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OPTIMALITY CONDITIONS AND DUALITY FOR MULTIOBJECTIVE
SEMI-INFINITE PROGRAMMING PROBLEMS ON HADAMARD MANIFOLDS

USING GENERALIZED GEODESIC CONVEXITY

Balendu Bhooshan Upadhyay1, Arnav Ghosh1,
Priyanka Mishra1 and Savin Treanţă2,3,*

Abstract. This paper deals with multiobjective semi-infinite programming problems on Hadamard
manifolds. We establish the sufficient optimality criteria of the considered problem under generalized
geodesic convexity assumptions. Moreover, we formulate the Mond-Weir and Wolfe type dual prob-
lems and derive the weak, strong and strict converse duality theorems relating the primal and dual
problems under generalized geodesic convexity assumptions. Suitable examples have also been given to
illustrate the significance of these results. The results presented in this paper extend and generalize the
corresponding results in the literature.
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1. Introduction

In theory of optimization, semi-infinite programming is the class of mathematical programming problems that
deals with finitely many decision variables and in which the feasible set is defined by infinitely many constraints.
The concepts and mathematical theory of semi-infinite programming were conceived by Haar [24]. The term
‘semi-infinite programming’ was later coined by Charnes et al. [11] in 1962. Semi-infinite programming has a
very wide range of applications in various practical problems of mathematical physics, game theory, engineering
design, etc., see [12,13,16,22,23,27,29,45,50,54] and the references cited therein.

Although semi-infinite programming over finite or infinite dimensional Banach spaces has been extensively
studied, it is observed that a lot of programming problems that arise in various real life applications require the
problem to be formulated on Riemannian manifolds. One of the very first attempts in this direction is due to Eke-
land [19], who discussed applications of variational principles on Riemannian manifolds. The generalizations of
optimization methods from Euclidean space to Riemannian manifolds have important advantages. For example,
constrained optimization problems can be viewed as unconstrained problems from the Riemannian geometry
perspective. Moreover, nonconvex optimization problems can be converted to convex optimization problems
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through introduction of a suitable Riemannian metric (see for instance, [17, 41, 43]). Some results on convex
optimization problems were extended to Riemannian manifolds by Rapcsák [46] and Udrişte [59] by introducing
a generalization of convexity notion, namely, geodesic convexity. Further, Udrişte [59] introduced the notions
of geodesic pseudoconvex and quasiconvex functions in Riemannian manifold setting. Constrained optimization
problems and weak sharp minimizers on Hadamard manifold were discussed by Li et al. [31]. Recently, many
authors have generalized various other notions and concepts of optimization of R𝑛 to Riemannian manifolds;
see for instance, [1, 4, 6–10,44,53,57,58] and the references cited therein.

Optimality and duality conditions play a very crucial role in optimization theory. Duality theory is important
to understand the nature of the original (primal problem) from the perspective of a dual problem. Many authors
have developed many interesting results on optimality and duality in R𝑛, see for instance, [20, 21, 32, 38, 54, 63]
and the references cited therein. Two of the most important types of dual of a primal problem are Mond-Weir
dual problem [60] and Wolfe dual problem [61], which have been referred to in this paper.

The optimality conditions for nonlinear programming problems on Riemannian manifolds were studied by
Yang et al. in [62]. Bergmann and Herzog [8] developed the intrinsic formulation of Karush-Kuhn-Tucker con-
ditions and constraint qualification on smooth manifolds. The necessary and sufficient optimality conditions for
vector equilibrium problems on Hadamard manifolds have been discussed by Ruiz-Garzón in [47]. Characteriza-
tions of solution sets of convex optimization problems in Riemannian manifolds were investigated by Barani and
Hosseini in [6]. Further, Chen [15] studied the Karush-Kuhn-Tucker type optimality criteria for interval valued
objective function on Hadamard manifolds. Optimality and duality for multiobjective semi-infinite programming
on Hadamard manifolds was investigated by Tung and Tam in [56].

Motivated by the works of [15, 56] and the references cited therein, we consider a class of multiobjective
semi-infinite programming problems on Hadamard manifold. We establish Karush-Kuhn-Tucker type sufficient
optimality criteria for the considered problem under generalized geodesic convexity assumptions. Moreover, we
formulate the Mond-Weir and Wolfe type dual problems and establish weak, strong and strict converse duality
theorems relating the primal and the dual problems under generalized geodesic convexity assumptions. The
results presented in this paper extend and generalize some known results in the literature to a more general
space, namely, Hadamard manifold, as well as to more general classes of generalized geodesic convex functions.
In particular, the results of this paper generalize the corresponding results of Tung and Tam [56] to a more
general class of generalized geodesic convex function. Moreover, the results of the paper generalize some other
well known results in R𝑛, see for instance, [3, 34–36].

The paper is organized as follows. In Section 2, we recall the basic notions of Riemannian and Hadamard
manifolds, that will be used in the sequel. Moreover, we consider a multiobjective semi-infinite programming
problem on a Hadamard manifold. In Section 3, we establish sufficient optimality criteria of an efficient solution
of the considered problem under generalized geodesic convexity assumptions. In Section 4, we formulate the
Mond-Weir and Wolfe type dual problems for the considered primal problem. Moreover, we derive weak, strong
and strict converse duality theorems relating the primal and the dual problems under generalized geodesic
convexity assumptions.

2. Notations and mathematical preliminaries

Throughout the paper, we use the standard notation R𝑛 to denote the 𝑛-dimensional Euclidean plane. The
nonnegative orthant of R𝑛 is denoted by

R𝑛+ := {(𝑥1, 𝑥2, . . . , 𝑥𝑛) : 𝑥𝑘 ≥ 0,∀𝑘 = 1, 2, . . . , 𝑛}.

For a non empty infinite set 𝐽 , the linear space R|𝐽| is defined as follows:

R|𝐽| := {𝜆 = (𝜆𝑗)𝑗∈𝐽 : 𝜆𝑗 = 0 for all 𝑗 ∈ 𝐽, except 𝜆𝑗 ̸= 0 for finitely many 𝑗 ∈ 𝐽}.

The positive cone of R|𝐽|, denoted by R|𝐽|+ , is defined as

R|𝐽|+ := {𝜆 = (𝜆𝑗)𝑗∈𝐽 ∈ R|𝐽| : 𝜆𝑗 ≥ 0,∀𝑗 ∈ 𝐽}.
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The standard inner product on R𝑛 is denoted by ⟨·, ·⟩. For any 𝑥, 𝑦 ∈ R𝑛, we use the following notations

𝑥 ≺ 𝑦 ⇐⇒ 𝑥𝑖 < 𝑦𝑖, ∀𝑖 = 1, 2, . . . , 𝑛.

𝑥 ⪯ 𝑦 ⇐⇒

{︃
𝑥𝑖 ≤ 𝑦𝑖, for all 𝑖 = 1, 2, . . . , 𝑛; 𝑖 ̸= 𝑘,

𝑥𝑘 < 𝑦𝑘, for at least one 𝑘 ∈ {1, 2, .., 𝑛}.

The notation 𝑥 ⊀ 𝑦 (respectively, 𝑥 � 𝑦) indicates the negation of 𝑥 ≺ 𝑦 (respectively, 𝑥 ⪯ 𝑦).
If E is a 𝑚-dimensional linear subspace of R𝑛, then E inherits the inner product from R𝑛, denoted by ⟨·, ·⟩E =
⟨·, ·⟩. Moreover, the topology in R𝑛 is induced to E. One can further obtain a natural isometry between R𝑛 and
E (see for instance, [9]).
For a subset 𝑆 ⊂ E, the closure and convex hull of 𝑆 in E is denoted by cl(𝑆) and co(𝑆), respectively. The
positive conic hull of 𝑆, denoted by pos(𝑆), is the convex cone containing the origin generated by 𝑆 ⊂ E, and
is defined as

pos(𝑆) :=

{︃
𝑛∑︁
𝑖=1

𝛼𝑖𝑥𝑖, 𝛼𝑖 ≥ 0, 𝑥𝑖 ∈ 𝑆, 𝑛 ∈ N

}︃
,

where, N denotes the set of all natural numbers. The negative polar cone of 𝑆, denoted by 𝑆−, is defined by

𝑆− := {𝑥 ∈ E : ⟨𝑥, 𝑦⟩ ≤ 0,∀𝑦 ∈ 𝑆}.

For any two Euclidean spaces E1,E2, a map 𝜑 : E1 → E2 is said to be of class C1 if 𝜑 is continuously differentiable.
Similarly, 𝜑 : E1 → E2 is said to be of class C∞ if 𝜑 is infinitely continuously differentiable.

Now, we recall some fundamental concepts and definitions of Riemannian and Hadamard manifolds (see for
instance, [2, 9, 25,28,30]).

Let us consider that H be a topological space. Then H is said to be topological 𝑛-manifold or a topological
manifold of dimension 𝑛 if H is Hausdorff, second-countable, and each point of H is contained in some
neighborhood that is homeomorphic to an open subset of R𝑛. Any pair (𝑈, 𝜑), where 𝑈 is an open set in H ,
and 𝜑 is a homeomorphism from 𝑈 to some open set in R𝑛 is called a chart or a co-ordinate chart on H . For any
two charts (𝑈, 𝜑) and (𝑉, 𝜓), such that 𝑈 ∩ 𝑉 is non empty, the composite map 𝜓 ∘𝜑−1 : 𝜑(𝑈 ∩ 𝑉 ) → 𝜓(𝑈 ∩ 𝑉 )
is called the transition map from 𝜑 to 𝜓. Two charts (𝑈, 𝜑) and (𝑉, 𝜓) are said to be smoothly compatible if
either 𝑈 ∩ 𝑉 is empty or the transition map 𝜓 ∘ 𝜑−1 is infinitely continuously differentiable. A collection of
charts such that the corresponding open sets cover H is called an atlas. An atlas 𝒜 for H is said to be smooth
if any two charts in 𝒜 are smoothly compatible with each other. A smooth atlas 𝒜 on H is said to be maximal
if it is not properly contained in any larger smooth atlas. A maximal smooth atlas on H is called a smooth
structure. A smooth manifold is a pair (H ,𝒜) where H is a topological manifold and 𝒜 is a smooth structure
on H .
For an element 𝑝 ∈ H , a curve 𝛾 : (−𝜖, 𝜖) → H is said to be of class C1 about the point 𝑝 if 𝛾(0) = 𝑝, and
𝜑 ∘ 𝛾 is of class C1 for any chart (𝑈, 𝜑) about the point 𝑝. Let 𝛾1, 𝛾2 : (−𝜖, 𝜖) → H be any two C1 curves about
𝑝. Then 𝛾1 and 𝛾2 are said to be equivalent if and only if there exists some chart (𝑈, 𝜑) about the point 𝑝, such
that

(𝜑 ∘ 𝛾1)′(0) = (𝜑 ∘ 𝛾2)′(0).

A tangent vector to H at the point 𝑝 is any equivalence class of 𝐶1 curves through 𝑝 on H modulo the
equivalence relation defined above. The set of all tangent vectors at the point 𝑝 in H is termed as the tangent
space to H at 𝑝 and is denoted by the symbol 𝑇𝑝H .
A Riemannian metric on a smooth manifold H is defined as a 2-tensor field G , such that G is symmetric and
positive definite. An inner product is induced on every tangent space 𝑇𝑝H by a Riemannian metric and this is
denoted by G (𝑥, 𝑦) = ⟨𝑥, 𝑦⟩𝑝 for all 𝑥, 𝑦 ∈ 𝑇𝑝H . A smooth manifold together with a given Riemannian metric
is called a Riemannian manifold. The exponential map exp𝑝 : 𝑇𝑝H → H is defined by exp𝑝(𝑣) = 𝛾𝑝,𝑣(1) for
any 𝑣 ∈ 𝑇𝑝H , where 𝛾𝑝,𝑣 is the geodesic starting at 𝑝 with a velocity 𝑣.
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A Riemannian manifold H is said to be geodesic complete if for every 𝑝 ∈ H , the exponential map exp𝑝(𝑣)
is defined for all 𝑣 ∈ 𝑇𝑝H . A complete, simply connected Riemannian manifold with nonpositive sectional
curvature everywhere is called a Hadamard manifold. Henceforth, we shall use to the symbol H to denote a
Hadamard manifold, unless otherwise specified.
The following theorem, known as Hadamard-Cartan theorem, is from Sakai [48] (Thm. 4.1, Page 221).

Theorem 2.1. Let H be a Hadamard manifold. Then for every 𝑝 ∈ 𝑇𝑝H , the exponential map exp𝑝 : 𝑇𝑝H →
H is a diffeomorphism with the inverse map exp−1

𝑝 : H → 𝑇𝑝H satisfying exp−1
𝑝 (𝑝) = 0𝑝. Moreover, for any

𝑥 ∈ H there exists a unique minimal geodesic 𝛾𝑝,𝑥 : [0, 1] → H satisfying 𝛾𝑝,𝑥(𝑡) = exp𝑝(𝑡exp −1
𝑝 (𝑥)).

The contingent cone for a subset of a Hadamard manifold is defined as follows.

