆)) ≤ 𝑐𝑣 for all 𝑣 ∈ 𝑆 ⊆ 𝑉 ∖ {𝑟},

where the superscripts correspond to the index of the rooted trees. Nonetheless, considering a packing of 2
rooted trees, a polynomial-time combinatorial algorithm for MWBDRTPP on trees is proposed in the work
with [19].

On the other hand, we have also done some computational testing on different formulations for ℬ(𝐺, 𝑟, c),
in order to see how the new inequalities, presented in this paper and some others introduced in [13], affect the
performance of a branch-and-cut algorithm on graphs with different properties. Generally, these new inequalities
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are able to improve the performance of the branch-and-cut algorithm in terms of gap, number of solved instances
and running time, although the improvements vary as the graph property changes (e.g., parse graphs vs. dense
graphs). Detailed results and discussions can be found in [13] (and in [20] as well).

Acknowledgements. We would like to thank the anonymous referees for their helpful comments and suggestions, which
help to improve the paper’s flow.
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