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ANALYSIS OF A DISCRETE-TIME MARKOV PROCESS WITH A BOUNDED
CONTINUOUS STATE SPACE BY THE FREDHOLM INTEGRAL EQUATION

OF THE SECOND KIND

Koichi Nakade1,* and Rubayet Karim2

Abstract. A discrete-time Markov process with a bounded continuous state space is considered. We
show that the equilibrium equations on steady-state probability and densities form Fredholm integral
equations of the second kind. Then, under a sufficient condition that the transition densities from
one state to another state inside the boundaries of the state space can be expressed in the same
separate forms, the steady-state probability and density functions can be obtained explicitly. We use
it to demonstrate an economic production quantity model with stochastic production time, derive the
expressions of the steady-state probabilities and densities, and find the optimal maximum stock level. A
sensitivity analysis of the optimal stock level is performed using production time and cost parameters.
The optimal stock level decreases with respect to the holding cost and the production cost, whereas it
increases with respect to the lost sale cost and the arrival rate.
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1. Introduction

A Markov process can be applied to simulate a random system that changes system conditions based on a
transition rule that is only dependent on the present state. The most significant property of the Markov process
is the conditional probability distribution of the process’s future states, which depends only on the current
state [12,18]. A discrete-time Markov process model with a continuous state space is applied to many systems,
such as a liquid store model, electricity model, autoregressive (AR) model, and so on. It is also useful as the
approximate model of the Markov process with a discrete space. The steady-state distributions of the Markov
model satisfy the equilibrium equations, but in almost cases, those cannot be represented in an explicit form. In
this paper, Fredholm integral equations are applied for analysis of a general discrete-time Markov process with
a bounded continuous state space, and we give a sufficient condition for obtaining the steady state probability
and density functions.
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1.1. Background

In the late nineteenth century, Fredholm and Volterra largely establish the theory of integral equations.
Their works have a significant impact on the study of integral equations in the twentieth century. Numerous
mathematical models in engineering and science, such as the anomalous diffusion problem, biological population
ecological model, and population prediction model, can be described by an integral equation model [9]. The
Fredholm integration equation is found in the theory of signal processing, linear forward modelling, and inverse
problems. Fluid mechanics issues involving hydrodynamic interactions near finite-sized elastic interfaces also
use Fredholm integral equations [2, 3]. A special use of the Fredholm equation is the creation of photorealistic
images in computer graphics, in which the Fredholm equation is used to represent light transport from virtual
light sources to the image plane. Due to the fact that a vast class of initial and boundary value problems
can be transformed into Volterra or Fredholm integral equations, many scientific domains use Fredholm integral
equations, including engineering, applied mathematics, and mathematical physics [10]. Other literature regarding
the Fredholm integral equations focuses on efficient numerical solution techniques for the Fredholm integral
equations [5, 14,17,19].

Recently, the Fredholm integral equations have been applied to a specific stochastic process. In particular,
Lindemann and Thümmler [13] provide a generic state-space Markov chain (GSSMC) approach for the transient
analysis of deterministic and stochastic Petri nets with concurrently enabled deterministic transitions as an
application of the Fredholm equation to the study of the stochastic process. The general state-space Markov
chain approach is built on a numerical iterative solution of a system of Fredholm integral equations. Fuh et al.
[8] use the Fredholm integral equation to compute the R’enyi divergence of two-state Markov switching models.
Ramsden and Papaioannou [16] derive a Fredholm integral equation of the second kind for the ultimate ruin
probability and achieve a clear expression in terms of ruin quantities for the Cramér–Lundberg risk model.
Later, they extend the capital injection delayed risk model such that the delay of the capital injections depends
explicitly on the amount of the deficit. Dibu et al. [4] introduce a Markov Arrival Process risk model that
permits capital injections to be received promptly or with an arbitrary delay, depending on the amount of
shortage experienced by the firm. For this model, they originate a system of Fredholm integral equations of the
second kind for the Gerber-Shiu function and derive a straightforward formulation in matrix form in terms of
the Gerber-Shiu function of the Markov Arrival Process risk model.

1.2. Motivation, research gap and objective

Generally, the steady-state distributions of the Markov model cannot be represented in an explicit form. From
literature, for the specified model, the analysis is made theoretically by using Fredholm integral equations.
To the best of our knowledge, there is currently no mathematical approach that uses the Fredholm integral
equation of the second kind to study the steady state of a general discrete-time Markov process with a bounded
continuous state space. Recently, Karim and Nakade [11] show such an application in a special case of an
economic production quantity (EPQ) model. They derive the expression of the steady-state distribution by
using Fredholm integral equations. Although the model they analyse is a restricted one, their analysis suggests
that the general discrete-time Markov process with continuous states can also be analysed by the Fredholm
integral equation.

Thus motivated, the application of the Fredholm integral equation of the second kind for the steady-state
analysis of a general discrete-time Markov process with a bounded continuous state space is studied in this
paper. Then, as an example application, we analyse a fundamental EPQ model. We show that the Fredholm
integral equation of the second kind can be used to express the equilibrium equations on steady-state probability
densities. The functions of the Fredholm integral equations can be solved using the degenerate kernel method
when some function satisfies separable properties [15].

The contribution of this paper is as follows:
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– For a general discrete-time Markov process with a bounded continuous state space, we derive sufficient
conditions on separable properties of transition density functions, under which expressions of the steady-
state probabilities and densities can be derived explicitly.

– Then, as an application, we discuss a basic EPQ model, apply the derived analytical method, and derive
the optimal size of the maximum inventory level.

The organization of this paper is as follows: In Section 2, the Fredholm integration equation of the second type
is described. In Section 3, it is shown that this equation can be applied to the analysis of the Markov process
with a bounded state space under some separable conditions on the transition densities and probabilities. In
Section 4, the analysis in Section 3 is applied to the basic EPQ model, and the optimal maximum inventory
level is derived. In Section 5, we give the conclusion.

2. Fredholm integral equation of the second kind

The Fredholm integral equation of the second kind is found in the theory of signal processing, linear forward
modelling, and inverse problems. The equation on the function 𝑓(𝑟) is given as follows.

𝑓(𝑟) = 𝑢(𝑟) +
∫︁ 𝑏

𝑎

𝐾(𝑟, 𝑟′)𝑓(𝑟′)d𝑟′, 𝑎 < 𝑟 < 𝑏.

