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CONGESTION AND NON-CONGESTION AREAS: IDENTIFY AND MEASURE
CONGESTION IN DEA

Seyed Rahim Moosavi* and Hadi Bagherzadeh Valami

Abstract. Detecting the weak and strong congestion statuses of decision-making units (DMUs) and
measuring them via data envelopment analysis (DEA) is an important issue that has been discussed in
several studies and with different views. The efficiency frontier is a concept derived from the underlying
production possibility set (PPS), and the congestion concept is related to them. Still, researchers have
defined congestion for each DMU in many previous studies and ignored that congestion is linked with
the underlying production technology. In the congestion measurement matter, this paper presents two
new insights into a congestion area and non-congestion area for production technology and two new
mathematical definitions of congestion based on the PPS properties and detecting the weak and strong
congestion status of DMUs (CSOD). We prove our definitions are equal to the original definition of
congestion. First, we describe the congestion and non-congestion areas based on the PPS; then provide
full details of how to measure congestion built on these new insights. Our approaches are very accurate
and fast to calculate; they are theoretically elementary and efficient in performance. Our proposed
methods can deal with both non-negative and negative data. Finally, an empirical example is provided
to illustrate our approaches.

Mathematics Subject Classification. 90C08, 97M40, 60K30.

Received March 1, 2021. Accepted May 31, 2022.

1. Introduction

If the resources of a decision-making unit (DMU) are overused, this excess consumption may adversely affect
its performance. When units use resources in this way, without considering optimality, they only pay attention
to the benefits/costs and ignore other adverse effects they have on the company, such as congestion. So, to
improve the performance of a DMU, it is essential to identify and detect the presence of congestion as a first
step and to plan and formulate appropriate scientific and practical solutions to eliminate such congestion as the
second step in production analysis. For this purpose, Färe and Svensson [12] introduced congestion insights in
the economy.

Inefficiency is a necessary condition for congestion. Congestion is an extreme of inefficiency. It is necessary to
note that congestion is a production frontiers’ property and not a DMU’s. So, congestion is a characteristic of
PPS, not a DMU. To improve the DMU’s performance, it is essential to recognize the existence of inefficiency, and
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since congestion is a kind of inefficiency (and even worse, causes a reduction in DMU’s output) so congestion
causes its poor performance. Therefore, appropriate solutions to eliminate the causes of congestion-related
inefficiency should be presented and implemented. Therefore, identifying congestion as the first step and then
measuring its exact value as the second step of assessing the production situation is one of the most important
aspects of data analysis. So, in a nutshell, we can say that: Excessive use of input sources (overuse) may adversely
affect the performance of a DMU.

After developing the non-parametric data envelopment analysis (DEA) by the Charnes et al. [2], the concept
of congestion, which was an economic concept, has been widely studied in the DEA framework. As one of
the first congestion measurement studies, Färe and Grosskopf [10] have proposed the radial model methods to
measure congestion in DEA as the difference between technologies under weak and strong congestion. However,
this model could not successfully detect congestion with a single input-output. In the next studies, Färe et al.
[13] and Cooper et al. [3, 4] developed this concept.

In the DEA literature, since 1980, the concept of congestion by many researchers has been investigated to
date. According to this, weak congestion occurs if reductions in some inputs are associated with increases in some
outputs without changing other inputs or outputs, and strong congestion occurs if the reduction in all inputs
increases all outputs. To the best of our knowledge, except for the original definition of congestion proposed
by Cooper et al. [3, 9], most of the congestion definitions and measures that have been developed thereafter
are for the efficient DMUs on the congestion-based production possibility set (PPS) 𝑇convex, e.g., Färe and
Grosskopf [11], Tone and Sahoo [23] and Wei and Yan [24,25], Sueyoshi and Sekitani [22], Khodabakhshi et al.
[15], Noura et al. [20], Khoveyni et al. [16], Mehdiloozad et al. [19], among others. some of the most important
of these researches is the congestion assessment methods by Cooper et al. [4–9], Tone and Sahoo [23], Khoveyni
et al. [17], and Mehdiloozad et al. [19].

Note that, same as returns to scale, congestion is a production frontier concept, and any computation and
its measurements are dependent on DMUs located on it (inefficient DMUs projected to their efficient frontier).
The basis of the Tone and Sahoo [23] is based on the possible projection point sets. In Tone and Sahoo [23],
and under convex and strong output disposability assumptions, the concepts of congestion-based technology
that classified DMUs into two separate sets as efficient and inefficient sets, was developed. But, by Sueyoshi and
Sekitani [22] the problem occurs when each DMU has multiple projection points and management is required
to choose one of them, randomly. It seems, that since different projection points of inefficient DMUs produce
different results in terms of congestion status, therefore, their definition in multiple projection points condition
does not be efficient. Though Sueyoshi and Sekitani [22] have proposed an approach to deal with multiple
projections (in improving [23]), their method can’t identify the difference between weak congestion and strong
congestion.

In improving previous approaches, besides more accurate modeling, Khoveyni et al. [17] and Mehdiloozad
et al. [19] suggested identifying weak and strong congestion with both non-negative and negative data. Out of
its theoretical attraction, and admirable from a mathematical computation point of view, their model has high
accuracy in identifying the congestion status of DMUs (CSOD). This method has a computational complexity
for calculating the maximal element for large-size issues (Khoveyni et al. [16] have proposed an approach to
deal with multiple projections, but they did not provide evidence to prove their claim).

Mehdiloozad et al. [19] thought about dealing with multiple projections while determining the congested
DMU. Their research was carried out by linking an insight developed by Mehdiloozad et al. [18] as the global
reference set (GRS) with the congestion. So, by finding a maximal element of a non-negative convex set of all
possible optimal intensity vectors of their congestion-identification model, the GRS can be identified. Finally,
with the help of results from Mehdiloozad et al. ([18, 19]), they developed an approach (a unique single-stage
LP model) to identify the MAX-projection by using the GRS.

Before Mehdiloozad et al. [19] we have not identified an accurate, reliable, and good approach to finding
CSOD (weak and strong) in the presence of multiple projections and negative data. Mehdiloozad et al. [19]
have developed a well-definition single-stage LP model to fill in this null. They work on Tone and Sahoo [23]
and developed their method. So, they have developed definitions of the weak and strong congestions, but their



CONGESTION AND NON-CONGESTION AREAS 2069

definition of strong congestion was different from Tone and Sahoo [23]. To identify the CSOD, first time, they
defined the non-negative convex set of input-output slack vectors that correspond to DMUs in the congestion-
based DEA technology, that all dominate the DMU under evaluation. Next time, they proved that the problem
under consideration reduces to finding a maximal element an element with the maximum number of positive
components of this set. So, they developed a single-stage LP model to determine congestion. But, despite the
great accuracy and power in identifying CSOD, yet, their method is unable to measure the amount of congestion.

While Mehdiloozad et al. [19] identify weak and strong CSOD with indicator 𝛼max
𝑖 (𝑖 = 1, . . . , 𝑛) without

measuring the values of the input’s congestion. This is the best reason to provide our proposed method. So, in
improving the performance of Mehdiloozad et al. [19], we develop an approach; exactly equivalent to Mehdiloozad
et al. [19] (occur and efficient in CSOD) and identify weak and strong CSOD by measuring the amount of input
congestion. For this aim, we work on input space. Therefore, we formulate the two non-negative convex sets
of inputs space as congestion area (𝑋C)/non-congestion area (𝑋NCA) by defining specific DMUs named CSP,
which, this CSP concept has some special properties. So, our aim for developing this paper is to fill in this null.

This paper provides two new mathematical definitions for congestion and offers two alternative approaches
to the discussion. Briefly, this paper focuses on identifying and measuring congestion in the DEA measurement
framework. We define two new concepts in the inputs space as congestion area (CA) and non-congestion area
based on PPS property and made our definitions based on these two concepts. Also, we present a new CSP
concept and formulate them, then, in inputs space formulate 𝑋C based on CSP’s input. So, to find CSOD and
measure congested DMU’s congestion, we formulate our suggested model. Finally, we present two numerical
examples to explain new insights and compare the results of our method with Cooper et al. [9], Noura et al.
[20], Tone and Sahoo [23], and Mehdiloozad et al. [19].

One of the congestion area advantages is that it does not need to calculate congestion for all DMUs when
management wants to determine; which DMUs have congestion or not? Which DMUs work well or not? One
advantage of the mathematical definition of congestion is that; can be used in modeling and calculations because
the traditional definition of congestion is theoretical and cannot be used in calculations. This definition is also
accurate only for DMUs on the production function frontier and inaccurate for inefficient DMUs that are not
on the production frontier. That is the mean for inefficient DMUs, and they can also increase some or all inputs
and reduce some or all outputs simultaneously. So, what is the difference between congestion and inefficiency?
Therefore, the mathematical definitions we provide are practical and accurate for all efficient and inefficient
DMUs. Note that the traditional definition of congestion in economics is accurate and acceptable because, in
economics, they work only with the production frontier. Still, in DEA, researchers work with all DMUs (on the
frontier or below the frontier) (Tab. 1).

2. Preliminary assumption and definitions

Data Envelopment Analysis (DEA) is an efficiency evaluation technique with extensive use in efficiency anal-
ysis over the past three decades. With theoretical and practical progress in this branch of management science,
DEA has become a perfect tool for assessing the performance and efficiency of decision-making units (DMUs)
of a different variety. Since basic DEA does not involve calculating the efficiency frontier, congestion in DMU
inputs cannot be determined in that way. Throughout non-parametric DEA, using the production possibility
set (PPS) instead of the production frontier, one could investigate the existence of congestion. Suppose that it
is 𝑛 homogenous DMU𝑗(𝑗 = 1, . . . , 𝑛) in a constant time interval, and 𝑋𝑗(𝑥1𝑗 , . . . , 𝑥𝑚𝑗) and 𝑌𝑗 = (𝑦1𝑗 , . . . , 𝑦𝑟𝑗)
are the input and output vectors of DMU𝑗 , respectively. As mentioned in the introduction, congestion is a
production-related situation that can be viewed as a severe technical inefficiency case. Before proceeding to the
main discussion, we need to define two critical concepts based on Cooper et al. [4] and Cooper et al. [6].

Definition 2.1 (Technical efficiency). A DMU𝑜(𝑜 ∈ 𝑗) is a technically efficient DMU if the optimal solution of
the following BBC model (2.1a) [1] is 𝜙* = 1 to evaluate it.

𝜃* = max 𝜃
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Table 1. Comparison of the advantages of our method over previous models.

Methods

Comparison cases

Mehdiloozad

et al. [19]

Tone and Sahoo

[23]

Noura et al. [20] Cooper et al. [9] Khoveyni et al.

[17]

Our methods

Simplicity in

mathematical

modeling and

computation

Has complex

mathematical cal-

culations

Has complex

mathematical cal-

culations

Simplicity in

calculations

Simplicity in

calculations

Has complex

mathematical cal-

culations

Simplicity in

calculations

Weak status con-

gestion detection

All DMUs Some DMUs Some DMUs Some DMUs Some DMUs All DMUs

Strong status

congestion detec-

tion

All DMUs Some DMUs Some DMUs Some DMUs fails to individu-

ate between the

weakly but not

strongly DMUs

All DMUs

Type of

congestion defini-

tion

Mathematical

definition

Mathematical

definition

Economic

definition

Economic

definition

Economic

definition

Mathematical

definition

Measuring the

value of

congestion (weak

and strong)

There is no mea-

sure of congestion

value

There is no mea-

sure of congestion

value

Measuring the

congestion value

of identified

congested DMUs

Measuring the

congestion value

of identified

congested DMUs

Measuring the

weak congestion

value of identified

weak congested

DMUs

Measuring the

congestion value

of identifying all

congested DMUs

Identify

congested DMUs

without having to

perform all steps

For identification,

requires all article

calculations

For identification,

requires all article

calculations

For identification,

requires all article

calculations

For identification,

requires all article

calculations

For identification,

requires all article

calculations

By solving a

model, it can

be said whether

the DMU has

congestion or not

Identify CA-NCA

in PPS

No No No No No Yes

s.t.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑︀𝑛

𝑗=1 𝜆𝑗𝑥𝑗 ≤ 𝑥𝑖𝑜 𝑖 = 1, 2, . . . ,𝑚∑︀𝑛
𝑗=1 𝜆𝑗𝑦𝑗 ≥ 𝜃𝑦𝑟𝑜 𝑟 = 1, 2, . . . , 𝑠∑︀𝑛
𝑗=1 𝜆𝑗 = 1

𝜆𝑗 ≥ 0

(2.1a)

𝜙* = max 𝜃* − 𝜀

(︃
𝑠∑︁

𝑟=1

𝑠+
𝑟 +

𝑚∑︁
𝑖=1

𝑠−𝑖

)︃

s.t.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑︀𝑛

𝑗=1 𝜆𝑗𝑥𝑖𝑗 + 𝑠−𝑖𝑜 = 𝑥𝑖𝑜 𝑖 = 1, 2, . . . ,𝑚∑︀𝑛
𝑗=1 𝜆𝑗𝑦𝑟𝑗 − 𝑠+

𝑟𝑜 = 𝜙𝑦𝑟𝑜 𝑟 = 1, 2, . . . , 𝑠∑︀𝑛
𝑗=1 𝜆𝑗 = 1

𝜆𝑗 ≥ 0, 𝑠+
𝑟 ≥ 0, 𝑠−𝑖 ≥ 0.

