
RAIRO-Oper. Res. 56 (2022) 2721–2749 RAIRO Operations Research
https://doi.org/10.1051/ro/2022094 www.rairo-ro.org

REAL TIME READ-FREQUENCY OPTIMIZATION FOR RAILWAY
MONITORING SYSTEM

Mahdi Jemmali1,2,3,* , Loai Kayed B. Melhim4 and Fayez al Fayez1

Abstract. Trains have a key role in transporting people and goods with the option of moving from
source to destinations by passing through several stations, with time-based features like date scheduling
and known arrival times, which makes time a critical factor. The main challenge here, is to ensure that
the train trip or train schedules are not affected or delayed in any way during the whole train trip;
by giving the control unit in the railway system, the required time to process requests regarding all
collected data. This an NP-hard problem with an optimal solution of handling all collected data and
all service requests by the control unit of the railway system. Operational research will be used to
solve this problem by developing many heuristics to deal with tasks of real-time systems, to produce
a significant time optimization in the railway systems. To solve this problem, the proposed approach
employs optimization by adapting 22 heuristics based on two categories of algorithms, the separated
blocks category algorithm and the blocks interference category algorithm. The proposed approach
receives data from many different sources at the same time, then collects the received data and save it
to a data base in the railway system control unit. Experimental results showed the effectiveness of the
developed heuristics, more over the proposed approach minimized the maximum completion time that
was elapsed in handling the received requests.

Mathematics Subject Classification. 90C90, 90C59, 90C27.

Received December 28, 2019. Accepted June 11, 2022.

1. Introduction

Nowadays, time optimization is one of the most desirable criteria. Customers require mobility, smart phones,
wireless communications, various applications for each performed task or presented services, smart cities, and
many other digital needs due to the developed modern world. In this world people use means of transportation
for many reasons, to move from one point to another, to travel, to carry goods and for many other reasons.
Modern life imposes new standards into customer’s transportation; pushing transportation process to a different

Keywords. Railway system, optimization, monitoring system, railway track, real-time system, heuristics, simulation.

1 Department of Computer Science and Information, College of Science, Majmaah University, AL-Majmaah 11952, Saudi Arabia.
2 MARS Laboratory, University of Sousse, Sousse, Tunisia.
3 Department of Computer Science, Higher Institute of Computer Science and Mathematics, Monastir university, Monastir
5000, Tunisia.
4 Department of Health Information Management and Technology, College of Applied Medical Sciences, University of Hafr Al
Batin, Hafr Al Batin 39524, Saudi Arabia.
*Corresponding author: m.jemmali@mu.edu.sa; mah jem 2004@yahoo.fr

c○ The authors. Published by EDP Sciences, ROADEF, SMAI 2022

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1051/ro/2022094
https://www.rairo-ro.org
https://orcid.org/0000-0003-3462-8739
mailto:m.jemmali@mu.edu.sa
mailto:mah_jem_2004@yahoo.fr
https://creativecommons.org/licenses/by/4.0

2722 M. JEMMALI ET AL.

level, destination arrival is no more the major concerns of these customers; arrival time is the major concern to
most of these customers.

Among the different means of transportation, this study will consider trains transportation, as trains have a
key role in transporting people and goods. Moreover, many big cities rely on train transportation; due to the
train features that fit the varying needs and provide the dynamic requirements of these cities. Trains have the
option of moving from source to destinations by passing through several stations, with a pre known fixed features
like date schedule and arrival times, such features are of interest to many customers. All of these features are
time-based features; hence time is considered a critical factor in this study.

The railway system, in this context, is composed of many subsystems that are integrated to ensure the
effective operation of the railway, which is reached by achieving a set of goals such as meeting all journeys’ time
table, efficient goods transportation, passengers safety, efficient customer service,... etc. Therefore, the train
system receives the required data to ensure the achievement of those goals through the monitoring system. The
monitoring system uses sensors, cameras, and other tools to receive data and various requests from railway
subsystems. All these requests and data are sent to the control unit to accomplish the required tasks as soon as
possible. Therefore, the delay in processing any of the requests or data will lead to weaknesses or deficiencies in
the performance of the subsystem to which these requests or data belong, and this is an undesirable thing. To
avoid this, this work presents a framework that will provide the necessary time, required for the control unit to
complete all requests and data sent without any delay.

To ensure that trains meet the given time-based features, all factors and variables regarding the train system
should be considered. One of the suggested solutions when time is critical is to utilize the capabilities of
scheduling algorithms [12, 46], it’s worth to mention that scheduling here, is not date scheduling, it is how the
railway system addresses large volume of services and requests within a limited time and resources [45]. There
are many challenges and obstacles facing railway systems [14,15], some of these challenges will be addressed in
this paper like, data handling and receiving and how scheduling is used to handle these problems to derive the
seriousness of each, to specify the impact of these problems on the train trip or schedule. The priority here is to
handle these problems so that the train trip or schedule is not affected or delayed in any way during the whole
train trip. To avoid any latency, train options are limited to delaying or stopping the trip, because the train has
a fixed route on its railway. Time needed to process the received data, is the major concern of this research.
Data can be received from many sources: service requests, monitoring systems, visual-based systems, sensors,
detection systems or any other sources. Once the data is received, it is collected and saved into a database for
processing and for further analysis by the control unit of the railway monitoring system. To meet the required
features of the railway system and the critical time issue; time and computing limitations should be considered,
to give the control unit, the required time to handle the largest number of collected data. These limitations can
be managed by optimization, through the adaptation of several heuristics developed for the parallel machine
problem, which is an NP-hard problem with an ideal solution of handling all collected data and all service
requests by the control unit.

The rest of this paper will be organized as follows, Section 2 presents the related work while Section 3
discusses problem presentation. Formulating the optimization problem will be presented in Section 4, the next
section explains the scheduling problem. The sequencing-based train algorithm will be addressed in Section 6.
Discussion of the experimental results will be presented in Section 7. Finally, the conclusion will be presented
in Section 8.

2. Related studies

Several researchers worked about scheduling in railways. The researchers in [30] addressed the parallel jobs
scheduling problem. the considered preferences were related to release dates and identical parallel machines.
The main objective of their work was to minimize the makespan and to perform a parallel work, with a set of
constraints on a group of identical machines, this work is achieved by an online model that handles sequentially
the arrived tasks based on the obligation of the schedule before the next task is known.

REAL TIME READ-FREQUENCY OPTIMIZATION FOR RMS 2723

While authors in [13] explain the case of an NP-hard problem where the number of tasks and machines are
already known. The assigned tasks are restricted by single task per single machine and pre-known processing
time. The assigned tasks are executed by both a meta-heuristic and an exact algorithm to achieve the goal of
minimizing the maximum completion time. The discussed results by the authors concluded the ability of the
developed algorithm to solved optimally the majority of the given instances efficiently. The remaining of the
instances were solved optimally by the exact algorithm developed by Haouari and Jemmali [18].

Researchers in [31] used cost minimal schedule with column generation-based solution algorithm to explore
the effect on cost when scheduling-fairness is increased. In this research, the authors addressed the problem of
distributing highest possible fairness, undesirable tasks among train drivers. The considered constraint was to
cover completely all train movements without violating minimal increase in cost work regulations. The authors
claimed that schedule fairness was significantly improved with only slight increases in schedule cost.

In the same manner researchers in [44] presented a solution of the crew rescheduling problem based on
re-timing with frequent train disruption, by using column generation techniques combined with Lagrangian
heuristics. To encounter any delay or a budget loss when any disruption occurs, the available resources related
to that trip at that time are rescheduled. The presented algorithm is based on the rescheduling of the train driver
duties. The authors claimed that the used algorithm showed better results than the used classical approaches.

The use of identical parallel machines to schedule parallel jobs with release dates, were treated by Li and
Zhang [35]. The authors discussed the solution of two problems in their work. The first problem considers two
similar machines with speeds of 1 and s where (𝑠 > 1). While the second problem considered the m identical
machines problem. The main objective in this research was, how to minimize the makespan and the jobs arrival
time. The authors showed a competitive ratio for on-line LPT algorithm related to the first problem and for a
lower bound related to the second problem.

Other researchers used the weaknesses, the strengths, the volatility and the robustness parameters of a train
schedule in the presence of the delay. For example, Burdett et.al presented an analytical approach that handles
unusual specific behavior, to determine an appropriate action plan or to modify a schedule in advance [11]. In
addition, the adopted approach can quantitatively derive the delay cost. A case study was given to declare the
main features of the given approach.

To minimize makespan for the identical parallel-machine scheduling problem, authors in [33] developed a
cuckoo search algorithm (ICSA). A heuristic approach was developed using model operator with heuristic
procedure that is based on the pairwise exchange neighborhood to generate the required cuckoos. Experimental
results showed a better performance when comparing with different existing algorithms.

Optimal makespan was discussed in [42] where the authors solved the Resource-Constrained Project Schedul-
ing Problem based on meta-heuristics. To improve time and solutions quality, hybrid techniques were employed
by many researchers like [16], in this research, the authors solved combinatorial optimization problems (COPs)
by integrating machine learning and algorithms. The results indicate a remarkable improvement in the term of
computational time and quality of results compared with random operators.

Researchers in [2] utilized operational research ccc minimize the job’s maximum completion time, the authors
classified the proposed heuristics into two classes, the resolution of a subset-sum problem with knapsack problem
and the dispatching rule. The proposed heuristics were developed to fit and to obtain, the exact solution of the
railway scheduling problems. The data captured by railway track sensors will be saved in railway monitoring
system database, the developed algorithms utilize the read frequency rate by reading the maximum number of
saved data within a predefined time limit.

For the object of cost-effective maintenance, the authors in [43] constructed a problem taxonomy from the
results obtained after reviewing railway track-related maintenance and scheduling plans in the literature. In the
same approach, the authors in [8] presented an opportunistic preventive maintenance policy with the goal of
minimizing the total maintenance cost. The proposed policy executes a steady-state genetic algorithm to search
for a maintenance threshold that will decide when to perform the preventive tamping maintenance. The authors
stated that considering the proposed policy may reduce the performance cost by 46%. The automatic inspection
of railway performed by a track running robot is presented by Pradeep et al. [40] to monitor the railway for

2724 M. JEMMALI ET AL.

any railway defects. The proposed approach uses a Wi-Fi camera to send a live recording of the defect location,
the required directions to locate the exact location of the defected parts are also sent to the inspection team.
The group of factors that affect the railway maintenance planning processes were presented by Kovenkin and
Podverbnyy [32]. The authors in [6] used Bayesian approach to build a model that can expose the actual defect
rate and the probability of not locating any defects in order to optimize the railway track maintenance process.
A different approach was presented by Movaghar and Mohammadzadeh [38] where the authors utilize Bayesian
framework to generate data regarding uncertainties in railway track degradation model, the results presented
by the authors reveal how the proposed model can affect the restricted budget and the limited resources for
preventive maintenance processes scheduling.

Current railway systems consist of a set of subsystems; each subsystem is dedicated to handle different
operation management functions. Previous studies in the literature present scheduling problem in the railway
systems. Most of these studies proposed solutions that consider railway subsystems, for example train timetables
problem was solved by researchers in [45], while train schedules problem was solved by Donzella et al. [15] and
Burdett and Kozan [11]. For the railway crew scheduling, many solutions were proposed by Jütte et al. [31] and
Veelenturf [44]. While the solution for obstacle detection problem was proposed by Lan et al. [34] and the railway
tracks detection and turnouts recognition problem were discussed, and solutions were proposed by Qi et al. [41].
To the best of our knowledge the only solutions for improving railway system efficiency were presented by Dong
et al. [14] in which the authors proposed a solution for bridging the gap in the information exchange between
the subsystems in high-speed railway systems. This solution proposes that the huge amount of sent data will be
executed by the control unit part of the presented approach without any delay. While the proposed solution in
this research focuses on, how the received data will be managed and executed by the control unit of the railway
monitoring system before any delay or cancelation of the train trip. The other study was presented by al Fayez
et al. [2]. Unlike the previous studies, the proposed solution which is an extension of the work presented by
al Fayez et al. [2] minimizes the maximum time required by the control unit to complete the received requests,
this allows the control unit to gain more time to achieve integration between all railway subsystems, the control
unit must coordinate between these subsystems to ensure safe and reliable railway systems, which is the main
objective of this research.

The algorithms used in several different scheduling problems can be utilized to expand and enhance the
studied problem [1,5, 7, 20,22,23,27,28].

The proposed algorithms can be improved and adopted to the problems studied in [4, 9, 10, 17, 37]. Sev-
eral applications of scheduling problems in real life can be exploited to enhance the proposed algorithms
[3, 21,24–26,29,36].

3. Problem presentation

In this study the focus is on the method of handling the received data from the many sensors that are placed
along the railway track. Various data are collected to guarantee the arrival of trains within a fixed time at their
destinations. Indeed, railway could be subject to damages, fires, incidents, floods, and other rail obstacles like
rocks, sand, trees or animals that influence the regular operation of trains. In order to avoid any disruption or
latency of the train trips, it is crucial for the railway track sensors to detect and to provide the required data
to the control unit of the railway system, before train reaches the location of these obstacles. The provided
data are collected in the control unit that handles and extracts the required information to provide the required
interest within an appropriate time. The treatment of this data requires processing time which is critical in this
case. This data is modeled as tasks, which are modeled as processing time and the problem is modeled as a
parallel machine problem. This problem is NP-hard and we are willing in this study to propose and develop
suitable heuristics to solve the addressed problem within an acceptable time.