In the following, we set 𝑎 = 0 and 𝑏 = 𝑅. That is,

𝑓(𝑟) = 𝑢(𝑟) +
∫︁ 𝑅

0

𝐾(𝑟, 𝑟′)𝑓(𝑟′)d𝑟′, 0 < 𝑟 < 𝑅. (2.1)

The degenerate kernel method [15] can be applied when 𝐾(𝑟, 𝑟′) satisfies the following separate form:

𝐾(𝑟, 𝑟′) =
𝑚−1∑︁
𝑗=0

𝑤𝑗(𝑟)𝑔𝑗(𝑟′), (2.2)

where 𝑤𝑗(𝑟) and 𝑔𝑗(𝑟′) are functions of only 𝑟 and 𝑟′, respectively. Then, by inserting (2.2) into the function
inside the integral in (2.1), we have

𝑓(𝑟) = 𝑢(𝑟) +
𝑚−1∑︁
𝑗=0

𝑤𝑗(𝑟)𝐶𝑗 , (2.3)

where 𝐶𝑗 =
∫︀ 𝑅

0
𝑔𝑗(𝑟′)𝑓(𝑟′)d𝑟′(𝑗 = 0, 1, . . . ,𝑚− 1).

Set

𝛾𝑖𝑗 =
∫︁ 𝑅

0

𝑔𝑖(𝑟)𝑤𝑗(𝑟)d𝑟(𝑖, 𝑗 = 0, 1, . . . ,𝑚− 1), (2.4)

and

𝛽𝑖 =
∫︁ 𝑅

0

𝑔𝑖(𝑟)𝑢(𝑟)d𝑟(𝑖 = 0, 1, . . . ,𝑚− 1). (2.5)

By multiplying 𝑔𝑖(𝑟) on both sides of (2.3) and integrating it from 0 to 𝑅, we have the following equations.

(1− 𝛾𝑖𝑖)𝐶𝑖 −
∑︁
𝑗 ̸=𝑖

𝛾𝑖𝑗𝐶𝑗 = 𝛽𝑖, 𝑖 = 0, 1, . . . ,𝑚− 1. (2.6)

Thus, if 𝛾𝑖𝑗 and 𝛽𝑖 can be computed for all 𝑖 and 𝑗, we can derive 𝐶𝑖 by solving (2.6).
Here, we consider the case 𝑚 = 2. Then

𝐾(𝑟, 𝑟′) = 𝑤0(𝑟)𝑔0(𝑟′) + 𝑤1(𝑟)𝑔1(𝑟′),
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𝑓(𝑟) = 𝑢(𝑟) + 𝑤0(𝑟)𝐶0 + 𝑤1(𝑟)𝐶1, (2.7)

𝐶0 =
∫︁ 𝑅

0

𝑔0(𝑟′)𝑓(𝑟′)d𝑟′, 𝐶1 =
∫︁ 𝑅

0

𝑔1(𝑟′)𝑓(𝑟′)d𝑟′,

(1− 𝛾00)𝐶0 − 𝛾01𝐶1 = 𝛽0, −𝛾10𝐶0 + (1− 𝛾11)𝐶1 = 𝛽1, (2.8)

where

𝛾00 =
∫︁ 𝑅

0

𝑔0(𝑟)𝑤0(𝑟)d𝑟, 𝛾01 =
∫︁ 𝑅

0

𝑔0(𝑟)𝑤1(𝑟)d𝑟, 𝛾10 =
∫︁ 𝑅

0

𝑔1(𝑟)𝑤0(𝑟)d𝑟,

𝛾11 =
∫︁ 𝑅

0

𝑔1(𝑟)𝑤1(𝑟)d𝑟, 𝛽0 =
∫︁ 𝑅

0

𝑔0(𝑟)𝑢(𝑟)d𝑟, 𝑣𝛽1 =
∫︁ 𝑅

0

𝑔1(𝑟)𝑢(𝑟)d𝑟

when (1− 𝛾00)(1− 𝛾11) − 𝛾01𝛾10 ̸= 0, a unique non-zero solution of the system of equation (2.8) exists and is
given by

𝐶0 =
(1− 𝛾11)𝛽0 + 𝛾01𝛽1

(1− 𝛾00)(1− 𝛾11)− 𝛾01𝛾10
and 𝐶1 =

𝛾10𝛽0 + (1− 𝛾00)𝛽1

(1− 𝛾00)(1− 𝛾11)− 𝛾01𝛾10
· (2.9)

Thus, we obtain 𝑓(𝑟) by (2.7).

3. A discrete time Markov process with a bounded continuous state space

We consider a discrete-time Markov process with bounded continuous state space. Without loss of generality,
the state space is set as 𝑆 = [0, 𝑅], the transition intensity (stochastic kernel) from 𝑟′ ∈ 𝑆 to 𝑟 ∈ (0, 𝑅) is 𝑞𝑟′,𝑟,
and the transition probabilities from 𝑟 ∈ 𝑆 to 0 and 𝑅 are 𝑞𝑟0 and 𝑞𝑟𝑅, respectively. Let steady-state mass
probabilities in states 0 and 𝑅 be 𝜋0 and 𝜋𝑅, respectively, and let the steady-state probability density in state
𝑟 ∈ (0, 𝑅) be denoted by 𝑓(𝑟).

The Markov process assumes that the state space forms one recurrent class. This implies that 𝑞00 < 1 and
𝑞𝑅𝑅 < 1. Then, we have the following equilibrium equations (see e.g., [7]).

𝜋0 = 𝜋0𝑞00 + 𝜋𝑅𝑞𝑅0 +
∫︁ 𝑅

0

𝑓(𝑟′)𝑞𝑟′0d𝑟′, (3.1)

𝑓(𝑟) = 𝜋0𝑞0𝑟 + 𝜋𝑅𝑞𝑅𝑟 +
∫︁ 𝑅

0

𝑓(𝑟′)𝑞𝑟′𝑟d𝑟′, 0 < 𝑟 < 𝑅, (3.2)

𝜋𝑅 = 𝜋0𝑞0𝑅 + 𝜋𝑅𝑞𝑅𝑅 +
∫︁ 𝑅

0

𝑓(𝑟′)𝑞𝑟′𝑅d𝑟′. (3.3)

We also have the total probability of 1 and thus

𝜋𝑅 + 𝜋0 +
∫︁ 𝑅

0

𝑓(𝑟)d𝑟 = 1. (3.4)

Note that (3.1) can be obtained from (3.2) and (3.3) because 𝑞𝑟′0 + 𝑞𝑟′𝑅 +
∫︀ 𝑅

0
𝑞𝑟′𝑟d𝑟 = 1 for 𝑟′ ∈ 𝑆. From

equations (3.3) and (3.4),

𝜋𝑅 =

(︃
1− 𝜋𝑅 −

∫︁ 𝑅

0

𝑓(𝑟)d𝑟

)︃
𝑞0𝑅 + 𝜋𝑅𝑞𝑅𝑅 +

∫︁ 𝑅

0

𝑓(𝑟′)𝑞𝑟′𝑅d𝑟′,

and thus,

𝜋𝑅 =
1

1− 𝑞𝑅𝑅 + 𝑞0𝑅

{︃
𝑞0𝑅 − 𝑞0𝑅

∫︁ 𝑅

0

𝑓(𝑟′)d𝑟′ +
∫︁ 𝑅

0

𝑓(𝑟′)𝑞𝑟′𝑅d𝑟′

}︃
. (3.5)
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Inserting equations (3.4) and (3.5) into (3.2), we have