(2.1b)

Notice that in the model (2.1b) above 𝜀 > 0 is a non-Archimedean number.

Definition 2.2. Congestion occurs when with 𝑇convex technology, increasing one or more inputs reduces one or
more outputs without improvement in any other inputs or outputs. Conversely, decreasing one or more inputs
increases one or more outputs, worsening no other input or output (this is an economic definition of congestion).

In the last part of the introduction as explained, in DEA, this is not an accurate definition and needs
improvement (Because it does not distinguish between inefficient and congested DMUs, also this definition is
not rigorous enough since it ignores that congestion should be a concept focusing on the frontier). Thus, we
introduce our mathematical definition of congestion to fill this gap.
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2.1. Technology set

The technology 𝑇 is defined as the following,

𝑇 = {(𝑥, 𝑦)|𝑥 can produce 𝑦}. (2.2)

Notice that the technologies 𝑇convex and 𝑇𝑣 were defined in the upper section. Assume that the outputs and
inputs are non-negative. So, 𝑇convex is the decussating of all Technologies 𝑇 ⊂ 𝑅 that satisfy the syllogism of (i)
involving observations, (ii) strong disposability of outputs, and (iii) convexity of PPS, and 𝑇𝑣 is the decussating
of all technologies 𝑇 ⊂ 𝑅 that satisfy the syllogism of (i) involving of observations, (ii) strong disposability of
outputs, (ii) strong disposability of inputs, and (iii) convexity of PPS.

The congestion measurement is discussed in output-oriented DEA models. The congestion concept does
not fit the traditional DEA literature, because, the congestion concept was started by economic researchers.
Furthermore, congestion is modeled and measured by replacing the axiom of strong input disposability with the
axiom of weak input disposability. In other words, congestion occurs when the strong disposability of inputs is
not available.

Therefore, to model congestion, this principle must be omitted from the fundamental principles of DEA. A
PPS called 𝑇convex should be constructed to act as the reference for the congestion measurement in DEA. The
explicit DEA-base representations of 𝑇𝑣 and 𝑇convex in the VRS are then defined:

𝑇𝑣 =

⎧⎨⎩(𝑥𝑜, 𝑦𝑜)

⃒⃒⃒⃒
⃒∃𝜆 :

𝑛∑︁
𝑗=1

𝜆𝑗𝑥𝑗 ≤ 𝑥𝑜,

𝑛∑︁
𝑗=1

𝜆𝑗𝑦𝑗 ≥ 𝑦𝑜,

𝑛∑︁
𝑗=1

𝜆𝑗 = 1, 𝜆𝑗 ≥ 0; 𝑗 = 1, . . . , 𝑛

⎫⎬⎭, (2.3)

𝑇convex =

⎧⎨⎩(𝑥𝑜, 𝑦𝑜)

⃒⃒⃒⃒
⃒∃𝜆 :

𝑛∑︁
𝑗=1

𝜆𝑗𝑥𝑗 = 𝑥𝑜,

𝑛∑︁
𝑗=1

𝜆𝑗𝑦𝑗 ≥ 𝑦𝑜,

𝑛∑︁
𝑗=1

𝜆𝑗 = 1, 𝜆𝑗 ≥ 0; 𝑗 = 1, . . . , 𝑛

⎫⎬⎭. (2.4)

By definition, technology 𝑇convex satisfies all the syllogisms that define technology 𝑇𝑣. Because 𝑇𝑣 is the smallest
technology that satisfies this syllogism, so 𝑇convex ⊆ 𝑇𝑣.

Definition 2.3. Assume that
(︀
𝜙*, 𝑠−*𝑖𝑜 , 𝑠+*

𝑟𝑜

)︀
is an optimum solution of the model (2.1b). We called DMU𝑜 is

efficient if and only if 𝜙* = 1,
(︀
𝑠−*𝑖𝑜 , 𝑠+*

𝑟𝑜

)︀
= (0, 0). Otherwise, DMU𝑜 is inefficient.

3. Background of congestion

In compaction research within the DEA framework, there are two basic ideas that we will describe below.
In the first step, they proved that the relative interior points of the minimum face (a dimension that contains

all the projections) have congestion if one of the vertices spanning this face has congestion, and each of the
points displays the equivalent congestion (weak or strong). In the next step, they have defined DMU’s congestion
at its MAX-projection (By congestion-identification model and maximal element of the non-negative convex set
of all possible optimal intensity vectors MAX-projection can be achieved) the GRS can be identified. Finally,
with the help of results from Mehdiloozad et al. ([18, 19]), they developed an approach (a unique single-stage
LP model) to identify the MAX-projection by using the GRS. The calculations of Mehdiloozad et al. [19] are
summarized as follows: From solving model (4.5) for input and output values, the columns representing the
maximal elements (alpha-maximal (in the number of inputs), beta-maximal (in the number of outputs)) are
obtained (refer to paragraph 9 below model (4.5) and Cor. 1.3 from [19]) that, only the positive component
is important not their value, that is, suppose we have two inputs and one output, if all three components are
positive (two alpha-maxima for two inputs and one Beta-maximum for output) is strong congestion. Also, if the
third component (Beta-maximal) is positive but the first or second component (two alpha-maximal) is zero, the
congestion is weak.
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As we have already explained, the basis of our new definition of congestion is the decomposition of the PPS
(and, more precisely, the decomposition of the DMUs’ inputs area). Therefore, we divide the inputs’ area into
two special subsets of the congestion area and the non-congestion area. Then define each area and describe
the properties and each area. These properties provide two mathematical definitions of congestion (unlike the
previous definition of congestion, which is an economic definition).

This research focused on detecting and measuring congestion in the DEA measurement framework. The
authors proposed a mathematical definition of congestion and congestion zone linked to the production possi-
bility set instead of each DMU. The advantage of our paper over others is the identification and measurement
of the amount of congestion in the construction of the congestion area. That means, without talking about the
congestion of each DMU, we specify an area where the inputs of each DMU in that area have congestion. In this
case, identifying congested DMUs and also measuring their congestion can be easily identified and measured.

4. Congestion area

Congestion is a frontier concept (like returns to scale), and any argument on its evaluation is bounded to
the DMUs, which are efficient only. We define the congestion of one inefficient DMU at its efficient projection
that it is obtained by congestion, based on the DEA model. Before discussing our proposed method, we must
present the definitions of some new congestion-related concepts and propose a new mathematical definition for
the concept of congestion itself.

Definition 4.1 (Congestion area). A convex area created by DMU’s congested inputs is called the congestion
area, So, the congestion area is an area in the inputs space that the congested inputs located in this area and
denoted by 𝑋congestion. So, DMU𝑜 : (𝑥𝑜, 𝑦𝑜)𝑡 has congestion, thus, 𝑥𝑜 ∈ 𝑋congestion.

Concerning Definition 4.1 which includes congested inputs of congested DMUs, it refers to equation (4.14)
and does not build on the preceding Definition 2.2 of congestion, but is directly related to it. This area does
not include all DMUs. As we will show in the following, this area is infinite and convex in a way that, from the
bottom, it is bounded to no congestion and technically efficient DMUs, such as DMU𝑝(𝑝 ∈ 𝑗). Such points are
called congestion starting points (CSPs). CSPs are a type of technically efficient DMUs – that are weakly but
not strongly efficient DMUs – with the highest input consumption among the efficient (with maximum output).
The most important feature of the CSP is that the production frontier, after CSP, by increasing some inputs
leads to reducing some outputs, provided that other inputs and outputs remain unchanged, or by increasing
all inputs leads to reducing all outputs. Hence, there are supporting hyperplanes on 𝑇convex at the CSP, that all
components have negative partial derivatives. We can use the following model (4.4) to distinguish (1) CSPs and
(2) supporting hyperplanes from the technically efficient DMUs (the CSPs). Assume that DMU𝑝 is a technically
efficient DMU in evaluating with the model (2.1a) and (𝑢*1, . . . , 𝑢

*
𝑠, 𝑣

*
1 , . . . , 𝑣*𝑚, 𝑢*0) is an optimal solution for the

model (4.4). Note that the condition of congestion for a DMU is that; in evaluation by BCC model (2.1a), this
DMU should not be technically efficient (otherwise, model (4.4) will be infinite, and the supporting hyperplane
will be Fig. 1b). So, not only the model (4.4) can obtain the supporting hyperplanes of 𝑇convex (Figs. 1a and 1b)
but also can find CSPs. So, for any technically efficient point (on the model (2.1a)), we run the following model
to obtain CSPs and 𝑇convex supporting hyperplanes. Suppose the point (𝑥𝑝, 𝑦𝑝)𝑡 is located on the upper frontier
of 𝑇convex. In this sense, for each distinct point in 𝑇convex such as (𝑥, 𝑦)𝑡 we have 𝑦 � 𝑦𝑝.

By eliminating the input principle’s disposability in the PPS, increasing some inputs will not necessarily
result in increasing or remaining unchanged outputs; somehow, this increase in inputs will also reduce some
outputs to be fully described in the next sections. This issue is also debatable, to reduce some inputs. Reducing
some inputs of the technically efficient DMUs can lead to a decrease, remain unchanged, or even increase some
outputs (congestion).

Hence, the supporting hyperplanes on the 𝑇convex on the point (𝑥𝑝, 𝑦𝑝)𝑡 will be as follows,∑︁
𝑟

𝑢𝑟𝑦𝑟 −
∑︁

𝑖

𝑣𝑖𝑥𝑖 + 𝑢0 = 0, 𝑢𝑟 ≥ 0, 𝑟 = 1, . . . , 𝑠. (4.1)
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So,

𝜕𝑦𝑟

𝜕𝑥𝑖
=
{︂ 𝑣𝑖

𝑢𝑟
𝑢𝑟 > 0

0 𝑢𝑟 = 0.
(4.2)

That specifies the rate and change type 𝑦𝑟 relative to the change 𝑥𝑖. Obviously, an increased 𝑥𝑖 decrease 𝑦𝑟

when 𝑣𝑖 = 𝜕𝑦𝑟

𝜕𝑥𝑖
< 0, that is an indicator for entering the CA. Suppose the point (𝑥𝑝, 𝑦𝑝)𝑡 is located on the upper

frontier of 𝑇convex. The component 𝑥𝑖 has congestion if there are supporting hyperplanes on the 𝑇convex on the
(𝑥𝑝, 𝑦𝑝)𝑡 as ∑︁

𝑟

𝑢𝑟𝑦𝑟𝑝 −
∑︁

𝑖

𝑣𝑖𝑥𝑖𝑝 + 𝑢0 = 0 , 𝑢𝑟 ≥ 0, 𝑣𝑖 < 0, 𝑟 = 1, . . . , 𝑠, . (4.3)

Then, we say that the point (𝑥𝑝, 𝑦𝑝)𝑡 related to the 𝑖th component of input is a CSP. DMU has congestion
if and only if it has congestion in at least one of its input components. So, to determine the technical efficient
points (CSPs) as (𝑥𝑝, 𝑦𝑝)𝑡 and upper supporting hyperplanes on the 𝑇convex (upper frontier of 𝑇convex) we used
the following model:

𝑢*0 = max 𝑢0

s.t. ∑︁
𝑟

𝑢𝑟𝑦𝑟𝑝 −
∑︁

𝑖

𝑣𝑖𝑥𝑖𝑝 + 𝑢0 = 0, 𝑝,∑︁
𝑟

𝑢𝑟𝑦𝑟𝑗 −
∑︁

𝑖

𝑣𝑖𝑥𝑖𝑗 + 𝑢0 ≤ 0, 𝑗 = 1, . . . , 𝑛,

𝑢𝑟 ≥ 0, 𝑣𝑖 is free, 𝑢0 is free, 𝑟 = 1, . . . , 𝑠. (4.4)

Suppose that (𝑈*, 𝑉 *, 𝑢0) = (𝑢*1, . . . , 𝑢
*
𝑠, 𝑣

*
1 , . . . , 𝑣*𝑚, 𝑢*0) is an optimal solution to model (4.4) and∑︀

𝑟 𝑢*𝑟𝑦 −
∑︀

𝑖 𝑣*𝑖 𝑥 + 𝑢*0 = 0 is one of the supporting hyperplanes on the 𝑇convex in the technically efficient
(𝑥𝑝, 𝑦𝑝)𝑡. If the optimal solution (𝑈*, 𝑉 *, 𝑢*0) has 𝑣*𝑖 = 0 (∀𝑖), so (𝑥𝑝, 𝑦𝑝)𝑡 not only the DMU𝑝 does not have
congestion but also not CSP. We have 𝑢*0 = ∞. Otherwise, if the optimal solution (𝑈*, 𝑉 *, 𝑢0) has negative
components of 𝑣*𝑖 , then not only the technical efficient DMU𝑝(𝑥𝑝, 𝑦𝑝)𝑡 is the landing on 𝑇convex frontier, but
also (𝑥𝑝, 𝑦𝑝)𝑡 is a CSP. We have 𝑢*0 > 0.

Highlight 1. The technically efficient DMU𝑝 (𝑥𝑝, 𝑦𝑝)𝑡 (that is weakly technically efficient DMU𝑝) is a CSP if
and only if in evaluating with the model (4.4) we have 𝑢*0 ≥ 0, 𝑢*0 ̸= 0. In other words, (𝑥𝑝, 𝑦𝑝)𝑡 is a CSP, if on
multiple model (4.4) there exists an optimal solution such as (𝑈*, 𝑉 *, 𝑢*0) that 𝑉 * � 0.

By solving model (4.4), the supporting hyperplanes of 𝑇convex can be obtained. Because of the 𝑇convex con-
stituent supporting hyperplanes that envelopment all observation and including CSPs have maximum 𝑢0 com-
pared to all computable supporting hyperplanes (consider Figs. 1a and 1b).

Highlight 2. There is another point; the authors have assumed DMU𝑝(𝑥𝑝, 𝑦𝑝)𝑡 as a technically efficient DMU,
and introduced model (4.4). However, it is unknown that of the technically efficient DMUs should be considered
DMU𝑝 in the model (4.4)? Several technically efficient DMUs can be used as DMU𝑝 in the model (4.4). It is clear;
first, we run models (2.1a), (2.1b) and calculated the set of all technically efficient DMUs. Also, sometimes, the
observation sets of technically efficient DMUs may not include weakly efficient and DMUs are strongly efficient,
so, to find CSP in this case, the all technically efficient DMUs which have the maximum inputs are CSP.

So, to find CSPs between the set of technically efficient DMUs, and the supporting hyperplanes corresponding
optimal solution (𝑈*, 𝑉 *, 𝑢0) with maximum 𝑢0 as 𝑇convex frontier, we run model (4.4) (𝑢*0 ≥ 0, 𝑢*0 ̸= 0).

So, the coordinate of the CSP input vector is located on the lower bound of 𝑋congestion frontier. Besides, the
necessary condition that (𝑥𝑝, 𝑦𝑝)𝑡 as a landing location of the DEA production function frontier is 𝑢*0 > 0. It
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(a) (b)

Figure 1. (a) The visual description of supporting hyperplane of model (4.12). (b) The visual
description of supporting hyperplane of model (4.12) (𝑘; technical sufficient in 𝑇𝑣).

should be noted that, if in some optimal solutions of the above model 𝑣*𝑖 < 0, then the production frontier after
the point (𝑥𝑝, 𝑦𝑝)𝑡 with increasing one or more inputs more than 𝑥𝑝 decreases some outputs without improving
(worsening) other inputs or outputs. Figures 1a and 1b make a visual description of different situations of
optimal solutions of model (4.4) under 𝑇convex technology. It means displaying different scenarios of the optimal
solutions of model (4.4) and their supporting hyperplanes.

Remark 4.2. If production technology has congestion property, then there is at least one CSP. Alternatively,
vice versa, there is at least one CSP so, production technology has congestion properties.

Remark 4.3. In solving the model (4.4) with the index of technical efficient units, it is necessary to point out
that 𝑢0 = 0, 𝑣𝑖 = 0, 𝑢𝑟 = 0 is a feasible solution to the model (4.4). Furthermore, if the model has an optimal
solution, it is either zero, positive, or unbounded. In other words, it will never be negative.

Remark 4.4. In 𝑇convex at least one observation is the CSP (provided that there is at least one congested
observation in 𝑇convex technology based on Cooper et al. [9] congestion definition). In other words, the set of
CSPs is not empty if and only if the optimal solution of model (4.4) is not equal to zero or infinite (see Fig. 1b).

As described in the introduction, the economic definition of congestion (Def. 2.2) has some wrong in DEA.
Still, using the set of CSPs, this definition can be expressed:

Remark 4.5. A DMU has congestion if an increase in one or more inputs over one or more CSPs input. It is
associated with decreases in one or more outputs without improving (worsening) other inputs or outputs.

Remark 4.6. A DMU has weak congestion if an increase in some or (all) inputs over some (all) inputs of CSPs,
is associated with decreases in some or (all) outputs without improving (worsening) other inputs or outputs.

Remark 4.7. A DMU has strong congestion if an increase in all inputs is more than all CSP’s inputs, It is
associated with decreases in all outputs without improving (worsening) other inputs or outputs. As described
above, CSPs themselves have no congestion.
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Remark 4.8. CSPs are a type of technically efficient DMU – that are weakly but not strongly efficient DMU
– with maximum outputs; thus, they do not have congestion.

In the DEA literature, the concept of congestion is expressed for the unit under evaluation, while any obvious
point does not necessarily refer to the production frontier. To address the problem, instead of doing calculations
on observed points, the calculations are done on the production frontier’s projection points. To calculate the
congestion of the observed point (𝑥𝑜, 𝑦𝑜) its projection point

(︀
𝑥𝑜, 𝜙

*𝑦𝑜 + 𝑠+*
)︀

is used, that
(︀
𝜙*, 𝑠+*

)︀
is an

optimal solution for a model (2.1b). To specify whether one DMU has congestion or not (without congestion
measurement on inputs components), the model (4.5) based on the congestion definition of Cooper et al. [4, 6]
and the property of the convex PPS is presented:

𝜂 = min

⎛⎝ 𝑛∑︁
𝑗=1

𝑡+𝑟𝑜 +
𝑛∑︁

𝑗=1

𝑡−𝑖𝑜

⎞⎠

s.t.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑︀𝑛

𝑗=1 𝜆𝑗𝑥𝑖𝑗 + 𝑡−𝑖𝑜 = 𝑥𝑖𝑜 𝑖 = 1, . . . ,𝑚∑︀𝑛
𝑗=1 𝜆𝑗𝑦𝑟𝑗 − 𝑡+𝑟𝑜 = (𝜙*𝑦𝑟𝑜 + 𝑠+*

𝑟𝑜 ) 𝑟 = 1, . . . , 𝑠∑︀𝑛
𝑗=1 𝜆𝑗 = 1

𝜆𝑗 ≥ 0, 𝑡−𝑖 ≥ 0, 𝑡+𝑟 ≥ 0.

(4.5)

𝑡+𝑟 is an output slack of the model (4.5). Also, 𝜙* and 𝑠+
𝑟𝑜 are an optimal solution and the optimum output

slack of the model (2.1b). This model can identify the congested DMUs (from inefficient DMUs evaluated by
model (2.1b)) and does not talk about their congestion size. So,

(a) 𝜂* = 0, then inefficient (𝑥𝑜, 𝑦𝑜) is not congested.
(b) 𝜂* > 0, then inefficient (𝑥𝑜, 𝑦𝑜) is congested.

Definition 4.9 (New definition of congestion). For some optimal solutions of the model (2.1b) being(︀
𝜙*, 𝜆*𝑗 , 𝑠

−*
𝑖 , 𝑠+*

𝑟

)︀
, the point (𝑥, 𝑦) ∈ 𝑇𝑣 is said to have congestion if (𝑥, 𝜙*𝑦 + 𝑠+*

𝑟 ) /∈ 𝑇convex.

Notice the definition of 𝑋congestion(𝑋𝑐), given this definition and its inequality; it is clear that the inclusion set
is an open interval (𝑎,∞) as well for bounded convex production technology (𝑇convex) as Figures 2a and 2b; we
can say that 𝑋𝑐 = (𝑎, 𝑏]. See, e.g., in Figures 2a and 2b below, that the convex production technology (𝑇convex)
is composed of five DMUs. As can be seen in the Figure 2, DMU𝐶 is CSP because an increase in input more
than the input of DMU𝑐 causes a decreased output from the maximum level. Also, DMU𝐶 is technically efficient
in 𝑇𝑣. As per Definition 4.9, DMU𝐶 is not congested since DMU𝐶 = (𝑥𝐶 = 8, 𝑦𝐶 = 6) and 𝑥𝐶 = 8 /∈ 𝑋𝑐. But
DMU𝑃 is congested since DMU𝑃 = (𝑥𝑃 = 9, 𝑦𝑃 = 4) ∈ 𝑇convex and also

(︀
𝑥𝑃 = 8, 𝜙*𝑦𝑃 + 𝑠+* = 6

)︀
/∈ 𝑇convex.

Using Definition 4.9, DMU𝑃 is identified as congested. The congestion area defined in the previous section can
be expressed (𝑋𝑐 = 𝑋congestion):

𝑋𝑐 = {The area consists of congested inputs created by Convex combination of CSPs}. (4.6)

Suppose that 𝑚th DMU of the observed DMUs are the CSPs, DMU(𝑚) (1 ≤ 𝑚 ≤ 𝑛−1), and without completing
the whole argument, assume we re-number the number of CSPs with the symbol (𝑗), it means the member of
the set (𝑗) is the type of CSPs. So, DMU(1), . . . , DMU(𝑚) are the type of CSP. Now, we define the congestion
area as follows ((𝐽) is an index of CSPs DMUs, which means (𝑗) = {(1), . . . ., (𝑚)}), so, the congestion area be
built:

𝑋𝑐 =

⎧⎨⎩𝑥𝑖

⃒⃒⃒⃒
⃒∃𝜆(𝑗) : 𝑥𝑖 >

∑︁
(𝑗)

𝜆(𝑗)𝑥(𝑗),
∑︁
(𝑗)

𝜆(𝑗) = 1, 𝜆(𝑗) ≥ 0, 𝑖 = 1, . . . ,𝑚

⎫⎬⎭. (4.7)

Consider the example and Figure 2b chosen from Noura et al. [20]. The set of efficient DMUs is 𝐸 =
{𝐴, 𝐵, 𝐶,𝐷, 𝐸, 𝐹}. DMU𝐹 has the highest input consumption among the efficient DMUs, i.e., 𝑥𝐹 = 𝑥* = 7.
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(a) (b)

Figure 2. (a) The visual description of 𝑋𝑐 and Definition 4.9. (b) The numerical visual descrip-
tion of 𝑇convex, BCC and CCR frontiers and 𝑋NC from Noura et al. [20].

