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OPTIMALITY CONDITIONS AND DUALITY FOR MULTIOBJECTIVE
SEMI-INFINITE PROGRAMMING PROBLEMS ON HADAMARD MANIFOLDS
USING GENERALIZED GEODESIC CONVEXITY

BALENDU BHOOSHAN UPADHYAY!, ARNAV GHOSH!,
PRIYANKA MISHRA! AND SAVIN TREANTAZ3*

Abstract. This paper deals with multiobjective semi-infinite programming problems on Hadamard
manifolds. We establish the sufficient optimality criteria of the considered problem under generalized
geodesic convexity assumptions. Moreover, we formulate the Mond-Weir and Wolfe type dual prob-
lems and derive the weak, strong and strict converse duality theorems relating the primal and dual
problems under generalized geodesic convexity assumptions. Suitable examples have also been given to
illustrate the significance of these results. The results presented in this paper extend and generalize the
corresponding results in the literature.
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1. INTRODUCTION

In theory of optimization, semi-infinite programming is the class of mathematical programming problems that
deals with finitely many decision variables and in which the feasible set is defined by infinitely many constraints.
The concepts and mathematical theory of semi-infinite programming were conceived by Haar [24]. The term
‘semi-infinite programming’ was later coined by Charnes et al. [11] in 1962. Semi-infinite programming has a
very wide range of applications in various practical problems of mathematical physics, game theory, engineering
design, etc., see [12,13,16,22,23,27,29,45,50,54] and the references cited therein.

Although semi-infinite programming over finite or infinite dimensional Banach spaces has been extensively
studied, it is observed that a lot of programming problems that arise in various real life applications require the
problem to be formulated on Riemannian manifolds. One of the very first attempts in this direction is due to Eke-
land [19], who discussed applications of variational principles on Riemannian manifolds. The generalizations of
optimization methods from Euclidean space to Riemannian manifolds have important advantages. For example,
constrained optimization problems can be viewed as unconstrained problems from the Riemannian geometry
perspective. Moreover, nonconvex optimization problems can be converted to convex optimization problems
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through introduction of a suitable Riemannian metric (see for instance, [17,41,43]). Some results on convex
optimization problems were extended to Riemannian manifolds by Rapcsédk [46] and Udriste [59] by introducing
a generalization of convexity notion, namely, geodesic convexity. Further, Udriste [59] introduced the notions
of geodesic pseudoconvex and quasiconvex functions in Riemannian manifold setting. Constrained optimization
problems and weak sharp minimizers on Hadamard manifold were discussed by Li et al. [31]. Recently, many
authors have generalized various other notions and concepts of optimization of R™ to Riemannian manifolds;
see for instance, [1,4,6-10,44,53,57,58] and the references cited therein.

Optimality and duality conditions play a very crucial role in optimization theory. Duality theory is important
to understand the nature of the original (primal problem) from the perspective of a dual problem. Many authors
have developed many interesting results on optimality and duality in R™, see for instance, [20,21,32, 38,54, 63]
and the references cited therein. Two of the most important types of dual of a primal problem are Mond-Weir
dual problem [60] and Wolfe dual problem [61], which have been referred to in this paper.

The optimality conditions for nonlinear programming problems on Riemannian manifolds were studied by
Yang et al. in [62]. Bergmann and Herzog [8] developed the intrinsic formulation of Karush-Kuhn-Tucker con-
ditions and constraint qualification on smooth manifolds. The necessary and sufficient optimality conditions for
vector equilibrium problems on Hadamard manifolds have been discussed by Ruiz-Garzén in [47]. Characteriza-
tions of solution sets of convex optimization problems in Riemannian manifolds were investigated by Barani and
Hosseini in [6]. Further, Chen [15] studied the Karush-Kuhn-Tucker type optimality criteria for interval valued
objective function on Hadamard manifolds. Optimality and duality for multiobjective semi-infinite programming
on Hadamard manifolds was investigated by Tung and Tam in [56].

Motivated by the works of [15,56] and the references cited therein, we consider a class of multiobjective
semi-infinite programming problems on Hadamard manifold. We establish Karush-Kuhn-Tucker type sufficient
optimality criteria for the considered problem under generalized geodesic convexity assumptions. Moreover, we
formulate the Mond-Weir and Wolfe type dual problems and establish weak, strong and strict converse duality
theorems relating the primal and the dual problems under generalized geodesic convexity assumptions. The
results presented in this paper extend and generalize some known results in the literature to a more general
space, namely, Hadamard manifold, as well as to more general classes of generalized geodesic convex functions.
In particular, the results of this paper generalize the corresponding results of Tung and Tam [56] to a more
general class of generalized geodesic convex function. Moreover, the results of the paper generalize some other
well known results in R™, see for instance, [3,34-36].

The paper is organized as follows. In Section 2, we recall the basic notions of Riemannian and Hadamard
manifolds, that will be used in the sequel. Moreover, we consider a multiobjective semi-infinite programming
problem on a Hadamard manifold. In Section 3, we establish sufficient optimality criteria of an efficient solution
of the considered problem under generalized geodesic convexity assumptions. In Section 4, we formulate the
Mond-Weir and Wolfe type dual problems for the considered primal problem. Moreover, we derive weak, strong
and strict converse duality theorems relating the primal and the dual problems under generalized geodesic
convexity assumptions.

2. NOTATIONS AND MATHEMATICAL PRELIMINARIES

Throughout the paper, we use the standard notation R™ to denote the n-dimensional Euclidean plane. The
nonnegative orthant of R™ is denoted by

RY = {(z1,22,...,2p) 12, 2 0,Vk =1,2,...,n}.
For a non empty infinite set J, the linear space R!’! is defined as follows:
RV = {\= (Aj)jes : A; =0for all j € J, except A\; # 0 for finitely many j € J}.
The positive cone of RI’I, denoted by RL‘”, is defined as
R = (A= ()\))jes e RV N >0,V € J).
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The standard inner product on R™ is denoted by (-, -). For any z,y € R™, we use the following notations
r<y<=uw; <y, Vi=12...,n.

xjy:}{xigyi, foralli=1,2,...,n;1#k,

xp < yg, for at least one k€ {1,2,..,n}.

The notation = £ y (respectively, z £ y) indicates the negation of x < y (respectively, z < y).

If E is a m-dimensional linear subspace of R™, then E inherits the inner product from R"™, denoted by (-, -)g =
(+,+). Moreover, the topology in R™ is induced to E. One can further obtain a natural isometry between R™ and
E (see for instance, [9]).

For a subset S C E, the closure and convex hull of S in E is denoted by cl(S) and co(S), respectively. The
positive conic hull of S, denoted by pos(S), is the convex cone containing the origin generated by S C E, and
is defined as

n
pos(S) = {Z o;xi, 0 > 0,0 € S,n € N},

i=1

where, N denotes the set of all natural numbers. The negative polar cone of S, denoted by S, is defined by
STi={zxcE: (x,y) <0,Vy € S}.

For any two Euclidean spaces E1,Ey, amap ¢ : E; — E, is said to be of class C! if ¢ is continuously differentiable.
Similarly, ¢ : E; — Es is said to be of class C* if ¢ is infinitely continuously differentiable.

Now, we recall some fundamental concepts and definitions of Riemannian and Hadamard manifolds (see for
instance, [2,9,25,28,30]).