𝑓(𝑟) = 𝑞0𝑟

[︃
1− 1

1− 𝑞𝑅𝑅 + 𝑞0𝑅

{︃
𝑞0𝑅 − 𝑞0𝑅

∫︁ 𝑅

0

𝑓(𝑟′)d𝑟′ +
∫︁ 𝑅

0

𝑓(𝑟′)𝑞𝑟′𝑅d𝑟′

}︃
−
∫︁ 𝑅

0

𝑓(𝑟′)d𝑟′

]︃

+
𝑞𝑅𝑟

1− 𝑞𝑅𝑅 + 𝑞0𝑅

{︃
𝑞0𝑅 − 𝑞0𝑅

∫︁ 𝑅

0

𝑓(𝑟′)d𝑟′ +
∫︁ 𝑅

0

𝑓(𝑟′)𝑞𝑟′𝑅d𝑟′

}︃
+
∫︁ 𝑅

0

𝑓(𝑟′)𝑞𝑟′𝑟d𝑟′

=
𝑞𝑅𝑟 − 𝑞0𝑟

1− 𝑞𝑅𝑅 + 𝑞0𝑅
𝑞0𝑅 + 𝑞0𝑟 +

∫︁ 𝑅

0

𝑓(𝑟′)

×
[︂

1
1− 𝑞𝑅𝑅 + 𝑞0𝑅

{−𝑞𝑅𝑟𝑞0𝑅 + 𝑞𝑅𝑟𝑞𝑟′𝑅 + 𝑞0𝑟𝑞0𝑅 − 𝑞0𝑟𝑞𝑟′𝑅} − 𝑞0𝑟 + 𝑞𝑟′𝑟

]︂
d𝑟′

=
𝑞𝑅𝑟𝑞0𝑅 + 𝑞0𝑟(1− 𝑞𝑅𝑅)

1− 𝑞𝑅𝑅 + 𝑞0𝑅
+
∫︁ 𝑅

0

𝑓(𝑟′)
[︂
−𝑞𝑅𝑟𝑞0𝑅 − 𝑞0𝑟(1− 𝑞𝑅𝑅)

1− 𝑞𝑅𝑅 + 𝑞0𝑅
+

𝑞𝑅𝑟 − 𝑞0𝑟

1− 𝑞𝑅𝑅 + 𝑞0𝑅
𝑞𝑟′𝑅 + 𝑞𝑟′𝑟

]︂
d𝑟′,

0 < 𝑟 < 𝑅. (3.6)

We now give a condition under which the steady-state density can be derived.

Proposition 3.1. For a discrete-time Markov process with bounded continuous real state space [0, 𝑅], if the
transition probability density 𝑞𝑟′𝑟 can be represented as 𝑞𝑟′𝑟 =

∑︀𝑛
𝑖=2 𝑤𝑖(𝑟)𝑔𝑖(𝑟′), for all 𝑟, 𝑟′ ∈ (0, 𝑅), the steady-

state density function 𝑓(𝑟) can be derived explicitly by the degenerate kernel method. In addition, if
∫︀ 𝑅

0
𝑓(𝑟)d𝑟,∫︀ 𝑅

0
𝑓(𝑟)𝑞𝑟𝑅d𝑟 and

∫︀ 𝑅

0
𝑓(𝑟)𝑞𝑟0d𝑟 can be expressed explicitly, the steady-state probabilities 𝜋0 and 𝜋𝑅 can also be

derived explicitly.

Proof. Comparing (3.6) with equations in the previous section, by setting

𝑢(𝑟) =
𝑞𝑅𝑟𝑞0𝑅 + 𝑞0𝑟(1− 𝑞𝑅𝑅)

1− 𝑞𝑅𝑅 + 𝑞0𝑅
, (3.7)

𝐾(𝑟, 𝑟′) = 𝑞𝑟′𝑟 +
−𝑞𝑅𝑟𝑞0𝑅 − 𝑞0𝑟(1− 𝑞𝑅𝑅)

1− 𝑞𝑅𝑅 + 𝑞0𝑅
+

𝑞𝑅𝑟 − 𝑞0𝑟

1− 𝑞𝑅𝑅 + 𝑞0𝑅
𝑞𝑟′𝑅, (3.8)

we have

𝑓(𝑟) = 𝑢(𝑟) +
∫︁ 𝑅

0

𝐾(𝑟, 𝑟′)𝑓(𝑟′)d𝑟′, 0 < 𝑟 < 𝑅,

which is the same as the Fredholm equation of the second kind. Thus, if 𝐾(𝑟, 𝑟′) is represented as 𝐾(𝑟, 𝑟′) =∑︀𝑚−1
𝑖=0 𝑤𝑖(𝑟)𝑔𝑖(𝑟′), we can apply the degenerate kernel method shown in Section 2 and derive the probability

density 𝑓(𝑟). If 𝑞𝑟′𝑟 is represented as 𝑞𝑟′𝑟 =
∑︀𝑛

𝑖=2 𝑤𝑖(𝑟)𝑔𝑖(𝑟′), for all 𝑟, 𝑟′ ∈ (0, 𝑅), the term in the brace of
equation (3.6) is formed as

∑︀𝑛
𝑖=0 𝑤𝑖(𝑟)𝑔𝑖(𝑟′), where

𝑤0(𝑟) =
−𝑞𝑅𝑟𝑞0𝑅 − 𝑞0𝑟(1− 𝑞𝑅𝑅)

1− 𝑞𝑅𝑅 + 𝑞0𝑅
, 𝑔0(𝑟′) = 1,

𝑤1(𝑟) =
𝑞𝑅𝑟 − 𝑞0𝑟

1− 𝑞𝑅𝑅 + 𝑞0𝑅
, 𝑔1(𝑟′) = 𝑞𝑟′𝑅.

If we can derive expressions of integrals
∫︀ 𝑅

0
𝑓(𝑟)d𝑟,

∫︀ 𝑅

0
𝑓(𝑟)𝑞𝑟𝑅d𝑟 and

∫︀ 𝑅

0
𝑓(𝑟)𝑞𝑟0d𝑟 explicitly, the steady-state

probabilities 𝜋𝑅 and 𝜋0 can also be represented explicitly by (3.4) and (3.5). �

Note that when 𝑛 = 2 and 𝑞𝑟′𝑟 has a special form, such as 𝑔0(𝑟′) = 𝑔2(𝑟′), the term can be represented as
𝑤0(𝑟)𝑔0(𝑟′) + 𝑤1(𝑟)𝑔1(𝑟′).

