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RESTRAINED DOUBLE ROMAN DOMINATION OF A GRAPH

Doost Ali Mojdeh1,* , Iman Masoumi2 and Lutz Volkmann3

Abstract. For a graph 𝐺 = (𝑉, 𝐸), a restrained double Roman dominating function is a function
𝑓 : 𝑉 → {0, 1, 2, 3} having the property that if 𝑓(𝑣) = 0, then the vertex 𝑣 must have at least two
neighbors assigned 2 under 𝑓 or one neighbor 𝑤 with 𝑓(𝑤) = 3, and if 𝑓(𝑣) = 1, then the vertex 𝑣
must have at least one neighbor 𝑤 with 𝑓(𝑤) ≥ 2, and at the same time, the subgraph 𝐺[𝑉0] which
includes vertices with zero labels has no isolated vertex. The weight of a restrained double Roman
dominating function 𝑓 is the sum 𝑓(𝑉 ) =

∑︀
𝑣∈𝑉 𝑓(𝑣), and the minimum weight of a restrained double

Roman dominating function on 𝐺 is the restrained double Roman domination number of 𝐺. We initiate
the study of restrained double Roman domination with proving that the problem of computing this
parameter is 𝑁𝑃 -hard. Then we present an upper bound on the restrained double Roman domination
number of a connected graph 𝐺 in terms of the order of 𝐺 and characterize the graphs attaining this
bound. We study the restrained double Roman domination versus the restrained Roman domination.
Finally, we investigate the bounds for the restrained double Roman domination of trees and determine
trees 𝑇 attaining the exhibited bounds.
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1. Introduction

Dominations have become one of the major areas in graph theory. Their steady and rapid growth during the
past thirty years may be due to the diversity of their applications to both theoretical and real-world problems,
such as facility location problems, strategy of defence of cities and etc. Among the domination-type parameters
that have been studied, are the Roman [18], double Roman [3], Italian [4] and double Italian [13] domination
numbers in graphs.
The initial studies of Roman domination [14, 18] have been motivated by a historical application. In the 4th
century, Emperor Constantine was faced with a difficult problem of how to defend the Roman Empire with
limited resources. He decreed that for all cities in the Roman Empire, at most two legions should be stationed.
Further, if a location having no legions was attacked, then it must be within the vicinity of at least one city
at which two legions were stationed, so that one of the two legions could be sent to defend the attacked city.
Beeler et al. [3] have defined double Roman domination. What they propose is a stronger version of Roman
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domination that doubles the protection by ensuring that any attack can be defended by at least two legions.
In Roman domination at most two Roman legions are deployed at any one location. But as we will see in what
follows, the ability to deploy three legions at a given location provides a level of defense that is both stronger
and more flexible, at less than the anticipated additional cost. Here we define the double restrained domination
(double Roman dominating set for which the set of vertices with label 0 has a neighbor with label 0). In terms
of the double Roman Empire, this defense strategy requires that every location with no legion has at least also
a neighboring location with no legion for lessing the cost of expenses of empire.

Throughout this paper, we consider 𝐺 as a finite simple graph with vertex set 𝑉 = 𝑉 (𝐺) and edge set
𝐸 = 𝐸(𝐺). All definitions, symbols and terms used in this article are taken from the reference [20]. The
open neighborhood of a vertex 𝑣 is denoted by 𝑁(𝑣), and its closed neighborhood is 𝑁 [𝑣] = 𝑁(𝑣) ∪ {𝑣}. The
minimum (maximum) degrees of 𝐺 are denoted by 𝛿(𝐺) (∆(𝐺)), respectively. Given subsets 𝐴, 𝐵 ⊆ 𝑉 (𝐺),
we denote by [𝐴, 𝐵] the set of all edges with one end point in 𝐴 and the other in 𝐵. For a given subset
𝑆 ⊆ 𝑉 (𝐺), 𝐺[𝑆] represents the subgraph induced by 𝑆 in 𝐺. A tree 𝑇 is a double star if it contains
exactly two vertices that are not leaves. A double star with 𝑝 and 𝑞 leaves attached to each support ver-
tex, respectively, is denoted by 𝑆𝑝,𝑞. A wounded spider is a tree obtained from subdividing at most 𝑛 − 1
edges of a star 𝐾1,𝑛. A wounded spider obtained by subdividing 𝑡 ≤ 𝑛−1 edges of 𝐾1,𝑛, is denoted by 𝑤𝑠(1, 𝑛, 𝑡).

A set 𝑆 ⊆ 𝑉 (𝐺) is called a dominating set if every vertex not in 𝑆 has a neighbor in 𝑆. The domination
number 𝛾(𝐺) of 𝐺 is the minimum cardinality among all dominating sets of 𝐺. A restrained dominating set
(RD set) in a graph 𝐺 is a dominating set 𝑆 in 𝐺 for which every vertex in 𝑉 (𝐺) − 𝑆 is adjacent to another
vertex in 𝑉 (𝐺) − 𝑆. The restrained domination number (RD number) of 𝐺, denoted by 𝛾𝑟(𝐺), is the smallest
cardinality of an RD set of 𝐺. This concept was formally introduced in [6] (albeit, it was indirectly introduced
in [7, 8]).

The variants of restrained domination have been considered in the literature. For instance, a total restrained
domination of a graph 𝐺 is an RD set of 𝐺 for which the subgraph induced by the dominating set of 𝐺 has no
isolated vertex [5, 19]. Secure restrained dominating set (SRDS) is a set 𝑆 ⊆ 𝑉 (𝐺) for which 𝑆 is restrained
dominating and for all 𝑢 ∈ 𝑉 ∖ 𝑆 there exists 𝑣 ∈ 𝑆 ∩𝑁(𝑢) such that (𝑆 ∖ {𝑣}) ∪ {𝑢} is restrained dominating
set [15].

The restrained Roman dominating function is a Roman dominating function 𝑓 : 𝑉 (𝐺) → {0, 1, 2} such that
the subgraph induced by the set {𝑣 ∈ 𝑉 (𝐺) : 𝑓(𝑣) = 0} has no isolated vertex [16]. The restrained Italian
dominating function (RIDF) is an Italian dominating function 𝑓 : 𝑉 (𝐺) → {0, 1, 2} such that the subgraph
induced by the set {𝑣 ∈ 𝑉 (𝐺) : 𝑓(𝑣) = 0} has no isolated vertex [17].

Now we consider a variant of double Roman dominating functions 𝑓 (restrained double Roman dominating
functions) where the subgraph induced by 𝑉 𝑓

0 has no isolated vertex. This new parameter, namely restrained
double Roman domination, is the subject of this paper.

Beeler et al. [3] introduced the concept of double Roman domination number of a graph. This parameter has
been studied further in [1, 11,21].
Let 𝑓 : 𝑉 (𝐺) → {0, 1, 2, 3} be a function, and (𝑉0, 𝑉1, 𝑉2, 𝑉3) an ordered subsets of 𝑉 (𝐺) induced by 𝑓 , where
𝑉𝑖 = {𝑣 ∈ 𝑉 (𝐺) : 𝑓(𝑣) = 𝑖} for 𝑖 = 0, 1, 2, 3 and there is a 1–1 correspondence between the function 𝑓 and the
ordered partition (𝑉0, 𝑉1, 𝑉2, 𝑉3). That is, 𝑓 = (𝑉0, 𝑉1, 𝑉2, 𝑉3). A double Roman dominating (DRD) function of
a graph 𝐺 is a function 𝑓 for which the following conditions are satisfied.