Let us consider that 2 be a topological space. Then ¢ is said to be topological n-manifold or a topological
manifold of dimension n if 57 is Hausdorff, second-countable, and each point of # is contained in some
neighborhood that is homeomorphic to an open subset of R™. Any pair (U, ¢), where U is an open set in ¢,
and ¢ is a homeomorphism from U to some open set in R"™ is called a chart or a co-ordinate chart on 2. For any
two charts (U, ¢) and (V, %)), such that U NV is non empty, the composite map o ¢~ : p(UNV) — »p(UNV)
is called the transition map from ¢ to 1. Two charts (U, ¢) and (V, ) are said to be smoothly compatible if
either U NV is empty or the transition map v o ¢~ is infinitely continuously differentiable. A collection of
charts such that the corresponding open sets cover J# is called an atlas. An atlas A for 57 is said to be smooth
if any two charts in A are smoothly compatible with each other. A smooth atlas A on S is said to be maximal
if it is not properly contained in any larger smooth atlas. A maximal smooth atlas on ## is called a smooth
structure. A smooth manifold is a pair (¢, .A) where % is a topological manifold and 4 is a smooth structure
on J7.

For an element p € J#, a curve 7 : (—¢,€) — S is said to be of class C! about the point p if 4(0) = p, and
¢ o is of class C! for any chart (U, ¢) about the point p. Let 71,72 : (—¢,€) — S be any two C! curves about
p. Then ~; and 7 are said to be equivalent if and only if there exists some chart (U, ¢) about the point p, such
that

(¢071)'(0) = (¢°72)(0).
A tangent vector to . at the point p is any equivalence class of C' curves through p on # modulo the
equivalence relation defined above. The set of all tangent vectors at the point p in JZ is termed as the tangent
space to S at p and is denoted by the symbol T},
A Riemannian metric on a smooth manifold 57 is defined as a 2-tensor field ¢, such that ¢ is symmetric and
positive definite. An inner product is induced on every tangent space 1,7 by a Riemannian metric and this is
denoted by ¥ (z,y) = (x,y), for all z,y € T,. A smooth manifold together with a given Riemannian metric
is called a Riemannian manifold. The exponential map exp,, : T, # —  is defined by exp,(v) = v;,,(1) for
any v € 1,9, where 7, , is the geodesic starting at p with a velocity v.
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A Riemannian manifold J# is said to be geodesic complete if for every p € 7, the exponential map exp,,(v)
is defined for all v € T, . A complete, simply connected Riemannian manifold with nonpositive sectional
curvature everywhere is called a Hadamard manifold. Henceforth, we shall use to the symbol 7 to denote a
Hadamard manifold, unless otherwise specified.

The following theorem, known as Hadamard-Cartan theorem, is from Sakai [48] (Thm. 4.1, Page 221).

Theorem 2.1. Let 57 be a Hadamard manifold. Then for every p € T, 7, the exponential map erp,, : 1,70 —
FC is a diffeomorphism with the inverse map empgl : H — T, satisfying ea:p;l(p) = 0,. Moreover, for any
x € J there exists a unique minimal geodesic yp . : [0,1] — A satisfying yp . (t) = exp,(texp ;' (x)).

The contingent cone for a subset of a Hadamard manifold is defined as follows.

Definition 2.2. Let S C 5 and p € cl(S). The contingent cone of S at p, denoted by 7 (S, p) is defined by
T (S,p) ={v € Ty : 3ty | 0,3y, € Ty, v, — v,k € N,exp, (tpvy) € S}.
The following definitions of geodesic convex sets and geodesic convex functions on a Riemannian manifold

are from Udrigte [59] (Page 57) and Rapcsék [46] (Def. 6.1.2, Page 64), respectively.
Definition 2.3. Let us consider that 7 be a Riemannian manifold. Then,

(i) A subset S of S is called a geodesic convex set in 2, if for every pair of distinct points x,y € S and for

any geodesic vz, : [0,1] — S joining z to y, we have
Yey(t) €S, Vtel0,1].

(ii) Let S be a geodesic convex subset of . and f: S — R be a function on S. Then, the function f is said
to be geodesic convex at x € S, if for any point u € S and for any geodesic v, : [0,1] — S joining z to
u, we have

f(vxyu(t)> <tf(x)+ (1 —1t)f(u), Vte]|0,1].

When the preceding inequality is strict, for z # u and ¢ € (0, 1), the function f is said to be geodesic strictly
convex at x € S.
In particular, if 27 is a Hadamard manifold, then f is geodesic convex at x if and only if the following holds

f(expz <texpx1(u)>) <tf(x)+ (1 —t)f(u), VYueSVtelo,1].

When the preceding inequality is strict, for z # u and ¢ € (0, 1), the function f is said to be geodesic strictly
convex at x € S.

The following theorems from Rapcsék [46] (Thm. 6.3.1 and Cor. 6.3.1, Page 76-77) enable us to check for
geodesic convexity more efficiently.

Theorem 2.4. Let S C 7 C R™ be an open geodesic convex set, and f : S — R be a twice continuously
differentiable function. Then, f is geodesic convex on S if and only if the geodesic Hessian (or second covariant
derivative), denoted by HY f(x(u)), and defined as follows

H f(2(w) = J(@(w)" Ho f (2(u) J2(u) + Vo f (2(u)) (Ha(w) = Jo(w)T (),
Hzxq(u)
Hzx(u) = : Jx(u) = <8x>
B : ’ \ou)’
where Hx(u) is Hessian matriz, Jx(u) is the matriz of first partial derivatives, Hy f(x(u)) denotes the Hessian
matriz of the function f by x at x(u), and T'(u) is the matriz of second Christoffel symbols with respect to

the Riemannian metric of €, is positive semidefinite at all the points of each geodesic convex coordinate
neighbourhood x(u) of S.
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Theorem 2.5. Let S C 2 = R™ be an open geodesic convex set, and f : S — R be a twice continuously
differentiable function. Then, f is geodesic convex on S if and only if the following matrix

H f(z) = V2 f(z) + Vf(2)L,

where I' is the matriz of second Christoffel symbols with respect to the Riemannian metric of R™,V f(x) and
V2f(x) are the (Buclidean) gradient and (Buclidean) Hessian of the function f at x in the usual sense, is positive

semidefinite at all the points of each geodesic convex coordinate neighbourhood x(u), with x : U C RF — R™, of
S.

The following definitions of geodesic pseudoconvex and quasiconvex functions on Hadamard manifolds are
taken from Definition 2.1 of Barani [5].

Definition 2.6. Let S C 7 be a geodesic convex set. Then

(i) Amap f:S — R issaid to be geodesic pseudoconvex at y € S, if for any arbitrary point « € S, we have

<gradf<y>,exp;1<x>> S0 = @)~ f(y) > 0.