Here, we discuss a sufficient condition under which 𝑞𝑟′𝑟 =
∑︀𝑛

𝑖=2 𝑤𝑖(𝑟)𝑔𝑖(𝑟′), for all 𝑟, 𝑟′ ∈ (0, 𝑅). We assume
the following.
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Assumption 3.2. For some 𝑛 ≥ 2, there exist real numbers 𝑎𝑖, 𝑏𝑖 and a nonnegative integer 𝑠𝑖 for each 𝑖 ∈
0, 1, . . . , 𝑛− 1 that satisfy

𝑞𝑟′𝑟 =
𝑛−1∑︁
𝑖=0

𝑎𝑖(𝑟 − 𝑟′)𝑠𝑖𝑒−𝑏𝑖(𝑟−𝑟′) for 0 < 𝑟 < 𝑅, 0 ≤ 𝑟′ ≤ 𝑅,

and there exists a nonnegative integer m, real numbers 𝑎′𝑖, 𝑏
′
𝑖 and a nonnegative integer 𝑠′𝑖 for each 𝑖 ∈

0, 1, . . . ,𝑚− 1 that satisfy

𝑞𝑟′0 =
𝑚−1∑︁
𝑖=0

𝑎′𝑖(𝑟
′)𝑠′𝑖𝑒𝑏′𝑖𝑟

′
for 0 ≤ 𝑟′ ≤ 𝑅. (3.9)

For example, Assumption 3.2 is satisfied when the transition density 𝑞𝑟′𝑟 from 𝑟′ to 𝑟 for all 𝑟, 𝑟′ ∈ (0, 𝑅)
only depends on the difference between 𝑟 and 𝑟′ and it is given as an Erlang-type distribution with parameter
(𝑛, 𝜆) as

𝑞𝑟′𝑟 =
𝜆𝑛(𝑟 − 𝑟′ + 𝑎)𝑛−1

(𝑛− 1)!
𝑒−𝜆(𝑟−𝑟′+𝑎)

=
𝑛−1∑︁
𝑖=0

𝜆𝑛𝑎𝑛−1−𝑖

𝑘!(𝑛− 1− 𝑖)!
𝑒−𝜆𝑎(𝑟 − 𝑟′)𝑖

𝑒−𝜆(𝑟−𝑟′) for 0 < 𝑟 < 𝑅, 0 ≤ 𝑟′ ≤ 𝑅,

and

𝑞𝑟′0 = 1−
𝑛−1∑︁
𝑗=0

𝜆𝑗(−𝑟′ + 𝑎)𝑗

𝑗!
𝑒−𝜆(−𝑟′+𝑎)

= 1− 𝑒−𝜆(−𝑟′+𝑎)
𝑛−1∑︁
𝑗=0

𝜆𝑗

𝑗∑︁
𝑙=0

(−𝑟′)𝑙
𝑎𝑗−𝑙

𝑙!(𝑗 − 𝑙)!
for 0 ≤ 𝑟′ ≤ 𝑅

where 𝑎 ≥ 𝑅. Assumption 3.2 is also satisfied when 𝑞𝑟′𝑟 is given as a hyperexponential distribution as

𝑞𝑟′𝑟 =
𝑛−1∑︁
𝑖=0

𝑝𝑖𝜆𝑖𝑒
−𝜆𝑖(𝑟−𝑟′+𝑎), where

𝑛−1∑︁
𝑖=0

𝑝𝑖 = 1 and 𝑎 ≥ 𝑅.

Corollary 3.3. When Assumption 3.2 is satisfied, we can derive expressions 𝑓(𝑟), 𝜋0, and 𝜋𝑅 explicitly.

Proof. Under Assumption 3.2, 𝑞𝑟′𝑟 can be represented as follows:

𝑞𝑟′𝑟 =
𝑛−1∑︁
𝑖=0

𝑎𝑖(𝑟 − 𝑟′)𝑠𝑖𝑒−𝑏𝑖(𝑟−𝑟′) =
𝑛−1∑︁
𝑖=0

𝑠𝑖∑︁
𝑗=0

𝑎𝑖

(︂
𝑠𝑖

𝑗

)︂
𝑟𝑗𝑒−𝑏𝑖𝑟(−𝑟′)𝑠𝑖−𝑗

𝑒𝑏𝑖𝑟
′

=
𝑛−1∑︁
𝑖=0

𝑠𝑖∑︁
𝑗=0

𝑤1
𝑖𝑗(𝑟)𝑔1

𝑖𝑗(𝑟′)

where

𝑤1
𝑖𝑗(𝑟) = 𝑎𝑖

(︂
𝑠𝑖

𝑗

)︂
𝑟𝑗𝑒−𝑏𝑖𝑟 𝑗 = 0, 1, . . . , 𝑠𝑖 − 1, 𝑖 = 0, 1, . . . , 𝑛− 1, (3.10)

𝑔1
𝑖𝑗(𝑟′) = (−𝑟′)𝑠𝑖−𝑗

𝑒𝑏𝑖𝑟
′

𝑗 = 0, 1, . . . , 𝑠𝑖 − 1, 𝑖 = 0, 1, . . . , 𝑛− 1. (3.11)
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Thus, from Proposition 3.1, 𝑓(𝑟) for 𝑟 ∈ (0, 𝑅) can be derived explicitly. In fact, when 𝑤1
𝑖𝑗(𝑟) and 𝑔1

𝑖𝑗(𝑟′) are
given by (3.10) and (3.11), respectively, in the same way as (2.4) and (2.5),