(a) If 𝑓(𝑣) = 0, then the vertex 𝑣 must have at least two neighbors in 𝑉2 or one neighbor in 𝑉3.
(b) If 𝑓(𝑣) = 1 , then the vertex 𝑣 must have at least one neighbor in 𝑉2 ∪ 𝑉3.

Accordingly, a restrained double Roman dominating (RDRD) function is a DRD function 𝑓 such that the
subgraph induced by 𝑉0 (the vertices with zero labels under 𝑓) 𝐺[𝑉0] has no isolated vertex. The RDRD number
𝛾𝑟𝑑𝑅(𝐺) is the minimum weight of an RDRD function 𝑓 of 𝐺. For the sake of convenience, an RDRD function
𝑓 of a graph 𝐺 with weight 𝛾𝑟𝑑𝑅(𝐺) is called a 𝛾𝑟𝑑𝑅(𝐺)-function.
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This paper is organized as follows. In Section 2, we prove that the RDRD problem is 𝑁𝑃 -hard even for
general graphs and we obtain RDRD number of some custom graphs in Section 3. Then in Section 4, we present
an upper bound on the RDRD number of a connected graph 𝐺 in terms of the order of 𝐺 and characterize the
graphs attaining this bound. We study the restrained double Roman domination versus the restrained Roman
domination in Section 5. Finally in Section 6, we characterize trees 𝑇 by the given restrained double Roman
domination number of 𝑇 .

2. Complexity and computational issues

We consider the problem of deciding whether a graph 𝐺 has an RDRD function whose weight is at most a
given integer 𝑝 ≤ |𝑉 (𝐺)|.
We prove its 𝑁𝑃 -completeness by reducing the following vertex cover decision:

Consider a graph 𝐺 = (𝑉,𝐸) and a positive integer 𝑝 ≤ |𝑉 (𝐺)|.
Does there exist a subset 𝐶 ⊆ 𝑉 (𝐺) of size at most 𝑝 such that
for each edge 𝑥𝑦 ∈ 𝐸(𝐺) we have 𝑥 ∈ 𝐶 or 𝑦 ∈ 𝐶?

This vertex cover decision problem is 𝑁𝑃 -complete for general graphs [12].

Theorem 2.1. RDRD is 𝑁𝑃 -complete for general graphs.

Proof. We transform the vertex cover decision problem for general graphs to the restrained double Roman
domination decision problem for general graphs. For a given graph 𝐺 = (𝑉 (𝐺), 𝐸(𝐺)), let 𝑚 = 3|𝑉 (𝐺)|+ 4 and
construct a graph 𝐻 = (𝑉 (𝐻), 𝐸(𝐻)) as follows. Let 𝑉 (𝐻) = {𝑥𝑖 : 1 ≤ 𝑖 ≤ 𝑚} ∪ {𝑦} ∪ 𝑉 (𝐺) ∪ {𝑢𝑗𝑖

: 1 ≤ 𝑖 ≤
𝑚 for each 𝑒𝑗 ∈ 𝐸(𝐺)}, and let

𝐸(𝐻) = {𝑥𝑖𝑥𝑖+1 : (mod 𝑚) 1 ≤ 𝑖 ≤ 𝑚}
∪{𝑥𝑖𝑦 : 1 ≤ 𝑖 ≤ 𝑚} ∪ {𝑣𝑦 : 𝑣 ∈ 𝑉 (𝐺)}

∪{𝑣𝑢𝑗𝑖
: 𝑣 is the vertex of edge 𝑒𝑗 ∈ 𝐸(𝐺) and 1 ≤ 𝑖 ≤ 𝑚}

∪{𝑢𝑗𝑖
𝑢𝑗(𝑖+1) (mod 𝑚) : 1 ≤ 𝑖 ≤ 𝑚}.

Figure 1 shows the graph 𝐻 obtained from 𝐺 = 𝑃4 = 𝑎1𝑎2𝑎3𝑎4 by the above procedure. Because 𝑚 =
3|𝑉 (𝐺)| + 4 = 16 for this example, and 𝐺 has three edges 𝑒1, 𝑒2, 𝑒3, 𝐻[{𝑥𝑖 : 1 ≤ 𝑖 ≤ 16}] ∼= 𝐻[{𝑢1𝑖

: 1 ≤ 𝑖 ≤
16}] ∼= 𝐻[{𝑢2𝑖

: 1 ≤ 𝑖 ≤ 16}] ∼= 𝐻[{𝑢3𝑖
: 1 ≤ 𝑖 ≤ 16}] ∼= 𝐶16, 𝑦 is adjacent to 𝑥𝑖 for 1 ≤ 𝑖 ≤ 16 and 𝑎𝑙 for

1 ≤ 𝑙 ≤ 4; 𝑢𝑗𝑖
is adjacent to both 𝑎𝑗 , 𝑎𝑗+1 for 1 ≤ 𝑗 ≤ 3, 1 ≤ 𝑖 ≤ 16.

We claim that 𝐺 has a vertex cover of size at most 𝑘 if and only if 𝐻 has an RDRD function with weight
at most 3𝑘 + 3. Hence the 𝑁𝑃 -completeness of the restrained double Roman domination problem in general
graphs will be equivalent to the 𝑁𝑃 -completeness of vertex cover problem. First, if 𝐺 has a vertex cover 𝐶 of
size at most 𝑘, then the function 𝑓 defined on 𝑉 (𝐺) by 𝑓(𝑣) = 3 for 𝑣 ∈ 𝐶 ∪ {𝑦} and 𝑓(𝑣) = 0 otherwise, is an
RDRDF with weight at most 3𝑘 + 3. On the other hand, suppose that 𝑔 is an RDRDF on 𝐻 with weight at
most 3𝑘 + 3. If 𝑔(𝑦) ̸= 3, then there exist two cases.

Case 1. Let 𝑔(𝑦) ∈ {0, 1}. Then
𝑚∑︁

𝑖=1

𝑔(𝑥𝑖) ≥ 𝛾𝑟𝑑𝑅(𝐶𝑚) ≥ 𝛾𝑑𝑅(𝐶𝑚) ≥ 𝑚 > 3|𝑉 (𝐺)|+ 3 ≥ 3𝑘 + 3

which is a contradiction.
Case 2. Let 𝑔(𝑦) = 2 and 𝐶𝑚 = {𝑥𝑖𝑥𝑖+1 : ( mod 𝑚) 1 ≤ 𝑖 ≤ 𝑚}. Then 𝑔(𝐶𝑚) ≥ 2𝑚/3 and 𝑔(𝐻) ≥

2𝑚/3 + 2𝑘 + 2 = 2(3|𝑉 (𝐺)| + 4)/3 + 2𝑘 + 2 ≥ 4𝑘 + 14/3 > 3𝑘 + 3 which is a contradiction. Thus 𝑔(𝑦) = 3.
Similarly, we have 𝑔(𝑢) = 3 or 𝑔(𝑣) = 3 for any 𝑒 = 𝑢𝑣 ∈ 𝐸(𝐺). Therefore 𝐶 = {𝑣 ∈ 𝑉 : 𝑔(𝑣) = 3} is a vertex
cover of 𝐺 and 3|𝐶|+ 3 ≤ 𝑤(𝑔) ≤ 3𝑘 + 3. Consequently, |𝐶| ≤ 𝑘. �
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Figure 1. The graphs 𝐺 = 𝑃4 and 𝐻.