Y

A map f: S5 — R is said to be geodesic strictly pseudoconvex at y € S, if for any arbitrary point x € S,
x # y, we have

(e f)exwy ) 20 = (a) = 1) >

Equivalently, a map f : .S — R is said to be geodesic pseudoconvex at y € S, if for any arbitrary point
x € S, we have

F@) - fly) <0 — <gradf<y>,exp;1<x>> <0,

A map f: S — R is said to be geodesic strictly pseudoconvex at y € S, if for any arbitrary point x € S,
x # y, we have

@)~ fly) <0 = <gradf<y>,exp;1<x>> <0,

Y

(ii) A map f: S5 — R is said to be geodesic quasiconvex at y € S, if for any arbitrary point x € S, we have

f@) - fly) <0 — <gradf<y>,expy1<x>> <0,

Y

Equivalently, a map f : S — R is said to be geodesic quasiconvex at y € S, if for any arbitrary point z € S,
we have

(e f)expy 0) >0 = (a) = 1) >0

Y

Remark 2.7. (1) If S be a convex subset of 52 = R™, then, grad f(y) = Vf(y), and exp;l(x) =z —y. Then,
the above definitions of geodesic (strict) pseudoconvexity and geodesic quasiconvexity reduce to the standard
definitions of differentiable (strict) pseudoconvex and quasiconvex functions given in Mangasarian [36] (Page
146) for R™.

(2) In view of Definition 10.1 in Udrigte [59] and Definition 13.2.1 in Rapcsék [46], if f: S — R in the above

definitions is a geodesic convex function, then it is also a geodesic pseudoconvex and a geodesic quasiconvex
function.
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For more details on generalized geodesic convex functions on Hadamard manifolds, we refer the reader to

[14,37,51,52] and the references cited therein.

The following theorem is from Shahi and Mishra [49] (see Thm. 3.2a). We present a proof of the theorem

here for the sake of convenience of the readers.

Theorem 2.8. Let us assume that the function 6(u) = o) here ¢ and Y are smooth functions on an open

(u)?

geodesic convex set S of a Riemannian manifold 7€. If ¢ be a geodesic convexr function and v be a positive

affine function, then 6 be a geodesic pseudoconvex function.

Proof. Let G denote the set of all geodesics connecting u,v € S. Since ¢ is geodesic convex, then Yu,v € S,

Yyuw € G, we have

¢ (Yuo(t)) < to(v) + (1 —t)(u), VEe[0,1].
Since 1) is affine, then Yu,v € S, V¥,, € G, we have

7/} (’_Yuv(t)) = W’(U) + (1 - t)d}(u)v vt € [Ov 1]
From (2.1) and (2.2), we get that,

vt € [0,1].
U Ow®) = W)+ @@ Y
Let us assume that Yu,v € S,
™ (j;) (w) >0
Then, it follows that
@ _¢
lim [w (Fun(t)) w(u)] >0,
t—0 t
1 [tg(w) + (A —1)o(u)  ¢(u
o It oot ~ vos) 2°

Therefore, we get the following

lim [tw(uﬁb(v) + (1 =t)o(w(u) = to(u)(v) — (1 = t)fb(UW(U)] >0
=0 tp(u){tp(v) + (1 = t)(u)} -

an indeterminate form as (%). Using L’Hospital’s rule, we obtain

)

MECLORORUELONOECUIO)
=0 | 2t (u)p(v) + (1 — 2t)9p?(u) -
[Y(u)o(v) — d(u)¥(v)
or [ e 20
[o(v)  d(u)¥(v)
or |G~ it ] 2
i o) (v)
o o= T
since, v is positive. Thus, we get
o) o)
Y(v) ~ Y(u)

Therefore, £ is a geodesic pseudoconvex function on S. This completes the proof.

@
¥

(2.1)

(2.6)
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In this paper, we consider the following multiobjective semi-infinite programming problem on Hadamard

manifold: o
(MSIP) Minimize f(z) = (f1(x),..., fm(x)),
subject to g;(z) <0, jeJ,
where, f; : S = R, (i € I = {1,2,...,m}), g; : S — R (j € J), are smooth functions defined on an open
geodesic convex set S C . The index set J is arbitrary. The feasible set of the problem (MSIP), denoted by

F, is defined by
F:={zeS:gij(x)<0,VjeJ}

The index set of all active inequality constraints at a feasible point z € F, denoted by L(x), is defined as
L(z):={j € J:gj(x) =0}

For any feasible point « € F', we denote the set of all active contraint multipliers at x € F' by &/ (x), that is
o (z) = {Ae R Njgi(z) =0,vj € J}.

Now, we recall the notions of efficient solution and weakly efficient solution of (MSIP) (see for instance, [33,56]).

Definition 2.9. A point Z € F is said to be an efficient solution of the problem (MSIP), if there exists no other
point z € F, such that

f(z) < f(z).

Definition 2.10. A point Z € F is said to be a weakly efficient solution of the problem (MSIP), if there exists
no other point x € F, such that

fx) < f(2).

Now, we state a constraint qualification analogous to Abadie constraint qualification for (MSIP) from Tung
and Tam [56].

Definition 2.11. Let & € F. Then, the Abadie constraint qualification (ACQ) is said to be satisfied at the
point z, if
( U gradgj(x)) C 7(z, F),
jeL(z)

and the set pos ¢,z grad g;() is closed.

3. OPTIMALITY CONDITONS

In this section, we derive a sufficient optimality criteria for (MSIP) using generalized geodesic convex
functions.
To begin with, we state the Karush-Kuhn-Tucker type necessary optimality criteria for (MSIP) from Tung and
Tam [56].

Theorem 3.1. Let T be a weakly efficient solution of (MSIP) such that Abadie constraint qualification (ACQ)
is satisfied at T. Then, there exist some a € RY', satisfying > o; = 1, and some X\ € o/ (Z), such that the
i€l
following equation holds
Z a; grad f;(Z) + Z Ajgrad g;(Z) = 0.

el jed

Now, we derive the sufficient optimality criteria of the problem (MSIP) using generalized geodesic convexity
assumptions.
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Theorem 3.2. Let T € F be an arbitrary feasible point. Let us assume that there exist some o € R}, satisfying

> a; =1, and some A € & (T), such that the following equation holds
i€l

Z a; grad f;(Z) + Z Ajgrad g;(z) = 0. (3.1)

iel jeJ

Then the following statements are true.

(i) If f;i is geodesic pseudoconvez at T € F for all i € I, and g; is geodesic quasiconvex at T € F' for all j € J,
then T is a weakly efficient solution of (MSIP).

(i) If f; is geodesic strictly pseudoconver at T € F for all i € I, and g; is geodesic quasiconvexr at T € F for
all j € J, then T is an efficient solution of (MSIP).

Proof. Since A € &/ (%), there exists a finite subset K of L(Z), such that

A; >0, VjeK,
/\j =0, VYj EL(.f)\K

From condition (3.1), we have

Z a; grad f;(Z Z Ajgrad g;(Z). (3.2)

iel jeEK

Let = € F be an arbitrary feasible point. Then,
gi(x) <0=yg;(x), VjeK.

As g;(x) is geodesic quasiconvex at & on F for all j € J, we have

x

0;(2) < g5(7) = <gradgj<z>,exp;<x>> <0, Vjek.

Since \ € R‘jr”, it follows that

> <gradg] z),exp ;' (x )> <0. (3.3)

jEK z

From inequality (3.3) and equation (3.2), we have

> <oz¢ grad f;(Z), exp $1(:c)> ==Y )\j<gradgj(:5),exp £1(x)> >0.

i€l i JjeEK R

That is
Z <sz‘ grad fi(7), exp $1($)> >0, VzeF (3.4)
el x
(i) On the contrary, let us assume that Z is not a weakly efficient solution of (MSIP). Then, there exists some
& € F, such that
fi(@) < fiz), Viel

As f;(z) is geodesic pseudoconvex at T € F for all ¢ € I, we have

x

fi(@) < fi(z) = <grad fi(Z),exp ;1(53)> <0, Viel. (3.5)
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Combining inequality (3.5) with a € R}', > a; = 1, we obtain
iel

5 (v mmad i) e 5(8)) <o

icl z

which is a contradiction to (3.4). This proves that Z is a weakly efficient solution of (MSIP).