𝛾(𝑖𝑗),(𝑘𝑙) =
∫︁ 𝑅

0

𝑔1
𝑖𝑗(𝑟)𝑤1

𝑘𝑙(𝑟)d𝑟 =
∫︁ 𝑅

0

(−𝑟)𝑠𝑖−𝑗
𝑒𝑏𝑖𝑟𝑎𝑘

(︂
𝑠𝑘

𝑙

)︂
𝑟𝑙𝑒−𝑏𝑘𝑟d𝑟

= 𝑎𝑘

(︂
𝑠𝑘

𝑙

)︂
(−1)𝑠𝑖−𝑗

∫︁ 𝑅

0

𝑟𝑠𝑖−𝑗+𝑙𝑒(𝑏𝑖−𝑏𝑘)𝑟d𝑟

and since 𝑢(𝑟) = 𝑞0𝑅

1−𝑞𝑅𝑅+𝑞0𝑅
𝑞𝑅𝑟 + 1−𝑞𝑅𝑅

1−𝑞𝑅𝑅+𝑞0𝑅
𝑞0𝑟, we have

𝑢(𝑟) = 𝑐𝑅

𝑛−1∑︁
𝑖=0

𝑠𝑖∑︁
𝑗=0

𝑤1
𝑖𝑗(𝑟)𝑔1

𝑖𝑗(𝑅) + 𝑐0

𝑛−1∑︁
𝑖=0

𝑠𝑖∑︁
𝑗=0

𝑤1
𝑖𝑗(𝑟)𝑔1

𝑖𝑗(0)

where 𝑐𝑅 = 𝑞0𝑅

1−𝑞𝑅𝑅+𝑞0𝑅
and 𝑐0 = 1−𝑞𝑅𝑅

1−𝑞𝑅𝑅+𝑞0𝑅
, and thus

𝛽𝑖𝑗 =
∫︁ 𝑅

0

𝑔1
𝑖𝑗(𝑟)𝑢(𝑟)d𝑟 = 𝑐𝑅

∫︁ 𝑅

0

(−𝑟)𝑠𝑖−𝑗
𝑒𝑏𝑖𝑟

𝑛−1∑︁
𝑘=0

𝑠𝑘∑︁
𝑙=0

𝑎𝑘

(︂
𝑠𝑘

𝑙

)︂
𝑟𝑙𝑒−𝑏𝑘𝑟(−𝑅)𝑠𝑘−𝑙

𝑒𝑏𝑘𝑅d𝑟

+ 𝑐0

∫︁ 𝑅

0

(−𝑟)𝑠𝑖−𝑗
𝑒𝑏𝑖𝑟

𝑛−1∑︁
𝑘=0

𝑎𝑘𝑟𝑠𝑘𝑒−𝑏𝑘𝑟d𝑟

= 𝑐𝑅

𝑛−1∑︁
𝑘=0

𝑠𝑘∑︁
𝑙=0

𝑎𝑘

(︂
𝑠𝑘

𝑙

)︂
(−𝑅)𝑠𝑘−𝑙

𝑒𝑏𝑘𝑅(−1)𝑠𝑖−𝑗
∫︁ 𝑅

0

𝑟𝑠𝑖−𝑗+𝑙𝑒(𝑏𝑖−𝑏𝑘)𝑟d𝑟

+ 𝑐0

𝑛−1∑︁
𝑘=0

𝑎𝑘(−1)𝑠𝑖−𝑗
∫︁ 𝑅

0

𝑟𝑠𝑖−𝑗+𝑠𝑘𝑒(𝑏𝑖−𝑏𝑘)𝑟d𝑟.

Since
∫︀ 𝑅

0
𝑟𝑚𝑒𝑎𝑟d𝑟 is easily computable for integer 𝑚 ≥ 0 and real number 𝑎, 𝛾(𝑖𝑗),(𝑘𝑙) and 𝛽(𝑖𝑗) can be computed.

Thus, in the same way as Section 2, we can compute values of the set {𝐶𝑖𝑗 ; 𝑖, 𝑗 = 0, 1, . . . ,𝑚− 1} which satisfy(︀
1− 𝛾(𝑖𝑗)(𝑖𝑗)

)︀
𝐶(𝑖𝑗) −

∑︁
(𝑘𝑙)̸=(𝑖𝑗)

𝛾(𝑖𝑗)(𝑘𝑙)𝐶(𝑖𝑗) = 𝛽(𝑖𝑗), 𝑖, 𝑗 = 0, 1, . . . ,𝑚− 1.

and then we have

𝑓(𝑟) = 𝑢(𝑟) +
𝑛−1∑︁
𝑖=0

𝑠𝑖∑︁
𝑗=0

𝑤1
𝑖𝑗(𝑟)𝐶𝑖𝑗 0 < 𝑟 < 𝑅.

From the forms of 𝑢(𝑟) and 𝑤1
𝑖𝑗(𝑟),

∫︀ 𝑅

0
𝑓(𝑟)d𝑟 can be computed, and since 𝑞𝑟0 satisfies (3.9),

∫︀ 𝑅

0
𝑓(𝑟)𝑞𝑟0d𝑟 can

be obtained in the same way as above. Thus, 𝜋0 can be computed, and 𝜋𝑅 is also derived by (3.4). �

4. The application of the analytical method to an EPQ model

4.1. Analysis of an EPQ model

The modelling of production-inventory systems is one of the most important applications of the Markov
process. Revenue is earned when product supply meets customer demand. Inventory control is primarily related
to the matching of supply and demand. Some of the earliest research papers on inventory system modelling
with Markovian models are from the 1950s (see, e.g., [1, 6]). Markovian models have since gained a good deal
of popularity in inventory control.
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In this section, as an application of result established in the previous section, we consider the following EPQ
model and derive the optimal upper limit of the items in inventory.

One unit period corresponds to one day. In each period, the amount of demand of items is 𝐷, and it is fixed.
The manufacturer produces items. The process may fail, and 𝑋 is the possible number of items produced by the
epoch when the failure occurs. The upper bound of items in inventory is 𝑅. Here, we assume that 𝐷 ≥ 𝑅. At
the beginning of each day, the production restarts even if the system had failed in the previous day by repairing
the process at the end of the previous day (see Fig. 1).

When the number of items in inventory is 𝑟′ at the beginning of each period, if the number of items produced
in this period reaches 𝑅 + 𝐷− 𝑟′, the system stops production, and after the demand of this period is met, the
number of items in inventory becomes 𝑅.

When the number of possible produced products is 𝑋, the number of items in inventory, denoted by 𝑟, is
given by

𝑟 = max(0, 𝑟′ + 𝑋 −𝐷).

Thus,

(i) when 𝑋 ≥ 𝑅 + 𝐷 − 𝑟′, 𝑟 = 𝑅,
(ii) when 𝐷 − 𝑟′ < 𝑋 < 𝑅 + 𝐷 − 𝑟′, 𝑟 = 𝑟′ + 𝑋 −𝐷 ∈ (0, 𝑅), and

(iii) when 𝑋 < 𝐷 − 𝑟′, 𝑟 = 0.

In the last case, the excess demand is lost. Note that 𝑟′ ≤ 𝑅 < 𝐷 implies that the last case is possible. Then,
we have for each 𝑟′ ∈ [0, 𝑅]

𝑞𝑟′0 = 𝐹𝑋(𝐷 − 𝑟′), 𝑞𝑟′𝑟 = 𝑓𝑋(𝑟 − 𝑟′ + 𝐷) for 0 < 𝑟 < 𝑅,

𝑞𝑟′𝑅 = 1− 𝐹𝑋(𝑅 + 𝐷 − 𝑟′).