Using Noura et al. [20] method, they compare the inputs of the inefficient DMU𝑠 with 𝑥𝐹 = 𝑥* = 7. Then, using
Definition 2 of Noura et al. [20], DMU𝐻 and DMU𝐼 exhibit no congestion, i.e., 𝑥𝐼 − 𝑥* = 6− 7 = −1 < 0 and
𝑥𝐻−𝑥* = 7−7 = 0. While DMU𝐺 exhibits congestion of one unit 𝑥𝐺−𝑥* = 8−7 = 1 > 0. Also, efficient DMU𝐹

has no congestion because this is an efficient DMU also 𝑥𝐹 − 𝑥* = 7− 7 = 0. According to our Definition 4.10,
the point (𝑥, 𝑦) ∈ 𝑇convex is said to have congestion if and only if (𝑥, 𝑦); 𝑥 /∈ 𝑋NC. See Figure 2b, that based on
the Definition 4.10, we have 𝑋𝑐 = (7, 8]. So, it is clear that 𝑥𝐹 = 8 /∈ 𝑋𝑐, 𝑥𝐻 = 8 /∈ 𝑋𝑐 so DMU𝐹 and DMU𝐻

actually exhibit no congestion and that 𝑥𝐺 = 8 ∈ 𝑋𝑐, (𝑥𝐺 = 8, 𝜙*𝑦𝑃 + 𝑠+* = 4) /∈ 𝑇convex so DMU𝐺 actually
exhibits congestion.

As is clear, DMU𝑐 from Figure 2a and DMU𝐹 and DMU𝐻 from Figure 2b, have the same conditions, i.e., all
have no congestion, and all are CSPs.

Definition 4.10 (Single CSP). Consider to single input-output DMU𝑝 : (𝑥𝑝, 𝑦𝑝)𝑡
. The input of DMU𝑝 is CSP

if, ∀DMU𝑝 : (𝑥𝑝, 𝑦𝑝) ∈ 𝑇𝑣,∃𝜀 > 0 : 𝑥𝑝 /∈ 𝑋𝑐, 𝑦𝑜 = 𝑦max ⇒ (𝑥𝑝 + 𝜀) ∈ 𝑋𝑐, 𝑦𝑝 < 𝑦max.

Theorem 4.11. Consider DMU𝑜 : (𝑥𝑜, 𝑦𝑜) ∈ 𝑇𝑣. So, the following definitions are equivalent:

(A) Consider the optimal solution of the model (2.1b) as
(︀
𝜙*, 𝜆*𝑗 , 𝑠

−*
𝑖 , 𝑠+*

𝑟

)︀
. The point (𝑥𝑜, 𝑦𝑜) does have con-

gestion if (𝑥𝑜, 𝜙
*𝑦𝑜 + 𝑠+*

𝑟 ) /∈ 𝑇convex.
(B) There is a 𝜆(𝑗) = (𝜆(1), . . . , 𝜆(𝑚)) ≥ 0 such that:

∑︀(𝑚)
𝑗=(1) 𝜆(𝑗)𝑥(𝑗) ≤ 𝑥𝑜,

∑︀(𝑚)
𝑗=(1) 𝜆(𝑗)𝑥(𝑗) ̸=

𝑥𝑜 ,
∑︀(𝑚)

𝑗=(1) 𝜆(𝑗) = 1.

Proof. Suppose that, (𝑥𝑜, 𝑦𝑜) ∈ 𝑇𝑣 but (𝑥𝑜, 𝜙
*𝑦𝑜 + 𝑠+*

𝑟 ) /∈ 𝑇convex, it is enough to prove that there is a
(𝜆(1), . . . , 𝜆(𝑚)) ≥ 0 such that

∑︀(𝑚)
𝑗=(1) 𝜆(𝑗)𝑥(𝑗) ≤ 𝑥𝑜,

∑︀(𝑚)
𝑗=(1) 𝜆(𝑗)𝑥(𝑗) ̸= 𝑥𝑜 ,

∑︀(𝑚)
𝑗=(1) 𝜆(𝑗) = 1. Cause (𝑥𝑜 −

𝑠−𝑖 , 𝜙*𝑦𝑜 + 𝑠+*
𝑟 ) ∈ 𝑇𝑣 is an efficient point and there is 𝑠𝑐

𝑖 ≥ 0 [9] and (𝑗) ∈ {(1), (2), . . . , (𝑚)} such that:(︀
𝑥(𝑗), 𝑦(𝑗)

)︀
=
(︀
𝑥𝑜 − 𝑠−𝑖 + 𝑠𝑐

𝑖 , 𝜙𝑦𝑜 + 𝑠+
𝑟

)︀
,−𝑠−𝑖 + 𝑠𝑐

𝑖 > 0. (4.8)

Therefore: 𝑥𝑜 > 𝑥𝑜 + (𝑠𝑐
𝑖 − 𝑠−𝑖 ) = 𝑥(𝑗). Consider 𝜆(𝑗) = 1, 𝜆(𝑗′) = 0; (𝑗) ̸= (𝑗′), that the statement is correct.

On the contrary, suppose that there is a (𝜆(1), . . . , 𝜆(𝑚)) ≥ 0 such that
∑︀(𝑚)

𝑗=(1) 𝜆(𝑗)𝑥(𝑗) ≤ 𝑥𝑜,
∑︀(𝑚)

𝑗=(1) 𝜆(𝑗)𝑥(𝑗) ̸=
𝑥𝑜,
∑︀(𝑚)

𝑗=(1) 𝜆(𝑗) = 1. We prove that (𝑥𝑜, 𝜙𝑦𝑜 +𝑠+
𝑟 ) /∈ 𝑇convex. Therefore, since there is a (𝑗′) ∈ {(1), (2), . . . , (𝑚)},

such that, 𝑥(𝑗′)𝑜 ≥ 𝑥(𝑗′)(𝑗′). So, (𝑥𝑜, 𝜙𝑦𝑜 + 𝑠+
𝑟 ) is Output-Oriented BCC-efficient (why?), and according to (4.4),

(𝑥(𝑗′), 𝑦(𝑗′)) is the last point of 𝑇convex along the axis (𝑗′). Hence, (𝑥𝑜, 𝜙
*𝑦𝑜 + 𝑠+*

𝑟 ) /∈ 𝑇convex. �
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Theorem 4.12. 𝑋congestion(𝑋𝑐) is convex.

Proof. Assume that 𝑥1, 𝑥2 ∈ 𝑋C, and 𝜇 ∈ (0, 1). Under these assumptions, it must be proved that 𝑥(𝜆) ∈ 𝑋C,
where 𝑥(𝜆) = 𝜆𝑥1 + (1− 𝜆)𝑥2. Since 𝑥𝑖 ∈ 𝑋𝑐; (𝑖 = 1, 2) then, there is 𝑦𝑖 > 0 such that:{︂

(𝑥𝑖, 𝜙*𝑦𝑖 + 𝑠𝑖+*) /∈ 𝑇convex

(𝑥𝑖, 𝑦𝑖) ∈ 𝑇convex.
(4.9)

Then we have (𝑥1, 𝜙*1𝑦1 + 𝑠1+*) /∈ 𝑇convex.
So, for every 𝜆𝑖

(𝑗) that
∑︀(𝑚)

𝑗=(1) 𝜆1
(𝑗) = 1 and 𝑥1 =

∑︀(𝑚)
𝑗=(1) 𝜆1

(𝑗)𝑥(𝑗) are correct, therefore,

𝜙1𝑦1+ + 𝑠1+ >

(𝑚)∑︁
𝑗=(1)

𝜆1
(𝑗)𝑦(𝑗). (4.10)

Also, for every 𝜆𝑖
(𝑗) that

∑︀(𝑚)
𝑗=(1) 𝜆2

(𝑗) = 1 and 𝑥2 =
∑︀(𝑚)

𝑗=(1) 𝜆2
(𝑗)𝑥(𝑗) are correct, therefore,

𝜙2𝑦2+ + 𝑠2+ >

(𝑚)∑︁
𝑗=(1)

𝜆2
(𝑗)𝑦(𝑗). (4.11)

It is clear that⎧⎨⎩𝑥(𝜆) =
∑︀(𝑚)

𝑗=(1)

(︁
𝜇𝜆1

(𝑗) + (1− 𝜇)𝜆2
(𝑗)

)︁
𝑥(𝑗)

1 =
∑︀(𝑚)

𝑗=(1)

(︁
𝜇𝜆1

(𝑗) + (1− 𝜇)𝜆2
(𝑗)

)︁
𝜇
(︀
𝜙1𝑦1 + 𝑠+1

)︀
+ (1− 𝜇)

(︀
𝜙2𝑦2 + 𝑠+2

)︀
= 𝜇𝜙1𝑦1 + (1− 𝜇)𝜙2𝑦2 + 𝜇𝑠1+ + (1− 𝜇)𝑠2+

>

(𝑚)∑︁
𝑗=(1)

(︁
𝜇𝜆1

(𝑗) + (1− 𝜇)𝜆2
(𝑗)

)︁
𝑦(𝑗). (4.12)

Consider that ⎧⎨⎩
𝑦(𝜆) = 𝜇𝜙1𝜆1

(𝑗) + (1− 𝜇)𝜙2𝜆2
(𝑗)

𝜙(𝜇) = 1
𝑠(𝜇) = 𝜇𝑠1+ + (1− 𝜇)𝑠2+.

(4.13)

So, (𝑥(𝜇), 𝜙(𝜇)𝑦(𝜇) + 𝑠+(𝜇)) /∈ 𝑇convex. Hence, it is enough to prove that (𝑥(𝜇), 𝑦(𝜇)) ∈ 𝑇convex.

If the relation is true, then the theorem proved, assume, the relation is not correct then, according to the
output disposability, there are 0 < 𝛽 < 1 such that (𝑥(𝜇), 𝛽𝑦(𝜇)) ∈ 𝑇convex

Hence, it is enough: ⎧⎪⎨⎪⎩
𝑦(𝜆) = 1

𝛽

(︁
𝜇𝜙1𝜆1

(𝑗) + (1− 𝜇)𝜙2𝜆2
(𝑗)

)︁
𝜙(𝜇) = 𝛽
𝑠(𝜇) = 𝜇𝑠1+ + (1− 𝜇)𝑠2+.

(4.14)

So, (𝑥(𝜇), 𝜙(𝜇)𝑦(𝜇) + 𝑠+(𝜇)) /∈ 𝑇convex. �

This is obvious that 𝑋congestion is a polytope, but a polytope may be convex (or maybe non-convex), so this
above theorem must be proved that 𝑋congestion(𝑋𝑐) is convex.
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(a) (b)

Figure 3. (a) A view of the congestion area (hatched area) and the projection of PPS on the
inputs space. (b) Congestion area obtained from Noura et al. [20] for two outputs (hatched
area).

Theorem 4.13. If DMU𝑜 does has congestion, then 𝑥𝑜 ∈ 𝑋𝑐.

Proof. This is obvious according to the definition of 𝑋𝑐. �

A necessary condition for the DMU to be congested is that the input’s vector should be inside 𝑋𝑐. Note
that Theorem 4.13 does not constitute sufficient conditions for the DMUs to be congested. Indeed, it could be
positioned by the frontier of the set 𝑋𝑐 that represents congestion relative to some but not all inputs; that is
the definition of weak congestion. The remark below provides the necessary and sufficient conditions for a DMU
to be recognized as having congestion.

Figure 3a shows the frontier and congestion area in the input space of DMUs and PPS projection on the
input planes. Note that this projection of PPS is not from Farrell’s frontier. Indeed, some points within the
projection area could be technically efficient. As shown in Figure 3a, the congestion area is a subset of the input
space of the PPS. According to the above theorems, any point such as DMU𝐴 that is positioned within the
congestion area has congestion.

Note that the boundaries of the congestion area do not necessarily indicate the presence of congestion. In
Figure 3a, for example, DMU𝐵 does not have congestion because it is located on the lower border that includes
technically efficient points as CSPs (it means DMU𝐵 is a technically efficient DMU and CSP). Also, DMU𝐷

does not have congestion, and it is only technically efficient DMU and CSP. So, CSPs are technically efficient
points and have no congestion because each point (𝑥𝑝, 𝑦𝑝) ∈ 𝑇𝑣 on the border is a convex combination of at least
two CSPs, so any point on the border is technically efficient and has no congestion also, the points (𝑥𝑝, 𝑦𝑝) ∈ 𝑇𝑣

located on the border between congestion areas (𝑋𝑐) and non-congestion area have no congestion and any points
on this border is CSP. Therefore, the points on the PPS can be divided into three classes:

(1) without congestion,
(2) with weak congestion,
(3) with strong congestion.