(ii) On the contrary, let us assume Z is not an efficient solution of (MSIP). Then, there exists some & € F', such

that
fp(&) < fp(Z), for at least one p € I.

The above inequalities imply that & # Z. Since, f;(z) is geodesic strictly pseudoconvex at & € F for all i € I,
we have
<grad fi(Z),exp ml(:%)> <0, Viel. (3.6)
z

Combining inequality (3.6) with a € R, > a; = 1, we obtain
i€l

S ai{ grad f@exp 1@)) <0,

iel z
which is a contradiction to (3.4). This proves that Z is an efficient solution of (MSIP). O
The following example illustrates the significance of Theorem 3.2.

Example 3.3. Let us consider the Poincaré half-plane defined as follows
H = {x = (v1,22) € R? : 29 > 0}.

Then, S is a Riemannian manifold equipped with the inner product (see for instance, Example 5, Page 2 in
[59]), as follows
(u,v)p = (G (x)u,v), Yu,v € TpH =R,
1

where ¥ = [%g 1 |, and (-, -) is the standard inner product on R?. Since the sectional curvature of J# is —1, it
T2

is also a Hadama;d manifold. The second Christoffel symbols are as follows:

0o —X . L0
1—\$1:<_1 662>7 F12:($2 _1>.
T2 T2
Let us consider the following open geodesic convex set on the Hadamard manifold J# as follows:
1
S = {xE%:x1>—2}-

We consider the following semi-infinite programming problem on the Hadamard Manifold 7.

2 T hﬁ@
) s s = (1 50) = (35 4 255),
subject to g;(x) := S —-j—1<0, jeJ=10,1].
T2
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Here fi,g; : S — R, i = 1,2 are real valued functions and j € J. The feasible set F' of the problem is

1
F:{xES:x2>2}
1 1
{xE%ﬂ:x1>2,z222}o

Let us consider the point Z = (0, 3) € F. Then, it can be verified that
T(Z,F) ={v = (v1,v2) € T3S : v1,v2 > 0}.

Also, we have the following

gradfl(x)z(o,;>, erad fo(z) = (0,0), gradg;(z) = (0,—j).

Then, it follows that
U gradg;(Z) ={z € TzS | 1 =0, -1 < zp <0},
jeJ(@)

and hence,

U sradg;(@) | = {z" = (ai,23) € ToS | 23 2 0} C T(F, 2).
jelJ(z)
Further, it follows that
pos U grad g;(Z) = {z € TzS | z1 = 0,22 < 0}
jed(@)

is closed. That is, (ACQ) is satisfied at the feasible point z = (0, 3).
Let X : J — R be defined as follows

M) = {116’ J=1

0, otherwise.

2
Then, there exist a = (a1, ag) = (%, %) € R?, satisfying > a; = 1 and \ € &/(Z), such that
i=1

(3

2
- . 1,1 1 1
>_aigrad fi(z) + ) Ajgradg; () = 5(0, ) + 5(0,0) + ££(0, =1) = (0,0).
i=1 jed
Now, we write f1(z) and fa(x) in the following manner
i
fl (:E) = %7
1n2 11"!‘%
fg(x) — 2.22
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2
Now, we see that, the (hyperbolic) Hessian, or the second-order covariant derivative, of % + x4 is given by

2 2z 1 2 1
X9 125 2I1 0 _?2 1 .'I}l ?2 0
20, 203 | T 1 + ol 1
__ 42 1 X9 — 0 €T -
z2 z3 z2 2 T2
2, 2
ri+x5
I -
- 5423
0 3
T3

2
is a positive semidefinite matrix as all its eigen values are non negative. Thus, %+x2 is geodesic convex. Similarly,

1. . . . . . i, .
it can be shown that HY <ln2 T) is a positive semidefinite matrix. That is, In* % is also a convex function.

Thus, f1(z) and fa(z) are both ratios of geodesic convex functions and positive affine functions. Then, from
Theorem 2.8, it follows that f;, fo are geodesic pseudoconvex functions. Also, we have

£ 0
Hg;(x) = V?g;(x) — Vg; ()l = [963 g
3

Since the matrix H9g;(z) is positive semidefinite, g; is quasiconvex for all j € J. This shows that the conditions
of Theorem 3.2i hold. It can be verified that Z is a weakly efficient solution of the problem (Py).

4. DUALITY

In this section, we formulate the Mond-Weir [60] and Wolfe [61] type dual problems for (MSIP) and establish
weak, strong and strict converse duality theorems relating the primal problem (MSIP) and the dual problems
under generalized geodesic convexity assumptions.

4.1. Mond-Weir duality

Let us consider that u € S C J, where S is an open geodesic convex set in J#, o € R \ {0} and A € R‘_g‘.
The Mond-Weir dual problem of (MSIP), denoted by (MSIDyw), is formulated as follows:

(MSID, ;) Maximize f(u) := (fi(u), f2(u),..., fm(w)),
subject to Z oy grad fi(u) + Z Ajgrad gj(u) =0,

iel jeJ

Z Aij(U) >0,

=
ue S aeR?\ {0}, AR
The feasible set of MSIDyw, denoted by Fywy, is given by
Fuw == {(u,0,) €5 x R? xR - a £ 0,
Z oy grad f;(u) + Z Ajgrad gj(u) =0, Z Ajg;(u) > 0}

el jed jed
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The following definitions of efficient solution and weakly efficient solution of the Mond-Weir dual problem
(MSIDpw) are from Tung and Tam [56].

Definition 4.1. Let (@, @ \) € Faw. Then, (@, &, A) is said to be an efficient solution of (MSIDyw), if there
does not exist any other (u,a, A) € Fyrw satisfying

F@) < flu).

Definition 4.2. Let (@i, &, \) € Farw. Then, (4, @&, A) is said to be a weakly efficient solution of (MSIDyy), if
there does not exist any other (u,a, \) € Fyyy satisfying

Fl@) < f(u).
The following example illustrates the concept of efficient solution of Mond-Weir dual problem.

Example 4.3. Let us consider the Poincaré half-plane defined as follows
H = {x = (v1,22) € R? : 29 > 0}.