Thus, when 𝑋 follows an Erlang-type distribution, the sufficient condition of Corollary 3.3 in Section 3 is satis-
fied. Thus, we can derive the steady-state probability density 𝑓(𝑟) and steady-state mass probability functions
𝜋0 and 𝜋𝑅.

In the following, we study the case where 𝑋 follows an exponential distribution with parameter 𝜆. This is
satisfied when the failure rate is constant and the failure is not unpredictable. Then, 𝑓𝑋(𝑥) = 𝜆𝑒−𝜆𝑥 is a density
function of 𝑋 and 𝐹𝑋(𝑥) = 1− 𝑒−𝜆𝑥 is a distribution function of 𝑋. Thus, we have for each 𝑟′ ∈ [0, 𝑅]

𝑞𝑟′𝑟 = 𝜆𝑒−𝜆(𝑟+𝐷)𝑒𝜆𝑟′ , 𝑞𝑟′0 = 1− 𝑒−𝜆(𝐷−𝑟′), 𝑞𝑟′𝑅 = 𝑒−𝜆(𝑅+𝐷−𝑟′).

By (3.7) and (3.8),

𝑢(𝑟) =
𝜆𝑒−𝜆(𝑟+𝐷)𝑒𝜆𝑅 · 𝑒−𝜆(𝑅+𝐷) + 𝜆𝑒−𝜆(𝑟+𝐷)(1− 𝑒−𝜆𝐷)

1− 𝑒−𝜆𝐷 + 𝑒−𝜆(𝑅+𝐷)
=

𝜆𝑒−𝜆(𝑟+𝐷)

1− 𝑒−𝜆𝐷 + 𝑒−𝜆(𝑅+𝐷)
,

𝐾(𝑟, 𝑟′) = 𝜆𝑒−𝜆(𝑟+𝐷)𝑒𝜆𝑟′ +
−𝜆𝑒−𝜆(𝑟+𝐷)𝑒𝜆𝑅 · 𝑒−𝜆(𝑅+𝐷) − 𝜆𝑒−𝜆(𝑟+𝐷)

(︀
1− 𝑒−𝜆𝐷

)︀
1− 𝑒−𝜆𝐷 + 𝑒−𝜆(𝑅+𝐷)

+
𝜆𝑒−𝜆(𝑟+𝐷)(𝑒𝜆𝑅 − 1) · 𝑒−𝜆(𝑅+𝐷−𝑟′)

1− 𝑒−𝜆𝐷 + 𝑒−𝜆(𝑅+𝐷)

= 𝜆𝑒−𝜆(𝑟+𝐷)𝑒𝜆𝑟′ +
−𝜆𝑒−𝜆(𝑟+𝐷) + 𝜆𝑒−𝜆(𝑟−𝑟′+2𝐷) − 𝜆𝑒−𝜆(𝑟−𝑟′+𝑅+2𝐷)

1− 𝑒−𝜆𝐷 + 𝑒−𝜆(𝑅+𝐷)

=
𝜆𝑒−𝜆(𝑟+𝐷)

1− 𝑒−𝜆𝐷 + 𝑒−𝜆(𝑅+𝐷)

(︁
−1 + 𝑒𝜆𝑟′

)︁
= 𝑤0(𝑟)𝑔0(𝑟′) + 𝑤1(𝑟)𝑔1(𝑟′),

where

𝑤0(𝑟) =
−𝜆𝑒−𝜆(𝑟+𝐷)

1− 𝑒−𝜆𝐷 + 𝑒−𝜆(𝑅+𝐷)
, 𝑔0(𝑟′) = 1, 𝑤1(𝑟) = −𝑤0(𝑟), 𝑔1(𝑟′) = 𝑒𝜆𝑟′ .
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Let 𝑌 = 1− 𝑒−𝜆𝐷 + 𝑒−𝜆(𝑅+𝐷), and then

𝛾00 =
−𝑒−𝜆𝐷

(︀
1− 𝑒−𝜆𝑅

)︀
𝑌

, 𝛾01 =
𝑒−𝜆𝐷

(︀
1− 𝑒−𝜆𝑅

)︀
𝑌

, 𝛾10 =
−𝜆𝑅𝑒−𝜆𝐷

𝑌
,

𝛾11 =
𝜆𝑅𝑒−𝜆𝐷

𝑌
, 𝛽0 =

𝑒−𝜆𝐷
(︀
1− 𝑒−𝜆𝑅

)︀
𝑌

, 𝛽1 =
𝜆𝑅𝑒−𝜆𝐷

𝑌
·

Since 𝑥𝑒−𝑥 < 1 for 𝑥 > 0, we have 𝜆𝑅𝑒−𝜆𝐷 < 1 because it has been assumed that 𝑅 ≤ 𝐷. From (2.9)

𝐶0 =
𝑒−𝜆𝐷

(︀
1− 𝑒−𝜆𝑅

)︀
1− 𝜆𝑅𝑒−𝜆𝐷

, and 𝐶1 =
𝜆𝑅𝑒−𝜆𝐷

1− 𝜆𝑅𝑒−𝜆𝐷
·

Thus, by (2.3), we have

𝑓(𝑟) =
𝜆𝑒−𝜆(𝑟+𝐷)

1− 𝑒−𝜆𝐷 + 𝑒−𝜆(𝑅+𝐷)
+

−𝜆𝑒−𝜆(𝑟+𝐷)

1− 𝑒−𝜆𝐷 + 𝑒−𝜆(𝑅+𝐷)

𝑒−𝜆𝐷
(︀
1− 𝑒−𝜆𝑅

)︀
1− 𝜆𝑅𝑒−𝜆𝐷

+
𝜆𝑒−𝜆(𝑟+𝐷)

1− 𝑒−𝜆𝐷 + 𝑒−𝜆(𝑅+𝐷)

𝜆𝑅𝑒−𝜆𝐷

1− 𝜆𝑅𝑒−𝜆𝐷
=

𝜆𝑒−𝜆(𝑟+𝐷)

1− 𝜆𝑅𝑒−𝜆𝐷
, for 𝑟 ∈ (0, 𝑅).