REAL TIME READ-FREQUENCY OPTIMIZATION FOR RMS 2725

3.1. Notation

The railway monitoring system relies on a set of sensors, distributed on the railway tracks and on the train
itself, the used notation to describe these sensors is as follows, Temperature: 𝑇𝑒, Humidity: 𝐻𝑢, Fog: 𝐹𝑜, Wind:
𝑊𝑖 and Image from located sensor: 𝐼𝑚. The objective of these sensors is to continuously capture data and
forward it to the control unit of the railway monitoring system. For the data sent by the sensors (𝑇𝑒, 𝐻𝑢, 𝐹𝑜,
𝑊𝑖) the related information is directly inferred from the received data, while for the 𝐼𝑚 sensor, the system
executes a function called 𝐼𝑚𝑎𝑔𝑒𝑃𝑟𝑜𝑐() to handle and to analyze the received images. The input of this function
is 𝐼𝑚. The output of 𝐼𝑚𝑎𝑔𝑒𝑃𝑟𝑜𝑐() will be values assigned to the set of variables: 𝑂𝑏, 𝐴𝑛, 𝑇𝑢 and 𝑆𝑑, with the
following details:

– 𝑂𝑏 is the variable related to the obstacle detection. The values of 𝑂𝑏 variable will be 𝑂𝑏 = 1 if an obstacle
detected in the received image and 𝑂𝑏 = 0 otherwise.

– 𝐴𝑛 is the variable related to animal detection. The values of An variable will be, 𝐴𝑛 = 1 in case an animal
is detected in the received image and 𝐴𝑛 = 0 otherwise.

– 𝑇𝑢 is the variable related to a turnout detection. The values of 𝑇𝑢 variable will be, 𝑇𝑢 = 1 if a turnout is
detected in the received image and 𝑇𝑢 = 0 otherwise.

– 𝑆𝑑 is the variable related to sand detection. The values of 𝑆𝑑 variable will be, 𝑆𝑑 = 1 if sand is detected in
the received image and 𝑆𝑑 = 0 otherwise.

Denoted by:

– 𝐻𝐼𝑚 = (𝑇𝑒, 𝐻𝑢, 𝐹𝑜, 𝑊𝑖, 𝐼𝑚): data vector sent to control unit.
– 𝐻 = (𝑇𝑒,𝐻𝑢, 𝐹𝑜, 𝑊𝑖): 𝐻𝐼𝑚 ∖ 𝐼𝑚.
– 𝑉 (𝑇𝑒, 𝐻𝑢, 𝐹𝑜, 𝑊𝑖,𝑂𝑏, 𝐴𝑛, 𝑇𝑢, 𝑆𝑑): variation vector.
– 𝑛𝑠: sensors number.
– 𝑖: sensor index.
– 𝑆: sensor.
– 𝑡𝑠: the starting time of the trip.
– 𝑡𝑎: train arrival time of the trip.
– 𝑋(𝑆𝑖): the position of the sensor 𝑆𝑖.
– 𝑡𝑆𝑖

: estimated train arrival time at sensor 𝑆𝑖.
– 𝑋𝑡(𝑇): the position of the train 𝑇 at time 𝑡.
– 𝑠𝑝(𝑡): speed of the train at time 𝑡 (supposing that speed between 𝑆𝑖 and 𝑆𝑖+1 is constant).
– 𝑓𝑟𝑒𝑞: sensor’s data sending rate in (minutes).
– 𝑛𝑝𝑟: number of processors.
– 𝑃 : set of processes.
– 𝑃𝑟: set of processors.
– 𝑝𝑟: processor index.

The total number of the received data sent by sensor 𝑆𝑖 when the train arrives is: 𝑁𝑟𝑑 = (𝑡𝑎 − 𝑡𝑠)× 𝑓𝑟𝑒𝑞.

3.2. Significant variation vector

In the monitoring system, the control unit receives frequently the sensors’ data. The vectors 𝐻0(𝑆𝑖) and
𝐻𝑡(𝑆𝑖) are instances of vector 𝐻 at time = 0 and at time = 𝑡, respectively. The control unit handles and analyzes
the received data after that the derived information will be values that will be compared with the saved initial
values 𝐻0(𝑆𝑖) for each sensor. For the monitoring system to identify any change in the state of railway system
at time 𝑡, it should compare 𝐻0(𝑆𝑖) with 𝐻𝑡(𝑆𝑖) at time 𝑡 for the sensor (𝑆𝑖). The comparison process between
the saved initial values and the values sent by sensor 𝑆𝑖 at time 𝑡 produces a value change, which will be used
to detect any change in the monitored subsystem status. The vector of the variation values at time 𝑡 is denoted
by 𝑉 𝑟

𝑡 (𝑆𝑖):
𝑉 𝑟

𝑡 (𝑆𝑖) = |𝐻0(𝑆𝑖)−𝐻𝑡(𝑆𝑖)|. (3.1)

2726 M. JEMMALI ET AL.

In practice, if the variation in 𝑉 𝑟
𝑡 (𝑆𝑖) is not remarkable, it will be discarded by the control unit and will not

be considered in the generated instructions.

Example 3.1. In 𝐻0(𝑆4) the saved temperature is 32. But the temperature in 𝐻𝑡(𝑆4) = 34. The temperature
increased by 2 degrees yielding a variation of 2. This variation is not significant because 2 degrees, is not
expected to have any impact on the railway system different components. So, the control unit will not consider
this variation i.e. the control unit will not perform any process for this variation.

To avoid unnecessary processes, the proposed approach is designed with a predefined threshold for each
variable. The corresponding vector of all threshold values is denoted by 𝐻𝑡ℎ(𝑆𝑖). By using 𝐻𝑡ℎ(𝑆𝑖), it will
be faster for the control unit to calculate significant variations easily, resulting in a fewer computations and
higher performance. The resulted significant variation values will be stored in a new vector called the significant
variation vector, denoted by 𝑉 𝑠

𝑡 (𝑆𝑖) at time 𝑡. So, for 𝑉 𝑠
𝑡 (𝑆𝑖) = 0 this means that there are no variations and the

𝑆𝑖 location at time t is under normal situation. The vector 𝑉 𝑠
𝑡 (𝑆𝑖) = (𝑇𝑒, 𝐻𝑢, 𝐹𝑜, 𝑊𝑖,𝑂𝑏, 𝐴𝑛, 𝑇𝑢, 𝑆𝑑) contains

8 elements. Each element stores the variation of the corresponding variable.
We denoted by [𝑉 𝑠

𝑡 (𝑆𝑖)]𝑗 the 𝑗th element for the vector 𝑉 𝑠
𝑡 (𝑆𝑖) and by [𝐻𝑡ℎ(𝑆𝑖)]𝑗 the 𝑗th element for the

vector 𝐻𝑡ℎ(𝑆𝑖). For example, [𝐻𝑡ℎ(𝑆𝑖)]4 denotes the threshold of the 4th element in the vector 𝐻𝑡ℎ(𝑆𝑖). It
should be noted that, this approach will consider a fixed value of [𝐻𝑡ℎ(𝑆𝑖)]4, and it will be equal to 0. Choosing
[𝐻𝑡ℎ(𝑆𝑖)]4 = 0 means that the proposed approach will consider any change in [𝐻𝑡ℎ(𝑆𝑖)]4 i.e. consider any change
in the captured image, even if the change was so small.

The calculation of 𝑉 𝑠
𝑡 (𝑆𝑖) is performed by the function 𝑠𝑖𝑔 𝑣𝑎𝑟 𝑣𝑒𝑐𝑡𝑜𝑟() as shown in Algorithm 1.

Algorithm 1. Function 𝑠𝑖𝑔 𝑣𝑎𝑟 𝑣𝑒𝑐𝑡𝑜𝑟().
1: for (𝑗 = 1 to 𝑗 = 4) do
2: if ([𝑉 𝑟

𝑡 (𝑆𝑖)]𝑗 ≤ [𝐻𝑡ℎ(𝑆𝑖)]𝑗) then
3: [𝑉 𝑠

𝑡 (𝑆𝑖)]𝑗 = 0
4: else
5: [𝑉 𝑠

𝑡 (𝑆𝑖)]𝑗 = [𝑉 𝑟
𝑡 (𝑆𝑖)]𝑗 − [𝐻𝑡ℎ(𝑆𝑖)]𝑗

6: end if
7: [𝑉 𝑠

𝑡 (𝑆𝑖)]5 = 𝑂𝑏;
8: [𝑉 𝑠

𝑡 (𝑆𝑖)]6 = 𝐴𝑛;
9: [𝑉 𝑠

𝑡 (𝑆𝑖)]7 = 𝑇𝑢;
10: [𝑉 𝑠

𝑡 (𝑆𝑖)]8 = 𝑆𝑑;
11: end for

To obtain the values of the variables 𝑂𝑏, 𝐴𝑛, 𝑇𝑢 and 𝑆𝑑, the sensor sends an image to the control unit, then
the control unit executes 𝐼𝑚𝑎𝑔𝑒𝑃𝑟𝑜𝑐() based on image processing techniques, 𝐼𝑚𝑎𝑔𝑒𝑃𝑟𝑜𝑐() will calculate the
variation between the stored 𝐻0(𝑆𝑖) values and the received 𝐻𝑡(𝑆𝑖) new values. The result of 𝐼𝑚𝑎𝑔𝑒𝑃𝑟𝑜𝑐() is
the new deviated values of the variables 𝑂𝑏, 𝐴𝑛, 𝑇𝑢 and 𝑆𝑑.

Example 3.2. The same values of 𝐻0(𝑆4) and 𝐻𝑡(𝑆4) given in Example 3.1, will be used in this example: In
𝐻0(𝑆4) the temperature was 32. But in 𝐻𝑡(𝑆4) = 34. The threshold of [𝐻𝑡ℎ(𝑆4)]1 = 8. Applying the function
𝑠𝑖𝑔 𝑣𝑎𝑟 𝑣𝑒𝑐𝑡𝑜𝑟() will have [𝑉 𝑠

𝑡 (𝑆4)]1 = 0.

This work considers only the significant variation vector, for all data readings. For every time 𝑡 values with
significant values of 𝑉 𝑠

𝑡 (𝑆𝑖) will be stored in DC table as a (Received Data) in the database. Figure 1 shows the
process from the stage of sending the sensor’s data to the stage of storing it in the database.

REAL TIME READ-FREQUENCY OPTIMIZATION FOR RMS 2727

Figure 1. 𝑉 𝑠
𝑡 (𝑆𝑖) storage.

4. Formulating optimization problem

The variations of all 𝑉 𝑠
𝑡 (𝑆𝑖) values stored in the DC, will be checked by the control unit. The system is

expected to be free of problems when the variations value is 0 and the control unit has no processes to perform.
However, if any of the elements in 𝑉 𝑠

𝑡 (𝑆𝑖) has a value greater than 0; the control unit will begin to produce the
proper instructions required to handle any problem that is specified by the values of 𝑉 𝑠

𝑡 (𝑆𝑖). These instructions
will be denoted by 𝐼𝑖, where 𝑖 is an integer and 𝐼𝑖 can be as:

– 𝐼1: send SMS to the monitoring administrator.
– 𝐼2: send a voice alert to the driver of train.
– 𝐼3: call the maintenance service.
– 𝐼4: call the fireman.
– 𝐼5: call electricity service.
– 𝐼6: call police.
– 𝐼7: execute a special program of image processing to detect the seriousness of an obstacle (in the case of

obstacles).
– 𝐼8: execute a special program of image processing to detect the seriousness of animal detection (in the case

of animal).
– 𝐼9: execute a special program of image processing to detect the seriousness of turnouts (in the case of railway

turnouts).
– 𝐼10: execute a special program of image processing to detect the seriousness of sand (in the case of sand).

For each instruction 𝐼𝑖 there is a corresponding processing time denoted by 𝑝𝑟𝑐𝑖. The monitoring system will
execute one or more set of the predefined instructions for all non-null elements of vector 𝑉 𝑠

𝑡 (𝑆𝑖). The monitoring
system utilizes the corresponding stored data to generate in advance a suitable set of instructions that suits each
variable variation. For example, for sensor 𝑆𝑖, if the received data 𝑉 𝑠

𝑡 (𝑆𝑖) requires the attention of the processes
𝐼3, 𝐼6 and 𝐼7 then the needed processing time to run the selected instructions is given as 𝑝𝑖 = 𝑝𝑟𝑐3 +𝑝𝑟𝑐6 +𝑝𝑟𝑐7.

As shown in Figure 3, 𝑁𝑟𝑑 is the total number of the data that are sent by all sensors from 𝑡𝑠 to 𝑡𝑎. In this
work, data sent by (𝑆𝑖) at time 𝑡𝑗 are grouped in the same time slot SD(𝑗). Where:

– 𝑗 is the index that represents data sending frequency for all sensors, 𝑗 ∈ {1, · · · , 𝑁𝑟𝑑}.
– SD(𝑗) the period related to 𝑗.
– 𝑝𝑗

𝑖 all instructions processing time that are defined by the system and related to sensor 𝑖 at period SD(𝑗).

Figure 2 presents an illustration of the above process.

2728 M. JEMMALI ET AL.

Figure 2. The total number of saved data in DC table from 𝑡𝑠 to 𝑡𝑎 is 𝑁𝑟𝑑.