3. RDRD number of some graphs

In this section we investigate the exact value of the RDRD number of some graphs.

Observation 3.1. For a complete graph 𝐾𝑛 and a complete bipartite graph 𝐾𝑚,𝑛,

(i) 𝛾𝑟𝑑𝑅(𝐾𝑛) = 3 for 𝑛 ≥ 2.
(ii) 𝛾𝑟𝑑𝑅(𝐾𝑛,𝑚) = 6 for 𝑚 ≥ 2, 𝑛 ≥ 2.
(iii) 𝛾𝑟𝑑𝑅(𝐾1,𝑚) = 𝑚 + 2.

(iv) 𝛾𝑟𝑑𝑅(𝐾𝑛1,𝑛2,··· ,𝑛𝑚
) =

{︂
3, if min{𝑛1, 𝑛2, · · · , 𝑛𝑚} = 1,
6, otherwise. .

Theorem 3.2. For a path 𝑃𝑛 (𝑛 ≥ 4), 𝛾𝑟𝑑𝑅(𝑃𝑛) = 𝑛 + 2.

Proof. Assume that 𝑛 ≥ 4 and 𝑃𝑛 = 𝑣1𝑣2 · · · 𝑣𝑛.
Let 𝑛 ≡ 0 (mod 3). Define ℎ : 𝑉 (𝑃𝑛) → {0, 1, 2, 3} by ℎ(𝑣𝑘) = 3 for 𝑘 ≡ 2 (mod 3), ℎ(𝑣1) = ℎ(𝑣𝑛) = 1 and
ℎ(𝑣) = 0 otherwise.
Let 𝑛 ≡ 1 (mod 3). Define ℎ : 𝑉 (𝑃𝑛) → {0, 1, 2, 3} by ℎ(𝑣𝑘) = 3 for 𝑘 ≡ 1 (mod 3) and ℎ(𝑣) = 0 otherwise.
Let 𝑛 ≡ 2 (mod 3). Define ℎ : 𝑉 (𝑃𝑛) → {0, 1, 2, 3} by ℎ(𝑣𝑘 = 3 for 𝑘 ≡ 1 (mod 3), ℎ(𝑣1) = 1 and ℎ(𝑣) = 0
otherwise. Therefore 𝛾𝑟𝑑𝑅(𝑃𝑛) ≤ 𝑛 + 2 for 𝑛 ≥ 4.

Now we prove the inverse inequality. We have 𝛾𝑟𝑑𝑅(𝑃𝑛) = 𝑛 + 2 for 4 ≤ 𝑛 ≤ 6. For 𝑛 ≥ 7 we proceed by
induction on 𝑛. Let 𝑛 ≥ 7 and let the inverse inequality be true for every path of order less than 𝑛. Assume
that 𝑓 = (𝑉0, 𝑉1, 𝑉2, 𝑉3) is a 𝛾𝑟𝑑𝑅-function of 𝑃𝑛. We have 𝑓(𝑣𝑛) ̸= 0. If 𝑓(𝑣𝑛) = 1, then 𝑓(𝑣𝑛−1) ≥ 2. Define
𝑔 : 𝑃𝑛−1 → {0, 1, 2, 3}, 𝑔(𝑣𝑖) = 𝑓(𝑣𝑖) for 1 ≤ 𝑖 ≤ 𝑛− 1. But, 𝑔 is an RDRD function of 𝑃𝑛−1. It follows from the
induction hypothesis that

𝛾𝑟𝑑𝑅(𝑃𝑛) = 𝑤(𝑓) = 𝑤(𝑔) + 1 ≥ 𝛾𝑟𝑑𝑅(𝑃𝑛−1) + 1 ≥ (𝑛− 1) + 2 + 1 ≥ 𝑛 + 2.

If 𝑓(𝑣𝑛) = 2, then 𝑓(𝑣𝑛−1) = 1 and 𝑓(𝑣𝑛−2) ≥ 1. Define 𝑔 : 𝑃𝑛−2 → {0, 1, 2, 3}, 𝑔(𝑣𝑖) = 𝑓(𝑣𝑖) for 1 ≤ 𝑖 ≤ 𝑛− 2.
𝑔 is an RDRD function of 𝑃𝑛−2. As above we obtain,

𝛾𝑟𝑑𝑅(𝑃𝑛) = 𝑤(𝑓) = 𝑤(𝑔) + 3 ≥ 𝛾𝑟𝑑𝑅(𝑃𝑛−2) + 3 ≥ (𝑛− 2) + 2 + 3 = 𝑛 + 3.
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If 𝑓(𝑣𝑛) = 3, then 𝑓(𝑣𝑛−1) = 0, 𝑓(𝑣𝑛−2) = 0 and 𝑓(𝑣𝑛−3) = 3. Define 𝑔 : 𝑃𝑛−3 → {0, 1, 2, 3}, 𝑔(𝑣𝑖) = 𝑓(𝑣𝑖) for
1 ≤ 𝑖 ≤ 𝑛− 3. 𝑔 is an RDRD function of 𝑃𝑛−3. It also follows from the induction hypothesis that

𝛾𝑟𝑑𝑅(𝑃𝑛) = 𝑤(𝑓) = 𝑤(𝑔) + 3 ≥ 𝛾𝑟𝑑𝑅(𝑃𝑛−3) + 3 ≥ (𝑛− 3) + 2 + 3 = 𝑛 + 2.

Thus the proof is complete. �

Theorem 3.3. For a cycle 𝐶𝑛, (𝑛 ≥ 3), 𝛾𝑟𝑑𝑅(𝐶𝑛) =
{︂

𝑛, if 𝑛 ≡ 0 (mod 3),
𝑛 + 2, otherwise.

Proof. Assume that 𝑛 ≥ 3 and 𝐶𝑛 = 𝑣1𝑣2 · · · 𝑣𝑛𝑣1.
Let 𝑛 ≡ 0 (mod 3). Define ℎ : 𝑉 (𝐶𝑛) → {0, 1, 2, 3} by ℎ(𝑣𝑘) = 3 for 𝑘 ≡ 0 (mod 3) and ℎ(𝑣) = 0 otherwise.
Let 𝑛 ≡ 1 (mod 3). Define ℎ : 𝑉 (𝐶𝑛) → {0, 1, 2, 3} by ℎ(𝑣𝑘) = 3 for 𝑘 ≡ 1 (mod 3) and ℎ(𝑣) = 0 otherwise.
Let 𝑛 ≡ 2 (mod 3). Define ℎ : 𝑉 (𝐶𝑛) → {0, 1, 2, 3} by ℎ(𝑣𝑘) = 3 for 𝑘 ≡ 2 (mod 3), ℎ(𝑣1) = 1 and ℎ(𝑣) = 0
otherwise,

𝛾𝑟𝑑𝑅(𝐶𝑛) ≤
{︂

𝑛, if 𝑛 ≡ 0 (mod 3),
𝑛 + 2, otherwise.