Since
∫︀ 𝑅

0
𝑓(𝑟)d𝑟 = 𝑒−𝜆𝐷(1−𝑒−𝜆𝑅)

1−𝜆𝑅𝑒−𝜆𝐷 , we have

𝜋𝑅 =
𝑒−𝜆(𝑅+𝐷) + 1

1−𝜆𝑅𝑒−𝜆𝐷

(︀
−𝑒−𝜆(𝑅+2𝐷) + 𝑒−𝜆(2𝑅+2𝐷) + 𝜆𝑅𝑒−𝜆(𝑅+2𝐷)

)︀
1− 𝑒−𝜆𝐷 + 𝑒−𝜆(𝑅+𝐷)

=
𝑒−𝜆(𝑅+𝐷)

1− 𝜆𝑅𝑒−𝜆𝐷
,

𝜋0 =
1− 𝑒−𝜆𝐷 − 𝜆𝑅𝑒−𝜆𝐷

1− 𝜆𝑅𝑒−𝜆𝐷
·

4.2. An optimization problem

For a given 𝑅, we derive the average cost by using the derived limiting distributions of the number of items
in inventory. Let the production cost per unit item, the holding cost rate per unit time, and the lost sale cost
for each lost demand be 𝑐, ℎ, and 𝑙, respectively. We also define a function as for 𝑎 ≥ 0

𝑔(𝑎) = 𝐸[min(𝑋, 𝑎)] =
∫︁ 𝑎

0

𝑥 · 𝜆𝑒−𝜆𝑥d𝑥 + 𝑎 · 𝑒−𝜆𝑎 =
1
𝜆

(︀
1− 𝑒−𝜆𝑎

)︀
.

Note that 𝐸[max(0, 𝑎−𝑋)] = 𝐸[𝑎−min(𝑎, 𝑋)] = 𝑎− 𝑔(𝑎).
By using equations ∫︁ 𝑎

0

(𝑎− 𝑥)𝜆𝑒−𝜆𝑥d𝑥 = 𝑎− 1
𝜆

(︀
1− 𝑒−𝜆𝑎

)︀
,∫︁ 𝑎

0

𝜆𝑥𝑒−𝜆𝑥d𝑥 + 𝑎𝑒−𝜆𝑎 =
1
𝜆

(︀
1− 𝑒−𝜆𝑎

)︀
, for 𝑎 ≥ 0,

we obtain the following average cost per unit time.

(a) Average production cost

𝑐

(︃
𝜋0𝐸[min(𝑋, 𝑅 + 𝐷)] +

∫︁ 𝑅

0

𝐸[min(𝑋,𝑅 + 𝐷 − 𝑟′)]𝑓(𝑟′)d𝑟′ + 𝜋𝑅𝐸[min(𝑋, 𝐷)]

)︃
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= 𝑐
1

1− 𝜆𝑅𝑒−𝜆𝐷

(︃(︀
1− 𝑒−𝜆𝐷 − 𝜆𝑅𝑒−𝜆𝐷

)︀
𝑔(𝑅 + 𝐷) +

∫︁ 𝑅

0

𝑔(𝑅 + 𝐷 − 𝑟′)𝜆𝑒−𝜆(𝑟′+𝐷)d𝑟′ + 𝑒−𝜆(𝑅+𝐷)𝑔(𝐷)

)︃

= 𝑐

(︂
1

𝜆(1− 𝜆𝑅𝑒−𝜆𝐷)
·
(︁

1− 𝜆𝑅𝑒−𝜆𝐷 − 𝑒−𝜆(𝑅+𝐷)
)︁)︂

.

(b) Average lost sale cost

𝑙

(︃
𝜋0𝐸[max(0, 𝐷 −𝑋)] +

∫︁ 𝑅

0

𝐸[max(0, 𝐷 − 𝑟′ −𝑋)]𝑓(𝑟′)d𝑟′ + 𝜋𝑅𝐸[max(0, 𝐷 −𝑅−𝑋)]

)︃

= 𝑙
1

1− 𝜆𝑅𝑒−𝜆𝐷

(︃(︀
1− 𝑒−𝜆𝐷 − 𝜆𝑅𝑒−𝜆𝐷

)︀
(𝐷 − 𝑔(𝐷)) +

∫︁ 𝑅

0

(𝐷 − 𝑟′ − 𝑔(𝐷 − 𝑟′))𝜆𝑒−𝜆(𝑟′+𝐷)d𝑟′

+ 𝑒−𝜆(𝑅+𝐷)(𝐷 −𝑅− 𝑔(𝐷 −𝑅))

)︃

= 𝑙 · 1
1− 𝜆𝑅𝑒−𝜆𝐷

(︂
𝐷 − 1

𝜆
+ 𝑅(1− 𝜆𝐷)𝑒−𝜆𝐷 +

1
𝜆

𝑒−𝜆(𝑅+𝐷)

)︂
.

(c) Average holding cost

ℎ

(︃∫︁ 𝑅

0

𝑟𝑓(𝑟)d𝑟 + 𝜋𝑅𝑅

)︃
= ℎ

(︃∫︁ 𝑅

0

𝜆𝑟
′𝑒−𝜆(𝑟′+𝐷)

1− 𝜆𝑅𝑒−𝜆𝐷
d𝑟′ +

𝑅𝑒−𝜆(𝑅+𝐷)

1− 𝜆𝑅𝑒−𝜆𝐷

)︃
= ℎ ·

𝑒−𝜆𝐷
(︀
1− 𝑒−𝜆𝑅

)︀
𝜆(1− 𝜆𝑅𝑒−𝜆𝐷)

·

Thus, the average cost for a given 𝑅 is given by

𝐶(𝑅) =
1

𝜆(1− 𝜆𝑅𝑒−𝜆𝐷)

(︁
𝑐
(︁

1− 𝜆𝑅𝑒−𝜆𝐷 − 𝑒−𝜆(𝑅+𝐷)
)︁

+ ℎ𝑒−𝜆𝐷
(︀
1− 𝑒−𝜆𝑅

)︀
+ 𝑙
(︁
𝜆𝐷 − 1 + 𝜆𝑅(1− 𝜆𝐷)𝑒−𝜆𝐷 + 𝑒−𝜆(𝑅+𝐷)

)︁)︁
. (4.1)

We derive the optimal 𝑅. By differentiating both sides of (4.1),

d
d𝑅

𝐶(𝑅) =
𝑒−𝜆(𝑅+2𝐷)

𝜆2(1− 𝜆𝑅𝑒−𝜆𝐷)2
(︀
𝑐
(︀
−1− 𝜆𝑅 + 𝑒𝜆𝐷

)︀
+ ℎ
(︀
−1− 𝜆𝑅 + 𝑒𝜆𝑅 + 𝑒𝜆𝐷

)︀
+ 𝑙
(︀
1 + 𝜆𝑅− 𝑒𝜆𝐷

)︀)︀
=

𝑒−𝜆(𝑅+2𝐷)

𝜆2(1− 𝜆𝑅𝑒−𝜆𝐷)2
(︀
(𝑙 − (ℎ + 𝑐))

(︀
𝜆𝑅 + 1− 𝑒𝜆𝐷

)︀
+ ℎ𝑒𝜆𝑅

)︀
=

𝑒−𝜆(𝑅+2𝐷)(𝑙 − (ℎ + 𝑐))

𝜆2(1− 𝜆𝑅𝑒−𝜆𝐷)2

(︂
(𝜆𝑅 + 1− 𝑒𝜆𝐷) +

ℎ

𝑙 − (ℎ + 𝑐)
𝑒𝜆𝑅

)︂
.