Definition 2.2. Let 𝑆 ⊆ H and 𝑝 ∈ cl(𝑆). The contingent cone of 𝑆 at 𝑝, denoted by T (𝑆, 𝑝) is defined by

T (𝑆, 𝑝) = {𝑣 ∈ 𝑇𝑝H : ∃𝑡𝑘 ↓ 0,∃𝑣𝑘 ∈ 𝑇𝑝H , 𝑣𝑘 → 𝑣,∀𝑘 ∈ N, exp𝑝(𝑡𝑘𝑣𝑘) ∈ 𝑆}.

The following definitions of geodesic convex sets and geodesic convex functions on a Riemannian manifold
are from Udrişte [59] (Page 57) and Rapcsák [46] (Def. 6.1.2, Page 64), respectively.

Definition 2.3. Let us consider that H be a Riemannian manifold. Then,

(i) A subset 𝑆 of H is called a geodesic convex set in H , if for every pair of distinct points 𝑥, 𝑦 ∈ 𝑆 and for
any geodesic 𝛾𝑥,𝑦 : [0, 1] → H joining 𝑥 to 𝑦, we have

𝛾𝑥,𝑦(𝑡) ∈ 𝑆, ∀𝑡 ∈ [0, 1].

(ii) Let 𝑆 be a geodesic convex subset of H and 𝑓 : 𝑆 → R be a function on 𝑆. Then, the function 𝑓 is said
to be geodesic convex at 𝑥 ∈ 𝑆, if for any point 𝑢 ∈ 𝑆 and for any geodesic 𝛾𝑥,𝑢 : [0, 1] → H joining 𝑥 to
𝑢, we have

𝑓

(︂
𝛾𝑥,𝑢(𝑡)

)︂
≤ 𝑡𝑓(𝑥) + (1− 𝑡)𝑓(𝑢), ∀𝑡 ∈ [0, 1].

When the preceding inequality is strict, for 𝑥 ̸= 𝑢 and 𝑡 ∈ (0, 1), the function 𝑓 is said to be geodesic strictly
convex at 𝑥 ∈ 𝑆.
In particular, if H is a Hadamard manifold, then 𝑓 is geodesic convex at 𝑥 if and only if the following holds

𝑓

(︂
exp𝑥

(︂
𝑡 exp−1

𝑥 (𝑢)
)︂)︂

≤ 𝑡𝑓(𝑥) + (1− 𝑡)𝑓(𝑢), ∀𝑢 ∈ 𝑆, ∀𝑡 ∈ [0, 1].

When the preceding inequality is strict, for 𝑥 ̸= 𝑢 and 𝑡 ∈ (0, 1), the function 𝑓 is said to be geodesic strictly
convex at 𝑥 ∈ 𝑆.

The following theorems from Rapcsák [46] (Thm. 6.3.1 and Cor. 6.3.1, Page 76–77) enable us to check for
geodesic convexity more efficiently.

Theorem 2.4. Let 𝑆 ⊂ H ⊂ R𝑛 be an open geodesic convex set, and 𝑓 : 𝑆 → R be a twice continuously
differentiable function. Then, 𝑓 is geodesic convex on 𝑆 if and only if the geodesic Hessian (or second covariant
derivative), denoted by 𝐻𝑔

𝑢𝑓(𝑥(𝑢)), and defined as follows

𝐻𝑔
𝑢𝑓(𝑥(𝑢)) = 𝐽(𝑥(𝑢))𝑇𝐻𝑥𝑓(𝑥(𝑢))𝐽𝑥(𝑢) +∇𝑥𝑓(𝑥(𝑢))(𝐻𝑥(𝑢)− 𝐽𝑥(𝑢)Γ(𝑢)),

𝐻𝑥(𝑢) =

⎛⎜⎝𝐻𝑥1(𝑢)
...

𝐻𝑥𝑛(𝑢)

⎞⎟⎠ , 𝐽𝑥(𝑢) =
(︂
𝜕𝑥

𝜕𝑢

)︂
,

where 𝐻𝑥(𝑢) is Hessian matrix, 𝐽𝑥(𝑢) is the matrix of first partial derivatives, 𝐻𝑥𝑓(𝑥(𝑢)) denotes the Hessian
matrix of the function 𝑓 by 𝑥 at 𝑥(𝑢), and Γ(𝑢) is the matrix of second Christoffel symbols with respect to
the Riemannian metric of H , is positive semidefinite at all the points of each geodesic convex coordinate
neighbourhood 𝑥(𝑢) of 𝑆.
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Theorem 2.5. Let 𝑆 ⊂ H = R𝑛 be an open geodesic convex set, and 𝑓 : 𝑆 → R be a twice continuously
differentiable function. Then, 𝑓 is geodesic convex on 𝑆 if and only if the following matrix

𝐻𝑔𝑓(𝑥) = ∇2𝑓(𝑥) +∇𝑓(𝑥)Γ,

where Γ is the matrix of second Christoffel symbols with respect to the Riemannian metric of R𝑛,∇𝑓(𝑥) and
∇2𝑓(𝑥) are the (Euclidean) gradient and (Euclidean) Hessian of the function 𝑓 at 𝑥 in the usual sense, is positive
semidefinite at all the points of each geodesic convex coordinate neighbourhood 𝑥(𝑢), with 𝑥 : 𝑈 ⊂ R𝑘 → R𝑛, of
𝑆.

The following definitions of geodesic pseudoconvex and quasiconvex functions on Hadamard manifolds are
taken from Definition 2.1 of Barani [5].

Definition 2.6. Let 𝑆 ⊆ H be a geodesic convex set. Then

(i) A map 𝑓 : 𝑆 → R is said to be geodesic pseudoconvex at 𝑦 ∈ 𝑆, if for any arbitrary point 𝑥 ∈ 𝑆, we have⟨
grad 𝑓(𝑦), exp−1

𝑦 (𝑥)
⟩
𝑦

≥ 0 =⇒ 𝑓(𝑥)− 𝑓(𝑦) ≥ 0.

A map 𝑓 : 𝑆 → R is said to be geodesic strictly pseudoconvex at 𝑦 ∈ 𝑆, if for any arbitrary point 𝑥 ∈ 𝑆,
𝑥 ̸= 𝑦, we have ⟨

grad 𝑓(𝑦), exp−1
𝑦 (𝑥)

⟩
𝑦

≥ 0 =⇒ 𝑓(𝑥)− 𝑓(𝑦) > 0.

Equivalently, a map 𝑓 : 𝑆 → R is said to be geodesic pseudoconvex at 𝑦 ∈ 𝑆, if for any arbitrary point
𝑥 ∈ 𝑆, we have

𝑓(𝑥)− 𝑓(𝑦) < 0 =⇒
⟨

grad 𝑓(𝑦), exp−1
𝑦 (𝑥)

⟩
𝑦

< 0.

A map 𝑓 : 𝑆 → R is said to be geodesic strictly pseudoconvex at 𝑦 ∈ 𝑆, if for any arbitrary point 𝑥 ∈ 𝑆,
𝑥 ̸= 𝑦, we have

𝑓(𝑥)− 𝑓(𝑦) ≤ 0 =⇒
⟨

grad 𝑓(𝑦), exp−1
𝑦 (𝑥)

⟩
𝑦

< 0.

(ii) A map 𝑓 : 𝑆 → R is said to be geodesic quasiconvex at 𝑦 ∈ 𝑆, if for any arbitrary point 𝑥 ∈ 𝑆, we have

𝑓(𝑥)− 𝑓(𝑦) ≤ 0 =⇒
⟨

grad 𝑓(𝑦), exp−1
𝑦 (𝑥)

⟩
𝑦

≤ 0.

Equivalently, a map 𝑓 : 𝑆 → R is said to be geodesic quasiconvex at 𝑦 ∈ 𝑆, if for any arbitrary point 𝑥 ∈ 𝑆,
we have ⟨

grad 𝑓(𝑦), exp−1
𝑦 (𝑥)

⟩
𝑦

> 0 =⇒ 𝑓(𝑥)− 𝑓(𝑦) > 0.

Remark 2.7. (1) If 𝑆 be a convex subset of H = R𝑛, then, grad 𝑓(𝑦) = ∇𝑓(𝑦), and exp−1
𝑦 (𝑥) = 𝑥− 𝑦. Then,

the above definitions of geodesic (strict) pseudoconvexity and geodesic quasiconvexity reduce to the standard
definitions of differentiable (strict) pseudoconvex and quasiconvex functions given in Mangasarian [36] (Page
146) for R𝑛.

(2) In view of Definition 10.1 in Udrişte [59] and Definition 13.2.1 in Rapcsák [46], if 𝑓 : 𝑆 → R in the above
definitions is a geodesic convex function, then it is also a geodesic pseudoconvex and a geodesic quasiconvex
function.
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For more details on generalized geodesic convex functions on Hadamard manifolds, we refer the reader to
[14,37,51,52] and the references cited therein.

The following theorem is from Shahi and Mishra [49] (see Thm. 3.2a). We present a proof of the theorem
here for the sake of convenience of the readers.

Theorem 2.8. Let us assume that the function 𝜃(𝑢) = 𝜑(𝑢)
𝜓(𝑢) , where 𝜑 and 𝜓 are smooth functions on an open

geodesic convex set 𝑆 of a Riemannian manifold H . If 𝜑 be a geodesic convex function and 𝜓 be a positive
affine function, then 𝜃 be a geodesic pseudoconvex function.

Proof. Let 𝐺 denote the set of all geodesics connecting 𝑢, 𝑣 ∈ 𝑆. Since 𝜑 is geodesic convex, then ∀𝑢, 𝑣 ∈ 𝑆,
∀𝛾𝑢𝑣 ∈ 𝐺, we have

𝜑 (𝛾𝑢𝑣(𝑡)) ≤ 𝑡𝜑(𝑣) + (1− 𝑡)𝜑(𝑢), ∀𝑡 ∈ [0, 1]. (2.1)

Since 𝜓 is affine, then ∀𝑢, 𝑣 ∈ 𝑆, ∀𝛾𝑢𝑣 ∈ 𝐺, we have

𝜓 (𝛾𝑢𝑣(𝑡)) = 𝑡𝜓(𝑣) + (1− 𝑡)𝜓(𝑢), ∀𝑡 ∈ [0, 1]. (2.2)

From (2.1) and (2.2), we get that,

𝜑 (𝛾𝑢𝑣(𝑡))
𝜓 (𝛾𝑢𝑣(𝑡))

≤ 𝑡𝜑(𝑣) + (1− 𝑡)𝜑(𝑢)
𝑡𝜓(𝑣) + (1− 𝑡)𝜓(𝑢)

, ∀𝑡 ∈ [0, 1]. (2.3)

Let us assume that ∀𝑢, 𝑣 ∈ 𝑆,

˙̄𝛾𝑢𝑣

(︂
𝜑

𝜓

)︂
(𝑢) ≥ 0. (2.4)

Then, it follows that

lim
𝑡→0

[︃
𝜑
𝜓 (𝛾𝑢𝑣(𝑡))− 𝜑

𝜓 (𝑢)

𝑡

]︃
≥ 0,

or lim
𝑡→0

1
𝑡

[︂
𝑡𝜑(𝑣) + (1− 𝑡)𝜑(𝑢)
𝑡𝜓(𝑣) + (1− 𝑡)𝜓(𝑢)

− 𝜑(𝑢)
𝜓(𝑢)

]︂
≥ 0.

(2.5)

Therefore, we get the following

lim
𝑡→0

[︂
𝑡𝜓(𝑢)𝜑(𝑣) + (1− 𝑡)𝜑(𝑢)𝜓(𝑢)− 𝑡𝜑(𝑢)𝜓(𝑣)− (1− 𝑡)𝜑(𝑢)𝜓(𝑢)

𝑡𝜓(𝑢){𝑡𝜓(𝑣) + (1− 𝑡)𝜓(𝑢)}

]︂
≥ 0,

an indeterminate form as
(︀

0
0

)︀
. Using L’Hospital’s rule, we obtain

lim
𝑡→0

[︂
𝜓(𝑢)𝜑(𝑣)− 𝜑(𝑢)𝜓(𝑢)− 𝜑(𝑢)𝜓(𝑣) + 𝜑(𝑢)𝜓(𝑢)

2𝑡𝜓(𝑢)𝜓(𝑣) + (1− 2𝑡)𝜓2(𝑢)

]︂
≥ 0

or
[︂
𝜓(𝑢)𝜑(𝑣)− 𝜑(𝑢)𝜓(𝑣)

𝜓2(𝑢)

]︂
≥ 0

or
[︂
𝜑(𝑣)
𝜓(𝑢)

− 𝜑(𝑢)𝜓(𝑣)
𝜓2(𝑢)

]︂
≥ 0

or 𝜑(𝑣) ≥ 𝜑(𝑢)𝜓(𝑣)
𝜓(𝑢)

,

(2.6)

since, 𝜓 is positive. Thus, we get
𝜑(𝑣)
𝜓(𝑣)

≥ 𝜑(𝑢)
𝜓(𝑢)

·

Therefore, 𝜑
𝜓 is a geodesic pseudoconvex function on 𝑆. This completes the proof. �
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In this paper, we consider the following multiobjective semi-infinite programming problem on Hadamard
manifold:

(MSIP) Minimize 𝑓(𝑥) = (𝑓1(𝑥), . . . , 𝑓𝑚(𝑥)),
subject to 𝑔𝑗(𝑥) ≤ 0, 𝑗 ∈ 𝐽,

where, 𝑓𝑖 : 𝑆 → R, (𝑖 ∈ 𝐼 = {1, 2, . . . ,𝑚}), 𝑔𝑗 : 𝑆 → R (𝑗 ∈ 𝐽), are smooth functions defined on an open
geodesic convex set 𝑆 ⊂ H . The index set 𝐽 is arbitrary. The feasible set of the problem (MSIP), denoted by
𝐹 , is defined by

𝐹 := {𝑥 ∈ 𝑆 : 𝑔𝑗(𝑥) ≤ 0,∀𝑗 ∈ 𝐽}.