Let us consider the following geodesic convex set on the Hadamard manifold 57 as follows:
1
S::{xE%”:x1>—2}-

Let us consider the multiobjective semi-infinite problem (P;) as defined in Example 3.3. We denote the feasible
set of (P) by F
The Mond-Weir dual problem related to (P;), denoted by (Djs1), may be formulated as follows:

2U1+%
(Dav1) Maimize J(0) = () o)) o= (i + 22, 2o

ATD 2’ 2
subject to Zaz grad f;(u) + Z Ajgrad g;(u) =0,
el jeJ
D o Agi(w) >0
jeJ
ueS,aeRT\ {0}, A ERL‘”.
The feasible set of (D), denoted by Fp, is given by

Fpi={(u,,\) €S x RT x R a0 £ 0,
ZO” grad f;(u) + Z/\ grad g;(u) =0, Z)‘Jgﬂ > 0}.

el JjeJ JjeJ

Let us consider the point a‘: = (0, 1) € F, which is an efficient solution of (P). Moreover, we claim that there

exists & € R?, satisfying Z @; =1 and X\ € &/ (%), such that (z,a,\) € Fp.
Let A:J — R be deﬁned as follows

1 -
5\' — 16° J = 17
/ 0, otherwise.
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Then, we see that -
Mg (@) =0, Vjel

2 _
Hence, there exist & = (a1, d) = (%, %) € R?, satisfying Y @; =1 and A € &/(Z), such that
i=1

< 11 1 1
Zaz grad f;(z Z A grad g;(®) = 5(0, 2) + 5(0,0) + 75(0, 1) = (0,0).
eJ

That is, (Z,@&, \) is a feasible point of the Mond-Weir dual problem Djs. We can verify that there does not
exist any other (u,a, \) € Fp satisfying

f(@) < J(u).
Thus, (Z,a, A) € Fp is a weakly efficient solution of the Mond-Weir dual problem.
The following theorem establishes weak duality relating (MSIP) and (MSIDyw ).
Theorem 4.4 (Weak duality). Let x € F and (u,a, \) € Farw . Then the following statements are true.

(i) If f; is geodesic pseudoconvex at u for alli € I, and > \jg; is geodesic quasiconvex at u, then

je€J
@) £ f(u).
(1t) If f; is geodesic strictly pseudoconvexr at w for alli € I, Y N;g; is geodesic quasiconvex at u, then
jeJ
x) £ f(u)
Proof. Since x € F, we have
g;(z) <0, Vjel (4.1)
Also, as (u,a, \) € Frw, it follows that
Z a; grad f;(u) + Z Ajgrad gj(u) =0, (4.2)
iel jeJ
S A (w) > 0. (4.3)

jeJ
(ii) On the contrary, let us assume that
(@) < flu,a,0) = (fi(w), fa(w),.. f(w)). (4.4)

Then, it follows from (4.4) that

Since f;(x) is geodesic pseudoconvex for all ¢ € I, inequality (4.5) implies that

<grad fi(u), exp ;1(:c)> <0, Viel. (4.6)

u

Since o € R \ {0}, from (4.6) we obtain

<Zo¢i grad f;(u), exp gl(x)> <0. (4.7)

icl w
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From inequality (4.1) and X € lerjl, we have

> Njgi(z) 0. (4.8)

jeJ

Combining inequality (4.8) with (4.3), we get

ZAJQJ ) <0< Z)‘]g]

jeJ jeJ

Then, from the quasiconvexity of Y A;jg; at u, it follows that
jeJ

<Z A;j grad g;(u), exp ;l(x)> <0. (4.9)
jeJ u
Adding (4.7) and (4.9), we get

<Zazgradfl —l—Z)\ grad g;(u), exp ;1(90)> <0,

el jedJ
which is a contradiction to (4.2). This proves that f(z) 4 f(u).

On the contrary, let us assume that

f@) = flu,a,\) = f(u).

This implies that

fp(x) < fp(u), for some p € I. (4.10)

It follows that a # u. Since f;(x) is geodesic strictly pseudoconvex at u for all ¢ € I, from (4.10), we have

<gradfi(u),exp gl(x)> <0, Viel. (4.11)

u

Since o € R \ {0}, then from (4.11), we obtain

<Za,gradfl Jexp ot (x )> <0. (4.12)

el w

From inequality (4.1) and A\ € lerjl, we have
Z )\jgj(;v) <0
j€s

Combining this with (4.3), we get

ZAJgJ <0< Z)‘Jgj

JjeJ jedJ
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Then, from the quasiconvexity of Y A;g; at u, it follows that,
jeJ

<Z)\ grad gj(u),exp ;' (z )> <0. (4.13)

jeJ u

Adding (4.12) and (4.13), we get

<Zazgradfz )+ > Ajgrad g;(u), exp ul(x)> <0,

el jeJ u

which is a contradiction to (4.2). This proves that f(z) & f

The following theorem establishes strong duality relating (MSIP) and (MSIDywy ).

Theorem 4.5 (Strong duality). Let T be a weakly efficient solution of (MSIP) such that Abadie constraint
qualification (ACQ) is satisfied at T. Then, there exist & € R\ {0} and X\ € &/ (%) such that (z,a,\) € Farw
and

Moreover, the following statements are true.

(i) If the assumptions of weak duality (Thm. 4.4i) hold true, then (Z,a,\) is a weakly efficient solution of
(MSID ).

(ii) If the assumptions of weak duality (Thm. 4.4ii) hold true, then (Z,a&,\) is an efficient solution of
(MSIDyw)-

Proof. Since, Z is a weakly efficient solution of (MSIP) and (ACQ) is satisfied at Z, we infer from Theorem 3.1,

that there exist @ € R \ {0} satisfying > &; = 1 and A € &/ () such that
i€l

Z a; grad f;(Z) + Z \j grad g;(z) = 0. (4.14)

iel jeJ

Since A € <7 (z), we have )
)\jgj(.’f) = 0, VJ S J,
and hence

> Xjgi(x) =0, (4.15)

jeJ

Equations (4.14) and (4.15) implies that (Z,a, \) € Farw. Thus, we have f(z) = f().

(i) From weak duality theorem (Thm. 4.4i), it follows that for any (u, a, A) € Farw, we have

F(@) £ flu).

This proves that (Z,&, \) is a weakly efficient solution of (MSIDyrw).
(ii) From weak duality theorem (Thm. 4.4ii), it follows that for any (u,a, A\) € Farw, we have

f(@) # )

This proves that (Z,a, A) is an efficient solution of (MSIDyrw).
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The following example illustrates strong duality theorem relating (MSIP) and (MSIDyw ).

Example 4.6. Let us consider the Poincaré half-plane defined as follows
H = {x = (v1,22) € R? : 29 > 0}.

Let us consider the following geodesic convex set on the Hadamard manifold 57 as follows:

S:{xe%:$1>;}~

Let us consider the multiobjective semi-infinite problem (P;) as defined in Example 3.3. We denote the feasible
set of (P1) by F.
The Mond-Weir dual problem related to (P;), denoted by (Das1), may be formulated as follows:

~ 2 1 2u1ty
(Dp1) Maximize f(u) := (fl(u),fQ(u)) = <2uul2 + %, nQuz>

subject to Z a; grad f;(u) + Z Ajgrad g;(u) =0,
iel jed

S Agi(u) 20,

jeJ
J
ueS,aeRT\ {0}, A ERL‘.

The feasible set of (Dys1), denoted by Fp, is given by

Fp :={(u,a,\) €S x RY XR‘_;” ta# 0,
Zai grad f;(u) + Z Ajgrad gj(u) =0, Z Ajg;(u) > 0}.

iel jeg jet
Let us consider the point Z = (0, 3) € F. Then, it can be verified that
T(z,F) ={v=(v1,v2) € TS : v1,v9 > 0}.
Also, we have the following
_ 1 _ _ .
gradfl(x) = O7§ ) gra'de(x) = (0a0)7 gradgﬂ(‘r) = (07 _J)

Then, it follows from Example 3.3 that (ACQ) is satisfied at the feasible point Z = (0, 3). We can check that
Z is an efficient solution of (P1). Thus, we see that all the assumptions for strong duality of Mond-Weir dual

problem (Thm. 4.5) are satisfied.
Let A : J — R be defined as follows

1 .
)\_ _ 16° .7 - 17
J , otherwise.