Remark 4.14. If a DMU does has weak congestion, some but not all, of the inputs, are within 𝑋𝑐.

Remark 4.15. If a DMU does has strong congestion, all inputs are within 𝑋𝑐.
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Figure 4. A view of the congestion zone (hatched zone) and the projection of PPS on the
inputs space.

Remark 4.16. Each congested DMU is within the congestion area. Since the congestion area is convex and
was made by inputs of congested DMUs. So, the convex composition of both points within the area and each
DMUs is congested (Fig. 4).

That is important to note that the blue area in Figure 3b is a part of congestion area and some previous
congestion measurement methods based on DMUs (not production frontier) same as Noura et al. [20] lack
congestion in DMUs located this area. It means these methods cannot identify congestion from DMUs whose
inputs are located in this blue area. If the DMU does has congestion, the distance of a DMU from the congestion
area bottom frontier can represent its congestion. Model (19) computes the so-called non-radial distance of a
DMU with congestion. This model derived from the additive DEA model can determine the congestion of DMU’s
components.

Max 1𝑠𝑐

s.t.
{︂

𝑥𝑜 − 𝑠𝑐 ∈ 𝑋𝑐

𝑠𝑐 ≥ 0.
(4.15)

In model (4.15), 1 = (11, 12, . . . , 1𝑚)𝑡 and 𝑠𝑐 = (𝑠𝑐
1, 𝑠

𝑐
2, . . . , 𝑠

𝑐
𝑚)𝑡 is the congestion measure for the DMU’s input

components. Here, the optimal solution of the objective function is zero. Under two scenarios, a DMU does
not have congestion; First, when the above optimal solution is zero, and second when the model is infeasible.
Assume that the optimal solution is 𝑠𝑐*:
(1) DMU𝑜 does has strong congestion if 𝑠𝑐* > 0.
(2) DMU𝑜 does has weak congestion if 𝑠𝑐*> 0

̸=
.

If we had used the radial model to compute congestion, it would be impossible to obtain component congestion.
Similarly, the SBM model (for efficiency evaluation) can construct a model for measuring relative and non-radial
congestion of DMUs. The relative congestion model is presented below:

𝛼 = Max
1
𝑚

𝑚∑︁
𝑖=1

𝑠𝑐
𝑖

𝑥𝑖𝑜

s.t.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑︀

(𝑗) 𝜆𝑖(𝑗)𝑥𝑖(𝑗) = 𝑥𝑖𝑜 − 𝑠𝑐
𝑖 (𝑗) = (1), . . . , (𝑚)∑︀

(𝑗) 𝜆(𝑗) = 1
𝑠𝑐

𝑖 ≥ 0
𝜆(𝑗) ≥ 0.

(4.16)
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(a)

(c)

(b)

Figure 5. (a) The technology 𝑇𝑣 of Mehdiloozad et al. [19]. (b) The technology 𝑇convex of
Mehdiloozad et al. [19]. (c) The area (𝑥, 𝑦1, 𝑦2) ⊂ Figure 5b which 𝑥 ∈ 𝑋𝑐, DMU:(𝑥, 𝑦1, 𝑦2) is a
congested. Also, this area created by the DMUs that their inputs are member of 𝑋𝑐. All DMUs
located in this area are congested.

So, congestion’s degree of DMU𝑜 represented by 𝛼 is defined: 𝛼 =
{︂

𝛼 model is feasible
0 model is infeasible . It is clear that

0 ≤ 𝛼 ≤ 1. Meanwhile, if 𝛼 = 0, therefore DMU𝑜 does not has congestion, otherwise DMU𝑜 does has congestion.
If 𝛼 > 0, and 𝑠𝑐 = (𝑠𝑐

1, 𝑠
𝑐
2, . . . , 𝑠

𝑐
𝑚)𝑡 ̸> 0 DMU𝑜 does has weak congestion.

According to Figure 5c, each DMU whose input is located in this area has congestion (weak or strong).
The DMUs 𝐴, 𝐵, and 𝐶 are CSP. The DMU𝐷 is also a technically efficient DMU and, DMU𝐸 and DMU𝐹

are strongly congested. The following MOLP model (4.17) is an equivalent model to determine the technical
efficient points (CSPs) as (𝑥𝑝, 𝑦𝑝)𝑡

. So,

Definition 4.17. A BCC-o technical efficient DMU𝑝 is a CSP if and only if there is 𝑖 (𝑖 = 1, . . . ,𝑚) so that
𝑣*𝑖 < 0, therefore:

𝑣*𝑖 = min 𝑣𝑖

s.t. ∑︁
𝑟

𝑢𝑟𝑦𝑟𝑝 −
∑︁

𝑖

𝑣𝑖𝑥𝑖𝑝 + 𝑢*0 = 0, 𝑝,∑︁
𝑟

𝑢𝑟𝑦𝑟𝑗 −
∑︁

𝑖

𝑣𝑖𝑥𝑖𝑗 + 𝑢*0 ≤ 0, 𝑗 = 1, . . . , 𝑛, 𝑖 = 1, . . . ,𝑚,
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𝑢𝑟 ≥ 0, 𝑣𝑖 is free, 𝑟 = 1, . . . , 𝑠. (4.17)

That 𝑢*0 is an optimal solution of model (4.12). So, assumed 𝑉 * = (𝑣*1 , . . . 𝑣*𝑚) it results in,

(a) (𝑥𝑝, 𝑦𝑝)𝑡 is a CSP, if 𝑉 * � 0, (∀𝑖, 𝑣*𝑖 � 0, 𝑖 = 1, . . . ,𝑚).

To solve model (4.17), we efficiently use the following 𝑚th models;

min 𝑣*𝑖

s.t. 𝑣𝑖 ≥ 𝑣*𝑖

𝑣𝑖 is free, 𝑖 = 1, . . . ,𝑚. (4.18)

So, there is at least one CSP if we have at least one negative 𝑣*𝑖 . If all the components are negative, 𝑣*𝑖 � 0, then
all the components of the unit under evaluation are CSP, which means DMU has congestion in all components.
Also, if all components are positive, 𝑣*𝑖 > 0, then the unit under evaluation is not CSP. To explain the congestion
area and CSP in the face of multiple inputs, noted the following explanations. The optimal solution of model
(4.18) may be unbounded, so it is clear that 𝑣*𝑖 < 0.

It is necessary to mention that; Congestion occurs in the input vectors of the DMUs. Therefore, when we say
DMU𝐴 has congestion, which means, the input of this DMU has congestion. So, when we say a DMU is CSP,
it means the input of this DMU is CSP (consider inputs space). This is easy to understand when there is only
one input-output, but when dealing with multiple inputs-outputs, it can be described as follows:

Definition 4.18 (CSP). Consider to DMU𝑝 : (𝑥𝑝, 𝑦𝑝)𝑡
, 𝑥𝑝 = (𝑥1𝑝, . . . , 𝑥𝑚𝑝) and 𝑦𝑝 = (𝑦1𝑝, . . . , 𝑦𝑟𝑝). The input

of DMU𝑝 is CSP if, ∀DMU𝑝 : (𝑥𝑝, 𝑦𝑝) ∈ 𝑇𝑣, ∃𝜀 > 0 : 𝑥𝑝 /∈ 𝑋𝑐, 𝑦𝑜 = 𝑦max ⇒ (𝑥𝑖𝑝 + 𝜀) ∈ 𝑋𝑐, 𝑦𝑟𝑜 < 𝑦max
𝑟 , then

we called that DMU𝑝 is full CSP. Also, if, ∀DMU𝑝 : (𝑥𝑝, 𝑦𝑝) ∈ 𝑇𝑣, ∃𝜀 > 0 : 𝑥𝑖𝑝 /∈ 𝑋𝑐, 𝑦𝑟𝑝 = 𝑦max ⇒ ∀𝑖 ̸= 𝑚 :
(𝑥𝑖𝑝 + 𝜀) ∈ 𝑋𝑐, 𝑦𝑟𝑝 < 𝑦max

𝑟 , then we called DMU𝑝 weak CSP.

Consider 5 DMUs with 5 inputs components, DMU𝑖 =
(︀
𝑥𝑖

1, 𝑥
𝑖
2, 𝑥

𝑖
3, 𝑥

𝑖
4, 𝑥

𝑖
5

)︀
, (𝑖 = 1, 2, 3, 4, 5) and

(𝑎1, 𝑏1, 𝑐1, 𝑑1, 𝑒1) is congestion measures of inputs components of DMU1,
(︀
𝑎2
)︀

congestion measure of first input of
DMU2, (𝑎3, 𝑏3) congestion measure of first and second input DMU3,

(︀
𝑐4, 𝑑4

)︀
third and fourth inputs congestion

measure of DMU4 and
(︀
𝑒5
)︀

congestion measure of five inputs of DMU5, respectively. Other input components
have no congestion. DMU1 has strong congestion, which means all 5 inputs components have congestion, DMU2

has weak congestion only in 𝑥2
1, DMU3 has weak congestion in 𝑥3

1, 𝑥
3
2, DMU4 has weak congestion in 𝑥4

3, 𝑥
4
4 and

DMU5 has weak congestion in 𝑥5
5.

DMU1 =
(︀
𝑥1

1 − 𝑎1, 𝑥1
2 − 𝑏1, 𝑥1

3 − 𝑐1, 𝑥1
4 − 𝑑1, 𝑥1

5 − 𝑒1
)︀

= (𝑥′1, 𝑥
′
2, 𝑥

′
3, 𝑥

′
4, 𝑥

′
5)

DMU2 =
(︀
𝑥2

1 − 𝑎2, 𝑥2
2, 𝑥

2
3, 𝑥

2
4, 𝑥

2
5

)︀
=
(︀
𝑥′1, 𝑥

2
2, 𝑥

2
3, 𝑥

2
4, 𝑥

2
5

)︀
DMU3 =

(︀
𝑥3

1 − 𝑎3, 𝑥3
2 − 𝑏3, 𝑥3

3, 𝑥
3
4, 𝑥

3
5

)︀
=
(︀
𝑥′1, 𝑥

′
2, 𝑥

3
3, 𝑥

3
4, 𝑥

3
5

)︀
DMU4 =

(︀
𝑥4

1, 𝑥
4
2, 𝑥

4
3 − 𝑐4, 𝑥4

4 − 𝑑4, 𝑥4
5

)︀
=
(︀
𝑥4

1, 𝑥
4
2, 𝑥

′
3, 𝑥

′
4, 𝑥

4
5

)︀
DMU5 =

(︀
𝑥5

1, 𝑥
5
2, 𝑥

5
3, 𝑥

5
4, 𝑥

5
5 − 𝑒5

)︀
=
(︀
𝑥5

1, 𝑥
5
2, 𝑥

5
3, 𝑥

5
4, 𝑥

′
5

)︀
Virtual DMUCSP = (𝑥′1, 𝑥

′
2, 𝑥

′
3, 𝑥

′
4, 𝑥

′
5) obtained by subtracting congestion values from their corresponding

input components is the CSP unit. More precisely, the input components of this virtual unit are the conges-
tion boundary and with the turbulence of each of these components plus epsilon, the said component will be
congested. Then, in multiple inputs, components of input (some or all) will play the role of CSP. To describe
precisely, in the above example, for the first component 𝑥′1, the second component 𝑥′2, the third 𝑥′3, the fourth
𝑥′4 and the five components 𝑥′5 are CSPs. So, in DMU1 all inputs components 𝑥′1, 𝑥

′
2, 𝑥

′
3, 𝑥

′
4, 𝑥

′
5 are CSP, 𝑥′1 in

the DMU2, 𝑥′1 and 𝑥′2 in the DMU3, 𝑥′3 and 𝑥′4 in the DMU4 and 𝑥′5 in the DMU5 are CSP.
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If in a collection of congested DMUs, one or more DMUs have strong congestion, then all their input com-
ponents are CSP, otherwise, only the congested input component of the DMUs are CSP. The 𝑋𝑐 is also created
by the same CSP components. Of course, there may not be strong congestion, in which case the congestion
zone will be made up of a combination of compact components that make up CSP and not all inputs compo-
nents. Congested DMUs are not CSPs because CSPs are technically efficient points. Also, CSPs are a border
between congestion and non-congestion. In single input (dimension one) all CSPs are one point and this bor-
der is one point, in two input all points located on the convex composition of two CSPs are CSP and this
border is a line, and for 3 input this border is a hyperplane and for more than 3 inputs this is a convex
multi-dimensional.