Example 4.1. Assume that we have at SD(3), 𝑉 𝑠
𝑡 (𝑆4) = (1, 0, 0, 3, 1, 1, 0, 1). 𝑇𝑒 = [𝑉 𝑠

𝑡 (𝑆4)]1 = 1 i.e. indicates
a sudden high increase in temperature, the system should signal fire-fighters, this process is linked with the
instruction 𝐼4. For 𝑊𝑖 = [𝑉 𝑠

𝑡 (𝑆4)]4 = 3 an indication high risk of wind speed, the system must interfere by
sending SMS to the monitoring administrator and alert the train driver, this process is linked to instructions 𝐼1

and 𝐼2. For 𝑂𝑏 = [𝑉 𝑠
𝑡 (𝑆4)]5 = 1, an indication of obstacle detection on the railway track in the position 𝑋(𝑆4),

this process is linked with instructions 𝐼1, 𝐼3 and 𝐼7. For 𝐴𝑛 = [𝑉 𝑠
𝑡 (𝑆4)]6 = 1, an animal detected on the railway

track in the position 𝑋(𝑆4), this process is linked with instructions 𝐼1, 𝐼3 and 𝐼8. For 𝑆𝑑 = [𝑉 𝑠
𝑡 (𝑆4)]8 = 1, an

indication that there is serious amount of sand on the railway track, the system responds by calling maintenance
section, which is related to instructions 𝐼3 and 𝐼10.

The total processing time at time 𝑡 is: 𝑝3
4 = 𝑝𝑟𝑐4 + 𝑝𝑟𝑐1 + 𝑝𝑟𝑐2 + 𝑝𝑟𝑐1 + 𝑝𝑟𝑐3 + 𝑝𝑟𝑐7 + 𝑝𝑟𝑐1 + 𝑝𝑟𝑐3 + 𝑝𝑟𝑐8 +

𝑝𝑟𝑐3 + 𝑝𝑟𝑐10.

Remark 4.2. For each sensor 𝑆𝑖, at period SD(𝑗), the system will group all the called instructions then
calculate the total processing time. The grouped instructions will be replaced by a single process denoted by
𝑃 𝑗

𝑖 with a processing time given by 𝑝𝑗
𝑖 . In Example 4.1, time calculations are performed for one sensor 𝑆4. Now,

suppose that there were 3 other sensors that have values in the vector 𝑉 𝑠
𝑡 (𝑆𝑖) i.e. the system will execute several

processes in the same period, a process for each sensor with a total of 4 processes each of them has its own
processing time 𝑝𝑗

𝑖 .

The railway system has to perform all the processes of the previous period SD(𝑗 − 1) to retrieve data from
the DC table to execute the latter processes SD(𝑗). The required time to complete the execution of all assigned
processes 𝑛SD(𝑗) of the period SD(𝑗) is given by 𝐶𝑗

max. To calculate 𝐶𝑗
max, we start by 𝑗 = 1 until SD(𝑗) = SDmax,

which is the last period before the end of the trip or the train arrival. The main purpose here is to increase the
rate of the reading frequency from the DC table.

Proposition 4.3. Maximizing read-frequency is equivalent to minimizing 𝐶𝑗
max at each period SD(𝑗).

Proof. If the value of 𝐶𝑗
max at period SD(𝑗) was minimized then the minimization amount will be utilized to

read another data from the DC table, which in turn increases the number of read processes at period SD(𝑗).
So, for each 𝐶𝑗

max minimization, we will have an increase in the number of read processes thus an increase in
the read frequency rate. �

REAL TIME READ-FREQUENCY OPTIMIZATION FOR RMS 2729

Table 1. The 3 periods data sending instances.

𝑖 𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 𝑆6 𝑆7

SD(1) 50 20 40 25 0 0 0
SD(2) 0 0 0 25 10 80 0
SD(3) 0 0 0 0 0 0 30

Remark 4.4. The optimal solution in such problems is to read all the DC table saved data i.e. SDmax = 𝑁𝑟𝑑.
Such problems is known as scheduling problems, where the set of processes is represented by 𝑃 = {𝑃 𝑗

𝑖 , 1 ≤
𝑖 ≤ 𝑛𝑠, 1 ≤ 𝑗 ≤ SDmax} and the related processing times by 𝑝𝑗

𝑖 . For a fixed SD(𝑗) values the system handles a
scheduling problem. Thus, the proposed system has an SDmax scheduling problem that should be solved, this
problem type is known as blocks scheduling.

The control unit in the proposed approach has a number of identical processors, which allows to consider the
scheduling problem as an identical parallel processor scheduling problem. The objective of this problem is to
reduce the makespan 𝐶max, which is the time required to finish executing all given processes for the most loaded
processor. To complete the identical parallel processors scheduling problem, the proposed solution must address
this question: will the system be capable of reading data from DC table before the execution of all previous
processes? For the proposed system to handle this question, it must select between the following categories of
algorithms:

– Separated blocks category algorithm (SB): The case for which the system can’t read data from DC table
before it executes all processes of the current period.

– Blocks interference category algorithm (BI): The case for which the system can read data from DC table
before it completes the execution of all the processes of the current period.

Example 4.5. Let us discuss a case where the control unit has 3 processors, applying SB algorithm will produce
the following results 𝑡𝑎 = 10 h:10 min, 𝑡𝑠 = 10 h:13 min, 𝑓𝑟𝑒𝑞 = 1 data/min So, 𝑁𝑟𝑑 = (𝑡𝑎− 𝑡𝑠)×𝑓𝑟𝑞 = 3×1 = 3
So, for this case the best solution will be to have 3 data retrieval from 10 h:10 to 10 h:13 i.e. we can retrieve all
data from DC. Consider the below instances (time in seconds) (Table 1):

Figure 3 illustrates how the system schedules the given processes by applying SB algorithm, where it can be
noticed that SDmax = 2.

Example 4.6. To achieve a change in schedule 1 that was described in Example 4.5 in order to minimize 𝐶1
max.

Executing the enhanced algorithm will produce the results given in Figure 4.
Figure 4 shows that SDmax = 3. it is easy to obtain SDmax = SD(3) = 3. Thus, the used algorithm in this

example to schedule processes at period SD(1) in Figure 4 gains better results than the algorithm cited in
Figure 3. Besides that, the case of this example is the best one because SDmax = SD(3) = 3.

5. Scheduling problem

To solve the scheduling problem based on identical parallel processors problems, many heuristics will be
developed and adapted for the case when the period SD(𝑗) is fixed and the concerned problem is denoted by
𝑃𝑏𝑗 . The function 𝑅𝑒𝑡𝑟𝑖𝑣𝑎𝑙𝐷𝐶(SD(𝑗)) that will retrieve data from DC table based on the period SD(𝑗) is called
by the control unit, the called function will provide the number of the corresponding processes and the table
that has all the processes 𝑃 in the period SD(𝑗).

The control unit calls a function named 𝐻(𝐽, 𝑋) to execute the heuristic 𝐻 described by the algorithm
above, where 𝐻(𝐽, 𝑋) produces the appropriate schedule during the period SD(𝑗) for the set of processes 𝑃 and

2730 M. JEMMALI ET AL.

Figure 3. 3 processors scheduling with SDmax < 𝑁𝑟𝑑.

Figure 4. Best case with SDmax = 𝑁𝑟𝑑.

the number of related processes 𝑋. Execution of the function 𝐻(𝐽, 𝑋) provides processes assignment and the
corresponding 𝐶𝑗

max. Where 𝑃 (SD(𝑗)) is the set of processes 𝑃 𝑗
𝑖 that will be sent during the period SD(𝑗) and

will be scheduled to the available processors.
The following Section 5.1 is devoted to explaining the heuristics already cited in literature review regarding

parallel machines, which will be utilized in this paper, by the developed algorithms for the studied problem.

5.1. Parallel processors heuristics

Many parallel processors algorithms will be utilized to develop new heuristics that are expected to solve the
presented problem. The first algorithm is the longest processing time and is denoted by LPT. This algorithm
is based on sorting the given processes according to the non-increasing order of their processing time. The
complexity of the LPT algorithm is 𝑂(𝑛 log 𝑛). The second algorithm is the dispatching rule SPT, in this
algorithm the processes are sorted based on the non-decreasing order of their processing time. The complexity
of the SPT algorithm is 𝑂(𝑛 log 𝑛). While the third algorithm is the subset-sum based-heuristic (SS). The

REAL TIME READ-FREQUENCY OPTIMIZATION FOR RMS 2731

complexity of the SS algorithm is 𝑂(𝑛). The chosen approach for SS is the utilization of the greedy algorithm
to solve iteratively different subset-sum problems (SSP) that is denoted by 𝑃𝑏𝑙 with {𝑙 = 1, · · · , 𝑛𝑝𝑟 − 1} and
presented in equation (5.1). The processing time of the process 𝑝𝑠 is denoted by 𝑝𝑝𝑠.

𝑃𝑏𝑙 :

{︃
min

∑︀
𝑝𝑠∈𝑊𝑙

𝑝𝑝𝑠𝑦𝑝𝑠,

subject to
∑︀

𝑝𝑠∈𝑊𝑙
𝑝𝑝𝑠𝑦𝑝𝑠 ≥ 𝐿(𝑊𝑙, 𝑛𝑝𝑟 − 𝑙 + 1),

(5.1)

with 𝑦𝑝𝑠 ∈ {0, 1} for all 𝑝𝑠 ∈ 𝑊𝑙. Where 𝑊1 = 𝑃 and 𝑊𝑙+1 = 𝑊𝑙 ∖ 𝑃𝑠𝑙 where 𝑃𝑠𝑙 is the returned processes
when applying the subset-sum algorithm for 𝑃𝑏𝑙 and where 𝑙 = {1, 2, · · · , 𝑛𝑝𝑟 − 1}. 𝐿(𝑆, 𝑙) is a lower bound of
the problem with a resulted makespan for the instance that is defined by 𝑙 ≤ 𝑛𝑝𝑟 processors and a subset of
processes 𝑊 ⊂ 𝑃 . As a result, the system will continue assigning processes to the first processor until reaching 𝐿
on 𝑃𝑏1. The remaining processes will be distributed over the rest of the available processors, this will generate
the second problem 𝑃𝑏2 that will be solved by the new SSP until the limit 𝐿 is reached and so on [19]. A
pseudo-polynomial based on dynamic programming algorithm detailed in [39] is used to solve the subset sum
problem.

The heuristic multi-start subset-sum (MSS) described in [19] will be derived based on solving the 𝑃𝑏𝑗 problem.
The MSS algorithm can be explained as follows. As shown in [19] the 𝑃2||𝐶max will be reformulated as a subset-
sum problem. Based on this proposition, a multi-start local search method will be implemented, this method
requires a repetitive solving of a two-processor problem. Given a feasible schedule 𝜎 and assuming that all
processors are indexed such that 𝐶1 ≤, · · · ,≤ 𝐶𝑛𝑝𝑟

. Define a binary variable 𝑦𝑝𝑠 with a value 1 if the process
𝑝𝑠 is assigned to 𝑃𝑟1, and a value 0 otherwise. Then, 𝑃2||𝐶max will be interactively solved by applying SSP.

The idea developed in (MSS) will be used in the multi-start knapsack heuristic (MSK), a difference of how the
problem is being solved in each iteration. MSK uses knapsack problem (KP) to solve the given problem for each
iteration rather than using the SSP [18]. Since the KP problem can be solved efficiently in pseudo-polynomial
time. The complexity of the MSS algorithm is 𝑂(𝑛2). The complexity of the knapsack 𝑂(𝑛𝑊) where, 𝑛 is the
number of items and 𝑊 is the capacity of knapsack. The MSK heuristic utilize the knapsack problem with multi
restart.

In this paper, we propose five categories of algorithms. Each category utilizes the parallel machines heuristics
presented earlier. The first category is the separated blocks algorithms. The second one is the reverse-interference
based algorithms. The third category is the fictitious-processes based algorithms. The fictitious-processes with
the MSS heuristic for each iteration will represent the fourth category. The fifth category is the interference
processes-blocks based algorithms. The first category is presented by the separated blocks category, while the
categories 2, 3, 4 and 5 are presented by the blocks interference category.

5.2. Separated blocks category algorithm

For the separated blocks algorithm (SB), the constraint to consider when retrieving data from DC table is
the following: “For the current period, the system can’t retrieve data from DC table before the execution of all
processes” as explained in Example 4.1 above. Calculate the corresponding 𝐶𝑗

max for each period SD(𝑗), where
the total of 𝐶max is the sum of all 𝐶𝑗

max. So, 𝐶max =
∑︀SDmax

𝑗=1 𝐶𝑗
max.

In this algorithm current time is returned by the function 𝑡𝑖𝑚𝑒𝑟() and the algorithm SB is structured as
follows:

The disadvantage of the SB is the lose of opportunity to assign processes of the period SD(𝑗 + 1) to the
available time slot in the period SD(𝑗). This is because of the data retrieval constraint, which prevents reading
from the DC table before processing all processes in SD(𝑗).

In this paper, 𝐻() represents one of the parallel processors algorithms described in the Section 5.1 and
𝐻(𝑃,𝑋) is the related result, which is obtained by the heuristic 𝐻 for the processes set 𝑃 and the number of
processes 𝑋.