Now we prove the inverse inequality. For 𝑛 ≡ 0 (mod 3), since 𝛾𝑟𝑑𝑅(𝐶𝑛) ≥ 𝛾𝑑𝑅(𝐶𝑛) = 𝑛, (see [1,3]), the result
holds. Let 𝑛 ̸≡ 0 (mod 3) and let 𝑓 = (𝑉0, 𝑉1, 𝑉2, 𝑉3) be a 𝛾𝑟𝑑𝑅-function of 𝐶𝑛. Since the neighbor of vertex
of weight 0 is a vertex of weight 3 and a vertex of weight 0, if 𝑛 ̸≡ 0 (mod 3), there are two adjacent vertices
𝑣𝑖, 𝑣𝑖+1 in 𝐶𝑛 such that their weights are positive. Now, if 𝑓(𝑣𝑖) ≥ 2 and 𝑓(𝑣𝑖+1) ≥ 2, then by removing the
edge 𝑣𝑖𝑣𝑖+1, the resulted graph is 𝑃𝑛. Define 𝑔 : 𝑃𝑛 → {0, 1, 2, 3}, 𝑔(𝑣𝑖) = 𝑓(𝑣𝑖) for 1 ≤ 𝑖 ≤ 𝑛. But, 𝑔 is an
RDRD function of 𝑃𝑛 with 𝑤(𝑔) = 𝑤(𝑓). Since 𝑤(𝑔) ≥ 𝑛 + 2 then 𝑤(𝑓) ≥ 𝑛 + 2.
Let 𝑓(𝑣𝑖) ≥ 2 and 𝑓(𝑣𝑖+1) = 1. Then 𝑓(𝑣𝑖+2) ≥ 1. Now remove the edge 𝑣𝑖+1𝑣𝑖+2 and obtain a 𝑃𝑛. Define
𝑔 : 𝑃𝑛 → {0, 1, 2, 3}, 𝑔(𝑣𝑖) = 𝑓(𝑣𝑖) for 1 ≤ 𝑖 ≤ 𝑛. But, 𝑔 is an RDRD function of 𝑃𝑛 with 𝑤(𝑔) = 𝑤(𝑓). Thus
𝑤(𝑓) ≥ 𝑛 + 2.
Let 𝑓(𝑣𝑖) = 𝑓(𝑣𝑖+1) = 1. As above, we remove the edge 𝑣𝑖𝑣𝑖+1 and the resulted graph 𝑃𝑛 has an RDRD function
𝑔 of weight at least 𝑤(𝑓). That is 𝑤(𝑓) ≥ 𝑛 + 2. Therefore the proof is complete. �

4. Upper bounds on the RDRD number

In this section we obtain sharp upper bounds on the restrained double Roman domination number of a graph.

Proposition 4.1. Let 𝐺 be a connected graph of order 𝑛 ≥ 2. Then 𝛾𝑟𝑑𝑅(𝐺) ≤ 2𝑛−1, with equality if and only
if 𝑛 = 2.

Proof. If 𝑤 is a vertex of 𝐺, then define the function 𝑓 by 𝑓(𝑤) = 1 and 𝑓(𝑥) = 2 for 𝑥 ∈ 𝑉 (𝐺) ∖ {𝑤}.
Since 𝐺 is connected of order 𝑛 ≥ 2, we observe that 𝑓 is an RDRD function of 𝐺 of weight 2𝑛 − 1 and thus
𝛾𝑟𝑑𝑅(𝐺) ≤ 2𝑛−1. If 𝑛 ≥ 3, then 𝐺 contains a vertex 𝑤 with at least two neighbors 𝑢, 𝑣. Now define the function
𝑔 by 𝑔(𝑢) = 𝑔(𝑣) = 1, 𝑔(𝑥) = 2 for 𝑥 ∈ 𝑉 (𝐺) ∖ {𝑢, 𝑣}. Then 𝑔 is an RDRD function of 𝐺 of weight 2𝑛− 2 and
so 𝛾𝑟𝑑𝑅(𝐺) ≤ 2𝑛− 2 in this case. Since 𝛾𝑟𝑑𝑅(𝐾2) = 3 = 2 · 2− 1, the proof is complete. �

Proposition 4.2. Let 𝐺 be a connected graph of order 𝑛 ≥ 2. Then 𝛾𝑟𝑑𝑅(𝐺) ≤ 2𝑛 + 1 − 𝑑𝑖𝑎𝑚(𝐺) and this
bound is sharp for the path 𝑃𝑛 (𝑛 ≥ 4).

Proof. By Theorem 3.2, 𝛾𝑟𝑑𝑅(𝑃𝑛) ≤ 𝑛 + 2. Let 𝑃 = 𝑣1𝑣2 · · · 𝑣𝑑𝑖𝑎𝑚(𝐺)+1 be a diametrical path in 𝐺. Let 𝑔 be a
𝛾𝑟𝑑𝑅-function of 𝑃 . Then 𝑤(𝑔) ≤ 𝑑𝑖𝑎𝑚(𝐺) + 3. Now we define an RDRD function 𝑓 as:

𝑓(𝑥) =
{︂

2, 𝑥 /∈ 𝑉 (𝑃 ),
𝑔(𝑥), otherwise.
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𝑓 is an RDRD function of 𝐺 of weight 𝑤(𝑓) ≤ 2(𝑛 − (𝑑𝑖𝑎𝑚(𝐺) + 1)) + 𝑑𝑖𝑎𝑚(𝐺) + 3. Therefore 𝛾𝑟𝑑𝑅(𝐺) ≤
2𝑛 + 1− 𝑑𝑖𝑎𝑚(𝐺).
Theorem 3.2 shows this bound is sharp. �

Proposition 4.3. Let 𝐺 be a connected graph of order 𝑛 and circumference 𝑐(𝐺) < ∞. Then 𝛾𝑟𝑑𝑅(𝐺) ≤
2𝑛 + 2− 𝑐(𝐺), and this bound is sharp for each cycle 𝐶𝑛 with 𝑛 ̸≡ 0 (mod 3).

Proof. Let 𝐶 be a longest cycle of 𝐺, that means |𝑉 (𝐶)| = 𝑐(𝐺). By Theorem 3.3, 𝛾𝑟𝑑𝑅(𝐶) ≤ 𝑐(𝐺) + 2. Let ℎ
be a 𝛾𝑟𝑑𝑅-function on 𝐶. Then 𝑤(ℎ) ≤ 𝑐(𝐺) + 2. Now we define an RDRD function 𝑓 as:

𝑓(𝑥) =
{︂

2, 𝑥 /∈ 𝑉 (𝐶),
ℎ(𝑥), otherwise.