5. Second insight of congestion measurement; non-congestion area

This section describes new insights into congestion based on non-congestion DMU’s inputs space and proves
some fundamental theorems and a second new mathematical definition of congestion. Before discussing our
proposed method, we must present the definitions of several new congestion-related concepts and propose a new
mathematical definition for the concept of congestion itself.

Definition 5.1 (New definition of congestion). For some optimal solutions of the model (2.1b) being(︀
𝜙*, 𝜆*𝑗 , 𝑠

−*
𝑖 , 𝑠+*

𝑟

)︀
, the point (𝑥, 𝑦) ∈ 𝑇𝑣 is said to do has congestion if (𝑥, 𝜙*𝑦 + 𝑠+*

𝑟 ) /∈ 𝑇convex.

Building the non-congestion area is enough to find DMUs efficiently in the BCC-O and get the convex
composition of these efficient DMUs. The DMUs in this compound are convex within the non-congestion area
and lack congestion. Other DMUs are congested.

Theorem 5.2. 𝑋NC is convex.
To prove that the 𝑋NC is convex, we prove that the convex combination of both points of this area is within

𝑋NC. Assume that (𝑥̄, 𝑦) and (𝑥̂, 𝑦) does not have congestion, and 𝛼 ∈ (0, 1), and we have (𝑥(𝛼), 𝑦(𝛼)) =
𝛼(𝑥̄, 𝑦) + (1− 𝛼)(𝑥̂, 𝑦). So (𝑥(𝛼), 𝑦(𝛼)) does not have congestion.

Proof. Assume that (𝑥(𝛼), 𝑦(𝛼)) has congestion And 𝜙*𝛼 ≥ 1 is an optimum solution of BCC-o. So
(𝑥(𝛼), 𝜙*𝛼𝑦(𝛼)) /∈ 𝑇convex. While we know that, (𝑥(𝛼), 𝑦(𝛼)) = 𝛼(𝑥̄, 𝑦) + (1− 𝛼)(𝑥̂, 𝑦).

Moreover,

(𝑥̄, 𝑦) ∈ 𝑇convex ⇒

⎧⎪⎨⎪⎩
𝑥̄ =

∑︀
𝑗 𝜆̄𝑗𝑥𝑗

𝑦 ≤
∑︀

𝑗 𝜆̄𝑗𝑦𝑗∑︀
𝑗 𝜆̄𝑗 = 1

, and (𝑥̂, 𝑦) ∈ 𝑇convex ⇒

⎧⎪⎪⎨⎪⎪⎩
𝑥̂ =

∑︀
𝑗 𝜆̂𝑗𝑥𝑗

𝑦 ≤
∑︀

𝑗 𝜆̂𝑗𝑦𝑗∑︀
𝑗 𝜆̂𝑗 = 1.

(5.1)

So, 𝑥(𝛼) =
∑︀

𝑗 (𝛼𝜆̄𝑗 + (1− 𝛼)𝜆̄𝑗)(𝑥̂) and 𝑦(𝛼) =
∑︀

𝑗 (𝛼𝜆̄𝑗 + (1− 𝛼)𝜆̄𝑗)(𝑦). With assumption 𝜇𝑗 = (𝛼𝜆̄𝑗 +
(1 − 𝛼)𝜆̄𝑗), first, 𝜇𝑗 ≥ 0, (𝑗 = 1, . . . , 𝑛) so

∑︀
𝑗 𝜇𝑗 = 𝛼

∑︀
𝑗 𝜆̄𝑗 + (1− 𝛼)

∑︀
𝑗 𝜆̄𝑗 = 1, then (𝑥(𝛼), 𝑦(𝛼)) ∈ 𝑇convex.

Besides, 𝜙*𝛼𝑦(𝛼) ≥ 𝑦(𝛼). So ⎧⎪⎨⎪⎩
𝑥(𝛼) =

∑︀
𝑗 𝜇𝑗𝑥𝑗

𝜙*𝛼𝑦(𝛼) ≥
∑︀

𝑗 𝜇𝑗𝑦𝑗∑︀
𝑗 𝜇𝑗 = 1

⇒ (𝑥(𝛼), 𝜙*𝛼𝑦(𝛼)) ∈ 𝑇convex. (5.2)

This is inconsistent with the assumption. �

According to this theorem, we proved that the convex combination of both non-congestion area points is in
the non-congestion area: the convex combination of two points that are not congested, not congested.
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We know that if the DMU is (𝜙*BCC-o) efficient, it does not have congestion. So, the convex combination
of the (𝜙*BCC-o) efficient points do not have congestion. Then we consider the convex combination of (𝜙*BCC-o)
effective points and define that any point outside this area has congestion.

Note that to identify congested DMUs, we divide the PPS into two areas of congestion and non-congestion
areas. We also classified the DMUs into two groups congested and non-congested (NC). Then, by computing
the non-congestion area and a non-radial model, we identify the congested DMUs and calculate congestion of
the congested DMUs simply and accurately. Given that compaction is a feature of the production frontier, and
we also use post-PPS properties to identify congested DMUs, we can say that our method is also very accurate
and fast. We test our model with the best methods available to identify congestion DMUs and show that our
method is the most accurate to prove our claim.

We can express the congestion area defined in the previous section:

𝑋NCA = {The non-congested inputs area made by inputs of DMUs that, 𝜙*BCC-o = 1}. (5.3)

Definition 5.3 (NCA). An area in the inputs space where; inputs of DMUs without congestion are located
inside it and denoted 𝑋NC.

Suppose 𝜙*BCC-o is an optimal solution of the output-oriented BCC-o model (2.1a), then consider set 𝐽𝐸 as
follows,

𝐽𝐸 = {𝑗|𝜙*BCC-o = 1}. (5.4)

So, the non-congestion area creates:

𝑋NC =

⎧⎨⎩𝑥𝑜

⃒⃒⃒⃒
⃒⃒∃𝜆 : 𝑥𝑜 =

∑︁
𝑗∈𝐽𝐸

𝜆𝑗𝑥𝑗 ,
∑︁

𝑗∈𝐽𝐸

𝜆𝑗 = 1, 𝜆𝑗 ≥ 0, 𝑗 ∈ 𝐽𝐸

⎫⎬⎭. (5.5)

The minimum distance of the DMU𝑜 from the non-congestion area’s frontier represents the amount of its
congestion measure. The model (5.6) computes the non-radial distance of congested DMU𝑜 from the non-
congestion area. This model, derived from the additive DEA model, can determine the amount of congestion in
the presence of both negative and non-negative data.

𝜙 = min
𝑚∑︁

𝑖=1

𝑠𝑐
𝑖

s.t. ⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑︀

𝑗∈𝐽𝐸
𝜆𝑗𝑥𝑗 = 𝑥𝑜 − 𝑠𝑐

𝑖 , 𝑖 = 1, . . . ,𝑚,∑︀𝑛
𝑗∈𝐽1

𝜆𝑗 = 1,

𝜆𝑗 ≥ 0, 𝑗 ∈ 𝐽𝐸 ,

𝑠𝑐
𝑖 ≥ 0, 𝑖 = 1, . . . ,𝑚.

(5.6)

That, 𝑠𝑐*
𝑖 = (𝑠𝑐*

1 , 𝑠𝑐*
2 , . . . , 𝑠𝑐*

𝑚)𝑡 is the amount of congestion of the DMU𝑜. Assume that the optimal solution is
𝑠𝑐*

𝑖 :

(1) DMU𝑜 does has congestion if and only if 𝑠𝑐*
𝑖 ≥ 0, 𝑠𝑐*

𝑖 ̸= 0. More precisely, DMU𝑜 has strong congestion if
and only if 𝑠𝑐*

𝑖 > 0 and does has weak congestion if and only if 𝑠𝑐*
𝑖 ≥ ̸= 0

(2) DMU𝑜 does not have congestion if and only if 𝑠𝑐*
𝑖 = 0.

Suppose that there is 𝑛 DMU𝑗(𝑗 = 1, . . . , 𝑛) to be analyzed. Each DMU𝑗 has 𝑚 inputs and 𝑠 outputs, that
are denoted by 𝑥𝑖𝑗(𝑖 = 1, . . . ,𝑚) and 𝑦𝑟𝑗(𝑟 = 1, . . . , 𝑠), respectively, in the presence of both negative and non-
negative data at least one is non-zero, also DMU𝑜 is evaluated and denoted by DMU𝑜.
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Figure 6. The visual description of 𝑋NC and 𝑋C in Technologies 𝑇convex (green line) and 𝑇𝑣

(red line).

Definition 5.4 (New definition of congestion). The observation DMU𝑗 ; (𝑥𝑗 , 𝑦𝑗) ∈ 𝑇convex is said to do has
congestion if and only if (𝑥𝑗) /∈ 𝑋NC.

Note that, if (𝑥𝑗) /∈ 𝑋NC, so (𝑥𝑗) belongs to the area where congested DMUs’ inputs are located in this area
(the area made up of the convex combination of non-congested DMUs’ inputs), that we denoted by 𝑋𝑐. In other
words, if (𝑥𝑗) ∈ 𝑋NC (Fig. 6).

Remark 5.5. If DMU𝑜 does not has congestion, then 𝑥𝑜 ∈ 𝑋NC. In other words, if DMU𝑜 does has congestion,
thus (𝑥𝑜) /∈ 𝑋NC.

Remark 5.6. For some optimal solutions of the model (2.1b) being
(︀
𝜙*, 𝜆*𝑗 , 𝑠

−*
𝑖 , 𝑠+*

𝑟

)︀
, for any point (𝑥𝑜, 𝑦𝑜) ∈

𝑇𝑣 if (𝑥𝑜, 𝜙
*𝑦𝑜 + 𝑠+*

𝑟 ) ∈ 𝑇convex then (𝑥𝑜) ∈ 𝑋NC. Also, for some optimal solutions of the model (2.1b) being(︀
𝜙*, 𝜆*𝑗 , 𝑠

−*
𝑖 , 𝑠+*

𝑟

)︀
, for any point (𝑥𝑜, 𝑦𝑜) ∈ 𝑇𝑣, if (𝑥𝑜, 𝜙

*𝑦𝑜 + 𝑠+*
𝑟 ) /∈ 𝑇convex then (𝑥𝑜) /∈ 𝑋NC.

Note that 𝑋C and 𝑋NC are areas in inputs space. But to better represent, also showing the DMUs which are
not on the border, we symbolically display it as PPS, to maintain its integrity. The yellow color in Figure 7a is
represent (𝑥𝑜) /∈ 𝑋NC and green color in Figure 7b (𝑥𝑜) ∈ 𝑋NC.

Note that the set of efficient DMUs is 𝐸 = {𝐴, 𝐵,𝐶}. In Definition 5.4, the point (𝑥, 𝑦) ∈ 𝑇convex is said
to do has congestion if and only if (𝑥, 𝑦); 𝑥 /∈ 𝑋NC. See Figure 8a, that we have 𝑋NC = [2, 8], so 𝑥𝐴 = 2 ∈
𝑋NC, 𝑥𝐵 = 4 ∈ 𝑋NC then DMU𝐴 and DMU𝐵 exhibit no congestion. Also, based on the result of Definition 4.10.
(𝑋𝑐) = (8, 10]. So, 𝑥𝐶 = 8 ∈ 𝑋NC. So DMU𝐶 exhibits no congestion. But, 𝑥𝐷 = 10 /∈ 𝑋NC, so DMU𝐷 exhibits
congestion, and its size is 𝑠𝑐*

𝐷 = 2. Now we compare the result of our method with Noura et al. [20]. Noura
et al. [20] compare the inputs of the inefficient DMU𝑠 with 𝑥𝐶 = 𝑥* = 8. Then, by Definition 2 of Noura
et al. [20] (Thm. 5.2 above), DMU𝐴 and DMU𝐵 exhibit no congestion, i.e., 𝑥𝐴 − 𝑥* = 2 − 8 = −6 < 0 and
𝑥𝐵 − 𝑥* = 4 − 8 = −4 < 0. While DMU𝐷 exhibits congestion of one unit 𝑥𝐷 − 𝑥* = 10 − 8 = 3 > 0. Also,
efficient DMU𝐶 does not have congestion because this is a technical efficient DMU also 𝑥𝐶 − 𝑥* = 8 − 8 = 0.
By Remark 4.16, DMU𝐶 is a CSP.