Then, we see that
)\jgj(.’f’,') =0, Vjeld
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2
Hence, there exist o = (g, ag) = (1 1) € R?, satisfying >_ a; = 1 and \ € &/(Z), such that

272 =
2 , 1,11 1
Zai grad f;(z) + Z)\j grad g;(z) = 5(07 g) + 5(0,0) + E(O’ —1) = (0,0).
i=1 jed

That is, (Z,«, \) is a feasible point of the Mond-Weir dual problem Dj;q. Further, we see that,

f(@) = f(z).

Now, from Example 3.3, we see that f; is geodesic pseudoconvex for all i € I. Further, it can be verified that
> jed Ajg; is geodesic quasiconvex. Thus from the strong duality theorem, it can be verified that (Z,a, A) is a
weakly efficient solution of Djq.

The following theorem establishes the strict converse duality relating (MSIP) and (MSIDyw).

Theorem 4.7 (Strict converse duality). Let 2* be a weakly efficient solution of (MSIP) such that Abadie con-
straint qualification (ACQ) is satisfied at x*. Let (T,a, ) be a weakly efficient solution of (MSIDyw ). If fi is

geodesic strictly pseudoconvex at T for allt € I and Y \;g; is geodesic quasiconvez at T, then x* = .
jeJ

Proof. On the contrary, let us assume that z* # Z. Since z* is a weakly efficient solution of (MSIP) and (ACQ)
is satisfied at z*, we can infer from Theorem 4.5 that there exist a* € R’ \ {0} and A\* € &/ (2*) such that
(x*, 0%, \*) € Fyrw and

f(@*) = @),
Further, it also follows from Theorem 4.5 that (*,a*, A*) is an efficient solution of (MSIDyw ). Since z* € F
and (Z, @, \) € Fyrw, then from Theorem 4.4ii, it follows that

f(@) < fa*) = Ja),
which is a contradiction. This completes the proof. (Il
Now, we give an example to illustrate the results obtained for Mond-Weir duality.
Example 4.8. Let us consider the set .7 C R? as follows
H = {x = (v1,29) € R?, 21,2 > 0}.

Then .5 is a Riemannian manifold (see for instance, [7,46,56], and Example 4.4 of [42]). JZ is equipped with
the metric as defined below
(u, )y = (G (x)u,v), Yu,v € Ty =R,

where (-, -) is the standard inner product on R? and

L0

Since the sectional curvature of J# is 0, which is non positive, 5 is also a Hadamard manifold. Also, J# is a
geodesic convex set. The second Christoffel symbols are as follows:

-Lo 0 0
T = T %2 —
_(010>’ 2_(0—;)'
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The Riemannian distance between x = (x1,22) , y = (y1,y2) € J€ is given by

d(z,y) = ’

lnﬂ,ln 2
'A% Y2

The exponential map exp,, : Ty — J for any u € T, 7 is given by

n2

exp, (u) = (a:lefl xge72), Yu = (u1,uz) € H.
The inverse of the exponential map exp, ! : # — T, for any y €  is given by
exp, ' (y) = <x1 In &, x2In y2> .
T X9
We consider the following semi-infinite programming problem on 7%

(P2) Minimize f(z) = 2v/x1 + /2,

11— .
subject to g;(z) = 5~ lenxl — %lnxg <0, jeJ=][0,1].

Here, f,g; : # — R?. The feasible set F for the problem is
F={xe€ i, x1>ex9>e€}
The Mond-Weir dual problem related to (P;) may be formulated as

(Pyw) Maximize f(u) = f(u) = 2y/u; + /uz,

subject to  «a grad f(u)+ Z Aj grad g;(u) Z Ajg;(u
JjeJ JjeJ

ue H,ae R\ {0}, e RL;”.
The feasible set of (Pyw) is given by
Fuw = {(u,a, ) € # x Ry \ {0} x RII,

a grad f(u) + Y A; grad g;(u) = (0,0), Y " X;g;(u) > 0}.
JjeJ JjeJ

Let us consider the feasible point z = (e, e) € Fyw. Since

we have L(Z) = J. Let v be any arbitrary element in the contingent cone J (F, ). Then, there exist ¢; | 0 and
vy € Ty = R? such that v* = (vF,v}) — v = (v1,v2). Also, we have

ol tvk
exp, (tpo*) = (e.e = e.e 62> e F, Vk.
This gives us
k
k tpv
ee ¢ >eandee ¢ >e vk,
which implies

trolb vk
F1 > 0and 22 > 0, Vk, or equivalently, v’f >0 and v§ >0, Vk.
e e
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Letting k to infinity, we can conclude that
v 20, vy 2>0.

Hence, if follows that .7 (F,z) C R%. Similarly, it can be proved that RZ C .7 (F, z). Thus, we have
- 2
T (F,z) =R7.

Also, we have the following

gMﬂm:%ml<“L>=(%§?)

1
2\/£E2

) — ~1 _12%3 (1= J ‘
grad g;(z) = 9 (x) &)= e ), vjieJ

- 2Z2

Substituting Z = (e, e) for © = (x1,z2) in the above equations, we get
grad f(z) = (ev/e, 5ve)

1 ,
grad g;(Z) = <— ‘76, —]e> , Vjed

2 2

Hence, we obtain the following

U gradgé(f)z{$€Ti«%ﬂ3$1+9€2=—§7 $1§0,$2§0},

jeLl(z)
and B
U gradg;(z) | ={a" €T : (",y) <0,Vy € U grad g;(z)}
JEL(T) JEL(%)

={a* €Tz 27 > 0,25 >0} C T (Fyuw,T).
Also, the positive conic hull
pos U grad g¢o(Z) = {x € Tz | 1 < 0,29 < 0}
LeL(z)
is closed. This implies that Abadie constraint qualification (ACQ) holds at z.
We can check that T is an efficient solution of (Py). Thus, we see that all the assumptions for strong duality
of Mond-Weir dual problem (Thm. 4.5) are satisfied.
Let A : J — R be defined as follows:
_ if =1
>\J — {3\/67 lfj - 3

0, otherwise.

Then, we see that

Mgs(#) =0, VieJ
This implies that A € &/(). Then, there exist @ = 1 € R and A € &/(%), such that

agrad f(z) + Zj‘j grad g;(z) = (e\/(;, g\/é) +3ve (—1 —_ %e, —ée)

2
jeJ
= (e 5ve) v (e )
= (0,0).
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This shows that (Z, &, A\) € Faw. Thus, we have

f(z) = f(@).
Now, we observe that

fla) =2/ + i = II R B

1 1- j 1—-(1—9)Ilnzy —jlnz g5 (x)
gj(x):§—72]lnx1—%lnm2: ( J)Q 17 J z _ j2 ,

where,

fi(x) = 4y/x1 + 24/,

gi(x) =1—(i—j)Inzy —jlnm,.
It can be verified in the similar lines of Example 3.3 that the hyperbolic Hessian (or, the second covariant
derivative) HY fy(x) is a positive semidefinite matrix. Thus, f(x) is a ratio of a geodesic convex function and a
positive affine function. Then, from Theorem 2.8, it follows that f is a geodesic pseudoconvex function. Also,
H 9( > )\jg;-(x)) is positive semidefinite matrix. This implies that >~ \;g, is geodesic quasiconvex. Thus, we

jedJ jeJ

see that all the assumptions in Theorem 4.5 are satisfied. It can be verified that (5:, a, )\) is a weakly efficient
solution of the Mond-Weir dual problem (Pyw).