𝑓 is an RDRD function of 𝐺 of weight 𝑤(𝑓) ≤ 2(𝑛− 𝑐(𝐺)) + 𝑐(𝐺) + 2. Therefore 𝛾𝑟𝑑𝑅(𝐺) ≤ 2𝑛 + 2− 𝑐(𝐺).
For sharpness, if 𝐺 = 𝐶𝑛 and 𝑛 ̸≡ 0 (mod 3), then 𝛾𝑟𝑑𝑅(𝐶𝑛) = 𝑛 + 2 = 2𝑛 + 2− 𝑛 = 2𝑛 + 2− 𝑐(𝐺). �

Observation 4.4. Let 𝐺 be a graph and 𝑓 = (𝑉0, 𝑉1, 𝑉2) a 𝛾𝑟𝑅-function of 𝐺. Then 𝛾𝑟𝑑𝑅(𝐺) ≤ 2|𝑉1|+ 3|𝑉2|.

Proof. Let 𝐺 be a graph and 𝑓 = (𝑉0, 𝑉1, 𝑉2) a 𝛾𝑟𝑅-function of 𝐺. We define a function 𝑔 = (𝑉 ′0 , 𝑉 ′2 , 𝑉 ′3) as
follows: 𝑉 ′0 = 𝑉0, 𝑉 ′2 = 𝑉1, 𝑉 ′3 = 𝑉2. Note that under 𝑔, every vertex with a label 0 has a neighbor assigned 3
and each vertex with label 1 becomes a vertex with label 2 and also 𝐺[𝑉 ′0 ] has no isolated vertex. Hence, 𝑔 is a
restrained double Roman dominating function. Thus, 𝛾𝑟𝑑𝑅(𝐺) ≤ 2|𝑉 ′2 |+ 3|𝑉 ′3 | = 2|𝑉1|+ 3|𝑉2|. �

The bound of observation 4.4 is sharp, as can be seen with the path 𝐺 = 𝑃4, where 𝛾𝑟𝑅(𝐺) = 4 and
𝛾𝑟𝑑𝑅(𝐺) = 6. The strict inequality in the bound can be achieved by the subdivided star 𝐺 = 𝑆(𝐾1,𝑘) which
formed by subdividing each edge of the star 𝐾1,𝑘, for 𝑘 ≥ 3, exactly once. Thus, we must have 𝛾𝑟𝑅(𝐺) = 2𝑘 + 1
and 𝛾𝑟𝑑𝑅(𝐺) = 3𝑘. Hence, |𝑉1| = 1 and |𝑉2| = 𝑘, and so, 3𝑘 = 𝛾𝑟𝑑𝑅(𝐺) < 2|𝑉1|+ 3|𝑉2| = 2 + 3𝑘.

Lemma 4.5. If a graph 𝐺 has a non-pendant edge, then there exists a 𝛾𝑟𝑑𝑅(𝐺)-function 𝑓 = (𝑉0, 𝑉1, 𝑉2, 𝑉3)
such that 𝑉0 ∪ 𝑉1 ̸= ∅.

Proof. If 𝛾𝑟𝑑𝑅(𝐺) < 2𝑛, then 𝑉0 ∪ 𝑉1 ̸= ∅. Now we show that 𝛾𝑟𝑑𝑅(𝐺) < 2𝑛. Let 𝑢𝑤 be a non-pendant edge
with deg(𝑢) and deg(𝑤) be at least 2.
Assume that 𝑁𝐺(𝑢) ∩ 𝑁𝐺(𝑤) ̸= ∅, and let 𝑣 be a vertex in 𝑁𝐺(𝑢) ∩ 𝑁𝐺(𝑤). Then the function 𝑓 = (𝑉0 =
{𝑢, 𝑤}, 𝑉1 = ∅, 𝑉2 = 𝑉 (𝐺) ∖ {𝑢, 𝑤, 𝑣}, 𝑉3 = {𝑣}) is an RDRD function of 𝐺 with 𝑤(𝑓) ≤ 2𝑛− 3.
Assume that 𝑁𝐺(𝑢) ∩ 𝑁𝐺(𝑤) = ∅, and let 𝑎 ∈ 𝑁𝐺(𝑢) ∖ {𝑤}, 𝑏 ∈ 𝑁𝐺(𝑤) ∖ {𝑢}. Then the function 𝑓 = (𝑉0 =
{𝑢, 𝑤}, 𝑉1 = ∅, 𝑉2 = 𝑉 (𝐺) ∖ {𝑢, 𝑤, 𝑎, 𝑏}, 𝑉3 = {𝑎, 𝑏}) is an RDRD function of 𝐺 with 𝑤(𝑓) ≤ 2𝑛 − 2. This
completes the proof.

�

For any integer 𝑛 ≥ 3, let 𝐻𝑛 be the graph obtained from (𝑛− 2)/2 copies of 𝐾2 and a copy of 𝐾1 by adding
a new vertex and joining it to both leaves of each 𝐾2 and the given 𝐾1, and let 𝐹𝑛 be the graph obtained from
(𝑛−2)/2 copies of 𝐾2 by adding a new vertex and joining it to both leaves of each 𝐾2. Thus for 𝑛 ≥ 4, 𝐻𝑛 have
a vertex of degree 𝑛− 1, a vertex of degree 1 and other vertices of degree two and for 𝑛 ≥ 3, 𝐹𝑛 have a vertex of
degree 𝑛−1 and other vertices of degree two. Figure 2 shows the graphs 𝐻10, 𝐹9. Let ℋ = {𝐻𝑛 : 𝑛 ≥ 4 is even},
ℱ = {𝐹𝑛 : 𝑛 ≥ 3 is odd}.

Theorem 4.6. For every connected graph 𝐺 of order 𝑛 ≥ 3 with 𝑚 edges, 𝛾𝑟𝑑𝑅(𝐺) ≥ 2𝑛 + 1 − ⌈(4𝑚 − 1)/3⌉,
with equality if and only if 𝐺 ∈ ℋ ∪ ℱ or 𝐺 ∈ {𝐾1,2, 𝐾1,3, 𝐾1,4}.



RESTRAINED DOUBLE ROMAN DOMINATION OF A GRAPH 2299

Figure 2. The graphs 𝐻10, 𝐹9.

Proof. If 𝐺 = 𝐾1,𝑛−1 is a star, then 𝛾𝑟𝑑𝑅(𝐺) = 𝑛 + 1 and 𝑚 = 𝑛 − 1. Now we have, 𝛾𝑟𝑑𝑅(𝐾1,𝑛−1) = 2𝑛 +
1 − ⌈(4𝑚 − 1)/3⌉ for 3 ≤ 𝑛 ≤ 5 and 𝛾𝑟𝑑𝑅(𝐾1,𝑛−1) > 2𝑛 + 1 − ⌈(4𝑚 − 1)/3⌉ for 𝑛 ≥ 6. Next assume that
𝐺 is not a star. By Lemma 4.5 there is a 𝛾𝑟𝑑𝑅(𝐺)-function of 𝑓 = (𝑉0, 𝑉1, 𝑉2, 𝑉3) such that 𝑉0 ∪ 𝑉1 ̸= ∅.
It is well known that, the induced subgraph 𝐺[𝑉0] has no isolated vertex. Therefore, |𝐸(𝐺[𝑉0])| ≥ |𝑉0|/2.
Let 𝑉 ′0 = {𝑣 ∈ 𝑉0 : 𝑁(𝑣) ⊆ 𝑉2} and 𝑉 ′′0 = {𝑣 ∈ 𝑉0 : 𝑣 ℎ𝑎𝑠 𝑎 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑖𝑛 𝑉3}. Then |𝐸(𝑉0, 𝑉2)| ≥ 2|𝑉 ′0 |,
|𝐸(𝑉0, 𝑉3)| ≥ |𝑉 ′′0 | and |𝐸(𝑉1, 𝑉2 ∪ 𝑉3)| ≥ |𝑉1|. Therefore

|𝐸(𝐺)| = 𝑚 ≥ |𝑉0|/2 + 2|𝑉 ′0 |+ |𝑉 ′′0 |+ |𝑉1|.