Consider the example and Figure 8b chosen from Noura et al. [20]. The set of efficient DMUs is 𝐸 =
{𝐴, 𝐵, 𝐶,𝐷, 𝐸, 𝐹}. As seen, DMU𝐹 has the highest input consumption among the efficient DMUs, i.e., 𝑥𝐹 =
𝑥* = 7. Using Noura et al. [20] method, they compare the inputs of the inefficient DMU𝑠 with 𝑥𝐹 = 𝑥* = 7. Then,
using Definition 2 of Noura et al. [20], DMU𝐻 and DMU𝐼 exhibit no congestion, i.e., 𝑥𝐼 − 𝑥* = 6− 7 = −1 < 0
and 𝑥𝐻 − 𝑥* = 7− 7 = 0. While DMU𝐺 exhibits congestion of one unit 𝑥𝐺 − 𝑥* = 8− 7 = 1 > 0. Also, efficient
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(a) (b)

Figure 7. (a) The area (𝑥, 𝑦1, 𝑦2) that 𝑥 /∈ 𝑋NC does has congestion Mehdiloozad et al. [19].
(b) 𝑇convex Technology from Mehdiloozad et al. [19].

DMU𝐹 does not have congestion because this is an efficient DMU also 𝑥𝐹 − 𝑥* = 7− 7 = 0. According to our
Definition 5.4, the point (𝑥, 𝑦) ∈ 𝑇convex is said to do has congestion if and only if (𝑥, 𝑦); 𝑥 /∈ 𝑋NC. See Figure 3b,
that we have 𝑋NC = [1.5, 7], and based on the Definition 5.4. (𝑋𝑐) = (7, 8]. So, 𝑥𝐹 = 8 ∈ 𝑋NC, 𝑥𝐻 = 8 ∈ 𝑋NC,
so DMU𝐹 and DMU𝐻 exhibit no congestion, and that 𝑥𝐺 = 8 /∈ 𝑋NC,

(︀
𝑥𝐺 = 8, 𝜙*𝑦𝑃 + 𝑠+* = 4

)︀
/∈ 𝑇convex so

DMU𝐺 exhibits congestion.
As is clear, DMU𝑐 from Figure 8a and DMU𝐹 and DMU𝐻 (after a project to technical efficient frontier) from

Figure 8b have the same conditions, i.e., all do not have congestion, and all are CSPs.
Note that there are 𝑛 DMU𝑗(𝑗 = 1, . . . , 𝑛) that, each DMU𝑗 have 𝑚 inputs and 𝑠 outputs that are denoted

by 𝑥𝑖𝑗(𝑖 = 1, . . . ,𝑚) and 𝑦𝑟𝑗(𝑟 = 1, . . . , 𝑠), respectively, in the presence of both negative and non-negative data,

Remark 5.7. If a DMU does has weak congestion, some not all inputs are not in the 𝑋NC.

Remark 5.8. If a DMU does has strong congestion, all inputs are not in the 𝑋NC.

Remark 5.9. According to the definition of the 𝑋𝐶 and 𝑋NC, our two approaches are exactly equivalent to
each other.

6. Numerical example (The textile industries and auto industries in China)

Table 2 shows the data about China’s textile and automobile industries from 1981 through 1997, which
Cooper et al. (2001) compiled. In this example, variables are defined: 𝑌 is the output measured in units of one
million renminbi at 1991 prices, 𝐾 is the capital price measured in units of one million renminbi at 1991 prices,
and 𝐿 is the work done in units of 1000 people.

The results are summarized in Tables 3 and 4, which are obtained by solving the model of Cooper et al.
[9], Noura et al. [20], Mehdiloozad et al. [19], and our proposed method using the data in Table 2. By
solving model (2.1a) BCC-o, for the Textile industry data, we arrive at the following efficient DMUs set
𝐸 = {DMU𝑗 |𝜙*BCC-o = 1}. So,

𝐸 = {DMU1, DMU3, DMU4, DMU5, DMU11, DMU14, DMU16, DMU17}. (6.1)
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(b)

(c)

(a)

Figure 8. (a) The numerical visual description of 𝑋NC and 𝑋NC Technologies. (b) The numer-
ical visual description of 𝑇convex, BCC and CCR frontiers and 𝑋NC from Noura et al. [20]. (c)
Technologies 𝑇convex and 𝑇𝑣 with PPS decomposition in the presence of both negative and
non-negative data.
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Table 2. The data from the textile industries and auto industries in China (1981–1997).

DMU year Textile 𝐿 Textile 𝐾 Textile 𝑌 Auto 𝐿 Auto 𝐾 Auto 𝑌

DMU1 1981 389.00 19.86 856.02 90.43 3.81 70.47
DMU2 1982 412.30 21.16 866.85 94.28 4.13 82.07
DMU3 1983 423.50 17.08 956.04 104.66 5.56 117.78
DMU4 1984 417.30 18.10 1082.94 121.24 9.50 168.29
DMU5 1985 570.00 12.61 1273.20 140.72 21.44 273.99
DMU6 1986 600.50 13.45 1230.72 129.08 20.95 212.89
DMU7 1987 641.10 15.91 1410.66 134.83 30.99 273.19
DMU8 1988 715.30 23.72 1728.16 150.58 41.29 407.29
DMU9 1989 736.00 25.97 2109.57 157.07 37.88 481.02
DMU10 1990 745.00 18.24 2291.08 156.53 41.30 492.49
DMU11 1991 756.00 14.40 2533.27 170.39 58.93 704.48
DMU12 1992 743.00 17.50 2899.16 184.87 102.75 1191.05
DMU13 1993 684.00 25.08 3520.74 193.26 164.27 1792.00
DMU14 1994 691.00 25.45 4949.93 196.88 198.77 2183.10
DMU15 1995 673.00 29.35 4604.00 195.25 231.34 2530.87
DMU16 1996 634.00 23.05 4722.29 195.06 194.90 2399.09
DMU17 1997 596.00 25.02 4760.28 197.81 203.96 2668.69

In the next step, by running model (4.4) for the set E, we try to find technically efficient DMUs (CSPs) with
maximum 𝑢*0. So, the set (𝐽) will be identified.

𝑢*𝑖 = max 𝑢𝑖

s.t. ∑︁
𝑟

𝑢𝑟𝑦𝑟𝑝 −
∑︁

𝑖

𝑣𝑖𝑥𝑖𝑝 + 𝑢0 = 0, 𝑝 = 1, 3, 4, 5, 11, 14, 16, 17,∑︁
𝑟

𝑢𝑟𝑦𝑟𝑗 −
∑︁

𝑖

𝑣𝑖𝑥𝑖𝑗 + 𝑢0 ≤ 0, 𝑗 = 1, . . . , 17, 𝑖 = 1, 2,

𝑢𝑟 ≥ 0, 𝑣𝑖 is free, 𝑢0 is free, 𝑟 = 1. (6.2)

So, (𝐽) = {𝑗|11, 14} that it means, 𝑢*11 = 𝑢*14 = 1675.3 are maximum 𝑢*0 between the members of set E. It
means, the inputs of DMU11 and DMU14 are CSP (because both components of DMUs have congestion and
also these DMUs have strong congestion so we called DMUs are CSP) and we can create 𝑋𝑐 as follows:

𝑋𝑐 =

⎧⎨⎩𝑥𝑖𝑜|𝑥𝑖𝑜 ≥
∑︁
(𝐽)

𝜆(𝐽)𝑥𝑖(𝐽), 𝜆11 + 𝜆14 = 1, 𝜆11, 𝜆14 ≥ 0, (𝐽) = 11, 14, 𝑖 = 1, 2

⎫⎬⎭. (6.3)

Therefore, to identify congested inputs components and according to the definition of 𝑋𝑐 and solv-
ing the model (4.16) for DMUs outside of set 𝐸 (the members of set 𝐸 are efficient). So, the inputs
of DMU2, DMU6, DMU7, DMU8, DMU9, DMU10, DMU12, DMU13, DMU15 are congested. Also, we use model
(4.16) to calculate the congestion measure of each DMUs (The results of the calculations, as well as the conges-
tion values, are presented in Tab. 4).

We analyzed the sample data with three approaches Mehdiloozad et al. [19], Noura et al. [20], and Cooper
et al. [9]. Also, to check in accuracy and performance of our method and for comparison, the results of our
method with the results of solving other methods are presented in Tables 4 and 5. It should be noted that the
values under the columns of Noura et al. [20] and Cooper et al. [9] show the congestion value of each component,
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Table 3. Congestion results for the Textile industries (T) by using Cooper et al.’s approach
[9], Noura et al. [20], Mehdiloozad et al. [19].

DMU Cooper et al. [9] Noura et al. [20] Mehdiloozad et al. [19]
𝑠𝑐*
1 𝑠𝑐*

2 𝑠𝑐*
1 𝑠𝑐*

2 𝛼max
1 𝛼max

2 𝛽max
1

DMU01

DMU02

DMU03

DMU04

DMU05

DMU06

DMU07

DMU08

DMU09

DMU10

DMU11

DMU12

DMU13

DMU14

DMU15

DMU16

DMU17

0.00
0.00
0.00
0.00
0.00
0.00
0.00
65.39
45.00
43.16
0.00
30.72
0.00
0.00
0.00
0.00
0.00

0.00
0.72
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
3.98
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
3.90
0.00
0.00

0.00
22.67
0.00
0.00
0.00
30.50
1.00
259.52
257.51
154.48
0.00
20.26
121.49
0.00
1.00
0.00
0.00

0.000
1.284
0.000
0.000
0.000
0.84
1.000
4.741
6.472
1.000
0.000
1.000
3.663
0.000
4.252
0.000
0.000

0.000
1.000
0.000
0.000
0.000
0.84
1.000
1.000
1.000
1.000
0.000
1.000
1.000
0.000
1.000
0.000
0.000

but since the Mehdiloozad et al. [19] do not specify the congestion value, these numbers are not related to the
congestion value. The columns represent the maximal element (alpha-maximal, beta-maximal) obtained from
solving model (4.5) in Mehdiloozad et al. [19] (refer to the paragraph below model (4.5) and result from 1.3).
Only the positivity of the component is important, not its value, that is, if all three components are positive,
the congestion is strong. Also, if the third component (output) is positive but the first or second component
(inputs) is zero, the congestion is weak. So, in our example, DMUs 2, 6, 7, 8, 9, 10, 12, 13, and 15 have strong
congestion. The results of our two methods are shown in Table 4. Also, Table 5 is the result of our methods and
comparison with four methods Cooper et al. [9] and Noura et al. [20], Mehdiloozad et al. [19], and Tone and
Sahoo [23].

Using the data of Tables 4 and 5 and comparing the congestion values calculated by our proposed algorithm
with the information obtained from the Noura et al. [20], Cooper et al. [9], and Mehdiloozad et al. [19] models.
According to Table 3 and the results of the Noura et al. [20] model, DMU9 and DMU15 have weak conges-
tion. According to the results of the Cooper et al. [9] model, DMU02 on 𝑥1, and DMU08, DMU09, DMU10,
DMU12, and DMU15 on 𝑥2 have weak congestion. Also, according to the results of Mehdiloozad et al. [19],
DMU02, DMU06, DMU08, DMU09, DMU10, DMU12, DMU13, and DMU15 have strong congestion. According
to Table 5, the result of our two proposed methods is equal to Mehdiloozad et al. [19] exactly (in the weak
and strong CSOD identification). According to Table 4, our method’s results (value of congested DMUs) are
illustrated. To find the CSP, congestion area, congested DMUs, and congestion in each input component, we
run our purposed algorithm. In addition, according to the results specified in Table 4, the results of our two
proposed methods are completely consistent with each other, so it can be said that the methods are equivalent.