Based on the five presented algorithms in Section 5.1, Algorithm 2 can be used by replacing 𝐻(𝐽, 𝑋) by one
of the parallel processors algorithms presented in Section 5.1. Thus, we denoted by 𝑈SB

LPT, 𝑈SB
SPT, 𝑈SB

SS , 𝑈SB
MSS and

2732 M. JEMMALI ET AL.

Algorithm 2. Separated blocks algorithm.
1: Initialize 𝑗 = 1; 𝑡 = 0 ; 𝐶max = 0
2: while (SD(𝑗) ≤ 𝑁𝑟𝑑 and 𝑡 < 𝑡𝑎) do
3: Call 𝑅𝑒𝑡𝑟𝑖𝑣𝑎𝑙𝐷𝐶(SD(𝑗))
4: 𝑋 = 𝑛SD(𝑗)

5: Calculate 𝑃 (SD(𝑗))
6: 𝐶𝑗

max = 𝐻(𝑃, 𝑋).
7: 𝑗 + +.
8: 𝑡 = 𝑡𝑖𝑚𝑒𝑟().
9: end while

10: 𝐶max =
∑︀SDmax

𝑗=1 𝐶𝑗
max

11: Return 𝐶max.

𝑈SB
MSK the values of algorithm SB replacing the function 𝐻() by LPT, SPT, SS, MSS and MSK, respectively.

The complexity of the separated blocks category algorithm depends on the 𝐻(𝐽, 𝑋).

5.3. Blocks interference category algorithm

For the blocks interference algorithm (BI), the constraint for data retrieval from the DC table is the following:
“The system can retrieve data from DC table before the execution of all processes at the current period”. This
means, for the first block we try to utilize the SD(1) processors availability. After assignment of processes in
SD(2) we use SD(2) processors availability by processes given in SD(3) and so on. The total 𝐶max is calculated
after scheduling of all processes.

The problem here, is how to utilize the processors availability between blocks SD(𝑗) and SD(𝑗 + 1).

Remark 5.1. For each block or period SD(𝑗) we apply a heuristic 𝐻1 to schedule processes at this period. To
merge two blocks SD(𝑗) and SD(𝑗 + 1) we must apply a method that ensures merging. The fictitious-processes
based algorithm given in Section 5.3.2 is one of the methods that ensure merging. For this latter algorithm, we
have to choose one of heuristics 𝐻2 that can be applied for merging. The heuristics applied for each block and
the heuristics applied to merge blocks are not necessary the same. The question here is: to have a best solution,
what is the best choice for 𝐻1 and the best choice for 𝐻2?

This study presents algorithms that are related to the blocks interference algorithm (BI). The complexity of
the blocks interference category algorithm depends on the choice of 𝐻1 and 𝐻2.

5.3.1. Reverse-interference based algorithm

The procedures that are used in the reverse-interference based algorithm is described next. The completion
time of the processor 𝑝𝑟 in the period SD(𝑗) is denoted by 𝐶𝑗

𝑝𝑟. The given processes are sent to the procedure
𝑁𝑜𝑛𝐷𝑒𝑐𝑟(𝑡𝑎𝑏) to be sorted by list 𝑡𝑎𝑏 in the non-decreasing order. However, 𝑁𝑜𝑛𝐼𝑛𝑐𝑟(𝑡𝑎𝑏) is the procedure
that arranges the given processes in the list 𝑡𝑎𝑏 in the non-increasing order. The reverse-interference algorithm
(RI) is described in Algorithm 3.

Once we started the execution of the processes in the period SD(𝑗) and at the moment when the data of
the period SD(𝑗 + 1) arrives, we assign the processes of SD(𝑗 + 1) according to the remaining of processors
availability, after the period SD(𝑗). The availability will be calculated based on fixing the time 𝐶𝑗

𝑝𝑟 for each
processor 𝑝𝑟 related to period SD(𝑗). So, the control unit supposes that all the processes of SD(𝑗) period are
scheduled, then the control unit takes advantage of the processors availability during the period SD(𝑗). To
utilize the availability in each period the control unit takes some processes of SD(𝑗 + 1) and allocates it to the
available periods of SD(𝑗). As shown in Figure 7 cited in Example 4.6 when the data of process 7 arrives, the
control unit places this process on processor 3 during the period SD(2) before 𝐶2

max.

REAL TIME READ-FREQUENCY OPTIMIZATION FOR RMS 2733

Algorithm 3. Reverse-interference algorithm.
1: Initialize 𝑗 = 1; 𝑡 = 0 ; 𝐶max = 0
2: while (SD(𝑗) ≤ SDmax and 𝑡 < 𝑡𝑎) do
3: Call 𝑅𝑒𝑡𝑟𝑖𝑣𝑎𝑙𝐷𝐶(SD(𝑗))
4: 𝑋 = 𝑛SD(𝑗)

5: Calculate 𝑃 (SD(𝑗))
6: Calculate 𝐶𝑗

𝑝𝑟 ∀𝑝𝑟{1 ≤ 𝑝𝑟 ≤ 𝑛𝑝𝑟} applying 𝐻(𝑃, 𝑋).
7: for (𝑝𝑟 = 1 to 𝑝𝑟 = 𝑛𝑝𝑟) do
8: 𝑡𝑎𝑏2[𝑝𝑟] = 𝐶𝑗

𝑝𝑟.
9: if (𝑗 == 1) then

10: 𝑡𝑎𝑏1[𝑝𝑟] = 𝑡𝑎𝑏2[𝑝𝑟];
11: end if
12: end for
13: if (𝑗 ≥ 2) then
14: 𝑁𝑜𝑛𝐷𝑒𝑐𝑟(𝑡𝑎𝑏1)
15: 𝑁𝑜𝑛𝐼𝑛𝑐𝑟(𝑡𝑎𝑏2)
16: for (𝑝𝑟 = 1 to 𝑝𝑟 ≤ 𝑛𝑝𝑟) do
17: 𝑡𝑎𝑏1[𝑝𝑟] = 𝑡𝑎𝑏2[𝑝𝑟] + 𝑡𝑎𝑏1[𝑝𝑟];
18: end for
19: end if
20: 𝑗 + +.
21: 𝑡 = 𝑡𝑖𝑚𝑒𝑟().
22: end while
23: 𝐶max = max

1≤𝑝𝑟≤𝑛𝑝𝑟

𝑡𝑎𝑏1[𝑝𝑟]

24: Return 𝐶max

Table 2. Fictitious-processes.

𝑖 𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 𝑆6 𝑆7 𝑆8 𝑆9 𝑆10

SD(1) 100 20 40 40 0 0 0 0 0 0
SD(2) 0 0 0 0 10 20 10 10 10 15

For instruction 6 in Algorithm 3, we replace 𝐻(𝐽, 𝑋) by one of the parallel processors algorithms described
in Section 5.1. Thus, we denoted by 𝑈RI

LPT, 𝑈RI
SPT, 𝑈RI

SS , 𝑈RI
MSS and 𝑈RI

MSK the values returned by the Algorithm 3
replacing the function 𝐻(𝐽, 𝑋) by LPT, SPT, SS, MSS and MSK, respectively.

The complexity of the Reverse-interference based algorithm depends on the choice of 𝐻(𝐽, 𝑋).

5.3.2. Fictitious-processes based algorithm

For this algorithm, instead of making the reverse of the completion time between increasing and decreasing,
in order to enhance the final completion time, we apply a dispatching rule, which considers that all processes
are executed on one processor as one fictitious process. Indeed, for SD(1) we apply a 𝐻(𝑃,𝑋). For the second
period SD(2), we apply the same 𝐻(𝑃,𝑋). Now, the connection between SD(1) and SD(2) is as follows, for
SD(2) we assume that each completion time 𝐶2

𝑝𝑟 of each processor 𝑝𝑟 is considered as a fictitious process 𝑓𝑝2
𝑝𝑟.

Applying a dispatching rule to schedule all 𝑓𝑝2
𝑝𝑟 on processors while taken into consideration the period SD(1).

In general, for the period SD(𝑗) the fictitious processes denoted by 𝑓𝑝𝑗
𝑝𝑟 has the processing time 𝑝(𝑓𝑝)𝑗

𝑝𝑟. The
following example gives an illustration of the fictitious-processes constitution.

Example 5.2. Let 𝑛𝑠 = 10 and 𝑛𝑝𝑟 = 3. Assume that the details of the sending data are as shown in Table 2.
After applying a given heuristic to schedule processes in Table 2 to all processors, the results are given in

Figure 5.

2734 M. JEMMALI ET AL.

Figure 5. Fictitious-processes constitution.

From Figure 5, during the period SD(2) on processor 1, there are processes 5 and 6. These processes, will
be treated as one fictitious process 𝑓𝑝2

1. The sum of processing time of processes 5 and 6 will constitute the
processing time of 𝑝(𝑓𝑝)21. Therefore, 𝑝(𝑓𝑝)21 = 𝑝2

5 + 𝑝2
6 = 30. Applying the same method for processes 7 and 8

on processor 2, we have 𝑝(𝑓𝑝)22 = 20 and for processes 9 and 10 on processor 3 we have 𝑝(𝑓𝑝)23 = 25, (please
refer to Table 2, to check processes 5, 6, 7, 8 and 9 processing time).

Now, the processes 𝑓𝑝2
1, 𝑓𝑝2

2 and 𝑓𝑝2
3 will be scheduled on all processors, taken into account the processes

already assigned during SD(1) and the processing time 𝑝(𝑓𝑝)21, 𝑝(𝑓𝑝)22 and 𝑝(𝑓𝑝)23.
Applying LPT rule, 𝑓𝑝2

1 will be assigned to the most available processor in SD(1) which is processor 1. So,
the completion time on processor 1 will be 70. After that, the most available processor is processor 3, the
largest fictitious processes is 𝑓𝑝2

3. We schedule 𝑓𝑝2
3 on processor 3 and the completion time of processor 3 will

be 85. Next assign 𝑓𝑝2
2 to the most available processor which is processor 1 with minimum completion time of

70 comparing to processors 2 and 3 which have 100 and 85 as their completion time, respectively. Thus, the
completion time of processor 1 will be 90. At this stage the maximum completion time is 100 in processor 3.
Figure 6 illustrates the scheduling of fictitious-processes.

After constructing of fictitious-processes, scheduling of these processes will be performed by applying suitable
heuristics. Thus, we denoted by 𝑈FP

LPT, 𝑈FP
SPT, 𝑈FP

RL and 𝑈FP
IRL the values returned by fictitious-processes based

algorithms when applying LPT, SPT, RL and IRL, respectively. The RL is the randomized LPT and IRL is
the iterative randomized LPT.

The complexity of the fictitious-processes based algorithm depends on the choice of 𝐻(𝐽, 𝑋).

5.3.3. Fictitious-processes with multi-subset based algorithm

For this algorithm, the first step is to construct all fictitious processes, then schedule these processes by using
some of the proposed heuristics that were described in Section 5.3.2. The scheduling of these processes is the
manner that is used by 𝐻2 to merge two blocks SD(𝑗) and SD(𝑗 +1) described in Remark 5.1. For each block or
period SD(𝑗), we apply the heuristic MSS to schedule processes at each period. We denoted by 𝑈FPM

LPT , 𝑈FPM
SPT ,

𝑈FPM
RL and 𝑈FPM

IRL the values returned by fictitious-processes based algorithm when we apply LPT, SPT, RL and
IRL as 𝐻1. While MSS will be applied as 𝐻2.

The complexity of the fictitious-processes with multi-subset based algorithm depends on the choice of 𝐻1

and 𝐻2.

REAL TIME READ-FREQUENCY OPTIMIZATION FOR RMS 2735

Figure 6. Fictitious-processes scheduling.

5.3.4. Interference Processes-blocks based algorithm

For this heuristic, instead of constructing of the fictitious processes, to ensure connection between periods;
the system schedules processes of period SD(𝑗 + 1) with continuity of period SD(𝑗). This means, the system
schedules process by process of period SD(𝑗 + 1). Indeed, for the first period SD(1) we apply heuristic 𝐻1 and
for period SD(2), we apply the same heuristic, but we schedule process by process taking into account the
scheduling made in period SD(1). In other words, heuristic 𝐻1 selects the process to be scheduled on the most
available processor after finishing the scheduling of processes in period SD(𝑗).

We denoted by 𝑈 IPB
LPT, 𝑈 IPB

SPT, 𝑈 IPB
RL and 𝑈 IPB

IRL the values returned by interference processes-blocks based
algorithm when we apply LPT, SPT, RL and IRL, respectively.

The complexity of the interference Processes-blocks based algorithm depends on the choice of 𝐻1.

6. Sequencing-based train algorithm

This section presents the algorithm that describes the details of all running processes during a train trip,
from the starting point till the train arrives at its final destination. For that purpose, we construct a sensors
index, based on sensors positions {𝑋(𝑆1) < 𝑋(𝑆2) < · · · < 𝑋(𝑆𝑛𝑠)}. So the first sensor is the one nearest to
the train passage. If the sensor stimulates an attention request in the control unit, this means that the variation
value of vector 𝑉 𝑠

𝑡 (𝑆𝑖) is not null, for which the algorithm must run a function that is responsible of estimating
the needed time to complete the required intervention. This function is called 𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐(), the input of this
function is the location state of the considered sensor. while 𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒(𝑋(𝑆1)) returns the estimated time
of maintenance reserved to position 𝑋(𝑆1) related to sensor 1.

𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒(𝑋(𝑆1)) is the function that reads a file saved in the server and sent by the maintenance group,
this file specifies the time required to finish maintenance process in position 𝑋(𝑆𝑖) in real time. In this case,
when implementing the sequencing-based train algorithm in real time, we must consider this question, what
are the train options if it reaches the problem location before maintenance is finished? What instructions, the
control unit must execute to avoid latency or an accident? To answer these questions, the algorithm named:
sequencing-based train algorithm, was proposed. Figure 7 shows the train tracking example when an intervention
is required.