Since |𝑉0| = |𝑉 ′0 |+ |𝑉 ′′0 |, we deduce that

(4𝑚− 1)/3 ≥ 2|𝑉0|+ 4/3|𝑉 ′0 |+ 4/3|𝑉1| − 1/3 (4.1)

and thus

2𝑛 + 1− ⌈(4𝑚− 1)/3⌉ ≤ 2𝑛 + 1− (4𝑚− 1)/3 ≤ 2𝑛 + 1− 2|𝑉0| − 4/3|𝑉 ′0 | − 4/3|𝑉1|+ 1/3. (4.2)

Because 𝛾𝑟𝑑𝑅(𝐺) = |𝑉1|+2|𝑉2|+3|𝑉3|, |𝑉0|+ |𝑉1|+ |𝑉2|+ |𝑉3| = 𝑛 and 2𝑛+1 = 2|𝑉0|+2|𝑉1|+2|𝑉2|+2|𝑉3|+1,
we obtain

2𝑛 + 1− 2|𝑉0| − 4/3|𝑉 ′0 | − 4/3|𝑉1|+ 1/3 = −4/3|𝑉 ′0 |+ 2/3|𝑉1|+ 2|𝑉2|+ 2|𝑉3|+ 4/3
= 𝛾𝑟𝑑𝑅(𝐺)− 4/3|𝑉 ′0 | − 1/3|𝑉1| − |𝑉3|+ 4/3.

Next we show that
𝛾𝑟𝑑𝑅(𝐺)− 4/3|𝑉 ′0 | − 1/3|𝑉1| − |𝑉3|+ 4/3 ≤ 𝛾𝑟𝑑𝑅(𝐺) (4.3)

or 𝛾𝑟𝑑𝑅(𝐺) ≥ 2𝑛 + 1 − ⌈(4𝑚 − 1)/3⌉. If |𝑉 ′0 | ≥ 1, then −4/3|𝑉 ′0 | − 1/3|𝑉1| − |𝑉3| + 4/3 ≤ 0 and so
𝛾𝑟𝑑𝑅(𝐺)− 4/3|𝑉 ′0 | − 1/3|𝑉1| − |𝑉3|+ 4/3 ≤ 𝛾𝑟𝑑𝑅(𝐺).
Let now |𝑉 ′0 | = 0. The condition 𝑉0 ∪ 𝑉1 ̸= ∅ implies 𝑉 ′′0 ∪ 𝑉1 ̸= ∅.

We now distinguish the two cases: 𝑉1 = ∅, and 𝑉1 ̸= ∅. When 𝑉1 = ∅, we deduce that |𝑉 ′′0 | ≥ 1 and therefore
|𝑉3| ≥ 1. If there are at least two vertices of weight 3, then 𝛾𝑟𝑑𝑅(𝐺)− 4/3|𝑉 ′0 | − 1/3|𝑉1| − |𝑉3|+ 4/3 < 𝛾𝑟𝑑𝑅(𝐺).
If there is only one vertex of weight 3, then 𝑚 ≥ 𝑛 − 1 + 𝑛−1

2 = 3(𝑛−1)
2 . We deduce that

𝛾𝑟𝑑𝑅(𝐺) ≥ 3 ≥ 2𝑛 + 1 −
⌈︁

6(𝑛−1)−1
3

⌉︁
≥ 2𝑛 + 1 −

⌈︀
4𝑚−1

3

⌉︀
, with equality if and only if |𝑉2| = 0, 𝑛 is

odd and 𝑚 = 3(𝑛−1)
2 , that means 𝐺 ∈ ℱ .

When 𝑉1 ̸= ∅; i.e., when |𝑉1| ≥ 1, we further distinguish two cases. If |𝑉 ′′0 | ≥ 1, then |𝑉3| ≥ 1 and thus
𝛾𝑟𝑑𝑅(𝐺) − 4/3|𝑉 ′0 | − 1/3|𝑉1| − |𝑉3| + 4/3 ≤ 𝛾𝑟𝑑𝑅(𝐺). Next let |𝑉 ′′0 | = 0. If |𝑉3| ≥ 1, then 𝛾𝑟𝑑𝑅(𝐺) − 4/3|𝑉 ′0 | −
1/3|𝑉1| − |𝑉3| + 4/3 ≤ 𝛾𝑟𝑑𝑅(𝐺). Now assume that |𝑉3| = 0. This implies that all vertices have weight 1 or
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2. If 3 ≤ 𝑛 ≤ 5, then it is easy to see that 𝛾𝑟𝑑𝑅(𝐺) > 2𝑛 + 1 −
⌈︀

4𝑚−1
3

⌉︀
. Let now 𝑛 ≥ 6. If |𝑉1| ≥ 5, then

𝛾𝑟𝑑𝑅(𝐺) − 4/3|𝑉 ′0 | − 1/3|𝑉1| − |𝑉3| + 4/3 < 𝛾𝑟𝑑𝑅(𝐺). Otherwise |𝑉1| ≤ 4, |𝑉2| ≥ 𝑛 − 4 and 𝑚 ≥ 𝑛 − 1. This
implies

𝛾𝑟𝑑𝑅(𝐺) ≥ 2(𝑛− 4) + 4 = 2𝑛− 4 > 2𝑛 + 1−
⌈︂

4(𝑛− 1)− 1
3

⌉︂
≥ 2𝑛 + 1−

⌈︂
4𝑚− 1

3

⌉︂
.

Thus 𝛾𝑟𝑑𝑅(𝐺) ≥ 2𝑛 + 1− (4𝑚− 1)/3 ≥ 2𝑛 + 1− ⌈(4𝑚− 1)/3⌉.
For equality: If 𝐺 ∈ ℋ, then 𝐺 = 𝐻𝑛 for 𝑛 ≥ 4 even and |𝐸(𝐻𝑛)| = 3(𝑛−2)/2+1. Thus 2𝑛+1−(4(3(𝑛−2)/2+
1)−1)/3 = 2𝑛+1−⌈(4(3(𝑛−2)/2+1)−1)/3⌉ = 2𝑛+1−2(𝑛−2)−1 = 4 = 𝛾𝑟𝑑𝑅(𝐻𝑛). If 𝐺 ∈ ℱ , then 𝐺 = 𝐹𝑛 for
𝑛 ≥ 3 odd and |𝐸(𝐹𝑛)| = 3(𝑛−1)/2. Thus 2𝑛+ 1−⌈(4(3(𝑛−1)/2))−1/3⌉ = 2𝑛+ 1−2(𝑛−1) = 3 = 𝛾𝑟𝑑𝑅(𝐹𝑛).