The index set of all active inequality constraints at a feasible point 𝑥 ∈ 𝐹 , denoted by 𝐿(𝑥), is defined as

𝐿(𝑥) := {𝑗 ∈ 𝐽 : 𝑔𝑗(𝑥) = 0}.

For any feasible point 𝑥 ∈ 𝐹 , we denote the set of all active contraint multipliers at 𝑥 ∈ 𝐹 by A (𝑥), that is

A (𝑥) := {𝜆 ∈ R|𝐽|+ : 𝜆𝑗𝑔𝑗(𝑥) = 0,∀𝑗 ∈ 𝐽}.

Now, we recall the notions of efficient solution and weakly efficient solution of (MSIP) (see for instance, [33,56]).

Definition 2.9. A point 𝑥̄ ∈ 𝐹 is said to be an efficient solution of the problem (MSIP), if there exists no other
point 𝑥 ∈ 𝐹 , such that

𝑓(𝑥) ⪯ 𝑓(𝑥̄).

Definition 2.10. A point 𝑥̄ ∈ 𝐹 is said to be a weakly efficient solution of the problem (MSIP), if there exists
no other point 𝑥 ∈ 𝐹 , such that

𝑓(𝑥) ≺ 𝑓(𝑥̄).

Now, we state a constraint qualification analogous to Abadie constraint qualification for (MSIP) from Tung
and Tam [56].

Definition 2.11. Let 𝑥̄ ∈ 𝐹 . Then, the Abadie constraint qualification (ACQ) is said to be satisfied at the
point 𝑥̄, if (︂ ⋃︁

𝑗∈𝐿(𝑥̄)

grad 𝑔𝑗(𝑥̄)
)︂−

⊆ T (𝑥̄, 𝐹 ),

and the set pos
⋃︀
𝑗∈𝐿(𝑥̄) grad 𝑔𝑗(𝑥̄) is closed.

3. Optimality conditons

In this section, we derive a sufficient optimality criteria for (MSIP) using generalized geodesic convex
functions.
To begin with, we state the Karush-Kuhn-Tucker type necessary optimality criteria for (MSIP) from Tung and
Tam [56].

Theorem 3.1. Let 𝑥̄ be a weakly efficient solution of (MSIP) such that Abadie constraint qualification (ACQ)
is satisfied at 𝑥̄. Then, there exist some 𝛼 ∈ R𝑚+ , satisfying

∑︀
𝑖∈𝐼

𝛼𝑖 = 1, and some 𝜆 ∈ A (𝑥̄), such that the

following equation holds ∑︁
𝑖∈𝐼

𝛼𝑖 grad 𝑓𝑖(𝑥̄) +
∑︁
𝑗∈𝐽

𝜆𝑗 grad 𝑔𝑗(𝑥̄) = 0.

Now, we derive the sufficient optimality criteria of the problem (MSIP) using generalized geodesic convexity
assumptions.
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Theorem 3.2. Let 𝑥̄ ∈ 𝐹 be an arbitrary feasible point. Let us assume that there exist some 𝛼 ∈ R𝑚+ , satisfying∑︀
𝑖∈𝐼

𝛼𝑖 = 1, and some 𝜆 ∈ A (𝑥̄), such that the following equation holds

∑︁
𝑖∈𝐼

𝛼𝑖 grad 𝑓𝑖(𝑥̄) +
∑︁
𝑗∈𝐽

𝜆𝑗 grad 𝑔𝑗(𝑥̄) = 0. (3.1)

Then the following statements are true.

(i) If 𝑓𝑖 is geodesic pseudoconvex at 𝑥̄ ∈ 𝐹 for all 𝑖 ∈ 𝐼, and 𝑔𝑗 is geodesic quasiconvex at 𝑥̄ ∈ 𝐹 for all 𝑗 ∈ 𝐽 ,
then 𝑥̄ is a weakly efficient solution of (MSIP).

(ii) If 𝑓𝑖 is geodesic strictly pseudoconvex at 𝑥̄ ∈ 𝐹 for all 𝑖 ∈ 𝐼, and 𝑔𝑗 is geodesic quasiconvex at 𝑥̄ ∈ 𝐹 for
all 𝑗 ∈ 𝐽 , then 𝑥̄ is an efficient solution of (MSIP).

Proof. Since 𝜆 ∈ A (𝑥̄), there exists a finite subset 𝐾 of 𝐿(𝑥̄), such that

𝜆𝑗 > 0, ∀𝑗 ∈ 𝐾,
𝜆𝑗 = 0, ∀𝑗 ∈ 𝐿(𝑥̄) ∖𝐾.

From condition (3.1), we have ∑︁
𝑖∈𝐼

𝛼𝑖 grad 𝑓𝑖(𝑥̄) = −
∑︁
𝑗∈𝐾

𝜆𝑗 grad 𝑔𝑗(𝑥̄). (3.2)

Let 𝑥 ∈ 𝐹 be an arbitrary feasible point. Then,

𝑔𝑗(𝑥) ≤ 0 = 𝑔𝑗(𝑥̄), ∀𝑗 ∈ 𝐾.

As 𝑔𝑗(𝑥) is geodesic quasiconvex at 𝑥̄ on 𝐹 for all 𝑗 ∈ 𝐽 , we have

𝑔𝑗(𝑥) ≤ 𝑔𝑗(𝑥̄) =⇒
⟨

grad 𝑔𝑗(𝑥̄), exp −1
𝑥̄ (𝑥)

⟩
𝑥̄

≤ 0, ∀𝑗 ∈ 𝐾.

Since 𝜆 ∈ R|𝐽|+ , it follows that ∑︁
𝑗∈𝐾

𝜆𝑗

⟨
grad 𝑔𝑗(𝑥̄), exp −1

𝑥̄ (𝑥)
⟩
𝑥̄

≤ 0. (3.3)

From inequality (3.3) and equation (3.2), we have∑︁
𝑖∈𝐼

⟨
𝛼𝑖 grad 𝑓𝑖(𝑥̄), exp −1

𝑥̄ (𝑥)
⟩
𝑥̄

= −
∑︁
𝑗∈𝐾

𝜆𝑗

⟨
grad 𝑔𝑗(𝑥̄), exp −1

𝑥̄ (𝑥)
⟩
𝑥̄

≥ 0.

That is ∑︁
𝑖∈𝐼

⟨
𝛼𝑖 grad 𝑓𝑖(𝑥̄), exp −1

𝑥̄ (𝑥)
⟩
𝑥̄

≥ 0, ∀𝑥 ∈ 𝐹. (3.4)

(i) On the contrary, let us assume that 𝑥̄ is not a weakly efficient solution of (MSIP). Then, there exists some
𝑥̂ ∈ 𝐹 , such that

𝑓𝑖(𝑥̂) < 𝑓𝑖(𝑥̄), ∀𝑖 ∈ 𝐼.

As 𝑓𝑖(𝑥) is geodesic pseudoconvex at 𝑥̄ ∈ 𝐹 for all 𝑖 ∈ 𝐼, we have

𝑓𝑖(𝑥̂) < 𝑓𝑖(𝑥̄) =⇒
⟨

grad 𝑓𝑖(𝑥̄), exp −1
𝑥̄ (𝑥̂)

⟩
𝑥̄

< 0, ∀𝑖 ∈ 𝐼. (3.5)
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Combining inequality (3.5) with 𝛼 ∈ R𝑚+ ,
∑︀
𝑖∈𝐼

𝛼𝑖 = 1, we obtain

∑︁
𝑖∈𝐼

⟨
𝛼𝑖 grad 𝑓𝑖(𝑥̄), exp −1

𝑥̄ (𝑥̂)
⟩
𝑥̄

< 0,

which is a contradiction to (3.4). This proves that 𝑥̄ is a weakly efficient solution of (MSIP).

(ii) On the contrary, let us assume 𝑥̄ is not an efficient solution of (MSIP). Then, there exists some 𝑥̂ ∈ 𝐹 , such
that

𝑓𝑖(𝑥̂) ≤ 𝑓𝑖(𝑥̄), ∀𝑖 ∈ 𝐼, 𝑖 ̸= 𝑝,

𝑓𝑝(𝑥̂) < 𝑓𝑝(𝑥̄), for at least one 𝑝 ∈ 𝐼.

The above inequalities imply that 𝑥̂ ̸= 𝑥̄. Since, 𝑓𝑖(𝑥) is geodesic strictly pseudoconvex at 𝑥̄ ∈ 𝐹 for all 𝑖 ∈ 𝐼,
we have ⟨

grad 𝑓𝑖(𝑥̄), exp −1
𝑥̄ (𝑥̂)

⟩
𝑥̄

< 0, ∀𝑖 ∈ 𝐼. (3.6)

Combining inequality (3.6) with 𝛼 ∈ R𝑚+ ,
∑︀
𝑖∈𝐼

𝛼𝑖 = 1, we obtain

∑︁
𝑖∈𝐼

𝛼𝑖

⟨
grad 𝑓𝑖(𝑥̄), exp −1

𝑥̄ (𝑥̂)
⟩
𝑥̄

< 0,

which is a contradiction to (3.4). This proves that 𝑥̄ is an efficient solution of (MSIP). �

The following example illustrates the significance of Theorem 3.2.

Example 3.3. Let us consider the Poincaré half-plane defined as follows

H := {𝑥 = (𝑥1, 𝑥2) ∈ R2 : 𝑥2 > 0}.

Then, H is a Riemannian manifold equipped with the inner product (see for instance, Example 5, Page 2 in
[59]), as follows

⟨𝑢, 𝑣⟩𝑥 = ⟨G (𝑥)𝑢, 𝑣⟩, ∀𝑢, 𝑣 ∈ 𝑇𝑥H = R2,

where G =

[︃
1
𝑥2
2

0
0 1

𝑥2
2

]︃
, and ⟨·, ·⟩ is the standard inner product on R2. Since the sectional curvature of H is −1, it

is also a Hadamard manifold. The second Christoffel symbols are as follows:

Γ𝑥1 =
(︂

0 − 1
𝑥2

− 1
𝑥2

0

)︂
, Γ𝑥2 =

(︂ 1
𝑥2

0
0 − 1

𝑥2

)︂
.

Let us consider the following open geodesic convex set on the Hadamard manifold H as follows:

𝑆 :=
{︂
𝑥 ∈ H : 𝑥1 > −1

2

}︂
·

We consider the following semi-infinite programming problem on the Hadamard Manifold H .

(𝑃1) Minimize 𝑓(𝑥) =
(︂
𝑓1(𝑥), 𝑓2(𝑥)

)︂
:=
(︂
𝑥2

1

2𝑥2
+
𝑥2

2
,

ln2 𝑥1+
1
2

𝑥2

2

)︂
,

subject to 𝑔𝑗(𝑥) :=
𝑗

𝑥2
− 𝑗 − 1 ≤ 0, 𝑗 ∈ 𝐽 = [0, 1].
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Here 𝑓𝑖, 𝑔𝑗 : 𝑆 → R, 𝑖 = 1, 2 are real valued functions and 𝑗 ∈ 𝐽 . The feasible set 𝐹 of the problem is

𝐹 =
{︂
𝑥 ∈ 𝑆 : 𝑥2 ≥

1
2

}︂
=
{︂
𝑥 ∈ H : 𝑥1 > −1

2
, 𝑥2 ≥

1
2

}︂
·

Let us consider the point 𝑥̄ = (0, 1
2 ) ∈ 𝐹 . Then, it can be verified that

T (𝑥̄, 𝐹 ) = {𝑣 = (𝑣1, 𝑣2) ∈ 𝑇𝑥̄𝑆 : 𝑣1, 𝑣2 ≥ 0}.

Also, we have the following

grad 𝑓1(𝑥̄) =
(︂

0,
1
8

)︂
, grad 𝑓2(𝑥̄) = (0, 0), grad 𝑔𝑗(𝑥̄) = (0,−𝑗).