As Figure 7 shows, if maintenance time is greater than the time required for the train to arrive at the position
of the sensor with the problem; then there are two choices:

2736 M. JEMMALI ET AL.

Figure 7. Train tracking detection.

– Decrease the train speed and announce a trip delay.
– Stop the train for a fixed time and announce a trip delay.

The remaining time to arrive at a sensor location will be denoted by 𝑡𝑅 = 𝑡𝑆𝑖 − 𝑡 (in minutes), as shown in
Figure 7. If 𝑡𝑚 ≤ 𝑡𝑅 then the train can continue without any delay or any stopping. But if 𝑡𝑚 > 𝑡𝑅 the control
unit must send an alert to the driver, requesting a speed decreasing. The train delay time will be: 𝑡𝑑 = 𝑡𝑚− 𝑡𝑅.
The distance between the position of the train at time 𝑡 and the position of sensor indexed 𝑖 will be denoted by
𝑑𝑖𝑠𝑡

𝑖 and will be calculated as: 𝑑𝑖𝑠𝑡𝑡𝑖 = 𝑡𝑅×𝑆𝑝(𝑡)
60 . While the new reduced speed that was proposed by the control

unit after the maintenance alert, will be denoted by 𝑆𝑝𝑒 where 𝑆𝑝𝑒 = 𝑑𝑖𝑠𝑡𝑡
𝑖×60

𝑡𝑚
. Which means the train must

travel with a speed (in worst case) 𝑆𝑝𝑒 to arrive at time 𝑡𝑚 with 𝑡𝑚 > 𝑡𝑅. In the case of a delay, the control
unit will activate a function that sends an alert to the driver with the following data (new speed, the modified
arrival time considering the delay), this function will be denoted by 𝐴𝑙𝑒𝑟𝑡𝐷𝑟𝑖𝑣𝑒𝑟(𝑆𝑝𝑒, 𝑡𝑑, 𝑡𝑎).

Based on the above analysis we propose the following heuristic:

7. Experimental results

This section presents the experimental results obtained by executing the implemented heuristics. The perfor-
mance of the lower and upper bounds assessment is achieved after the implementing the developed heuristics in
Microsoft Visual C++ (Version 2013). All experiments were executed on an Intel(R) Xeon(R) CPU E5-2687W
v4 @3.00 GHz and 64 GB RAM workstation that has windows 10 with 64 bits operating system.

7.1. Test instances

The used instances are based on the selection of 𝑛𝑠, 𝑛𝑝𝑟, 𝑀 and 𝐶𝑙𝑎𝑠𝑠. The selected values were as follows:
6 elements of 𝑛𝑠 ∈ {3, 5, 10, 20, 50, 100} and 4 elements of 𝑛𝑝𝑟 ∈ {2, 4, 6, 8}.

For a fixed number of sensors 𝑛𝑠, the total number of received data 𝑁𝑟𝑑 is randomized and does not depend
on the number of the used sensors. However, the number of the received data in DC table is dependent on the
number of sensors. For example, if we have 5 sensors, we can’t have 𝑁𝑟𝑑 = 12 or 𝑁𝑟𝑑 = 13 because all sensors
send in the same time different data. So, the number of received data in DC table is a multiple of the number
of sensors. Thus, we have 𝑀 times of 𝑛𝑠 data received.

Therefore: 𝑁𝑟𝑑 = 𝑛𝑠 ×𝑀 , where 𝑀 is a multiplicator positive integer. 𝑀 ∈ {2, 5, 10, 25, 50}: 5 elements. So,
for example if 𝑛𝑠 = 5, 𝑁𝑟𝑑 can be a multiple of 5 and 𝑀 as this set: 𝑁𝑟𝑑 = {10, 25, 50, 125, 250}. So, for 𝑛𝑠 = 5
the number of received data can be up to 250, this result is obtained when choosing multiplicator to be 50. So,
the problem is complicated with large number of received data.

We generate 8 types of class instances of different processing times. These classes are based on the uniform
distribution and normal distribution. The uniform distribution is denoted by 𝑈 [𝑥, 𝑦] which gives a random
number between 𝑥 and 𝑦. While, the normal distribution is denoted by 𝑁 [𝑥, 𝑦] with mean 𝑥 and standard
deviation 𝑦.

REAL TIME READ-FREQUENCY OPTIMIZATION FOR RMS 2737

Algorithm 4. Sequencing-based train heuristic.
1: Initialize 𝑗 = 1; 𝑡 = 0;
2: while (𝑡 < 𝑡SD(𝑗)) do
3: 𝑡 = 𝑡𝑖𝑚𝑒𝑟()
4: 𝑅𝑒𝑡𝑟𝑖𝑣𝑎𝑙𝐷𝐶(SD(𝑗))
5: 𝑆𝑃𝐽𝐼(SD(𝑗))
6: while (𝐽(SD(𝑗)) ̸= ∅) do
7: Alert to maintenance in 𝑋(𝑆𝑖)
8: 𝑡𝑚 = 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒(𝑋(𝑆𝑖))
9: 𝑡 = 𝑡𝑖𝑚𝑒𝑟()

10: 𝑡𝑅 = 𝑡(𝑆𝑖)− 𝑡
11: if (𝑡𝑚 < 𝑡𝑅) then
12: continue;
13: else
14: 𝑆𝑝𝑒 = 𝑡𝑅×𝑆𝑝(𝑡)

𝑡𝑚

15: 𝑡𝑑 = 𝑡𝑚 − 𝑡𝑅

16: 𝑡𝑎 = 𝑡𝑎 + 𝑡𝑑

17: 𝐴𝑙𝑒𝑟𝑡𝐷𝑟𝑖𝑣𝑒𝑟(𝑆𝑝𝑒, 𝑡𝑑, 𝑡𝑎)
18: end if
19: end while
20: 𝑗 + +;
21: end while
22: if (SD(𝑗) ≤ 𝑁𝑟𝑑 and 𝑡 < 𝑡𝑎) then
23: go to Step 2
24: else
25: STOP
26: end if

The processing time in this paper is generated as follows:

– 𝐶𝑙𝑎𝑠𝑠 A, the 𝑝𝑗
𝑖 is in 𝑈 [1, 5].

– 𝐶𝑙𝑎𝑠𝑠 B, the 𝑝𝑗
𝑖 is in 𝑈 [1, 10].

– 𝐶𝑙𝑎𝑠𝑠 C, the 𝑝𝑗
𝑖 is in 𝑈 [5, 10].

– 𝐶𝑙𝑎𝑠𝑠 D, the 𝑝𝑗
𝑖 is in 𝑈 [10, 20].

– 𝐶𝑙𝑎𝑠𝑠 E, the 𝑝𝑗
𝑖 is in 𝑈 [10, 30].

– 𝐶𝑙𝑎𝑠𝑠 F, the 𝑝𝑗
𝑖 is in 𝑈 [1, 20].

– 𝐶𝑙𝑎𝑠𝑠 G, the 𝑝𝑗
𝑖 is in 𝑁 [5, 2].

– 𝐶𝑙𝑎𝑠𝑠 H, the 𝑝𝑗
𝑖 is in 𝑁 [5, 4].

For the variables (𝑛𝑠, 𝑀, 𝑛𝑝𝑟, 𝑐𝑙𝑎𝑠𝑠), where 𝑛𝑠 represents the number of sensors, 𝑀 is the related multiplicator,
𝑛𝑝𝑟 is the number of processors and 𝑐𝑙𝑎𝑠𝑠 is the type of the generated processing time. The generated instances
of processes were 10.

This type of generation resulted in a total number of instances equals to 6 × 5 × 4 × 8 × 10 = 9600. The
number of sent data is 𝑛𝑠 ×𝑀 . For example, if 𝑛𝑠 = 3 and 𝑀 = 7, there are 21 sent data which addresses the
value of 𝑁𝑟𝑑.

7.2. Evaluation metrics

To assess the performance of the developed heuristics, several metrics are defined and presented as described
next:

– 𝐴* is the minimum value returned after the execution of all algorithms. 𝐴 is the studied heuristic.
– GAP = 𝐴−𝐴*

𝐴* × 100.

2738 M. JEMMALI ET AL.

Table 3. Results of the separated blocks category algorithms.

𝑈SB
LPT 𝑈SB

SPT 𝑈SB
SS 𝑈SB

MSS 𝑈SB
MSK

𝑃𝑒𝑟𝑐 38.3% 21.3% 51.5% 69.9% 98.4%
𝑇 𝑖𝑚𝑒 0.005 0.005 0.023 1.687 749.628

Notes. The best results are given in bold.

Table 4. Behavior of GAP according to 𝑛𝑠 for all SB algorithms.

𝑛𝑠 𝑈SB
LPT 𝑈SB

SPT 𝑈SB
SS 𝑈SB

MSS 𝑈SB
MSK

3 0.00 1.54 0.00 0.00 0.00
5 0.26 3.76 0.00 0.00 0.00
10 0.73 10.29 0.03 0.00 0.00
20 1.87 14.43 0.20 0.01 0.00
50 3.76 12.62 2.27 2.19 0.00
100 4.40 9.71 3.57 3.55 0.00

Notes. The best results are given in bold.

Table 5. Behavior of GAP according to 𝑛𝑝𝑟 for all SB algorithms.

𝑛𝑝𝑟 𝑈SB
LPT 𝑈SB

SPT 𝑈SB
SS 𝑈SB

MSS 𝑈SB
MSK

2 1.75 6.91 1.06 1.05 0.00
4 1.89 9.08 1.01 0.96 0.00
6 1.84 9.42 0.99 0.92 0.00
8 1.86 9.50 0.99 0.91 0.00

Notes. The best results are given in bold.

– 𝑃𝑒𝑟𝑐 is the percentage of instances when 𝐴* = 𝐴 over a specific number of instances.
– 𝑇𝑖𝑚𝑒 is the average running time for a fixed number of instances.

Our experimental study is based on the comparison between the developed algorithms for each category.
After that we consider the best heuristic in each category and compare between them. Finally we present the
comparison between all algorithms.

7.3. Separated-blocks category comparison

In this category of algorithms, five heuristics were developed as was described in Section 5.2. The results of
the separated blocks category algorithms are presented in Table 3. From this table we can observe that 𝑈SB

MSK is
the best heuristic in the separated-blocks category in 98.4% of the cases. However, the average running time of
this heuristic is very high around 749.628 s. The heuristic that has the minimum percentage is 𝑈SB

SPT. Whereas
𝑈SB

MSS heuristic has the second best case value of 69.9%; if we consider the running time which is only 1.687 s or
(0.0022) of the time consumed by 𝑈SB

MSK heuristic.
In Table 4, the behavior of GAP according to SB heuristics is presented, as it can be seen from the shown

results, 𝑈SB
MSK heuristic has the best results with (0.00) GAP for all 𝑛𝑠 values, while the 𝑈SB

SPT has the worst
performance at 𝑛𝑠 = 20. The GAP value less than 0.01 was obtained by heuristics 𝑈SB

LPT at 𝑛𝑠 = 3, 𝑈SB
SS at

𝑛𝑠 = {3, 5}, 𝑈SB
MSS at 𝑛𝑠 = {3, 5, 10} and 𝑈SB

MSK for all 𝑛𝑠 values.
The behavior of GAP according to the number of processers for all SB algorithms is given in Table 5, where

𝑈SB
MSK heuristic has the best results for all 𝑛𝑝𝑟 values, while the 𝑈SB

SPT has the worst performance at 𝑛𝑝𝑟 = 6.
The GAP value less than 0.01 was obtained only by 𝑈SB

MSK heuristic for all 𝑛𝑝𝑟 values.

REAL TIME READ-FREQUENCY OPTIMIZATION FOR RMS 2739

Table 6. Details for SB category algorithms.

𝑛𝑠 𝑛𝑝𝑟 𝑈SB
LPT 𝑈SB

SPT 𝑈SB
SS 𝑈SB

MSS 𝑈SB
MSK

3

2 0.00 6.16 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.00
6 0.00 0.00 0.00 0.00 0.00
8 0.00 0.00 0.00 0.00 0.00

5

2 9.34 1.04 0.00 0.00 0.00
4 0.00 5.72 0.00 0.00 0.00
6 0.00 0.00 0.00 0.00 0.00
8 0.00 0.00 0.00 0.00 0.00

10

2 1.48 8.94 0.00 0.00 0.00
4 1.41 15.00 0.12 0.00 0.00
6 0.01 11.37 0.00 0.00 0.00
8 0.00 5.85 0.00 0.00 0.00

20

2 1.03 6.12 0.03 0.02 0.01
4 2.26 14.71 0.15 0.01 0.00
6 2.47 18.66 0.34 0.00 0.00
8 1.73 18.24 0.29 0.00 0.00

50

2 2.92 5.48 2.49 2.48 0.00
4 3.45 10.72 2.22 2.18 0.00
6 4.06 15.30 2.15 2.06 0.00
8 4.60 19.00 2.23 2.04 0.00

100

2 4.03 5.44 3.82 3.82 0.00
4 4.21 8.34 3.58 3.57 0.00
6 4.50 11.18 3.46 3.43 0.00
8 4.86 13.90 3.44 3.39 0.00

Notes. The best results are given in bold.

Table 7. Results for the reverse-interference category algorithms.

𝑈RI
LPT 𝑈RI

SPT 𝑈RI
SS 𝑈RI

MSS 𝑈RI
MSK

𝑃𝑒𝑟𝑐 32.9% 31.0% 84.2% 34.5% 34.5%
𝑇 𝑖𝑚𝑒 0.008 0.008 0.034 2.876 740.635

Notes. The best results are given in bold.