4.2. Wolfe Duality

Let us consider that v € S C J, where S is an open geodesic convex set in #, a € R, with - a; =1 and
iel
S RlJrJl. Then, the Wolfe dual problem of (MSIP), denoted by (MSIDyy), is formulated as follows:

(MSIDy,) Maximize £ (u, o, \) )+ Z Ajg;(u
JjeJ
subject to Z a; grad f;(u) + Z Ajgrad gj(u) =0,
iel JjeJ

where u € S C J, « € R, with >~ oy =1, )\ERL{L and e = (1,1,...,1).
i€l
The feasible set of (MSIDy ), denoted by (Fvw ), is given by
Fyw = {(u,a,\) €S x R x RL‘]I : Zai =1, and
iel
Zalgradfl —&—Z)\ grad g;(u) = 0}.

el JjeJ

We define h : 77 — R as follows:

(Zazfl +ZA79J) = aifi(@)+ > Aig;(x)

iel JjeJ iel jeJ

The following definitions of efficient solution and weakly efficient solution of the Wolfe dual problem (MSIDyy)
are from Tung and Tam [56].

Definition 4.9. Let (@,a,\) € Fyy. Then (a4, &, \) is said to be an efficient solution of (MSIDw) if there does
not exist any other (u,a, ) € Fyy, such that

L(u,a,\) = L(u,a, N).

Ql
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Definition 4.10. Let (4,a,)) € Fy. Then (@, @&, )) is said to be a weakly efficient solution of (MSIDyy), if
there does not exist any other (u, «, A) € Fyy, such that

LU, a,\) = ZL(u,a, \).
The following theorem establishes weak duality relating (MSIP) and (MSIDw).

Theorem 4.11 (Weak duality ). Let x € F and (u,a, \) € Fyy. Then the following statements are true.

(i) If h is geodesic pseudoconvex at u, then f(x) A £ (u,«q, )
(ii) If h is geodesic strictly pseudoconvex at u, then f(z) £ L (u, o, N).

Proof. Since x € F', we have

g;(x) <0, Vje. (4.16)
Also, as (u,a, \) € Fy, it follows that
Z a; grad f;(u) + Z Ajgrad gj(u) = 0. (4.17)
iel jeJ
(i) On the contrary, let us assume that,
f(z) = L(u,a,\) = JrZ)\jgj e.
jedJ
Then, it follows that
filw) < filw) + > Njgi(w), Viel (4.18)
jeJ

Since v € R with Y S oy =1, A € Rm, we have the following:

el
doaifi@)+ Y Ngi(a) <Y aifil)

i€l = i€l
<Zaz<f2 +Z>‘Jgj )
el jeJ
= Z a; fi(u) + Z Q; Z Ajg;(u)
i€l el jeJ
= Zaifi(u) + Z 295 (w)
i€l jeJ

Thus, it follows that
(Z aifi+ )\jgg) (z) < (Z aifi+y Ajgj) (u)
il jeJ iel jeJ
that is,
h(z) < h(u).

Since h is a geodesic pseudoconvex function at u, we have

h(z) < h(u) = <gradh(u),exp;1(x)> < 0.

u
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This implies that

(S assrad ftw) + 30 wrad ) expi(a) ) <0,

iel jeJ u

which is a contradiction to (4.17). This proves that

flx) £ Z(u, o, A).
(ii) On the contrary, let us assume that f(z) £ Z(u,a,\) = f(u) + > \jgj(u)e. This implies that

jeJ
filw) < filw) + > Ngi(w), Viel, i#p,
jeJ
folx) < fp(u) + Z)xjgj ), for atleast one p € I.
JjEJ

It follows that = # w. Since v € R with > a; =1, A € Rl_;jl, we have the following;:

i€l
doaifiz) +) Ngi(w) <Y aifilx)
el jeJ iel
<Zal<fz +Z)‘Jgj )
el JjeJ
=D aifilu) + ) aiy Ajg;(u)
icl i€l jeJ
=Y aifilw)+ Y Ng;(u)
il jeJ

Hence, we have
(Z aifi+y Ajgj) (z) < (Z aifit ) Ajgj) (u)
icl jeJ icl jeJ
that is,

Since h is a geodesic strictly pseudoconvex at u, we have

h(z) < h(u) = <gradh(u),expu1(x)> <0.

u

Thus, we obtain

<Zal grad f;(u) + Z)‘J grad g;(u), expgl(x)> <0,

el JjeJ

which is a contradiction to (4.17). This completes the proof.

Example 4.12. Let us consider the Poincaré half-plane defined as follows
H = {x = (v1,29) € R? : 29 > 0}.

Let us consider the following geodesic convex set on the Hadamard manifold 57 as follows:

S::{xé%:x1>—;}-
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Let us consider the multiobjective semi-infinite programming problem P; as defined in Example 3.3. The feasible
set on the problem P; is denoted by

The Wolfe dual problem related to (P;), denoted by (D), may be formulated as follows

)+ Z)‘Jgj

jeJ

subject to z oy grad fi(u) + Z Ajgrad gj(u) =
i€l

(Dy) Maximize £ (u, a, A)

0,
jeJ
The feasible set of D; is denoted by Fj. Let us consider the point Z = (0

1) € F. Then, it can be verified that

T (2, F) ={v = (v1,v2) € TeS : v1,v2 > 0}.
Also, we have the following

sad @) = 1 (0.3 ) = (0.3): sdfle) = 0.0, gradgy(e) = (0.5

Then, it follows from Example 3.3 that (ACQ) is satisfied at the feasible point = (0 %)

Let A : J — R be defined as follows
1 =1
A . — 8 b ..7 )
(7) {O, otherwise.

2
(1,0) € R?, satisfying Y. a; = 1 and A € &/(%), such that
i=1

Then, there exist o = (a1, as) =

Zaz grad fi(z) + ) A; grad g;(7) =

jeJ

1 1
1(0, ) +0(0,0) + £(0,~1) =0,
Thus, (Z,a, A) € Fy. Then, the function h is defined as

h:=aifi +azfa+ Mg
1
=f1+§91
A5 oyt 216 g

8 TRt
2
where, H = 4%

T2

+ 4xo + i — 16. Then, we obtain the following:

Then, it follows that

8 *8&31
2 _ T2 ac
wn-(£.7,)
a3
Now, we see that, the (hyperbolic) Hessian, or the second—order covariant derivative, of H is given by

HIYH =V?H — VHT

4:1:1+4:1:2+1 0
_ Z2
0 4z2 +612+1

3
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is a positive semidefinite matrix as all its eigen values are non negative. Thus, H is geodesic convex at (0, %)
Then, h is a ratio of a geodesic convex function and a positive affine function. Then, from Theorem 2.8, it
follows that h is a geodesic pseudoconvex function. It can also be easily verified that f(z) £ Z(z,«, ). Thus,

the weak duality theorem (Thm. 4.11) is verified.

The following theorem establishes the strong duality relating primal problem (MSIP) and (MSIDwy).