Then, it follows that ⋃︁
𝑗∈𝐽(𝑥̄)

grad 𝑔𝑗(𝑥̄) = {𝑥 ∈ 𝑇𝑥̄𝑆 | 𝑥1 = 0,−1 ≤ 𝑥2 ≤ 0} ,

and hence, ⎛⎝ ⋃︁
𝑗∈𝐽(𝑥̄)

grad 𝑔𝑗(𝑥̄)

⎞⎠− = {𝑥* = (𝑥*1, 𝑥
*
2) ∈ 𝑇𝑥̄𝑆 | 𝑥*2 ≥ 0} ⊆ T (𝐹, 𝑥̄).

Further, it follows that

pos
⋃︁

𝑗∈𝐽(𝑥̄)

grad 𝑔𝑗(𝑥̄) = {𝑥 ∈ 𝑇𝑥̄𝑆 | 𝑥1 = 0, 𝑥2 ≤ 0}

is closed. That is, (ACQ) is satisfied at the feasible point 𝑥̄ = (0, 1
2 ).

Let 𝜆 : 𝐽 → R be defined as follows

𝜆(𝑗) =

{︃
1
16 , 𝑗 = 1,
0, otherwise.

Then, there exist 𝛼 = (𝛼1, 𝛼2) =
(︂

1
2 ,

1
2

)︂
∈ R2, satisfying

2∑︀
𝑖=1

𝛼𝑖 = 1 and 𝜆 ∈ A (𝑥̄), such that

2∑︁
𝑖=1

𝛼𝑖 grad 𝑓𝑖(𝑥̄) +
∑︁
𝑗∈𝐽

𝜆𝑗 grad 𝑔𝑗(𝑥̄) =
1
2

(0,
1
8

) +
1
2

(0, 0) +
1
16

(0,−1) = (0, 0).

Now, we write 𝑓1(𝑥) and 𝑓2(𝑥) in the following manner

𝑓1(𝑥) =
𝑥2
1
𝑥2

+ 𝑥2

2
,

𝑓2(𝑥) =
ln2 𝑥1+

1
2

𝑥2

2
.
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Now, we see that, the (hyperbolic) Hessian, or the second-order covariant derivative, of 𝑥2
1
𝑥2

+ 𝑥2 is given by

𝐻𝑔

(︂
𝑥2

1

𝑥2
+ 𝑥2

)︂

= ∇2

(︂
𝑥2

1

𝑥2
+ 𝑥2

)︂
−∇

(︂ 𝑥2
1
𝑥2

+ 𝑥2

2

)︂
Γ

=

[︃ 2
𝑥2

− 2𝑥1
𝑥2
2

− 2𝑥1
𝑥2
2

2𝑥2
1

𝑥3
2

]︃
−
(︂

2𝑥1

𝑥2

[︂
0 − 1

𝑥2

− 1
𝑥2

0

]︂
+
(︂

1− 𝑥2
1

𝑥2
2

)︂[︂ 1
𝑥2

0
0 − 1

𝑥2

]︂)︂

=

⎡⎣ 𝑥2
1+𝑥

2
2

𝑥3
2

0

0 𝑥2
1+𝑥

2
2

𝑥3
2

⎤⎦ .
is a positive semidefinite matrix as all its eigen values are non negative. Thus, 𝑥

2
1
𝑥2

+𝑥2 is geodesic convex. Similarly,

it can be shown that 𝐻𝑔

(︂
ln2 𝑥1+

1
2

𝑥2

)︂
is a positive semidefinite matrix. That is, ln2 𝑥1+

1
2

𝑥2
is also a convex function.

Thus, 𝑓1(𝑥) and 𝑓2(𝑥) are both ratios of geodesic convex functions and positive affine functions. Then, from
Theorem 2.8, it follows that 𝑓1, 𝑓2 are geodesic pseudoconvex functions. Also, we have

𝐻𝑔𝑔𝑗(𝑥) = ∇2𝑔𝑗(𝑥)−∇𝑔𝑗(𝑥)Γ =

[︃
𝑗
𝑥3
2

0
0 𝑗

𝑥3
2

]︃
.

Since the matrix 𝐻𝑔𝑔𝑗(𝑥) is positive semidefinite, 𝑔𝑗 is quasiconvex for all 𝑗 ∈ 𝐽 . This shows that the conditions
of Theorem 3.2i hold. It can be verified that 𝑥̄ is a weakly efficient solution of the problem (𝑃1).

4. Duality

In this section, we formulate the Mond-Weir [60] and Wolfe [61] type dual problems for (MSIP) and establish
weak, strong and strict converse duality theorems relating the primal problem (MSIP) and the dual problems
under generalized geodesic convexity assumptions.

4.1. Mond-Weir duality

Let us consider that 𝑢 ∈ 𝑆 ⊂ H , where 𝑆 is an open geodesic convex set in H , 𝛼 ∈ R𝑚+ ∖ {0} and 𝜆 ∈ R|𝐽|+ .
The Mond-Weir dual problem of (MSIP), denoted by (MSIDMW), is formulated as follows:

(MSIDMW) Maximize ̃︀𝑓(𝑢) := (𝑓1(𝑢), 𝑓2(𝑢), . . . , 𝑓𝑚(𝑢)),

subject to
∑︁
𝑖∈𝐼

𝛼𝑖 grad 𝑓𝑖(𝑢) +
∑︁
𝑗∈𝐽

𝜆𝑗 grad 𝑔𝑗(𝑢) = 0,

∑︁
𝑗∈𝐽

𝜆𝑗𝑔𝑗(𝑢) ≥ 0,

𝑢 ∈ 𝑆, 𝛼 ∈ R𝑚+ ∖ {0}, 𝜆 ∈R|𝐽|+ .

The feasible set of MSIDMW, denoted by FMW, is given by

𝐹𝑀𝑊 := {(𝑢, 𝛼, 𝜆) ∈𝑆 × R𝑚+ × R|𝐽|+ : 𝛼 ̸= 0,∑︁
𝑖∈𝐼

𝛼𝑖 grad 𝑓𝑖(𝑢) +
∑︁
𝑗∈𝐽

𝜆𝑗 grad 𝑔𝑗(𝑢) = 0,
∑︁
𝑗∈𝐽

𝜆𝑗𝑔𝑗(𝑢) ≥ 0}.
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The following definitions of efficient solution and weakly efficient solution of the Mond-Weir dual problem
(MSIDMW) are from Tung and Tam [56].

Definition 4.1. Let (𝑢̃, 𝛼̃, 𝜆̃) ∈ 𝐹𝑀𝑊 . Then, (𝑢̃, 𝛼̃, 𝜆̃) is said to be an efficient solution of (MSIDMW), if there
does not exist any other (𝑢, 𝛼, 𝜆) ∈ 𝐹𝑀𝑊 satisfying

̃︀𝑓(𝑢̃) ⪯ ̃︀𝑓(𝑢).

Definition 4.2. Let (𝑢̃, 𝛼̃, 𝜆̃) ∈ 𝐹𝑀𝑊 . Then, (𝑢̃, 𝛼̃, 𝜆̃) is said to be a weakly efficient solution of (MSIDMW), if
there does not exist any other (𝑢, 𝛼, 𝜆) ∈ 𝐹𝑀𝑊 satisfying

̃︀𝑓(𝑢̃) ≺ ̃︀𝑓(𝑢).

The following example illustrates the concept of efficient solution of Mond-Weir dual problem.

Example 4.3. Let us consider the Poincaré half-plane defined as follows

H := {𝑥 = (𝑥1, 𝑥2) ∈ R2 : 𝑥2 > 0}.

Let us consider the following geodesic convex set on the Hadamard manifold H as follows:

𝑆 :=
{︂
𝑥 ∈ H : 𝑥1 > −1

2

}︂
·

Let us consider the multiobjective semi-infinite problem (𝑃1) as defined in Example 3.3. We denote the feasible
set of (𝑃1) by 𝐹 .
The Mond-Weir dual problem related to (𝑃1), denoted by (𝐷𝑀1), may be formulated as follows:

(𝐷𝑀1) Maximize ̃︀𝑓(𝑢) :=
(︂
𝑓1(𝑢), 𝑓2(𝑢)

)︂
:=
(︂
𝑢2

1

2𝑢2
+
𝑢2

2
,

ln2 𝑢1+
1
2

𝑢2

2

)︂
subject to

∑︁
𝑖∈𝐼

𝛼𝑖 grad 𝑓𝑖(𝑢) +
∑︁
𝑗∈𝐽

𝜆𝑗 grad 𝑔𝑗(𝑢) = 0,

∑︁
𝑗∈𝐽

𝜆𝑗𝑔𝑗(𝑢) ≥ 0,

𝑢 ∈ 𝑆, 𝛼 ∈ R𝑚+ ∖ {0}, 𝜆 ∈R|𝐽|+ .

The feasible set of (𝐷𝑀1), denoted by 𝐹𝐷, is given by

𝐹𝐷 := {(𝑢, 𝛼, 𝜆) ∈𝑆 × R𝑚+ × R|𝐽|+ : 𝛼 ̸= 0,∑︁
𝑖∈𝐼

𝛼𝑖 grad 𝑓𝑖(𝑢) +
∑︁
𝑗∈𝐽

𝜆𝑗 grad 𝑔𝑗(𝑢) = 0,
∑︁
𝑗∈𝐽

𝜆𝑗𝑔𝑗(𝑢) ≥ 0}.

Let us consider the point 𝑥̄ = (0, 1
2 ) ∈ 𝐹 , which is an efficient solution of (P1). Moreover, we claim that there

exists 𝛼̄ ∈ R2, satisfying
2∑︀
𝑖=1

𝛼̄𝑖 = 1 and 𝜆̄ ∈ A (𝑥̄), such that (𝑥̄, 𝛼̄, 𝜆̄) ∈ 𝐹𝐷.

Let 𝜆̄ : 𝐽 → R be defined as follows

𝜆̄𝑗 =

{︃
1
16 , 𝑗 = 1,
0, otherwise.
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Then, we see that
𝜆̄𝑗𝑔𝑗(𝑥̄) = 0, ∀𝑗 ∈ 𝐽.

Hence, there exist 𝛼̄ = (𝛼1, 𝛼2) =
(︂

1
2 ,

1
2

)︂
∈ R2, satisfying

2∑︀
𝑖=1

𝛼̄𝑖 = 1 and 𝜆̄ ∈ A (𝑥̄), such that

2∑︁
𝑖=1

𝛼̄𝑖 grad 𝑓𝑖(𝑥̄) +
∑︁
𝑗∈𝐽

𝜆̄𝑗 grad 𝑔𝑗(𝑥̄) =
1
2

(0,
1
8

) +
1
2

(0, 0) +
1
16

(0,−1) = (0, 0).

That is, (𝑥̄, 𝛼̄, 𝜆̄) is a feasible point of the Mond-Weir dual problem 𝐷𝑀1. We can verify that there does not
exist any other (𝑢, 𝛼, 𝜆) ∈ 𝐹𝐷 satisfying ̃︀𝑓(𝑥̄) ≺ ̃︀𝑓(𝑢).

Thus, (𝑥̄, 𝛼̄, 𝜆̄) ∈ 𝐹𝐷 is a weakly efficient solution of the Mond-Weir dual problem.

The following theorem establishes weak duality relating (MSIP) and (MSIDMW).

Theorem 4.4 (Weak duality). Let 𝑥 ∈ 𝐹 and (𝑢, 𝛼, 𝜆) ∈ 𝐹𝑀𝑊 . Then the following statements are true.

(i) If 𝑓𝑖 is geodesic pseudoconvex at 𝑢 for all 𝑖 ∈ 𝐼, and
∑︀
𝑗∈𝐽

𝜆𝑗𝑔𝑗 is geodesic quasiconvex at 𝑢, then

𝑓(𝑥) ⊀ ̃︀𝑓(𝑢).

(ii) If 𝑓𝑖 is geodesic strictly pseudoconvex at 𝑢 for all 𝑖 ∈ 𝐼,
∑︀
𝑗∈𝐽

𝜆𝑗𝑔𝑗 is geodesic quasiconvex at 𝑢, then

𝑓(𝑥) � ̃︀𝑓(𝑢).

Proof. Since 𝑥 ∈ 𝐹 , we have
𝑔𝑗(𝑥) ≤ 0, ∀𝑗 ∈ 𝐽. (4.1)

Also, as (𝑢, 𝛼, 𝜆) ∈ 𝐹𝑀𝑊 , it follows that∑︁
𝑖∈𝐼

𝛼𝑖 grad 𝑓𝑖(𝑢) +
∑︁
𝑗∈𝐽

𝜆𝑗 grad 𝑔𝑗(𝑢) = 0, (4.2)

∑︁
𝑗∈𝐽

𝜆𝑗𝑔𝑗(𝑢) ≥ 0. (4.3)

(ii) On the contrary, let us assume that

𝑓(𝑥) ≺ ̃︀𝑓(𝑢, 𝛼, 𝜆) = (𝑓1(𝑢), 𝑓2(𝑢), . . . , 𝑓𝑚(𝑢)). (4.4)

Then, it follows from (4.4) that
𝑓𝑖(𝑥) < 𝑓𝑖(𝑢), ∀𝑖 ∈ 𝐼. (4.5)

Since 𝑓𝑖(𝑥) is geodesic pseudoconvex for all 𝑖 ∈ 𝐼, inequality (4.5) implies that⟨
grad 𝑓𝑖(𝑢), exp −1

𝑢 (𝑥)
⟩
𝑢

< 0, ∀𝑖 ∈ 𝐼. (4.6)

Since 𝛼 ∈ R𝑚+ ∖ {0}, from (4.6) we obtain⟨∑︁
𝑖∈𝐼

𝛼𝑖 grad 𝑓𝑖(𝑢), exp −1
𝑢 (𝑥)

⟩
𝑢

< 0. (4.7)
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From inequality (4.1) and 𝜆 ∈ R|𝐽|+ , we have∑︁
𝑗∈𝐽

𝜆𝑗𝑔𝑗(𝑥) ≤ 0. (4.8)

Combining inequality (4.8) with (4.3), we get∑︁
𝑗∈𝐽

𝜆𝑗𝑔𝑗(𝑥) ≤ 0 ≤
∑︁
𝑗∈𝐽

𝜆𝑗𝑔𝑗(𝑢).