The results of all SB category algorithms are presented in Table 6, for comparison purposes and for more
details. The worst GAP values were obtained by heuristics 𝑈SB

SPT at 𝑛𝑠 = 50 and 𝑛𝑝𝑟 = 8, 𝑈SB
LPT at 𝑛𝑠 = 5 and

𝑛𝑝𝑟 = 2, 𝑈SB
SS at 𝑛𝑠 = 100 and 𝑛𝑝𝑟 = 2 and 𝑈SB

MSS at 𝑛𝑠 = 100 and 𝑛𝑝𝑟 = 2. While all GAP values for 𝑈SB
MSK

heuristic were less than 0.01 for all 𝑛𝑠 and 𝑛𝑝𝑟 values except at 𝑛𝑠 = 20 and 𝑛𝑝𝑟 = 2 the GAP value was 0.01.

7.4. Reverse-interference category comparison

For this category of algorithms, five heuristics were developed as described in Section 5.3.1. The results of
the reverse-interference category algorithms are shown in Table 7. In this table it can be noticed that 𝑈RI

SS is the
best heuristic in the reverse-interference category with 84.2% cases. However, the average running time of this
heuristic is acceptable around 0.034 s. The heuristic that has the minimum percentage is 𝑈RI

SPT. It is worthy to
note that, MSK is the best heuristic for the parallel machines, however for the RI algorithms the utilization of
SS becomes more efficient and produces better results for the studied problem.

In Table 8, the behavior of GAP according to 𝑛𝑠 is presented for all RI category algorithms, the given results
show that the 𝑈RI

SS heuristic has the best performance based on GAP values for all 𝑛𝑠 values, while 𝑈RI
SPT heuristic

2740 M. JEMMALI ET AL.

Table 8. Behavior of GAP according to 𝑛𝑠 for all RI algorithms.

𝑛𝑠 𝑈RI
LPT 𝑈RI

SPT 𝑈RI
SS 𝑈RI

MSS 𝑈RI
MSK

3 0.26 0.32 0.26 0.26 0.26
5 0.88 1.52 0.21 0.84 0.84
10 3.44 5.18 0.10 3.05 3.05
20 3.39 4.37 0.02 2.93 2.92
50 0.98 1.40 0.01 0.88 0.88
100 0.37 0.57 0.00 0.34 0.34

Notes. The best results are given in bold.

Table 9. Details for RI category algorithms.

𝑛𝑝𝑟 𝑈RI
LPT 𝑈RI

SPT 𝑈RI
SS 𝑈RI

MSS 𝑈RI
MSK

2 0.35 0.46 0.35 0.35 0.35
4 1.55 2.27 0.04 1.37 1.36
6 2.01 2.79 0.01 1.79 1.78
8 2.31 3.38 0.00 2.03 2.03

Notes. The best results are given in bold.

has the worst performance for all 𝑛𝑠 values. 𝑈RI
SPT heuristic has the worst performance value at 𝑛𝑠 = 10. The

GAP values less than 0.01 was obtained by heuristic 𝑈RI
SS at 𝑛𝑠 = 100. The best GAP values of 0.26, 0.32,

0.00, 0.26 and 0.26 were obtained by heuristics 𝑈RI
LPT, 𝑈RI

SPT, 𝑈RI
SS , 𝑈RI

MSS and 𝑈RI
MSK at 𝑛𝑠 = 3 except for 𝑈RI

SS at
𝑛𝑠 = 100.

The behavior of GAP according to the number of processors for all RI algorithms is given in Table 9. In this
table 𝑈RI

SS heuristic has the best performance, while the 𝑈RI
SPT heuristic has the worst performance. Indeed, for

𝑈RI
SPT the best GAP value is 0.46 at 𝑛𝑝𝑟 = 2, the worst GAP value of 3.38 at 𝑛𝑝𝑟 = 8. For 𝑈RI

SS the best GAP
value is 0.00 at 𝑛𝑝𝑟 = 8, the worst GAP value of 0.35 at 𝑛𝑝𝑟 = 2.

For more details of the RI category algorithms, Table 10 shows all the obtained results. The worst GAP
values were obtained by heuristics 𝑈RI

LPT of 7.34 at 𝑛𝑠 = 20 and 𝑛𝑝𝑟 = 8, 𝑈RI
SPT of 9.37 at 𝑛𝑠 = 20 and 𝑛𝑝𝑟 = 8,

𝑈RI
SS of 1.03 at 𝑛𝑠 = 3 and 𝑛𝑝𝑟 = 2 and 𝑈RI

MSS of 6.31 at 𝑛𝑠 = 20 and 𝑛𝑝𝑟 = 8 and 𝑈RI
MSK of 6.31 at 𝑛𝑠 = 20 and

𝑛𝑝𝑟 = 8. Based on GAP values, the best performing heuristic was 𝑈RI
SS and its best GAP values were obtained

at 𝑛𝑠 = 3 and 𝑛𝑝𝑟 = {4, 6, 8}, 𝑛𝑠 = 5 and 𝑛𝑝𝑟 = {6, 8}, 𝑛𝑠 = 20 and 𝑛𝑝𝑟 = {6, 8}, 𝑛𝑠 = 50 and 𝑛𝑝𝑟 = {4, 6, 8},
𝑛𝑠 = 100 and 𝑛𝑝𝑟 = {4, 6, 8}.

7.5. Fictitious-processes category comparison

In this category of algorithms, four heuristics were developed as described in the Section 5.3.2. Table 11
shows the results for the fictitious-processes category algorithms. From this table it can be observed that 𝑈FP

LPT

has the best heuristic in the fictitious-processes category with 76.2% of cases, with a good average running time
around 0.005 s. The heuristic that has the minimum percentage is 𝑈FP

SPT.
In Table 12, we present the behavior of GAP according to 𝑛𝑠 for all FP category algorithms, based on the

shown results it is noticed that the performance of the given algorithms increases as the value of 𝑛𝑠 increases.
The heuristic 𝑈FP

LPT has the best performance results for all 𝑛𝑠 values, while the 𝑈FP
SPT has the worst performance.

The GAP value less than 0.01 was obtained by heuristics 𝑈FP
LPT at 𝑛𝑠 = {50, 100}, 𝑈FP

RL at 𝑛𝑠 = {50, 100} and
𝑈FP

IRL at 𝑛𝑠 = {50, 100}. It is worthy ti notice that the heuristics 𝑈FP
LPT, 𝑈FP

RL and 𝑈FP
IRL obtained their best GAP

values at 𝑛𝑠 = {50, 100}. While their worst GAP values at 𝑛𝑠 = 3.

REAL TIME READ-FREQUENCY OPTIMIZATION FOR RMS 2741

Table 10. Details for RI category algorithms.

𝑛𝑠 𝑛𝑝𝑟 𝑈RI
LPT 𝑈RI

SPT 𝑈RI
SS 𝑈RI

MSS 𝑈RI
MSK

3

2 1.03 1.27 1.03 1.03 1.03
4 0.00 0.00 0.00 0.00 0.00
6 0.00 0.00 0.00 0.00 0.00
8 0.00 0.00 0.00 0.00 0.00

5

2 0.69 0.89 0.69 0.72 0.72
4 2.85 5.19 0.15 2.62 2.62
6 0.00 0.00 0.00 0.00 0.00
8 0.00 0.00 0.00 0.00 0.00

10

2 0.26 0.36 0.26 0.28 0.28
4 4.03 5.24 0.06 3.39 3.39
6 5.92 8.52 0.06 5.37 5.36
8 3.55 6.60 0.01 3.18 3.18

20

2 0.08 0.15 0.08 0.07 0.07
4 1.69 2.18 0.01 1.51 1.50
6 4.44 5.76 0.00 3.83 3.82
8 7.34 9.37 0.00 6.31 6.30

50

2 0.02 0.04 0.02 0.01 0.01
4 0.51 0.72 0.00 0.46 0.46
6 1.21 1.75 0.00 1.09 1.09
8 2.17 3.08 0.00 1.96 1.96

100

2 0.01 0.01 0.01 0.00 0.00
4 0.22 0.31 0.00 0.20 0.20
6 0.46 0.71 0.00 0.43 0.43
8 0.80 1.24 0.00 0.74 0.73

Notes. The best results are given in bold.

Table 11. Results for the fictitious-processes category algorithm.

𝑈FP
LPT 𝑈FP

SPT 𝑈FP
RL 𝑈FP

IRL

𝑃𝑒𝑟𝑐 76.2% 14.6% 71.6% 71.3%
𝑇 𝑖𝑚𝑒 0.005 0.005 0.015 4.634

Notes. The best results are given in bold.

Table 12. Behavior of GAP according to 𝑛𝑠 for all FP category algorithms.

𝑛𝑠 𝑈FP
LPT 𝑈FP

SPT 𝑈FP
RL 𝑈FP

IRL

3 0.54 2.30 0.63 0.72
5 0.28 1.77 0.34 0.36
10 0.07 0.92 0.10 0.09
20 0.01 0.41 0.02 0.02
50 0.00 0.13 0.00 0.00
100 0.00 0.05 0.00 0.00

Notes. The best results are given in bold.

2742 M. JEMMALI ET AL.

Table 13. Behavior of GAP according to 𝑛𝑝𝑟 for all FP category algorithms.

𝑛𝑝𝑟 𝑈FP
LPT 𝑈FP

SPT 𝑈FP
RL 𝑈FP

IRL

2 0.13 0.76 0.18 0.15
4 0.18 1.01 0.21 0.24
6 0.17 1.00 0.19 0.24
8 0.12 0.96 0.14 0.16

Notes. The best results are given in bold.

Table 14. Details for FP category algorithms.

𝑛𝑠 𝑛𝑝𝑟 𝑈FP
LPT 𝑈FP

SPT 𝑈FP
RL 𝑈FP

IRL

3

2 0.57 2.25 0.72 0.62
4 0.63 2.59 0.80 0.90
6 0.57 2.30 0.62 0.90
8 0.37 2.06 0.40 0.45

5

2 0.18 1.41 0.26 0.22
4 0.35 1.91 0.37 0.44
6 0.35 1.93 0.40 0.46
8 0.22 1.82 0.31 0.33

10

2 0.05 0.56 0.06 0.06
4 0.06 0.95 0.09 0.08
6 0.07 1.07 0.11 0.08
8 0.10 1.09 0.12 0.14

20

2 0.01 0.25 0.01 0.02
4 0.01 0.40 0.02 0.01
6 0.01 0.47 0.02 0.02
8 0.02 0.51 0.03 0.03

50

2 0.00 0.07 0.00 0.00
4 0.00 0.13 0.00 0.00
6 0.00 0.16 0.00 0.00
8 0.00 0.18 0.00 0.00

100

2 0.00 0.02 0.00 0.00
4 0.00 0.05 0.00 0.00
6 0.00 0.06 0.00 0.00
8 0.00 0.07 0.00 0.00

Notes. The best results are given in bold.

The behavior of GAP according to the number of processers for all FP algorithms is given in Table 13.
Based on the given results, increasing the number of processors does not necessarily mean an increase in the
performance. For example, the GAP value for 𝑈FP

SPT heuristic was 0.76 at 𝑛𝑝𝑟 = 2 and increases up to 0.96 when
𝑛𝑝𝑟 = 8. While for 𝑈FP

LPT heuristic, the case was different as it can be seen from Table 13, the GAP values mostly
decrease while 𝑛𝑝𝑟 increases.

For more details of the FP category algorithms, Table 14 is presented.
The worst GAP values were obtained by heuristics 𝑈FP

LPT of 0.63 at 𝑛𝑠 = 3 and 𝑛𝑝𝑟 = 4, 𝑈FP
SPT of 2.59 at

𝑛𝑠 = 3 and 𝑛𝑝𝑟 = 4, 𝑈FP
RL of 0.80 at 𝑛𝑠 = 3 and 𝑛𝑝𝑟 = 4 and 𝑈FP

IRL of 0.90 at 𝑛𝑠 = 3 and 𝑛𝑝𝑟 = {4, 6}.
For all heuristics except for 𝑈FP

SPT, the best performance results were obtained at 𝑛𝑠 = 50 and 𝑛𝑝𝑟 = {2, 4, 6, 8},
𝑛𝑠 = 100 and 𝑛𝑝𝑟 = {2, 4, 6, 8}.

REAL TIME READ-FREQUENCY OPTIMIZATION FOR RMS 2743

Table 15. Results for the fictitious-processes with multi-subset category algorithms.

𝑈FPM
LPT 𝑈FPM

SPT 𝑈FPM
RL 𝑈FPM

IRL

𝑃𝑒𝑟𝑐 76.0% 19.0% 70.7% 70.9%
𝑇 𝑖𝑚𝑒 1.294 1.538 1.558 1.956

Notes. The best results are given in bold.

Table 16. Behavior of GAP according to 𝑛𝑠 for all FPM category algorithms.

𝑛𝑠 𝑈FPM
LPT 𝑈FPM

SPT 𝑈FPM
RL 𝑈FPM

IRL

3 0.53 2.21 0.68 0.69
5 0.28 1.55 0.36 0.32
10 0.08 0.66 0.10 0.09
20 0.02 0.23 0.03 0.03
50 0.00 0.05 0.00 0.00
100 0.00 0.02 0.00 0.00

Notes. The best results are given in bold.

Table 17. Behavior of GAP according to 𝑛𝑝𝑟 for all FPM category algorithms.