We assume that 𝑙− (ℎ + 𝑐) > 0. This is not restrictive because the lost sale cost is higher than a production
cost and unit time holding cost. Otherwise, the system will not produce a product.

Let 𝑣(𝑥) =
(︀
𝑥 + 1− 𝑒𝜆𝐷

)︀
+ ℎ

𝑙−(ℎ+𝑐)𝑒
𝑥. Then, we know that

𝑣(0) = 1− 𝑒𝜆𝐷 +
ℎ

𝑙 − (ℎ + 𝑐)
=

𝑙 − 𝑐

𝑙 − (ℎ + 𝑐)
− 𝑒𝜆𝐷, 𝑣′(𝑥) = 1 +

ℎ

𝑙 − (ℎ + 𝑐)
𝑒𝑥 > 0,

𝑣(𝜆𝐷) = 𝜆𝐷 + 1− 𝑙 − (2ℎ + 𝑐)
𝑙 − (ℎ + 𝑐)

𝑒𝜆𝐷.

Thus, if 𝑙−𝑐
𝑙−(ℎ+𝑐) < 𝑒𝜆𝐷 and 𝜆𝐷 + 1 > 𝑙−(2ℎ+𝑐)

𝑙−(ℎ+𝑐) 𝑒𝜆𝐷, there is an optimal 𝑅* ∈ (0, 𝐷) which is a unique solution

of 𝑣(𝜆𝑅) = 0. If 𝑙−𝑐
𝑙−(ℎ+𝑐) ≥ 𝑒𝜆𝐷, 𝑅* = 0, and if 𝜆𝐷 + 1 ≤ 𝑙−(2ℎ+𝑐)

𝑙−(ℎ+𝑐) 𝑒𝜆𝐷 then 𝑅* = 𝐷 in the interval [0, 𝐷] of 𝑅.
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Figure 1. EPQ model.

4.3. Sensitivity analysis

Here, we perform sensitivity analysis on 𝑅*. We note that 𝑅* satisfies 𝑣(𝜆𝑅*) = 0. By letting 𝑑 = −1 + 𝑒𝜆𝐷

and 𝐵 = ℎ
𝑙−(ℎ+𝑐) , 𝑅* satisfies 𝐵𝑒𝜆𝑅* = 𝑑− 𝜆𝑅*. Figure 2 shows that 𝜆𝑅* is the intersection point of 𝑦 = 𝐵𝑒𝑥

and 𝑦 = 𝑑− 𝑥. Since 𝐵 increases in ℎ and 𝑐 while decreasing in 𝑙, from Figure 2, we find that 𝑅* decreases in
ℎ and 𝑐 while increasing in 𝑙. In addition, it is observed from Figure 1 that 𝑅* increases in 𝐷.

The optimal 𝑅* can be considered a function of 𝜆. Since 𝐵𝑒𝜆𝑅* = −1 + 𝑒𝜆𝐷 − 𝜆𝑅*, by differentiating with
respect to 𝜆, we have

𝐵𝑒𝜆𝑅*
(︂

𝑅* + 𝜆
d𝑅*

d𝜆

)︂
+ 𝑅* + 𝜆

d𝑅*

d𝜆
−𝐷𝑒𝜆𝐷 = 0,

which implies

d𝑅*

d𝜆
=

𝐷𝑒𝜆𝐷 −𝑅*
(︀
𝐵𝑒𝜆𝑅* + 1

)︀
𝜆(𝐵𝑒𝜆𝑅* + 1)

·

Since 𝐷𝑒𝜆𝐷 −𝑅*
(︀
𝐵𝑒𝜆𝑅* + 1

)︀
= (𝐷 −𝑅*)𝑒𝜆𝐷 + 𝜆𝑅*2, 𝑅* increases in 𝜆 when 𝑅* is in (0, 𝐷).

The relationship between the optimal bound 𝑅* and the arrival rate 𝜆 is depicted in Figure 3. Here, we set
𝑐 = 4, 𝑙 = 10, ℎ = 1 and thus 𝐵 = 0.2, and 𝐷 = 5. In this case, when 𝜆 ≤ 0.035, 𝑙−𝑐

𝑙−(ℎ+𝑐) ≥ 𝑒𝜆𝐷, and 𝑅* = 0

is optimal. When 𝜆 ≥ 0.165, we can show that 𝜆𝐷 + 1 ≤ 𝑙−(2ℎ+𝑐)
𝑙−(ℎ+𝑐) 𝑒𝜆𝐷. Thus, for 0.04 ≤ 𝜆 ≤ 0.16, the optimal

curve is shown in Figure 3. In this interval of 𝜆, the optimal 𝑅* is concave in 𝜆, although we cannot show the
concavity theoretically.

It should be highlighted that when 𝑅 > 𝐷 is allowed, a lower average cost can be reached. This occurs when
the probability of a short production time is high, and it is preferable to store more items to prepare for the
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Figure 2. 𝜆𝑅* is the intersecting point of two lines.

Figure 3. The relationship between optimal bounds and the arrival rate.
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subsequent short production times. In this case, however, the analytical method in this paper cannot be applied
because the expression of transition intensity 𝑞𝑟′𝑟 depends on the combination of 𝑟′ and 𝑟.

5. Conclusion

This paper considers the application of a Fredholm integral equation of the second kind to the analysis of
a discrete-time Markov process with a continuous state space having a finite interval. We first show that the
equilibrium equations on the steady-state mass and density probability functions are formed as the Fredholm
integral equation. Then, under some separable conditions, the transition density from 𝑟′ to 𝑟 in the inner
state-space forms the product of two functions that are functions of only 𝑟′ and 𝑟, respectively, we can obtain
expressions of these probability functions explicitly. As an example, a basic EPQ model is analysed, and its
optimal bound is developed. The optimal upper bound is derived, and we analytically study the sensitivity of
the optimal bound. The bound decreases with respect to the holding cost and the production cost, whereas it
increases with respect to the lost sale cost and the arrival rate.

The application of the Fredholm integral equation to such a discrete-time Markov process may be limited
because to obtain expressions of the probability and density functions, several conditions on transition prob-
ability densities must be satisfied. As Dibu et al. [4] have applied the Fredholm integral equations to MAP
processes, the general method of Fredholm integral equations to other stochastic processes may exist. Further
extensions of the equations to the general stochastic processes are left for future research.
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