Then, from the quasiconvexity of
∑︀
𝑗∈𝐽

𝜆𝑗𝑔𝑗 at 𝑢, it follows that

⟨∑︁
𝑗∈𝐽

𝜆𝑗 grad 𝑔𝑗(𝑢), exp −1
𝑢 (𝑥)

⟩
𝑢

≤ 0. (4.9)

Adding (4.7) and (4.9), we get⟨∑︁
𝑖∈𝐼

𝛼𝑖 grad 𝑓𝑖(𝑢) +
∑︁
𝑗∈𝐽

𝜆𝑗 grad 𝑔𝑗(𝑢), exp −1
𝑢 (𝑥)

⟩
𝑢

< 0,

which is a contradiction to (4.2). This proves that 𝑓(𝑥) ⊀ ̃︀𝑓(𝑢).

(ii) On the contrary, let us assume that

𝑓(𝑥) ⪯ ̃︀𝑓(𝑢, 𝛼, 𝜆) = 𝑓(𝑢).

This implies that
𝑓𝑖(𝑥) ≤ 𝑓𝑖(𝑢), ∀𝑖 ∈ 𝐼, 𝑖 ̸= 𝑝,

𝑓𝑝(𝑥) < 𝑓𝑝(𝑢), for some 𝑝 ∈ 𝐼.
(4.10)

It follows that 𝑥 ̸= 𝑢. Since 𝑓𝑖(𝑥) is geodesic strictly pseudoconvex at 𝑢 for all 𝑖 ∈ 𝐼, from (4.10), we have⟨
grad 𝑓𝑖(𝑢), exp −1

𝑢 (𝑥)
⟩
𝑢

< 0, ∀𝑖 ∈ 𝐼. (4.11)

Since 𝛼 ∈ R𝑚+ ∖ {0}, then from (4.11), we obtain⟨∑︁
𝑖∈𝐼

𝛼𝑖 grad 𝑓𝑖(𝑢), exp −1
𝑢 (𝑥)

⟩
𝑢

< 0. (4.12)

From inequality (4.1) and 𝜆 ∈ R|𝐽|+ , we have∑︁
𝑗∈𝐽

𝜆𝑗𝑔𝑗(𝑥) ≤ 0.

Combining this with (4.3), we get ∑︁
𝑗∈𝐽

𝜆𝑗𝑔𝑗(𝑥) ≤ 0 ≤
∑︁
𝑗∈𝐽

𝜆𝑗𝑔𝑗(𝑢).
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Then, from the quasiconvexity of
∑︀
𝑗∈𝐽

𝜆𝑗𝑔𝑗 at 𝑢, it follows that,

⟨∑︁
𝑗∈𝐽

𝜆𝑗 grad 𝑔𝑗(𝑢), exp −1
𝑢 (𝑥)

⟩
𝑢

≤ 0. (4.13)

Adding (4.12) and (4.13), we get⟨∑︁
𝑖∈𝐼

𝛼𝑖 grad 𝑓𝑖(𝑢) +
∑︁
𝑗∈𝐽

𝜆𝑗 grad 𝑔𝑗(𝑢), exp −1
𝑢 (𝑥)

⟩
𝑢

< 0,

which is a contradiction to (4.2). This proves that 𝑓(𝑥) � ̃︀𝑓(𝑢).

�

The following theorem establishes strong duality relating (MSIP) and (MSIDMW).

Theorem 4.5 (Strong duality). Let 𝑥̄ be a weakly efficient solution of (MSIP) such that Abadie constraint
qualification (ACQ) is satisfied at 𝑥̄. Then, there exist 𝛼̄ ∈ R𝑚+ ∖ {0} and 𝜆̄ ∈ A (𝑥̄) such that (𝑥̄, 𝛼̄, 𝜆̄) ∈ 𝐹𝑀𝑊

and
𝑓(𝑥̄) = ̃︀𝑓(𝑥̄).

Moreover, the following statements are true.

(i) If the assumptions of weak duality (Thm. 4.4i) hold true, then (𝑥̄, 𝛼̄, 𝜆̄) is a weakly efficient solution of
(MSIDMW).

(ii) If the assumptions of weak duality (Thm. 4.4ii) hold true, then (𝑥̄, 𝛼̄, 𝜆̄) is an efficient solution of
(MSIDMW).

Proof. Since, 𝑥̄ is a weakly efficient solution of (MSIP) and (ACQ) is satisfied at 𝑥̄, we infer from Theorem 3.1,
that there exist 𝛼̄ ∈ R𝑚+ ∖ {0} satisfying

∑︀
𝑖∈𝐼

𝛼̄𝑖 = 1 and 𝜆̄ ∈ A (𝑥̄) such that

∑︁
𝑖∈𝐼

𝛼̄𝑖 grad 𝑓𝑖(𝑥̄) +
∑︁
𝑗∈𝐽

𝜆̄𝑗 grad 𝑔𝑗(𝑥̄) = 0. (4.14)

Since 𝜆̄ ∈ A (𝑥̄), we have
𝜆̄𝑗𝑔𝑗(𝑥̄) = 0, ∀𝑗 ∈ 𝐽,

and hence ∑︁
𝑗∈𝐽

𝜆̄𝑗𝑔𝑗(𝑥̄) = 0. (4.15)

Equations (4.14) and (4.15) implies that (𝑥̄, 𝛼̄, 𝜆̄) ∈ 𝐹𝑀𝑊 . Thus, we have 𝑓(𝑥̄) = ̃︀𝑓(𝑥̄).

(i) From weak duality theorem (Thm. 4.4i), it follows that for any (𝑢, 𝛼, 𝜆) ∈ 𝐹𝑀𝑊 , we have

̃︀𝑓(𝑥̄) ⊀ ̃︀𝑓(𝑢).

This proves that (𝑥̄, 𝛼̄, 𝜆̄) is a weakly efficient solution of (MSIDMW).
(ii) From weak duality theorem (Thm. 4.4ii), it follows that for any (𝑢, 𝛼, 𝜆) ∈ 𝐹𝑀𝑊 , we have

̃︀𝑓(𝑥̄) � ̃︀𝑓(𝑢).

This proves that (𝑥̄, 𝛼̄, 𝜆̄) is an efficient solution of (MSIDMW).
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�

The following example illustrates strong duality theorem relating (MSIP) and (MSIDMW).

Example 4.6. Let us consider the Poincaré half-plane defined as follows

H := {𝑥 = (𝑥1, 𝑥2) ∈ R2 : 𝑥2 > 0}.

Let us consider the following geodesic convex set on the Hadamard manifold H as follows:

𝑆 :=
{︂
𝑥 ∈ H : 𝑥1 > −1

2

}︂
·

Let us consider the multiobjective semi-infinite problem (𝑃1) as defined in Example 3.3. We denote the feasible
set of (𝑃1) by 𝐹 .
The Mond-Weir dual problem related to (𝑃1), denoted by (𝐷𝑀1), may be formulated as follows:

(𝐷𝑀1) Maximize ̃︀𝑓(𝑢) :=
(︂
𝑓1(𝑢), 𝑓2(𝑢)

)︂
:=
(︂
𝑢2

1

2𝑢2
+
𝑢2

2
,

ln2 𝑢1+
1
2

𝑢2

2

)︂
subject to

∑︁
𝑖∈𝐼

𝛼𝑖 grad 𝑓𝑖(𝑢) +
∑︁
𝑗∈𝐽

𝜆𝑗 grad 𝑔𝑗(𝑢) = 0,

∑︁
𝑗∈𝐽

𝜆𝑗𝑔𝑗(𝑢) ≥ 0,

𝑢 ∈ 𝑆, 𝛼 ∈ R𝑚+ ∖ {0}, 𝜆 ∈R|𝐽|+ .

The feasible set of (𝐷𝑀1), denoted by 𝐹𝐷, is given by

𝐹𝐷 := {(𝑢, 𝛼, 𝜆) ∈𝑆 × R𝑚+ × R|𝐽|+ : 𝛼 ̸= 0,∑︁
𝑖∈𝐼

𝛼𝑖 grad 𝑓𝑖(𝑢) +
∑︁
𝑗∈𝐽

𝜆𝑗 grad 𝑔𝑗(𝑢) = 0,
∑︁
𝑗∈𝐽

𝜆𝑗𝑔𝑗(𝑢) ≥ 0}.

Let us consider the point 𝑥̄ = (0, 1
2 ) ∈ 𝐹 . Then, it can be verified that

T (𝑥̄, 𝐹 ) = {𝑣 = (𝑣1, 𝑣2) ∈ 𝑇𝑥̄𝑆 : 𝑣1, 𝑣2 ≥ 0}.

Also, we have the following

grad 𝑓1(𝑥̄) =
(︂

0,
1
8

)︂
, grad 𝑓2(𝑥̄) = (0, 0), grad 𝑔𝑗(𝑥̄) = (0,−𝑗).

Then, it follows from Example 3.3 that (ACQ) is satisfied at the feasible point 𝑥̄ = (0, 1
2 ). We can check that

𝑥̄ is an efficient solution of (P1). Thus, we see that all the assumptions for strong duality of Mond-Weir dual
problem (Thm. 4.5) are satisfied.

Let 𝜆 : 𝐽 → R be defined as follows

𝜆𝑗 =

{︃
1
16 , 𝑗 = 1,
0, otherwise.

Then, we see that
𝜆𝑗𝑔𝑗(𝑥̄) = 0, ∀𝑗 ∈ 𝐽.
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Hence, there exist 𝛼 = (𝛼1, 𝛼2) =
(︂

1
2 ,

1
2

)︂
∈ R2, satisfying

2∑︀
𝑖=1

𝛼𝑖 = 1 and 𝜆 ∈ A (𝑥̄), such that

2∑︁
𝑖=1

𝛼𝑖 grad 𝑓𝑖(𝑥̄) +
∑︁
𝑗∈𝐽

𝜆𝑗 grad 𝑔𝑗(𝑥̄) =
1
2

(0,
1
8

) +
1
2

(0, 0) +
1
16

(0,−1) = (0, 0).

That is, (𝑥̄, 𝛼, 𝜆) is a feasible point of the Mond-Weir dual problem 𝐷𝑀1. Further, we see that,

𝑓(𝑥̄) = ̃︀𝑓(𝑥̄).

Now, from Example 3.3, we see that 𝑓𝑖 is geodesic pseudoconvex for all 𝑖 ∈ 𝐼. Further, it can be verified that∑︀
𝑗∈𝐽 𝜆𝑗𝑔𝑗 is geodesic quasiconvex. Thus from the strong duality theorem, it can be verified that (𝑥̄, 𝛼, 𝜆) is a

weakly efficient solution of 𝐷𝑀1.

The following theorem establishes the strict converse duality relating (MSIP) and (MSIDMW).

Theorem 4.7 (Strict converse duality). Let 𝑥* be a weakly efficient solution of (MSIP) such that Abadie con-
straint qualification (ACQ) is satisfied at 𝑥*. Let (𝑥̄, 𝛼̄, 𝜆̄) be a weakly efficient solution of (MSIDMW). If 𝑓𝑖 is
geodesic strictly pseudoconvex at 𝑥̄ for all 𝑖 ∈ 𝐼 and

∑︀
𝑗∈𝐽

𝜆𝑗𝑔𝑗 is geodesic quasiconvex at 𝑥̄, then 𝑥* = 𝑥̄.

Proof. On the contrary, let us assume that 𝑥* ̸= 𝑥̄. Since 𝑥* is a weakly efficient solution of (MSIP) and (ACQ)
is satisfied at 𝑥*, we can infer from Theorem 4.5 that there exist 𝛼* ∈ R𝑚+ ∖ {0} and 𝜆* ∈ A (𝑥*) such that
(𝑥*, 𝛼*, 𝜆*) ∈ 𝐹𝑀𝑊 and

𝑓(𝑥*) = ̃︀𝑓(𝑥*).