𝑛𝑝𝑟 𝑈FPM
LPT 𝑈FPM

SPT 𝑈FPM
RL 𝑈FPM

IRL

2 0.12 0.53 0.15 0.15
4 0.19 0.83 0.25 0.22
6 0.17 0.91 0.23 0.22
8 0.13 0.87 0.15 0.17

Notes. The best results are given in bold.

7.6. Fictitious-processes with multi-subset category comparison

In this category of algorithms, four heuristics were developed as described in the Section 5.3.3. Table 15
shows the results of the fictitious-processes with multi-subset category algorithms. From this table, it can be
observed that 𝑈FPM

LPT is the best heuristic in the fictitious-processes with multi-subset category in 76% of the
cases. However, the average running time of this heuristic is acceptable around 1.294 s. The heuristic that has
the minimum percentage is 𝑈FPM

SPT .
In Table 16, we present the behavior of GAP according to 𝑛𝑠 for all FPM category algorithms. Based on the

shown results it is noticed that the performance of the given algorithms increases as the value of 𝑛𝑠 increases
for all heuristics. Also, it is noticed that 𝑈FP

LPT, 𝑈FP
RL and 𝑈FP

IRL heuristics were more sensitive to 𝑛𝑠 values than
𝑈FP

SPT heuristics.
The behavior of GAP according to the number of processers for all FPM algorithms is given in Table 17.

Based on the given results, the best obtained results for all heuristics were obtained at 𝑛𝑝𝑟 = 2, increasing the
number of processors does not necessarily mean an increase in the performance.

For more details of the FPM category algorithms, Table 18 is presented. The worst GAP values were obtained
by heuristics 𝑈FPM

LPT of 0.67 at 𝑛𝑠 = 3 and 𝑛𝑝𝑟 = 4, 𝑈FPM
SPT of 2.63 at 𝑛𝑠 = 3 and 𝑛𝑝𝑟 = 4, 𝑈FPM

RL of 0.90 at 𝑛𝑠 = 3
and 𝑛𝑝𝑟 = 4 and 𝑈FPM

IRL of 0.85 at 𝑛𝑠 = 3 and 𝑛𝑝𝑟 = 4. For all heuristics except for 𝑈FP
SPT, the GAP value of 0.00

was obtained at 𝑛𝑠 = 50 and 𝑛𝑝𝑟 = {2, 4, 6, 8}, 𝑛𝑠 = 100 and 𝑛𝑝𝑟 = {2, 4, 6, 8}.

2744 M. JEMMALI ET AL.

Table 18. Details for the FPM category algorithms.

𝑛𝑠 𝑛𝑝𝑟 𝑈FPM
LPT 𝑈FPM

SPT 𝑈FPM
RL 𝑈FPM

IRL

3

2 0.51 1.84 0.59 0.63
4 0.67 2.63 0.90 0.85
6 0.55 2.28 0.75 0.73
8 0.40 2.08 0.49 0.54

5

2 0.15 0.90 0.22 0.18
4 0.36 1.51 0.47 0.35
6 0.37 1.94 0.49 0.42
8 0.24 1.85 0.25 0.32

10

2 0.04 0.29 0.06 0.06
4 0.09 0.59 0.09 0.09
6 0.10 0.86 0.14 0.12
8 0.09 0.89 0.13 0.10

20

2 0.01 0.09 0.01 0.01
4 0.02 0.20 0.02 0.03
6 0.02 0.29 0.03 0.03
8 0.04 0.33 0.05 0.05

50

2 0.00 0.02 0.00 0.00
4 0.00 0.04 0.00 0.00
6 0.00 0.06 0.00 0.00
8 0.00 0.08 0.00 0.00

100

2 0.00 0.01 0.00 0.00
4 0.00 0.02 0.00 0.00
6 0.00 0.02 0.00 0.00
8 0.00 0.02 0.00 0.00

Notes. The best results are given in bold.

Table 19. Results for the interference processes-blocks category algorithms.

𝑈 IPB
LPT 𝑈 IPB

SPT 𝑈 IPB
RL 𝑈 IPB

IRL

𝑃𝑒𝑟𝑐 79.2% 21.1% 76.6% 76.4%
𝑇 𝑖𝑚𝑒 0.006 0.005 0.014 4.250

Notes. The best results are given in bold.

7.7. Interference processes-blocks category comparison

In this category of algorithms, five heuristics were developed as described in the Section 5.3.4. Table 19 shows
the results for the interference processes-blocks category algorithms. From this table it can be observed that
𝑈 IPB

LPT is the best heuristic in the interference processes-blocks category in 79.2% of the cases. However, the
average running time of this heuristic is good around 0.006 s. The heuristic that has the minimum percentage
is 𝑈 IPB

SPT.

In Table 20, we present the behavior of GAP according to 𝑛𝑠 for all IPB category algorithms. As it can
be noticed from the given results, increasing 𝑛𝑠 values improves the values of all heuristics and that the 𝑈 IPB

SPT

heuristic was the least sensitive to the 𝑛𝑠 increase for the given problem.

The behavior of GAP according to the number of processers for all IPB algorithms is given in Table 21.
The given results showed that increasing the number of processors does not necessarily mean an increase in

REAL TIME READ-FREQUENCY OPTIMIZATION FOR RMS 2745

Table 20. Behavior of GAP according to 𝑛𝑠 for all IPB category algorithms.

𝑛𝑠 𝑈 IPB
LPT 𝑈 IPB

SPT 𝑈 IPB
RL 𝑈 IPB

IRL

3 0.49 2.02 0.61 0.60
5 0.27 1.44 0.35 0.34
10 0.07 0.55 0.07 0.08
20 0.02 0.17 0.02 0.02
50 0.00 0.03 0.00 0.00
100 0.00 0.01 0.00 0.00

Notes. The best results are given in bold.

Table 21. Behavior of GAP according to 𝑛𝑝𝑟 for all IPB category algorithms.

𝑛𝑝𝑟 𝑈 IPB
LPT 𝑈 IPB

SPT 𝑈 IPB
RL 𝑈 IPB

IRL

2 0.12 0.37 0.11 0.15
4 0.17 0.75 0.23 0.20
6 0.16 0.86 0.20 0.18
8 0.12 0.84 0.16 0.17

Notes. The best results are given in bold.

Table 22. Details for the IPB category algorithms.

𝑛𝑠 𝑛𝑝𝑟 𝑈 IPB
LPT 𝑈 IPB

SPT 𝑈 IPB
RL 𝑈 IPB

IRL

3

2 0.48 1.24 0.42 0.56
4 0.59 2.55 0.84 0.68
6 0.55 2.29 0.70 0.53
8 0.34 2.02 0.50 0.61

5

2 0.18 0.70 0.19 0.25
4 0.33 1.28 0.46 0.41
6 0.35 1.93 0.43 0.46
8 0.23 1.84 0.32 0.25

10

2 0.05 0.20 0.05 0.05
4 0.07 0.49 0.07 0.08
6 0.06 0.69 0.07 0.09
8 0.09 0.83 0.10 0.13

20

2 0.01 0.05 0.01 0.01
4 0.01 0.15 0.01 0.01
6 0.02 0.22 0.02 0.03
8 0.03 0.27 0.03 0.03

50

2 0.00 0.01 0.00 0.00
4 0.00 0.03 0.00 0.00
6 0.00 0.04 0.00 0.00
8 0.00 0.06 0.00 0.00

100

2 0.00 0.00 0.00 0.00
4 0.00 0.01 0.00 0.00
6 0.00 0.01 0.00 0.00
8 0.00 0.01 0.00 0.00

Notes. The best results are given in bold.

2746 M. JEMMALI ET AL.

Table 23. Best categories comparison.

𝑈SB
MSK 𝑈RI

SS 𝑈FP
LPT 𝑈FPM

LPT 𝑈 IPB
LPT

𝑃𝑒𝑟𝑐 10.9% 31.6% 47.6% 48.7% 47.9%
𝑇 𝑖𝑚𝑒 749.628 0.034 0.005 1.294 0.006

Notes. The best results are given in bold.

Table 24. Details for best categories comparison.

𝑛𝑠 𝑛𝑝𝑟 𝑈SB
MSK 𝑈RI

SS 𝑈FP
LPT 𝑈FPM

LPT 𝑈 IPB
LPT

3

2 32.22 3.15 0.41 0.41 0.49
4 126.96 22.79 0.07 0.07 0.07
6 224.59 75.64 0.00 0.00 0.00
8 312.89 121.17 0.00 0.00 0.00

5

2 16.29 1.79 0.23 0.21 0.25
4 75.83 9.30 0.31 0.29 0.39
6 152.88 32.53 0.00 0.00 0.00
8 227.66 71.76 0.00 0.00 0.00

10

2 5.33 0.56 0.06 0.07 0.05
4 29.18 0.88 0.83 0.83 0.79
6 65.63 5.37 0.26 0.25 0.26
8 109.01 17.45 0.07 0.07 0.10

20

2 1.73 0.18 0.01 0.01 0.01
4 9.42 0.13 0.65 0.65 0.64
6 22.15 0.23 1.18 1.18 1.18
8 39.09 0.82 0.85 0.84 0.83

50

2 0.26 2.30 2.26 2.26 2.26
4 1.32 1.22 1.50 1.50 1.50
6 3.06 0.21 0.79 0.79 0.78
8 6.45 0.03 0.92 0.92 0.92

100

2 0.10 3.73 3.72 3.72 3.72
4 0.52 3.17 3.33 3.33 3.33
6 1.05 2.66 2.96 2.96 2.95
8 1.73 2.14 2.60 2.60 2.60

Notes. The best results are given in bold.

the performance for all the given heuristics. For the given problem in this research, increasing the number of
processors is not significant and the best GAP results were obtained at 𝑛𝑝𝑟 = 2 for all heuristics.

For more details of the IPB category algorithms, Table 22 is presented.
The worst GAP values were obtained by heuristics 𝑈 IPB

LPT of 0.59 at 𝑛𝑠 = 3 and 𝑛𝑝𝑟 = 4, 𝑈 IPB
SPT of 2.55 at

𝑛𝑠 = 3 and 𝑛𝑝𝑟 = 4, 𝑈 IPB
RL of 0.84 at 𝑛𝑠 = 3 and 𝑛𝑝𝑟 = 4 and 𝑈 IPB

IRL of 0.68 at 𝑛𝑠 = 3 and 𝑛𝑝𝑟 = 4.
For all heuristics except for 𝑈 IPB

SPT, the GAP value of 0.00 was obtained at 𝑛𝑠 = 50 and 𝑛𝑝𝑟 = {2, 4, 6, 8},
𝑛𝑠 = 100 and 𝑛𝑝𝑟 = {2, 4, 6, 8}. While the heuristic 𝑈 IPB

SPT obtained its best GAP value of 0.00 at 𝑛𝑠 = 100 and
𝑛𝑝𝑟 = 2.

7.8. Comparison between best category algorithms

The best algorithms were 𝑈SB
MSK, 𝑈RI

SS , 𝑈FP
LPT, 𝑈FPM

LPT and 𝑈 IPB
LPT for the categories SB, RI, FP, FPM, and IPB

respectively.

REAL TIME READ-FREQUENCY OPTIMIZATION FOR RMS 2747

Table 25. Overall comparison between all heuristics.

𝑈SB
SPT 𝑈SB

LPT 𝑈SB
SS 𝑈SB

MSS 𝑈SB
MSK 𝑈RI

LPT 𝑈RI
SPT 𝑈RI

SS 𝑈RI
MSS 𝑈RI

MSK 𝑈FP
LPT

𝑃𝑒𝑟𝑐 0.0% 0.0% 0.0% 0.0% 10.9% 2.3% 1.7% 30.7% 2.2% 2.2% 33.1%
𝑇 𝑖𝑚𝑒 0.005 0.005 0.023 1.687 749.628 0.008 0.008 0.034 2.876 740.635 0.005

𝑈FP
SPT 𝑈FP

RL 𝑈FP
IRL 𝑈FPM

LPT 𝑈FPM
SPT 𝑈FPM

RL 𝑈FPM
IRL 𝑈 IPB

LPT 𝑈 IPB
SPT 𝑈 IPB

RL 𝑈 IPB
IRL

𝑃𝑒𝑟𝑐 10.8% 31.1% 30.4% 34.2% 11.4% 32.2% 32.3% 33.7% 11.9% 32.5% 32.3%
𝑇 𝑖𝑚𝑒 0.005 0.015 4.634 1.294 1.538 1.558 1.956 0.006 0.005 0.014 4.250

Notes. The best results are given in bold.

In this subsection, we compare these heuristics to find the best heuristic between all algorithms developed in
this paper.

Table 23 presents the comparison results of the best category’s heuristics. The given results indicates that
the best heuristic is 𝑈FPM

LPT with 48.7% and an average running time of 1.294 s. While the worst heuristic was
𝑈SB

MSK with 10.9% and an average running time of 749.628 s.
Table 24 represents the details of best category’s comparison. Based on the shown results, the best performing

heuristics were 𝑈FPM
LPT and 𝑈FP

LPT. While the worst performing heuristic was 𝑈SB
MSK. Heuristics that obtained GAP

values less than 0.01 were, 𝑈FP
LPT, 𝑈 IPB

LPT at 𝑛𝑠 = 3, 𝑛𝑝𝑟 = {6, 8} and at 𝑛𝑠 = 5, 𝑛𝑝𝑟 = {6, 8}.
The comparison results between all algorithms are given in Table 25. The shown results indicates that there

aren’t any dominance heuristic between the used algorithms, and that the best heuristic is 𝑈FPM
LPT in 34.2% of

cases with an average time of 1.294 s. Four algorithms 𝑈SB
SPT, 𝑈SB

LPT, 𝑈SB
SS , and 𝑈SB

MSS have a percentage less than
0.1%. The second best heuristic is 𝑈FP

LPT with percentage of 33.1% with an average time of 0.005 s.