Theorem 4.13 (Strong duality). Let T be a weakly efficient solution of (MSIP) such that Abadie constraint
qualification (ACQ) is satisfied at T. Then, there exists a € R \ {0} and X\ € o/ (Z) such that (z,a, ) € Fyy
and

(@) = 2Z(@,aN.
Moreover, the following statements are true.

(i) If the assumptions of weak duality (Thm. 4.11i) hold true, then (Z,&,\) is a weakly efficient solution of

(MSIDy ). )
(it) If the assumptions of weak duality (Thm. 4.11ii) hold true, then (T, a, \) is an efficient solution of (MSIDy ).

Proof. Since, T is a weakly efficient solution of (MSIP) and (ACQ) is satisfied at Z, we infer from Theorem 3.1,

that there exists & € R7" \ {0} satisfying Y~ @; = 1, and A € &/(%), such that
i€l

Z a; grad f;(z) + Z \jgrad g;(7) = 0.
iel jeJ

Since A € «/(z), we have

)\jgj(i‘) =0 VjelJ,

and hence

Z j\jgj((f) =0.

jeJ

Thus, we have

That is, (Z,&,\) € Farw and f(7) = Z(z,a, )).
(i) From weak duality theorem (Thm. 4.11i), it follows that for any (u,a, A) € Fyy, we have

ZL(u,a,\) £ ZL(Z,a,N).

This proves that (Z,a, \) is a weakly efficient solution of (MSIDwy).
(ii) From weak duality theorem (Thm. 4.11ii), it follows that for any (u, o, A) € Fyy, we have

Llu,a,\) £ L(Z,a,N).
This proves that (Z,&, \) is an efficient solution of (MSIDyy). O

The following theorem establishes the strict converse duality relating (MSIP) and (MSIDy).

Theorem 4.14 (Strict converse duality). Let z* be a weakly efficient solution of (MSIP) such that Abadie
constraint qualification (ACQ) is satisfied at x*. Let (Z,a, \) be a weakly efficient solution of (MSIDw ). If

h:=73% aifi+ > Ajgj is geodesic strictly pseudoconver at Z, then x* = I.
i€l jeJ
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Proof. If possible, let us assume that x* # Z. Since z* is a weakly efficient solution of (MSIP) and (ACQ) is
satisfied at x*, we can infer from Theorem 4.13 that there exist o* € R’ \ {0} and A\* € &/(z*) such that
(z*,a*,\*) € Fyy and

f(z*) = ZL(z%, ", \Y).
Further, it also follows from Theorem 4.13 that if & is a geodesic strictly pseudoconvex function, then (z*, a*, \*)
is an efficient solution of (MSIDyy). Since z* € F and (%, &, \) € Fyy, then from Theorem 4.11ii, it follows that

ZL(z,a,)) < f(a*) = L(z",a" N\,
which is a contradiction. This completes the proof. (I

We illustrate the results on Wolfe duality by the following example.

Example 4.15. Let us consider the problem (P3) on the Hadamard manifold .# as considered in Example 4.6.
Then the Wolfe dual problem related to (P») may be formulated as

(Pw) Maximize . (u, \) = 2y/u1 + iz + Y _ Ajg;(u)e,

jes
subject to grad f(u) + Z Ajgrad gj(u) = (0,0),
JjeJ
where u € 5, A € R‘_{_]‘, and e = (1,1).
The feasible set of (Pyw) is given by

Fy = {(u,\) € # xR,

grad f(u)+ Z)\j grad g;(u) = (0,0)}.
jed

Let us consider the feasible point Z = (e, e) € Fy. Then, from Example 4.6, we observe that Abadie constraint
qualification (ACQ) holds at Z and Z is an efficient solution of (Pz). Thus, we see that all the assumptions for
strong duality of Wolfe dual problem (Thm. 4.9) are satisfied.

Let A :.J — R be defined in the following manner

_ if =1
)\j:{?)\/é, lf]—ga

0, otherwise.

Then, it follows that -

)\jgj(.’f) = 0, Vj e J
This implies there exist A\ € &7(%), such that

rad 13) + 3 Ay s g,@) = (e § ) + 36 (5 e S
jeJ
= (eve 5v8) + v (53¢

This shows that (Z,\) € Fyy.
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Now, we observe that

fla) = 2/ + v = IR L),

11— Jj 1—(Gi—j)Inw —jlnzy  g5(x)
gj(m):§—Tlnm1—§1n:v2: 5 = J2 ,
where,
fi(z) = 4y/x1 + 2y/29,
gi(x) =1—(i—j)Inzy —jlnm,.
Let us consider that
Ji(z) + Z] ;g5 () W)
€.
L(w,2) = F(@) + Y Aig;(w) = S ==
jeJ
where,
0= (R4 X ng) @
jeJ
Then, we have the following
-y L P
vIL i 2 mlﬁ = xl
vie) = | | ) = )
Ve T L “TvE T LB

JjE€J
From the second-order covariant derivative, it follows that

H9N(x) = V*h(x) — Vh(x)T

1 1-j
EVaTY +J§] =
0 QIQ\/E + Z r2

jeJ

_[%_;j})(&o (mX2)0-2)]

1
T1\/T1 (1) )
0 5mvm

Since 1,22 > 0, hence, the (hyperbolic) Hessian, or the second-order covariant derivative of h(x) is positive
semidefinite. Thus, h(z) is geodesic convex function. Since, £ (z, A) is the ratio of a geodesic convex function

(h(z)) and a positive affine function, this implies that { f+ >~ Ajg; | (z) is a geodesic pseudoconvex function

(see Thm. 2.8). Thus, we see that all the assumptions in Theorem 4.11 are satisfied. It can be verified that

(z,)) is a weakly efficient solution of the Wolfe dual problem (Py).

Remark 4.16. In view of Definition 10.1 in Udrigte [59] and Definition 13.2.1 in Rapcsék [46], every geodesic
convex function is geodesic pseudoconvex and geodesic quasiconvex. Thus, the results presented in this paper

generalize the corresponding results of optimality and duality from Tung and Tam [56].
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5. CONCLUSION

In this paper, we have considered a class of multiobjective semi-infinite programming problems on Hadamard
manifold (MSIP) and established the Karush-Kuhn-Tucker type sufficient optimality criteria for (MSIP) under
generalized geodesic convexity assumptions. The sufficient optimality condition derived in this paper extend
the sufficient optimality result derived by Tung and Tam [56] from geodesic convexity assumptions to geodesic
pseudoconvexity and geodesic quasiconvexity assumptions. Moreover, related to (MSIP), we have formulated
the Mond-Weir type dual problem (MSIPyw) and Wolfe type dual problem (MSIPyw) and derived the weak,
strong and strict converse duality theorems. The weak and strong duality results derived in this paper extend the
corresponding results of Tung and Tam [56] from geodesic convexity assumptions to geodesic pseudoconvexity
and geodesic quasiconvexity assumptions. In particular, the results of the paper generalize some other well
known results in R™, see for instance, [3,34-36]. Several non-trivial examples have been given to illustrate the
significance of these results. Our work in this paper leaves various avenues for future research. For example, it
would be interesting to extend the results in this paper for non-smooth multiobjective semi-infinite problems
on Hadamard manifolds. Further, we intend to investigate multiobjective semi-infinite problems on Hadamard
manifolds with uncertain data in objective functions.

Acknowledgements. The authors are highly grateful to the anonymous referees for their valuable comments and helpful
suggestions, which have improved the paper significantly.
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