Further, it also follows from Theorem 4.5 that (𝑥*, 𝛼*, 𝜆*) is an efficient solution of (MSIDMW). Since 𝑥* ∈ 𝐹
and (𝑥̄, 𝛼̄, 𝜆̄) ∈ 𝐹𝑀𝑊 , then from Theorem 4.4ii, it follows that

̃︀𝑓(𝑥̄) ≺ 𝑓(𝑥*) = ̃︀𝑓(𝑥*),

which is a contradiction. This completes the proof. �

Now, we give an example to illustrate the results obtained for Mond-Weir duality.

Example 4.8. Let us consider the set H ⊂ R2 as follows

H := {𝑥 = (𝑥1, 𝑥2) ∈ R2, 𝑥1, 𝑥2 > 0}.

Then H is a Riemannian manifold (see for instance, [7, 46, 56], and Example 4.4 of [42]). H is equipped with
the metric as defined below

⟨𝑢, 𝑣⟩𝑥 = ⟨G (𝑥)𝑢, 𝑣⟩, ∀𝑢, 𝑣 ∈ 𝑇𝑥H = R2,

where ⟨·, ·⟩ is the standard inner product on R2 and

G (𝑥) =

(︃
1
𝑥2
1

0
0 1

𝑥2
2

)︃
.

Since the sectional curvature of H is 0, which is non positive, H is also a Hadamard manifold. Also, H is a
geodesic convex set. The second Christoffel symbols are as follows:

Γ𝑥1 =
(︂
− 1
𝑥1

0
0 0

)︂
, Γ𝑥2 =

(︂
0 0
0 − 1

𝑥2

)︂
.
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The Riemannian distance between 𝑥 = (𝑥1, 𝑥2) , 𝑦 = (𝑦1, 𝑦2) ∈ H is given by

𝑑(𝑥, 𝑦) =
⃒⃒⃒⃒⃒⃒⃒⃒

ln
𝑥1

𝑦1
, ln

𝑥2

𝑦2

⃒⃒⃒⃒⃒⃒⃒⃒
.

The exponential map exp𝑥 : 𝑇𝑥H → H for any 𝑢 ∈ 𝑇𝑥H is given by

exp𝑥(𝑢) = (𝑥1𝑒
𝑢1
𝑥1 , 𝑥2𝑒

𝑢2
𝑥2 ), ∀𝑢 = (𝑢1, 𝑢2) ∈ H .

The inverse of the exponential map exp−1
𝑥 : H → 𝑇𝑥H for any 𝑦 ∈ H is given by

exp−1
𝑥 (𝑦) =

(︂
𝑥1 ln

𝑦1
𝑥1
, 𝑥2 ln

𝑦2
𝑥2

)︂
.

We consider the following semi-infinite programming problem on H

(𝑃2) Minimize 𝑓(𝑥) = 2
√
𝑥1 +

√
𝑥2,

subject to 𝑔𝑗(𝑥) =
1
2
− 1− 𝑗

2
ln𝑥1 −

𝑗

2
ln𝑥2 ≤ 0, 𝑗 ∈ 𝐽 = [0, 1].

Here, 𝑓, 𝑔𝑗 : H → R2. The feasible set 𝐹 for the problem is

𝐹 = {𝑥 ∈ H , 𝑥1 ≥ 𝑒, 𝑥2 ≥ 𝑒}.

The Mond-Weir dual problem related to (𝑃2) may be formulated as

(PMW) Maximize ̃︀𝑓(𝑢) = 𝑓(𝑢) = 2
√
𝑢1 +

√
𝑢2,

subject to 𝛼 grad 𝑓(𝑢) +
∑︁
𝑗∈𝐽

𝜆𝑗 grad 𝑔𝑗(𝑢) = (0, 0),
∑︁
𝑗∈𝐽

𝜆𝑗𝑔𝑗(𝑢) ≥ 0,

𝑢 ∈ H , 𝛼 ∈ R+ ∖ {0}, 𝜆 ∈ R|𝐽|+ .

The feasible set of (PMW) is given by

𝐹MW = {(𝑢, 𝛼, 𝜆) ∈ H × R+ ∖ {0} × R|𝐽|+ ,

𝛼 grad 𝑓(𝑢) +
∑︁
𝑗∈𝐽

𝜆𝑗 grad 𝑔𝑗(𝑢) = (0, 0),
∑︁
𝑗∈𝐽

𝜆𝑗𝑔𝑗(𝑢) ≥ 0}.

Let us consider the feasible point 𝑥̄ = (𝑒, 𝑒) ∈ 𝐹MW. Since

𝑔𝑗(𝑒, 𝑒) =
1
2
− 1− 𝑗

2
− 𝑗

2
= 0, ∀𝑗 ∈ 𝐽,

we have 𝐿(𝑥̄) = 𝐽 . Let 𝑣 be any arbitrary element in the contingent cone T (𝐹, 𝑥̄). Then, there exist 𝑡𝑘 ↓ 0 and
𝑣𝑘 ∈ 𝑇𝑥̄H = R2 such that 𝑣𝑘 =

(︀
𝑣𝑘1 , 𝑣

𝑘
2

)︀
→ 𝑣 = (𝑣1, 𝑣2). Also, we have

exp𝑥̄(𝑡𝑘𝑣𝑘) =
(︂
𝑒.𝑒

𝑡𝑘𝑣𝑘
1

𝑒 , 𝑒.𝑒
𝑡𝑘𝑣𝑘

2
𝑒

)︂
∈ 𝐹, ∀𝑘.

This gives us

𝑒.𝑒
𝑡𝑘𝑣𝑘

1
𝑒 ≥ 𝑒 and 𝑒.𝑒

𝑡𝑘𝑣𝑘
2

𝑒 ≥ 𝑒, ∀𝑘,

which implies
𝑡𝑘𝑣

𝑘
1

𝑒
≥ 0 and

𝑡𝑘𝑣
𝑘
2

𝑒
≥ 0, ∀𝑘, or equivalently, 𝑣𝑘1 ≥ 0 and 𝑣𝑘2 ≥ 0, ∀𝑘.
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Letting 𝑘 to infinity, we can conclude that
𝑣1 ≥ 0, 𝑣2 ≥ 0.

Hence, if follows that T (𝐹, 𝑥̄) ⊆ R2
+. Similarly, it can be proved that R2

+ ⊆ T (𝐹, 𝑥̄). Thus, we have

T (𝐹, 𝑥̄) = R2
+.

Also, we have the following

grad 𝑓(𝑥) = G (𝑥)−1

(︃
1√
𝑥1
1

2
√
𝑥2

)︃
=
(︂
𝑥1
√
𝑥1

𝑥2
√
𝑥2

2

)︂
,

grad 𝑔𝑗(𝑥) = G (𝑥)−1

(︃
− 1−𝑗

2𝑥1

− 𝑗
2𝑥2

)︃
=
(︂
−1− 𝑗

2
𝑥1,−

𝑗

2
𝑥2

)︂
, ∀𝑗 ∈ 𝐽.

Substituting 𝑥̄ = (𝑒, 𝑒) for 𝑥 = (𝑥1, 𝑥2) in the above equations, we get

grad 𝑓(𝑥̄) =
(︁
𝑒
√
𝑒,
𝑒

2
√
𝑒
)︁
,

grad 𝑔𝑗(𝑥̄) =
(︂
−1− 𝑗

2
𝑒,− 𝑗

2
𝑒

)︂
, ∀𝑗 ∈ 𝐽.

Hence, we obtain the following⋃︁
𝑗∈𝐿(𝑥̄)

grad 𝑔ℓ(𝑥̄) =
{︁
𝑥 ∈ 𝑇𝑥̄H : 𝑥1 + 𝑥2 = −𝑒

2
, 𝑥1 ≤ 0, 𝑥2 ≤ 0

}︁
,

and ⎛⎝ ⋃︁
𝑗∈𝐿(𝑥̄)

grad 𝑔𝑗(𝑥̄)

⎞⎠− = {𝑥* ∈ 𝑇𝑥̄H : ⟨𝑥*, 𝑦⟩ ≤ 0,∀𝑦 ∈
⋃︁

𝑗∈𝐿(𝑥̄)

grad 𝑔𝑗(𝑥̄)}

= {𝑥* ∈ 𝑇𝑥̄H : 𝑥*1 ≥ 0, 𝑥*2 ≥ 0} ⊆ T (𝐹𝑀𝑊 , 𝑥̄).

Also, the positive conic hull

pos
⋃︁

ℓ∈𝐿(𝑥̄)

grad 𝑔ℓ(𝑥̄) = {𝑥 ∈ 𝑇𝑥̄H | 𝑥1 ≤ 0, 𝑥2 ≤ 0}

is closed. This implies that Abadie constraint qualification (ACQ) holds at 𝑥̄.
We can check that 𝑥̄ is an efficient solution of (P2). Thus, we see that all the assumptions for strong duality

of Mond-Weir dual problem (Thm. 4.5) are satisfied.
Let 𝜆̄ : 𝐽 → R be defined as follows:

𝜆̄𝑗 =
{︂

3
√
𝑒, if 𝑗 = 1

3 ,
0, otherwise.

Then, we see that
𝜆̄𝑗𝑔𝑗(𝑥̄) = 0, ∀𝑗 ∈ 𝐽.

This implies that 𝜆̄ ∈ A (𝑥̄). Then, there exist 𝛼̄ = 1 ∈ R and 𝜆̄ ∈ A (𝑥̄), such that

𝛼̄ grad 𝑓(𝑥̄) +
∑︁
𝑗∈𝐽

𝜆̄𝑗 grad 𝑔𝑗(𝑥̄) =
(︁
𝑒
√
𝑒,
𝑒

2
√
𝑒
)︁

+ 3
√
𝑒

(︂
−

1− 1
3

2
𝑒,−

1
3

2
𝑒

)︂

=
(︁
𝑒
√
𝑒,
𝑒

2
√
𝑒
)︁

+ 3
√
𝑒

(︂
−1

3
𝑒,−1

6
𝑒

)︂
= (0, 0).
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This shows that (𝑥̄, 𝛼̄, 𝜆̄) ∈ 𝐹𝑀𝑊 . Thus, we have

𝑓(𝑥̄) = ̃︀𝑓(𝑥̄).

Now, we observe that

𝑓(𝑥) = 2
√
𝑥1 +

√
𝑥2 =

4
√
𝑥1 + 2

√
𝑥2

2
=
𝑓1(𝑥)

2
,

𝑔𝑗(𝑥) =
1
2
− 1− 𝑗

2
ln𝑥1 −

𝑗

2
ln𝑥2 =

1− (1− 𝑗) ln𝑥1 − 𝑗 ln𝑥2

2
=
𝑔′𝑗(𝑥)

2
,

where,
𝑓1(𝑥) = 4

√
𝑥1 + 2

√
𝑥2,

𝑔′𝑗(𝑥) = 1− (𝑖− 𝑗) ln𝑥1 − 𝑗 ln𝑥2.

It can be verified in the similar lines of Example 3.3 that the hyperbolic Hessian (or, the second covariant
derivative) 𝐻𝑔𝑓1(𝑥) is a positive semidefinite matrix. Thus, 𝑓(𝑥) is a ratio of a geodesic convex function and a
positive affine function. Then, from Theorem 2.8, it follows that 𝑓 is a geodesic pseudoconvex function. Also,

𝐻𝑔

(︂ ∑︀
𝑗∈𝐽

𝜆𝑗𝑔
′
𝑗(𝑥)

)︂
is positive semidefinite matrix. This implies that

∑︀
𝑗∈𝐽

𝜆𝑗𝑔𝑗 is geodesic quasiconvex. Thus, we

see that all the assumptions in Theorem 4.5 are satisfied. It can be verified that
(︀
𝑥̄, 𝛼̄, 𝜆̄

)︀
is a weakly efficient

solution of the Mond-Weir dual problem (PMW).

4.2. Wolfe Duality

Let us consider that 𝑢 ∈ 𝑆 ⊂ H , where 𝑆 is an open geodesic convex set in H , 𝛼 ∈ R𝑚+ , with
∑︀
𝑖∈𝐼

𝛼𝑖 = 1 and

𝜆 ∈ R|𝐽|+ . Then, the Wolfe dual problem of (MSIP), denoted by (MSIDW), is formulated as follows:

(MSIDW) Maximize L (𝑢, 𝛼, 𝜆) := 𝑓(𝑢) +
∑︁
𝑗∈𝐽

𝜆𝑗𝑔𝑗(𝑢)𝑒,

subject to
∑︁
𝑖∈𝐼

𝛼𝑖 grad 𝑓𝑖(𝑢) +
∑︁
𝑗∈𝐽

𝜆𝑗 grad 𝑔𝑗(𝑢) = 0,

where 𝑢 ∈ 𝑆 ⊂ H , 𝛼 ∈ R𝑚+ , with
∑︀
𝑖∈𝐼

𝛼𝑖 = 1, 𝜆 ∈ R|𝐽|+ , and 𝑒 = (1, 1, . . . , 1).

The feasible set of (MSIDW), denoted by (FW), is given by

𝐹𝑊 = {(𝑢, 𝛼, 𝜆) ∈𝑆 × R𝑚+ × R|𝐽|+ :
∑︁
𝑖∈𝐼

𝛼𝑖 = 1, and∑︁
𝑖∈𝐼

𝛼𝑖 grad 𝑓𝑖(𝑢) +
∑︁
𝑗∈𝐽

𝜆𝑗 grad 𝑔𝑗(𝑢) = 0}.