Conversely, assume that 𝛾𝑟𝑑𝑅(𝐺) = 2𝑛+1−⌈(4𝑚−1)/3⌉. Then all inequalities occurring in the proof become
equalities. When |𝑉1| = 0, the equality holds if and only if 𝐺 ∈ ℱ . When |𝑉1| ≥ 1, |𝑉3| ≥ 1. Therefore the equality
in Inequality (4.3) leads to |𝑉3| = |𝑉1| = 1 and |𝑉 ′0 | = 0. Hence 𝑉0 = 𝑉 ′′0 . Thus equality in (4.1) or equivalently, in
the inequality |𝐸(𝐺)| = 𝑚 ≥ |𝑉0|/2+2|𝑉 ′0 |+ |𝑉 ′′0 |+ |𝑉1| leads to 𝑚 = 3/2|𝑉 ′′0 |+1. Now let the vertices 𝑣, 𝑢 be of
weight 3, 1 respectively. Then 𝑚 = |𝐸(𝐺)| ≥ |𝐸(𝑣, 𝑉 ′′0 )|+𝐺[𝑉 ′′0 ]+1 ≥ |𝑉 ′′0 |+1/2|𝑉 ′′0 |+1 = 3/2|𝑉 ′′0 |+1. If |𝑉2| ≠ 0,
then the connectivity of 𝐺 leads to the contradiction 𝑚 ≥ 3/2|𝑉 ′′0 |+2. Consequently, |𝑉2| = 0, |𝑉0| = (2𝑚−2)/3
and 𝑢 and 𝑣 are adjacent. Since 𝐺 is connected, 𝐺 ∈ ℋ. �

5. RDRD-set VERSUS RRD-set

In this section we study the comparability between the RDRD-set and RRD-set.

Proposition 5.1. For any graph 𝐺, 𝛾𝑟𝑑𝑅(𝐺) ≤ 2𝛾𝑟𝑅(𝐺) with equality if and only if 𝐺 = 𝐾𝑛.

Proof. Let 𝑓 = (𝑉0, 𝑉1, 𝑉2) be a 𝛾𝑟𝑅-function of 𝐺. Since 𝛾𝑟𝑅(𝐺) = |𝑉1| + 2|𝑉2|, by Observation 4.4, we have
that 𝛾𝑟𝑑𝑅(𝐺) ≤ 2|𝑉1| + 3|𝑉2| = 𝛾𝑟𝑅(𝐺) + |𝑉1| + |𝑉2| ≤ 2𝛾𝑟𝑅(𝐺). If 𝛾𝑟𝑑𝑅(𝐺) = 2𝛾𝑟𝑅(𝐺) = 2|𝑉1| + 4|𝑉2|, then
since 𝛾𝑟𝑑𝑅(𝐺) ≤ 2|𝑉1| + 3|𝑉2|, we must have 𝑉2 = ∅. Hence, 𝑉0 = ∅ must hold, and so 𝑉 = 𝑉1. By definition
of 𝛾𝑟𝑅-function, we deduce that no two vertices in 𝐺 are adjacent, for otherwise, if 𝑢 and 𝑣 are adjacent, then
only one of them in every 𝛾𝑟𝑑𝑅-function on 𝐺 has a label of 2 which contradicts with 𝛾𝑟𝑑𝑅(𝐺) = 2𝛾𝑟𝑅(𝐺). �

As an immediate consequence of Proposition 5.1, we have the following Corollary and Theorem.

Corollary 5.2. For any nontrivial connected graph 𝐺, 𝛾𝑟𝑑𝑅(𝐺) < 2𝛾𝑟𝑅(𝐺).

The proof of Lemma 4.5 shows the next proposition.

Proposition 5.3. If 𝐺 contains a triangle, then 𝛾𝑟𝑑𝑅(𝐺) ≤ 2𝑛− 3.

Theorem 5.4. For every graph 𝐺, 𝛾𝑟𝑅(𝐺) < 𝛾𝑟𝑑𝑅(𝐺).

Proof. Let 𝑓 = (𝑉0, 𝑉1, 𝑉2, 𝑉3) be a 𝛾𝑟𝑑𝑅(𝐺)-function. If 𝑉3 ̸= ∅, then (𝑉 ′0 = 𝑉0, 𝑉
′
1 = 𝑉1, 𝑉

′
2 = 𝑉2 ∪ 𝑉3) is an

RRD function 𝑔 such that 𝑤(𝑔) < 𝑤(𝑓). Let 𝑉3 = ∅. If 𝑉0 = ∅, then, since 𝑉2 ̸= ∅, 𝑔 = (∅, 𝑉 ′1 = 𝑉1 ∪ 𝑉2, ∅)
is an RRD function such that 𝑤(𝑔) < 𝑤(𝑓). If 𝑉0 ̸= ∅, then |𝑉2| ≥ 2. Let 𝑓(𝑣) = 2 for a vertex 𝑣. Then
𝑔 = (𝑉 ′0 = 𝑉0, 𝑉

′
1 = 𝑉1 ∪ {𝑣}, 𝑉 ′2 = 𝑉2 − {𝑣}) is an RRD function 𝑔 for which 𝑤(𝑔) < 𝑤(𝑓). Therefore

𝛾𝑟𝑅(𝐺) < 𝛾𝑟𝑑𝑅(𝐺). �

Theorem 5.5. Let 𝐺 be a graph of order 𝑛. Then 𝛾𝑟𝑑𝑅(𝐺) = 𝛾𝑟𝑅(𝐺)+1 if and only if 𝐺 is one of the following
graphs.

1. 𝐺 has a vertex of degree 𝑛− 1.
2. There exists a subset 𝑆 of 𝑉 (𝐺) such that:
2.1. every vertex of 𝑉 − 𝑆 is adjacent to a vertex in 𝑆, 2.2. there are two subsets 𝐴0 and 𝐴1 of 𝑉 − 𝑆 with

𝐴0 ∪𝐴1 = 𝑉 −𝑆 such that 𝐴0 is the set of non-isolated vertices in 𝑁(𝑆) and each vertex in 𝐴0 has at least two
neighbors in 𝑆,

2.3. for any 2-subset {𝑎, 𝑏} of 𝑆, 𝑁({𝑎, 𝑏}) ∪ 𝐴0 ̸= ∅ and for a 3-subset {𝑥, 𝑦, 𝑧} of 𝑆, if {𝑥, 𝑦, 𝑧} ∩ 𝐴0 ̸= ∅,
then there are three vertices 𝑢, 𝑣, 𝑤 in 𝐴0 such that 𝑁(𝑢)∪𝑆 = {𝑥, 𝑦}, 𝑁(𝑣)∪𝑆 = {𝑥, 𝑧} and 𝑁(𝑤)∪𝑆 = {𝑦, 𝑧}.
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Proof. Let 𝛾𝑟𝑑𝑅(𝐺) = 𝛾𝑟𝑅(𝐺) + 1 with a 𝛾𝑟𝑑𝑅(𝐺)-function 𝑓 = (𝑉0, 𝑉1, 𝑉2, 𝑉3) and a 𝛾𝑟𝑅(𝐺)-function
𝑔 = (𝑈0, 𝑈1, 𝑈2). If 𝑉3 ̸= ∅, then |𝑉3| = 1. If |𝑉3| ≥ 2 then by changing 3 to 2 we obtain a RRD function
ℎ with 𝑤(ℎ) < 𝑤(𝑔), a contradiction. Let 𝑉3 = {𝑣}. In addition, we must have |𝑉2| = 0. If we suppose that
|𝑉2| ≥ 1, then let 𝑢 ∈ 𝑉2. Then ℎ = (𝑉 ′0 = 𝑉0, 𝑉

′
1 = 𝑉1 ∪ {𝑢}, 𝑉 ′2 = 𝑉2 ∪ {𝑣}) is an RRD function 𝑔 for which

𝑤(ℎ) < 𝑤(𝑔), a contradiction. Thus all vertices different from 𝑣 are adjacent to the vertex 𝑣 such that the
non-isolated vertices in 𝑁(𝑣) are attributed to 0 and the isolated vertices in 𝑁(𝑣) are attributed to 1. In this
case 𝑈0 = 𝑉0, 𝑈1 = 𝑉1 and 𝑈2 = 𝑉3.