Also, to identify the congestion state of DMUs by 𝑋NC, consider to following steps related to relation
(5.4)–(5.6). The results are presented in Table 5,

𝐽𝐸 = {𝑗|𝜙*BCC-o = 1} (6.4)
𝐽𝐸 = {DMU01, DMU03, DMU04, DMU05, DMU11, DMU14, DMU16, DMU17} (6.5)
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Table 4. Congestion result of our two proposed approaches.

DMU year Congestion area Non-Congestion area Congestion states
𝑠𝑐*
1 𝑠𝑐*

2 𝑠𝑐*
1 𝑠𝑐*

2

DMU01 1981 0.00 0.00 0.00 0.00
DMU02 1982 38.67 3.177 38.67 3.177 Strong congestion
DMU03 1983 0.00 0.00 0.00 0.00
DMU04 1984 0.00 0.00 0.00 0.00
DMU05 1985 0.00 0.00 0.00 0.00
DMU06 1986 30.50 0.84 30.50 0.84 Strong congestion
DMU07 1987 0.00 0.00 0.00 0.00
DMU08 1988 291.80 6.64 291.80 6.64 Strong congestion
DMU09 1989 312.50 8.89 312.50 8.89 Strong congestion
DMU10 1990 175.16 5.63 175.16 5.63 Strong congestion
DMU11 1991 0.00 0.00 0.00 0.00
DMU12 1992 173.00 4.89 173.00 4.89 Strong congestion
DMU13 1993 260.50 8.00 260.50 8.00 Strong congestion
DMU14 1994 0.00 0.00 0.00 0.00
DMU15 1995 249.50 3.98 249.50 3.98 Strong congestion
DMU16 1996 0.00 0.00 0.00 0.00
DMU17 1997 0.00 0.00 0.00 0.00

Table 5. Compare the results of the CSOD. CSOD? Yes/no. If yes, then strong or weak.

DMU Our two Cooper’s Noura’s Mehdiloo’s Sahoo and
year approaches method method method Tone method

DMU1 No No No No No
DMU2 Strong Weak No Strong Weak
DMU3 No No No No No
DMU4 No No No No No
DMU5 No No No No No
DMU6 Strong No No Strong No
DMU7 No No No No No
DMU8 Strong Weak No Strong Weak
DMU9 Strong Weak Weak Strong Weak
DMU10 Strong Weak No Strong Strong
DMU11 No No No No No
DMU12 Strong Weak No Strong Weak
DMU13 Strong No No Strong No
DMU14 No No No No No
DMU15 Strong Weak Weak Strong Strong
DMU16 No No No No No
DMU17 No No No No

𝑋NC =

⎧⎨⎩𝑥𝑖𝑜|𝑥𝑖𝑜 =
∑︁
(𝐽𝐸)

𝜆(𝐽𝐸)𝑥𝑖(𝐽𝐸),
∑︁
𝐽𝐸

𝜆𝐽𝐸
= 1, 𝜆𝐽𝐸

≥ 0, (𝐽𝐸) = 1, 3, 4, 5, 11, 14, 16, 17, 𝑖 = 1, 2

⎫⎬⎭. (6.6)

Therefore, to identify congested input components and measure their congestion the model (5.6) is running
(Results in Tab. 4).
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7. Conclusion

This paper focuses on detecting and measuring congestion in the DEA measurement framework. First, this
paper aims at investigating the weak and strong congestion statuses of decision-making units (DMUs) by
identifying a congestion zone (CZ) and non-congestion zone (NC) for production technology. Second, unlike the
methods of Tone and Sahoo (2004) which considered multiple projections of DMU𝑜, Mehdiloozad et al. [19]
thought of projections of DMU𝑜, maximal elements and used definition and properties of the face, minimum
face, convex hull, and cone, we want to provide the new mathematical well-defined and efficient perspective
of congestion relying on the concept of PPS only. The alternative approaches, based on the congestion and
non-congestion areas, can identify weak and strong CSOD and efficiently calculate the amount of congestion of
each input component.

Recently, Khoveyni et al. [17] have created a new method to develop the Tone and Sahoo [23] approach in
identifying the weak and strong CSOD with both negative-positive data. However, as mentioned, their methods
do not identify the strong congestion status of DMUs. Correctly. Meanwhile, they did not attempt been made
to deal with the incidence of multiple optimal projections. However, as reasoned by Sueyoshi and Sekitani [22],
specifying the weak-strong CSOD (inefficient DMUs) is probably problematic under such an incidence. So, this
paper is interested in the precise recognition of the weak and strong CSOD under the decomposition of PPS
with both non-negative and negative data. Since Tone and Sahoo’s [23] description of strong congestion includes
commensurate changes in inputs-outputs, based on this definition, we create a new mathematical definition and
new insight of congestion to create it stable with both negative and non-negative data.

In this paper, we proved that the convex combination of both points of the non-congestion area is in the
non-congestion area; the convex combination of two not congested points lacks congestion. Also, we explain that
if the DMU is ((𝜙*BCC-o)) efficient; it does not have congestion and the convex combination of the ((𝜙*BCC-o))
efficient points do not have congestion. Then we consider the convex combination of ((𝜙*BCC-o)) effective points
and define that any point outside this area has congestion. In this paper, first, define a new definition of
congestion as the point (𝑥, 𝑦) ∈ 𝑇convex does has congestion if and only if (𝑥, 𝑦) ∈ 𝑋NC and second, we prove
that the necessary and sufficient condition for a DMU𝑜 to does has congestion is that its input vector should
not be within 𝑋NC. DMU𝑜 has congestion if 𝑥𝑜 /∈ 𝑋NC. In this paper, to identify congested DMUs, we divide
the PPS into two areas of congestion and non-congestion area. We also classified the DMUs into two groups
congested and non-congested DMUs. Finally, we identify the congested DMUs and calculate congested DMUs
simply and accurately by computing the non-congestion area and a non-radial model. Given that congestion is
a feature of the production frontier, and we also use post-PPS properties to identify congested DMUs, it can
be said that our method is also very accurate and fast. We test our model with the best methods available to
identify congestion DMUs and show that our method is the most accurate to prove our claim.

8. Algorithm

(A) First, we run model (2.1a) and (2.1b) BCC-o to create a set of technically efficient DMUs. So, assume that
we have an optimal solution as

(︀
𝜙*, 𝜆*𝑗 , 𝑠

−*
𝑖 , 𝑠+*

𝑟

)︀
.

(a) If 𝜙* = 1, 𝑠−*𝑖 = 0, 𝑠+*
𝑟 = 0, then (𝑥𝑜, 𝑦𝑜) is strongly efficient DMU and not congested and but, maybe

CSP (if weak efficiency or technically efficient frontier does not exist).
(b) If 𝜙* = 1, 𝑠−*𝑖 ̸= 0 or 𝑠+*

𝑟 ̸= 0, then (𝑥𝑜, 𝑦𝑜) is technically efficient DMU and not congested and also,
this is a candidate for CSP. So we go to Section C.

(B) If 𝜙* ̸= 1, then (𝑥𝑜, 𝑦𝑜) is not efficient DMU, and we run model (4.5). We run the model (4.5) to get
the congested DMUs. According to our new definition of congestion, this model specifies congested DMUs
without specifying each input component’s congestion measures.
(a) If 𝜂* > 0, then (𝑥𝑜, 𝑦𝑜) is congested DMU and not a candidate for CSP.
(b) If 𝜂* = 0, then (𝑥𝑜, 𝑦𝑜) is not congested DMU.



CONGESTION AND NON-CONGESTION AREAS 2091

(C) We run model (4.4) for the set of DMUs obtained from step A-b. The set of solutions obtained from this
model’s running gives rise to the index (𝐽) (the set of CSP DMUs). If in the optimal solution, 𝑢𝑜 be equal
to zero; there is no CSP, and, finally, there is no congestion area. Otherwise, if some 𝑢𝑜 be equal to positive,
thus, and these DMUs are CSP and upper supporting hyperplanes (upper frontier) of 𝑇convex so, we can
create the CF and go to step 3. Also, we make the set of (𝐽) with 𝑢𝑜 that are positive (CSP DMUs). It
means (𝐽) is the index of DMUs (CSPs) that have positive 𝑢𝑜. finally, If in the optimal solution, 𝑢𝑜 be
equal unbounded; there is no CSP and congestion area. then we go to D,

(D) We creat 𝑋𝑐 with DMUs that their index creat (𝐽). Then go to E,
(E) Run the model (4.16) to achieve the congestion measure in the input components of the congested DMUs.
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[13] R. Färe, S. Grosskopf and C.A.C. Lovell, The Measurement of Efficiency of Production. Kluwer-Nijho Publishing, Boston
(1985).

[14] G.R. Jahanshahloo and M. Khodabakhshi, Determining assurance interval for a non-Archimedean element in the improving
outputs model in DEA. Appl. Math. Comput. 151 (2004) 501–506.

[15] M. Khodabakhshi, M. Asgharian and G.N. Gregoriou, An input-oriented super-efficiency measure in stochastic DEA: evaluating
chief executive officers of US public banks and thrifts. Expert Syst. App. 37 (2010) 2092–2097.

[16] M. Khoveyni, R. Eslami, M. Khodabakhshi, G.R. Jahanshahloo and F. Hosseinzadeh Lotfi, Recognizing strong and weak
congestion slack based in data envelopment analysis. Comput. Ind. Eng. 64 (2013) 731–738.

[17] M. Khoveyni, R. Eslami and G. Yang, Negative data in DEA: recognizing congestion and specifying the least and the most
congested decision-making units. Comput. Oper. Res. 79 (2017) 39–48.

[18] M. Mehdiloozad, S.M. Mirdehghan, B.K. Sahoo and I. Roshdi, On the identification of the global reference set in data
envelopment analysis. Eur. J. Oper. Res. 214 (2015) 679–688.

[19] M. Mehdiloozad, Z. Joe and B.K. Sahoo, Identification of congestion in data envelopment analysis under the occurrence of
multiple projections: a reliable method capable of dealing with negative data. Eur. J. Oper. Res. 265 (2019) 644–654.

[20] A.A. Noura, F. Hosseinzadeh Lotfi, G.R. Jahanshahloo, S.F. Rashidi and B.R. Parker, A new method for measuring congestion
in DEA. Soc. Econ. Planning Sci. 2010 (2010) 240–246.

[21] T. Sueyoshi and K. Sekitani, Measurement of returns to scale using a non-radial DEA model: a range-adjusted measure
approach. Eur. J. Oper. Res. 176 (2007) 1918–1946.

[22] T. Sueyoshi and K. Sekitani, Data envelopment analysis congestion and returns to scale under an occurrence of multiple
optimal projections. Eur. J. Oper. Res. 194 (2009) 592–607.

[23] K. Tone and B.K. Sahoo, The degree of scale economies and congestion: a unified DEA approach. Eur. J. Oper. Res. 158
(2004) 755–772.

[24] Q.L. Wei and H. Yan, Congestion and returns to scale in DEA. Eur. J. Oper. Res. 153 (2004) 641–660.

[25] Q.L. Wei and H. Yan, Weak congestion in output additive DEA. Soc. Econ. Planning Sci. 43 (2009) 40–54.



2092 S.R. MOOSAVI AND H.B. VALAMI

This journal is currently published in open access under a Subscribe-to-Open model (S2O). S2O is a transformative
model that aims to move subscription journals to open access. Open access is the free, immediate, online availability of
research articles combined with the rights to use these articles fully in the digital environment. We are thankful to our
subscribers and sponsors for making it possible to publish this journal in open access, free of charge for authors.

Please help to maintain this journal in open access!

Check that your library subscribes to the journal, or make a personal donation to the S2O programme, by contacting
subscribers@edpsciences.org

More information, including a list of sponsors and a financial transparency report, available at: https://www.
edpsciences.org/en/maths-s2o-programme

mailto:subscribers@edpsciences.org
https://www.edpsciences.org/en/maths-s2o-programme
https://www.edpsciences.org/en/maths-s2o-programme

	Introduction
	Preliminary assumption and definitions
	Technology set

	Background of congestion
	Congestion area
	Second insight of congestion measurement; non-congestion area
	Numerical example (The textile industries and auto industries in China)
	Conclusion
	Algorithm
	References