We define ℎ : H → R as follows:

ℎ(𝑥) :=
(︂∑︁
𝑖∈𝐼

𝛼𝑖𝑓𝑖 +
∑︁
𝑗∈𝐽

𝜆𝑗𝑔𝑗

)︂
(𝑥) =

∑︁
𝑖∈𝐼

𝛼𝑖𝑓𝑖(𝑥) +
∑︁
𝑗∈𝐽

𝜆𝑗𝑔𝑗(𝑥).

The following definitions of efficient solution and weakly efficient solution of the Wolfe dual problem (MSIDW)
are from Tung and Tam [56].

Definition 4.9. Let (𝑢̄, 𝛼̄, 𝜆̄) ∈ 𝐹𝑊 . Then (𝑢̄, 𝛼̄, 𝜆̄) is said to be an efficient solution of (MSIDW) if there does
not exist any other (𝑢, 𝛼, 𝜆) ∈ 𝐹𝑊 , such that

L (𝑢̄, 𝛼̄, 𝜆̄) ⪯ L (𝑢, 𝛼, 𝜆).
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Definition 4.10. Let (𝑢̄, 𝛼̄, 𝜆̄) ∈ 𝐹𝑊 . Then (𝑢̄, 𝛼̄, 𝜆̄) is said to be a weakly efficient solution of (MSIDW), if
there does not exist any other (𝑢, 𝛼, 𝜆) ∈ 𝐹𝑊 , such that

L (𝑢̄, 𝛼̄, 𝜆̄) ≺ L (𝑢, 𝛼, 𝜆).

The following theorem establishes weak duality relating (MSIP) and (MSIDW).

Theorem 4.11 (Weak duality ). Let 𝑥 ∈ 𝐹 and (𝑢, 𝛼, 𝜆) ∈ 𝐹𝑊 . Then the following statements are true.

(i) If ℎ is geodesic pseudoconvex at 𝑢, then 𝑓(𝑥) ⊀ L (𝑢, 𝛼, 𝜆).
(ii) If ℎ is geodesic strictly pseudoconvex at 𝑢, then 𝑓(𝑥) � L (𝑢, 𝛼, 𝜆).

Proof. Since 𝑥 ∈ 𝐹 , we have
𝑔𝑗(𝑥) ≤ 0, ∀𝑗 ∈ 𝐽. (4.16)

Also, as (𝑢, 𝛼, 𝜆) ∈ 𝐹𝑊 , it follows that∑︁
𝑖∈𝐼

𝛼𝑖 grad 𝑓𝑖(𝑢) +
∑︁
𝑗∈𝐽

𝜆𝑗 grad 𝑔𝑗(𝑢) = 0. (4.17)

(i) On the contrary, let us assume that,

𝑓(𝑥) ≺ L (𝑢, 𝛼, 𝜆) = 𝑓(𝑢) +
∑︁
𝑗∈𝐽

𝜆𝑗𝑔𝑗(𝑢)𝑒.

Then, it follows that
𝑓𝑖(𝑥) < 𝑓𝑖(𝑢) +

∑︁
𝑗∈𝐽

𝜆𝑗𝑔𝑗(𝑢), ∀𝑖 ∈ 𝐼. (4.18)

Since 𝛼 ∈ R𝑚+ with
∑︀
𝑖∈𝐼

𝛼𝑖 = 1, 𝜆 ∈ R|𝐽|+ , we have the following:

∑︁
𝑖∈𝐼

𝛼𝑖𝑓𝑖(𝑥) +
∑︁
𝑗∈𝐽

𝜆𝑗𝑔𝑗(𝑥) ≤
∑︁
𝑖∈𝐼

𝛼𝑖𝑓𝑖(𝑥)

<
∑︁
𝑖∈𝐼

𝛼𝑖

(︂
𝑓𝑖(𝑢) +

∑︁
𝑗∈𝐽

𝜆𝑗𝑔𝑗(𝑢)
)︂

=
∑︁
𝑖∈𝐼

𝛼𝑖𝑓𝑖(𝑢) +
∑︁
𝑖∈𝐼

𝛼𝑖
∑︁
𝑗∈𝐽

𝜆𝑗𝑔𝑗(𝑢)

=
∑︁
𝑖∈𝐼

𝛼𝑖𝑓𝑖(𝑢) +
∑︁
𝑗∈𝐽

𝜆𝑗𝑔𝑗(𝑢).

Thus, it follows that (︂∑︁
𝑖∈𝐼

𝛼𝑖𝑓𝑖 +
∑︁
𝑗∈𝐽

𝜆𝑗𝑔𝑗

)︂
(𝑥) <

(︂∑︁
𝑖∈𝐼

𝛼𝑖𝑓𝑖 +
∑︁
𝑗∈𝐽

𝜆𝑗𝑔𝑗

)︂
(𝑢),

that is,
ℎ(𝑥) < ℎ(𝑢).

Since ℎ is a geodesic pseudoconvex function at 𝑢, we have

ℎ(𝑥) < ℎ(𝑢) =⇒
⟨

gradℎ(𝑢), exp−1
𝑢 (𝑥)

⟩
𝑢

< 0.



2058 B. B. UPADHYAY ET AL.

This implies that ⟨∑︁
𝑖∈𝐼

𝛼𝑖 grad 𝑓𝑖(𝑢) +
∑︁
𝑗∈𝐽

𝜆𝑗 grad 𝑔𝑗(𝑢), exp−1
𝑢 (𝑥)

⟩
𝑢

< 0,

which is a contradiction to (4.17). This proves that

𝑓(𝑥) ⊀ L (𝑢, 𝛼, 𝜆).

(ii) On the contrary, let us assume that 𝑓(𝑥) � L (𝑢, 𝛼, 𝜆) = 𝑓(𝑢) +
∑︀
𝑗∈𝐽

𝜆𝑗𝑔𝑗(𝑢)𝑒. This implies that

𝑓𝑖(𝑥) ≤ 𝑓𝑖(𝑢) +
∑︁
𝑗∈𝐽

𝜆𝑗𝑔𝑗(𝑢), ∀𝑖 ∈ 𝐼, 𝑖 ̸= 𝑝,

𝑓𝑝(𝑥) < 𝑓𝑝(𝑢) +
∑︁
𝑗∈𝐽

𝜆𝑗𝑔𝑗(𝑢), for atleast one 𝑝 ∈ 𝐼.

It follows that 𝑥 ̸= 𝑢. Since 𝛼 ∈ R𝑚+ with
∑︀
𝑖∈𝐼

𝛼𝑖 = 1, 𝜆 ∈ R|𝐽|+ , we have the following:

∑︁
𝑖∈𝐼

𝛼𝑖𝑓𝑖(𝑥) +
∑︁
𝑗∈𝐽

𝜆𝑗𝑔𝑗(𝑥) ≤
∑︁
𝑖∈𝐼

𝛼𝑖𝑓𝑖(𝑥)

<
∑︁
𝑖∈𝐼

𝛼𝑖

(︂
𝑓𝑖(𝑢) +

∑︁
𝑗∈𝐽

𝜆𝑗𝑔𝑗(𝑢)
)︂

=
∑︁
𝑖∈𝐼

𝛼𝑖𝑓𝑖(𝑢) +
∑︁
𝑖∈𝐼

𝛼𝑖
∑︁
𝑗∈𝐽

𝜆𝑗𝑔𝑗(𝑢)

=
∑︁
𝑖∈𝐼

𝛼𝑖𝑓𝑖(𝑢) +
∑︁
𝑗∈𝐽

𝜆𝑗𝑔𝑗(𝑢).

Hence, we have (︂∑︁
𝑖∈𝐼

𝛼𝑖𝑓𝑖 +
∑︁
𝑗∈𝐽

𝜆𝑗𝑔𝑗

)︂
(𝑥) <

(︂∑︁
𝑖∈𝐼

𝛼𝑖𝑓𝑖 +
∑︁
𝑗∈𝐽

𝜆𝑗𝑔𝑗

)︂
(𝑢),

that is,
ℎ(𝑥) < ℎ(𝑢).

Since ℎ is a geodesic strictly pseudoconvex at 𝑢, we have

ℎ(𝑥) < ℎ(𝑢) =⇒
⟨

gradℎ(𝑢), exp−1
𝑢 (𝑥)

⟩
𝑢

< 0.

Thus, we obtain ⟨∑︁
𝑖∈𝐼

𝛼𝑖 grad 𝑓𝑖(𝑢) +
∑︁
𝑗∈𝐽

𝜆𝑗 grad 𝑔𝑗(𝑢), exp−1
𝑢 (𝑥)

⟩
𝑢

< 0,

which is a contradiction to (4.17). This completes the proof. �

Example 4.12. Let us consider the Poincaré half-plane defined as follows

H := {𝑥 = (𝑥1, 𝑥2) ∈ R2 : 𝑥2 > 0}.

Let us consider the following geodesic convex set on the Hadamard manifold H as follows:

𝑆 :=
{︂
𝑥 ∈ H : 𝑥1 > −1

2

}︂
·
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Let us consider the multiobjective semi-infinite programming problem 𝑃1 as defined in Example 3.3. The feasible
set on the problem 𝑃1 is denoted by 𝐹 .
The Wolfe dual problem related to (𝑃1), denoted by (D1), may be formulated as follows

(D1) Maximize L (𝑢, 𝛼, 𝜆) := 𝑓(𝑢) +
∑︁
𝑗∈𝐽

𝜆𝑗𝑔𝑗(𝑢)𝑒,

subject to
∑︁
𝑖∈𝐼

𝛼𝑖 grad 𝑓𝑖(𝑢) +
∑︁
𝑗∈𝐽

𝜆𝑗 grad 𝑔𝑗(𝑢) = 0,

The feasible set of 𝐷1 is denoted by 𝐹1. Let us consider the point 𝑥̄ = (0, 1
2 ) ∈ 𝐹 . Then, it can be verified that

T (𝑥̄, 𝐹 ) = {𝑣 = (𝑣1, 𝑣2) ∈ 𝑇𝑥̄𝑆 : 𝑣1, 𝑣2 ≥ 0}.

Also, we have the following

grad 𝑓1(𝑥̄) =
1
4

(︂
0,

1
2

)︂
=
(︂

0,
1
8

)︂
, grad 𝑓2(𝑥̄) = (0, 0), grad 𝑔𝑗(𝑥̄) = (0,−𝑗).

Then, it follows from Example 3.3 that (ACQ) is satisfied at the feasible point 𝑥̄ = (0, 1
2 ).

Let 𝜆 : 𝐽 → R be defined as follows

𝜆(𝑗) =

{︃
1
8 , 𝑗 = 1,
0, otherwise.

Then, there exist 𝛼 = (𝛼1, 𝛼2) = (1, 0) ∈ R2, satisfying
2∑︀
𝑖=1

𝛼𝑖 = 1 and 𝜆 ∈ A (𝑥̄), such that

2∑︁
𝑖=1

𝛼𝑖 grad 𝑓𝑖(𝑥̄) +
∑︁
𝑗∈𝐽

𝜆𝑗 grad 𝑔𝑗(𝑥̄) = 1(0,
1
8

) + 0(0, 0) +
1
8

(0,−1) = 0.

Thus, (𝑥̄, 𝛼, 𝜆) ∈ 𝐹1. Then, the function ℎ is defined as:

ℎ : = 𝛼1𝑓1 + 𝛼2𝑓2 + 𝜆1𝑔1

= 𝑓1 +
1
8
𝑔1

=
4𝑥

2
1
𝑥2

+ 4𝑥2 + 1
𝑥2
− 16

8
=
𝐻

8
, say,

where, 𝐻 = 4𝑥
2
1
𝑥2

+ 4𝑥2 + 1
𝑥2
− 16. Then, we obtain the following:

∇𝐻 =

(︃
8𝑥1
𝑥2

−4𝑥2
1

𝑥2
2

+ 4− 1
𝑥2
2

)︃
.

Then, it follows that

∇2𝐻 =

(︃ 8
𝑥2

−8𝑥1
𝑥2
2

−8𝑥1
𝑥2
2

8𝑥2
1

𝑥3
2

+ 2
𝑥3

)︃
.

Now, we see that, the (hyperbolic) Hessian, or the second-order covariant derivative, of 𝐻 is given by

𝐻𝑔𝐻 = ∇2𝐻 −∇𝐻Γ

=

⎡⎣ 4𝑥2
1+4𝑥2

2+1

𝑥3
2

0

0 4𝑥2
1+6𝑥2

2+1

𝑥3
2

⎤⎦ .
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is a positive semidefinite matrix as all its eigen values are non negative. Thus, 𝐻 is geodesic convex at (0, 1
2 ).

Then, ℎ is a ratio of a geodesic convex function and a positive affine function. Then, from Theorem 2.8, it
follows that ℎ is a geodesic pseudoconvex function. It can also be easily verified that 𝑓(𝑥̄) ⊀ L (𝑥̄, 𝛼, 𝜆). Thus,
the weak duality theorem (Thm. 4.11) is verified.