8. Conclusion

This research utilizes operational research in railway systems to address identical parallel processors schedul-
ing problem. Because of trip constraints and time schedule limitations, railway system must complete all the
given requests in a limited time. This is an NP-Hard problem, and the main goal is to minimize the maxi-
mum completion time of the received requests. This problem was solved by developing new heuristics based on
two categories of algorithms, the separated blocks category algorithm (SB) and the blocks interference cate-
gory algorithm. The first category is composed of 5 heuristics. While the second category is composed of four
algorithm types, which are, Reverse-interference based algorithm (RI), Fictitious-processes based algorithm
(FP), Fictitious-processes with multi-subset based algorithm (FPM) and Interference Processes-blocks based
algorithm (IPB). Each algorithm type is also composed of different heuristics, RI algorithm has 5 different
heuristics, FP algorithm has 4 different heuristics, FPM algorithm has 4 different heuristics and IPB algorithm
has 4 different heuristics. The total of the developed heuristics are 22. The performance assessments of the
developed heuristics were performed for the execution time based on the average relative gap; the given results
showed that there isn’t any dominance between the algorithms and the best heuristic for the proposed problem
was 𝑈FPM

LPT heuristics in 34.2% of the cases. The presented solution was capable of reading data from DC table
before finishing the execution of all previous processes, which enables the control unit of the railway monitor-
ing system, to derive the proper instructions for each request type, to ensure that there will be no latency or
cancelation for any of the scheduled trips.

In this work, the maximum percentage is 34.2% which is relatively small, the next objective of this work will
be to enhance the presented heuristics to achieve a percentage of no less than 50%. The expected enhancement
will be reached by considering three aspects. The first issue will be to search for a metaheuristic that use all
the given heuristics. The second consideration is to apply a variable neighborhood search (VNS)to enhance the
given heuristics. Finally, derive a lower bound for the studied problem to be compared with the results obtained
by the given heuristics.

2748 M. JEMMALI ET AL.

Acknowledgements. The authors would like to thank the Deanship of Scientific Research at Majmaah University for
supporting this work under Project Number No. R-2022-188.

References

[1] I. Agrebi, M. Jemmali, H. Alquhayz and T. Ladhari, Metaheuristic algorithms for the two-machine flowshop scheduling problem
with release dates and blocking constraint. J. Ch. Inst. Eng. 44 (2021) 573–582.

[2] F. al Fayez, L.K.B. Melhim and M. Jemmali, Heuristics to optimize the reading of railway sensors data. In: 2019 6th Interna-
tional Conference on Control, Decision and Information Technologies (CoDIT). IEEE (2019) 1676–1681.

[3] M. Alharbi and M. Jemmali, Algorithms for investment project distribution on regions. Comput. Intell. Neurosci. 2020 (2020).
DOI: 10.1155/2020/3607547.

[4] M. Alkhelaiwi, W. Boulila, J. Ahmad, A. Koubaa and M. Driss, An efficient approach based on privacy-preserving deep learning
for satellite image classification. Remote Sens. 13 (2021) 2221.

[5] H. Alquhayz and M. Jemmali, Max–min processors scheduling. Inf. Technol. Control 50 (2021) 5–12.

[6] A. Altay and M. Baykal-Gürsoy, Imperfect rail-track inspection scheduling with zero-inflated miss rates. Transp. Res. Part C
Emerg. Technol. 138 (2022) 103608.

[7] H. Amdouni, M. Jemmali, M. Mrad and T. Ladhari, An exact algorithm minimizing the makespan for the twomachine flowshop
scheduling under release dates and blocking constraints. Int. J. Ind. Eng. 28 (2021) 631–643.

[8] A. Bakhtiary, J.A. Zakeri and S. Mohammadzadeh, An opportunistic preventive maintenance policy for tamping scheduling
of railway tracks. Int. J. Rail Transp. 9 (2021) 1–22.

[9] W. Boulila, A top-down approach for semantic segmentation of big remote sensing images. Earth Sci. Inf. 12 (2019) 295–306.

[10] W. Boulila, M. Sellami, M. Driss, M. Al-Sarem, M. Safaei and F.A. Ghaleb, Rs-dcnn: a novel distributed convolutional-neural-
networks based-approach for big remote-sensing image classification. Comput. Electron. Agri. 182 (2021) 106014.

[11] R.L. Burdett and E. Kozan, Performance profiling for predictive train schedules. J. Rail Transp. Planning Manage. 4 (2014)
98–114.

[12] C. Dao, R. Basten and A. Hartmann, Maintenance scheduling for railway tracks under limited possession time. J. Transp.
Eng. Part A Syst. 144 (2018) 04018039.

[13] M. Dell’Amico, M. Iori, S. Martello and M. Monaci, Heuristic and exact algorithms for the identical parallel machine scheduling
problem. INFORMS J. Comput. 20 (2008) 333–344.

[14] H. Dong, H. Zhu, Y. Li, Y. Lv, S. Gao, Q. Zhang and B. Ning, Parallel intelligent systems for integrated high-speed railway
operation control and dynamic scheduling. IEEE Trans. Cybern. 48 (2018) 3381–3389.

[15] F. Donzella, M. del Cacho Estil-les, C. Bersani, R. Sacile and L. Zero, Train scheduling and rescheduling model based oncus-
tomer satisfaction. Application to genoa railway network. In: 2018 13th Annual Conference on System of Systems Engineering
(SoSE). IEEE (2018) 593–600.

[16] J. Garćıa, P. Moraga, M. Valenzuela, B. Crawford, R. Soto, H. Pinto, A. Peña, F. Altimiras and G. Astorga, A db-scan bina-
rization algorithm applied to matrix covering problems. Comput. Intell. Neurosci. 2019 (2019). DOI: 10.1155/2019/3238574.

[17] H. Ghandorh, W. Boulila, S. Masood, A. Koubaa, F. Ahmed and J. Ahmad, Semantic segmentation and edge detection –
approach to road detection in very high resolution satellite images. Remote Sens. 14 (2022) 613.

[18] M. Haouari and M. Jemmali, Tight bounds for the identical parallel machine-scheduling problem: Part II. Int. Trans. Oper.
Res. 15 (2008) 19–34.

[19] M. Haouari, A. Gharbi and M. Jemmali, Tight bounds for the identical parallel machine scheduling problem. Int. Trans. Oper.
Res. 13 (2006) 529–548.

[20] M. Jemmali, An optimal solution for the budgets assignment problem. RAIRO: Oper. Res. 55 (2021) 873–897.

[21] M. Jemmali, Projects distribution algorithms for regional development. ADCAIJ 10 (2021). http://hdl.handle.net/10366/
147245.

[22] M. Jemmali, Intelligent algorithms and complex system for a smart parking for vaccine delivery center of covid-19. Complex
Intell. Syst. 8 (2022) 597–609.

[23] M. Jemmali and A. Alourani, Mathematical model bounds for maximizing the minimum completion time problem. J. Appl.
Math. Comput. Mech. 20 (2021) 43–50.

[24] M. Jemmali and H. Alquhayz, Equity data distribution algorithms on identical routers. In: International Conference on Inno-
vative Computing and Communications. Springer (2020) 297–305.

[25] M. Jemmali, L.K.B. Melhim and M. Alharbi, Randomized-variants lower bounds for gas turbines aircraft engines. In: World
Congress on Global Optimization. Springer (2019) 949–956.

[26] M. Jemmali, L.K.B. Melhim, S.O.B. Alharbi and A.S. Bajahzar, Lower bounds for gas turbines aircraft engines. Commun.
Math. App. 10 (2019) 637–642.

[27] M. Jemmali, M.M. Otoom and F. al Fayez, Max–min probabilistic algorithms for parallel machines. In: Proceedings of the
2020 International Conference on Industrial Engineering and Industrial Management. ACM (2020) 19–24.

[28] M. Jemmali, L. Hidri and A. Alourani, Two-stage hybrid flowshop scheduling problem with independent setup times. Int. J.
Simul. Model. (IJSIMM) 21 (2022) 5–16.

[29] M. Jemmali, L.K.B. Melhim, M.T. Alharbi, A. Bajahzar and M.N. Omri, Smart-parking management algorithms in smart
city. Sci. Rep. 12 (2022) 1–15.

https://doi.org/10.1155/2020/3607547
https://doi.org/10.1155/2019/3238574
http://hdl.handle.net/10366/147245
http://hdl.handle.net/10366/147245

REAL TIME READ-FREQUENCY OPTIMIZATION FOR RMS 2749

[30] B. Johannes, Scheduling parallel jobs to minimize the makespan. J. Scheduling 9 (2006) 433–452.

[31] S. Jütte, D. Müller and U.W. Thonemann, Optimizing railway crew schedules with fairness preferences. J. Scheduling 20
(2017) 43–55.

[32] D. Kovenkin and V. Podverbnyy, Issues of planning work on the current maintenance of the railway track. Transp. Res. Proc.
61 (2022) 636–640.

[33] D. Laha and J.N. Gupta, An improved cuckoo search algorithm for scheduling jobs on identical parallel machines. Comput.
Ind. Eng. 126 (2018) 348–360.

[34] J. Lan, Y. Jiang, G. Fan, D. Yu and Q. Zhang, Real-time automatic obstacle detection method for traffic surveillance in urban
traffic. J. Signal Process. Syst. 82 (2016) 357–371.

[35] S. Li and Y. Zhang, On-line scheduling on parallel machines to minimize the makespan. J. Syst. Sci. Complexity 29 (2016)
472–477.

[36] L.K.B. Melhim, M. Jemmali and M. Alharbi, Intelligent real-time intervention system applied in smart city. In: 2018 21st
Saudi Computer Society National Computer Conference (NCC). IEEE (2018) 1–5.

[37] H. Mezni, M. Driss, W. Boulila, S.B. Atitallah, M. Sellami and N. Alharbi, Smartwater: a service-oriented and sensor cloud-
based framework for smart monitoring of water environments. Remote Sens. 14 (2022) 922.

[38] M. Movaghar and S. Mohammadzadeh, Bayesian monte carlo approach for developing stochastic railway track degradation
model using expert-based priors. Struct. Infrastruct. Eng. 18 (2022) 145–166.

[39] D. Pisinger, Dynamic programming on the word ram. Algorithmica 35 (2003) 128–145.

[40] J. Pradeep, M. Harikrishnan and K. Vijayakumar, Automatic railway detection and tracking inspecting system. In: Proceedings
of International Conference on Data Science and Applications. Springer (2022) 309–318.

[41] Z. Qi, Y. Tian and Y. Shi, Efficient railway tracks detection and turnouts recognition method using hog features. Neural
Comput. App. 23 (2013) 245–254.

[42] B. Roy and A.K. Sen, Meta-heuristic techniques to solve resource-constrained project scheduling problem. In: International
Conference on Innovative Computing and Communications. Springer (2019) 93–99.

[43] M. Sedghi, O. Kauppila, B. Bergquist, E. Vanhatalo and M. Kulahci, A taxonomy of railway track maintenance planning and
scheduling: a review and research trends. Reliab. Eng. Syst. Saf. 215 (2021) 107827.

[44] L.P. Veelenturf, D. Potthoff, D. Huisman and L.G. Kroon, Railway crew rescheduling with retiming. Transp. Res. Part C
Emerg. Technol. 20 (2012) 95–110.

[45] X. Xu, K. Li, L. Yang and Z. Gao, An efficient train scheduling algorithm on a single-track railway system. J. Scheduling 22
(2019) 85–105.

[46] C. Zhang, Y. Gao, L. Yang, U. Kumar and Z. Gao, Integrated optimization of train scheduling and maintenance planning on
high-speed railway corridors. Omega 87 (2019) 86–104.

This journal is currently published in open access under a Subscribe-to-Open model (S2O). S2O is a transformative
model that aims to move subscription journals to open access. Open access is the free, immediate, online availability of
research articles combined with the rights to use these articles fully in the digital environment. We are thankful to our
subscribers and sponsors for making it possible to publish this journal in open access, free of charge for authors.

Please help to maintain this journal in open access!

Check that your library subscribes to the journal, or make a personal donation to the S2O programme, by contacting
subscribers@edpsciences.org

More information, including a list of sponsors and a financial transparency report, available at: https://www.
edpsciences.org/en/maths-s2o-programme

mailto:subscribers@edpsciences.org
https://www.edpsciences.org/en/maths-s2o-programme
https://www.edpsciences.org/en/maths-s2o-programme

	Introduction
	Related studies
	Problem presentation
	Notation
	Significant variation vector

	Formulating optimization problem
	Scheduling problem
	Parallel processors heuristics
	Separated blocks category algorithm
	Blocks interference category algorithm
	Reverse-interference based algorithm
	Fictitious-processes based algorithm
	Fictitious-processes with multi-subset based algorithm
	Interference Processes-blocks based algorithm

	Sequencing-based train algorithm
	Experimental results
	Test instances
	Evaluation metrics
	Separated-blocks category comparison
	Reverse-interference category comparison
	Fictitious-processes category comparison
	Fictitious-processes with multi-subset category comparison
	Interference processes-blocks category comparison
	Comparison between best category algorithms

	Conclusion
	References