The following theorem establishes the strong duality relating primal problem (MSIP) and (MSIDW).

Theorem 4.13 (Strong duality). Let 𝑥̄ be a weakly efficient solution of (MSIP) such that Abadie constraint
qualification (ACQ) is satisfied at 𝑥̄. Then, there exists 𝛼̄ ∈ R𝑚+ ∖ {0} and 𝜆̄ ∈ A (𝑥̄) such that (𝑥̄, 𝛼̄, 𝜆̄) ∈ 𝐹𝑊
and

𝑓(𝑥̄) = L (𝑥̄, 𝛼̄, 𝜆̄).

Moreover, the following statements are true.

(i) If the assumptions of weak duality (Thm. 4.11i) hold true, then (𝑥̄, 𝛼̄, 𝜆̄) is a weakly efficient solution of
(MSIDW).

(ii) If the assumptions of weak duality (Thm. 4.11ii) hold true, then (𝑥̄, 𝛼̄, 𝜆̄) is an efficient solution of (MSIDW).

Proof. Since, 𝑥̄ is a weakly efficient solution of (MSIP) and (ACQ) is satisfied at 𝑥̄, we infer from Theorem 3.1,
that there exists 𝛼̄ ∈ R𝑚+ ∖ {0} satisfying

∑︀
𝑖∈𝐼

𝛼̄𝑖 = 1, and 𝜆̄ ∈ A (𝑥̄), such that

∑︁
𝑖∈𝐼

𝛼̄𝑖 grad 𝑓𝑖(𝑥̄) +
∑︁
𝑗∈𝐽

𝜆̄𝑗 grad 𝑔𝑗(𝑥̄) = 0.

Since 𝜆̄ ∈ A (𝑥̄), we have
𝜆̄𝑗𝑔𝑗(𝑥̄) = 0 ∀𝑗 ∈ 𝐽,

and hence ∑︁
𝑗∈𝐽

𝜆̄𝑗𝑔𝑗(𝑥̄) = 0.

Thus, we have
𝑓(𝑥̄) = 𝑓(𝑥̄) +

∑︁
𝑗∈𝐽

𝜆𝑗𝑔𝑗(𝑥̄) = L (𝑥̄, 𝛼̄, 𝜆̄).

That is, (𝑥̄, 𝛼̄, 𝜆̄) ∈ 𝐹𝑀𝑊 and 𝑓(𝑥̄) = L (𝑥̄, 𝛼̄, 𝜆̄).
(i) From weak duality theorem (Thm. 4.11i), it follows that for any (𝑢, 𝛼, 𝜆) ∈ 𝐹𝑊 , we have

L (𝑢, 𝛼, 𝜆) ⊀ L (𝑥̄, 𝛼̄, 𝜆̄).

This proves that (𝑥̄, 𝛼̄, 𝜆̄) is a weakly efficient solution of (MSIDW).
(ii) From weak duality theorem (Thm. 4.11ii), it follows that for any (𝑢, 𝛼, 𝜆) ∈ 𝐹𝑊 , we have

L (𝑢, 𝛼, 𝜆) � L (𝑥̄, 𝛼̄, 𝜆̄).

This proves that (𝑥̄, 𝛼̄, 𝜆̄) is an efficient solution of (MSIDW). �

The following theorem establishes the strict converse duality relating (MSIP) and (MSIDW).

Theorem 4.14 (Strict converse duality). Let 𝑥* be a weakly efficient solution of (MSIP) such that Abadie
constraint qualification (ACQ) is satisfied at 𝑥*. Let (𝑥̄, 𝛼̄, 𝜆̄) be a weakly efficient solution of (MSIDW). If
ℎ :=

∑︀
𝑖∈𝐼

𝛼𝑖𝑓𝑖 +
∑︀
𝑗∈𝐽

𝜆𝑗𝑔𝑗 is geodesic strictly pseudoconvex at 𝑥̄, then 𝑥* = 𝑥̄.
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Proof. If possible, let us assume that 𝑥* ̸= 𝑥̄. Since 𝑥* is a weakly efficient solution of (MSIP) and (ACQ) is
satisfied at 𝑥*, we can infer from Theorem 4.13 that there exist 𝛼* ∈ R𝑚+ ∖ {0} and 𝜆* ∈ A (𝑥*) such that
(𝑥*, 𝛼*, 𝜆*) ∈ 𝐹𝑊 and

𝑓(𝑥*) = L (𝑥*, 𝛼*, 𝜆*).

Further, it also follows from Theorem 4.13 that if ℎ is a geodesic strictly pseudoconvex function, then (𝑥*, 𝛼*, 𝜆*)
is an efficient solution of (MSIDW). Since 𝑥* ∈ 𝐹 and (𝑥̄, 𝛼̄, 𝜆̄) ∈ 𝐹𝑊 , then from Theorem 4.11ii, it follows that

L (𝑥̄, 𝛼̄, 𝜆̄) ≺ 𝑓(𝑥*) = L (𝑥*, 𝛼*, 𝜆*),

which is a contradiction. This completes the proof. �

We illustrate the results on Wolfe duality by the following example.

Example 4.15. Let us consider the problem (P2) on the Hadamard manifold H as considered in Example 4.6.
Then the Wolfe dual problem related to (𝑃2) may be formulated as

(PW) Maximize L (𝑢, 𝜆) = 2
√
𝑢1 +

√
𝑢2 +

∑︁
𝑗∈𝐽

𝜆𝑗𝑔𝑗(𝑢)𝑒,

subject to grad 𝑓(𝑢) +
∑︁
𝑗∈𝐽

𝜆𝑗 grad 𝑔𝑗(𝑢) = (0, 0),

where 𝑢 ∈ H , 𝜆 ∈ R|𝐽|+ , and 𝑒 = (1, 1).
The feasible set of (PW) is given by

𝐹W = {(𝑢, 𝜆) ∈ H × R|𝐽|+ ,

grad 𝑓(𝑢) +
∑︁
𝑗∈𝐽

𝜆𝑗 grad 𝑔𝑗(𝑢) = (0, 0)}.

Let us consider the feasible point 𝑥̄ = (𝑒, 𝑒) ∈ 𝐹W. Then, from Example 4.6, we observe that Abadie constraint
qualification (ACQ) holds at 𝑥̄ and 𝑥̄ is an efficient solution of (P2). Thus, we see that all the assumptions for
strong duality of Wolfe dual problem (Thm. 4.9) are satisfied.

Let 𝜆̄ : 𝐽 → R be defined in the following manner

𝜆̄𝑗 =
{︂

3
√
𝑒, if 𝑗 = 1

3 ,
0, otherwise.

Then, it follows that
𝜆̄𝑗𝑔𝑗(𝑥̄) = 0, ∀𝑗 ∈ 𝐽.

This implies there exist 𝜆̄ ∈ A (𝑥̄), such that

grad 𝑓(𝑥̄) +
∑︁
𝑗∈𝐽

𝜆̄𝑗 grad 𝑔𝑗(𝑥̄) =
(︁
𝑒
√
𝑒,
𝑒

2
√
𝑒
)︁

+ 3
√
𝑒

(︂
−

1− 1
3

2
𝑒,−

1
3

2
𝑒

)︂

=
(︁
𝑒
√
𝑒,
𝑒

2
√
𝑒
)︁

+ 3
√
𝑒

(︂
−1

3
𝑒,−1

6
𝑒

)︂
= (0, 0).

This shows that (𝑥̄, 𝜆̄) ∈ 𝐹𝑊 .
𝑓(𝑥̄) = 𝑓(𝑥̄) +

∑︁
𝑗∈𝐽

𝜆̄𝑗𝑔𝑗(𝑥̄) = L (𝑥̄, 𝜆̄).
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Now, we observe that

𝑓(𝑥) = 2
√
𝑥1 +

√
𝑥2 =

4
√
𝑥1 + 2

√
𝑥2

2
=
𝑓1(𝑥)

2
,

𝑔𝑗(𝑥) =
1
2
− 1− 𝑗

2
ln𝑥1 −

𝑗

2
ln𝑥2 =

1− (𝑖− 𝑗) ln𝑥1 − 𝑗 ln𝑥2

2
=
𝑔′𝑗(𝑥)

2
,

where,
𝑓1(𝑥) = 4

√
𝑥1 + 2

√
𝑥2,

𝑔′𝑗(𝑥) = 1− (𝑖− 𝑗) ln𝑥1 − 𝑗 ln𝑥2.

Let us consider that

L (𝑥, 𝜆) = 𝑓(𝑥) +
∑︁
𝑗∈𝐽

𝜆𝑗𝑔𝑗(𝑥) =
𝑓1(𝑥) +

∑︀
𝑗∈𝐽

𝜆𝑗𝑔
′
𝑗(𝑥)

2
=
ℎ(𝑥)

2
,

where,

ℎ(𝑥) =
(︂
𝑓1 +

∑︁
𝑗∈𝐽

𝜆𝑗𝑔
′
𝑗

)︂
(𝑥).

Then, we have the following

∇ℎ(𝑥) =

⎛⎜⎝ 2√
𝑥1
−
∑︀
𝑗∈𝐽

1−𝑗
𝑥1

1√
𝑥2
−
∑︀
𝑗∈𝐽

𝑗
𝑥2

⎞⎟⎠ , ∇2ℎ(𝑥) =

⎛⎜⎝− 1
𝑥1
√
𝑥1

+
∑︀
𝑗∈𝐽

1−𝑗
𝑥2
1

0

0 − 1
2𝑥2

√
𝑥2

+
∑︀
𝑗∈𝐽

𝑗
𝑥2
2

⎞⎟⎠ .

From the second-order covariant derivative, it follows that

𝐻𝑔ℎ(𝑥) = ∇2ℎ(𝑥)−∇ℎ(𝑥)Γ

=

⎛⎜⎝− 1
𝑥1
√
𝑥1

+
∑︀
𝑗∈𝐽

1−𝑗
𝑥2
1

0

0 − 1
2𝑥2

√
𝑥2

+
∑︀
𝑗∈𝐽

𝑗
𝑥2
2

⎞⎟⎠
−
[︂(︂

2
√
𝑥1
−
∑︁
𝑗∈𝐽

1− 𝑗

𝑥1

)︂(︂
− 1
𝑥1

0
0 0

)︂
+
(︂

1
√
𝑥2
−
∑︁
𝑗∈𝐽

𝑗

𝑥2

)︂(︂
0 0
0 − 1

𝑥2

)︂]︂

=

(︃
1

𝑥1
√
𝑥1

0
0 1

2𝑥2
√
𝑥2

)︃
.

Since 𝑥1, 𝑥2 > 0, hence, the (hyperbolic) Hessian, or the second-order covariant derivative of ℎ(𝑥) is positive
semidefinite. Thus, ℎ(𝑥) is geodesic convex function. Since, L (𝑥, 𝜆) is the ratio of a geodesic convex function

(ℎ(𝑥)) and a positive affine function, this implies that
(︂
𝑓 +

∑︀
𝑗∈𝐽

𝜆𝑗𝑔𝑗

)︂
(𝑥) is a geodesic pseudoconvex function

(see Thm. 2.8). Thus, we see that all the assumptions in Theorem 4.11 are satisfied. It can be verified that(︀
𝑥̄, 𝜆̄

)︀
is a weakly efficient solution of the Wolfe dual problem (PW).

Remark 4.16. In view of Definition 10.1 in Udrişte [59] and Definition 13.2.1 in Rapcsák [46], every geodesic
convex function is geodesic pseudoconvex and geodesic quasiconvex. Thus, the results presented in this paper
generalize the corresponding results of optimality and duality from Tung and Tam [56].
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5. Conclusion

In this paper, we have considered a class of multiobjective semi-infinite programming problems on Hadamard
manifold (MSIP) and established the Karush-Kuhn-Tucker type sufficient optimality criteria for (MSIP) under
generalized geodesic convexity assumptions. The sufficient optimality condition derived in this paper extend
the sufficient optimality result derived by Tung and Tam [56] from geodesic convexity assumptions to geodesic
pseudoconvexity and geodesic quasiconvexity assumptions. Moreover, related to (MSIP), we have formulated
the Mond-Weir type dual problem (MSIPMW) and Wolfe type dual problem (MSIPMW) and derived the weak,
strong and strict converse duality theorems. The weak and strong duality results derived in this paper extend the
corresponding results of Tung and Tam [56] from geodesic convexity assumptions to geodesic pseudoconvexity
and geodesic quasiconvexity assumptions. In particular, the results of the paper generalize some other well
known results in R𝑛, see for instance, [3, 34–36]. Several non-trivial examples have been given to illustrate the
significance of these results. Our work in this paper leaves various avenues for future research. For example, it
would be interesting to extend the results in this paper for non-smooth multiobjective semi-infinite problems
on Hadamard manifolds. Further, we intend to investigate multiobjective semi-infinite problems on Hadamard
manifolds with uncertain data in objective functions.

Acknowledgements. The authors are highly grateful to the anonymous referees for their valuable comments and helpful
suggestions, which have improved the paper significantly.
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