If 𝑉3 = ∅, then 𝑉2 ̸= ∅ and |𝑉2| ≥ 2. In this case, there must exist a vertex 𝑣 ∈ 𝑉2 such that
𝑈0 = 𝑉0, 𝑈1 = 𝑉1 ∪ {𝑣} and 𝑈2 = 𝑉2 − {𝑣}. There is such a function 𝑓 if we guarantee a subset 𝑆 of 𝑉 (𝐺) with
each vertex of weight 2 for which every other vertex in 𝑉 − 𝑆 has to adjacent to a vertex of 𝑆, that is the
condition 2.1 holds.
Since we can only change one of vertices of weight 2 in 𝑓 to a vertex of weight 1 in 𝑔, there must be existed
two subsets 𝐴0 and 𝐴1 in 𝑉 − 𝑆 such that the conditions 2.2 and 2.3 hold.

Conversely, if the condition 1 holds, then 𝑓 = (𝑉0, 𝑉1, ∅, 𝑉3 = {𝑣}) and 𝑔 = (𝑈0 = 𝑉0, 𝑈1 = 𝑉1, 𝑈2 = {𝑣}) are
𝛾𝑟𝑑𝑅(𝐺)-function and 𝛾𝑟𝑅(𝐺)-function respectively where 𝑉0 is the set of non-isolated vertices in 𝑁(𝑣) and 𝑉1

is the set of isolated vertices in 𝑁(𝑣). Thus 𝛾𝑟𝑑𝑅(𝐺) = 𝛾𝑟𝑅(𝐺) + 1.
If the condition 2 holds, then we can have only one vertex of weight 2 in 𝐺 under 𝑓 such that it changes to the
weight 1 in 𝐺 under 𝑔. Thus 𝛾𝑟𝑑𝑅(𝐺) = 𝛾𝑟𝑅(𝐺) + 1. �

We showed that for any graph 𝐺, 𝛾𝑟𝑑𝑅(𝐺) ≤ 2𝛾𝑟𝑅(𝐺) and the equality holds if and on if 𝐺 is a trivial graph
𝐾𝑛. Hence, for any nontrivial graph 𝐺, 𝛾𝑟𝑑𝑅(𝐺) ≤ 2𝛾𝑟𝑅(𝐺)−1. Now we characterise graph 𝐺 with this property
𝛾𝑟𝑑𝑅(𝐺) = 2𝛾𝑟𝑅(𝐺)− 1.

Theorem 5.6. If 𝐺 is a nontrivial graph, then 𝛾𝑟𝑑𝑅(𝐺) ≤ 2𝛾𝑟𝑅(𝐺) − 1. If 𝛾𝑟𝑑𝑅(𝐺) = 2𝛾𝑟𝑅(𝐺) − 1, then 𝐺
consists of a 𝐾2 and 𝑛 − 2 isolated vertices or 𝐺 consists of a vertex ℎ and two disjoint vertex sets 𝐻 and 𝑅
such that 𝐻 = 𝑁(ℎ), 𝐺[𝐻] does not have isolated vertices, 𝐺[𝑅] is trivial, there is no edge between ℎ and 𝑅
and 𝑁(ℎ) ∩𝑁(𝑅) ̸= 𝑁(ℎ).

Proof. Since 𝐺 is a nontrivial graph, Proposition 5.1 implies 𝛾𝑟𝑑𝑅(𝐺) ≤ 2𝛾𝑟𝑅(𝐺) − 1. Now we investigate the
equality.
Let 𝛾𝑟𝑑𝑅(𝐺) = 2𝛾𝑟𝑅(𝐺)− 1, where 𝑓 = (𝑉0, 𝑉1, 𝑉2, 𝑉3) is a 𝛾𝑟𝑑𝑅(𝐺)-function and 𝑔 = (𝑈0, 𝑈1, 𝑈2) is a 𝛾𝑟𝑅(𝐺)-
function. Then 2|𝑈1|+4|𝑈2|−1 = |𝑉1|+2|𝑉2|+3|𝑉3|. On the other hand, since 2|𝑈1|+4|𝑈2|−1 = |𝑉1|+2|𝑉2|+
3|𝑉3| = 𝛾𝑟𝑑𝑅(𝐺) ≤ 2|𝑈1|+ 3|𝑈2|, it follows that |𝑈2| ≤ 1.

If 𝑈2 = ∅, then |𝑈0| = 0 and therefore |𝑈1| = 𝑛. Using the inequality above, we obtain

2𝑛− 1 = 2|𝑈1| − 1 ≤ 𝛾𝑟𝑑𝑅(𝐺) ≤ 2|𝑈1| = 2𝑛.

If 𝛾𝑟𝑑𝑅(𝐺) = 2𝑛, then 𝐺 is trivial, a contradiction. If 𝛾𝑟𝑑𝑅(𝐺) = 2𝑛 − 1, then Proposition 4.1 shows that 𝐺
consists of a 𝐾2 and 𝑛− 2 isolated vertices.

Let now |𝑈2| = 1 such that 𝑈2 = {ℎ}, 𝐻 = 𝑁(ℎ), 𝑅 = 𝑉 (𝐺) ∖ 𝑁 [ℎ] = {𝑢1, 𝑢1, . . . , 𝑢𝑝}. Then, 𝑈0 ⊆ 𝐻 and
𝑅 ⊆ 𝑈1.

If 𝐻 contains exactly 𝑠 ≥ 1 isolated vertices, then 𝛾𝑟𝑅(𝐺) = 2 + 𝑠 + 𝑝 and therefore 𝛾𝑟𝑑𝑅(𝐺) ≤ 3 + 𝑠 + 2𝑝 ≤
2𝛾𝑟𝑅(𝐺)− 2, a contradiction. Hence 𝐻 = 𝑁(ℎ) does not contain isolated vertices and thus 𝛾𝑟𝑅(𝐺) = 𝑝 + 2.

If 𝐺[𝑅] contains an edge, then we obtain the contradiction 𝛾𝑟𝑑𝑅(𝐺) ≤ 3 + 2𝑝 − 1 = 2𝑝 + 2 ≤ 2𝛾𝑟𝑅(𝐺) − 2.
Thus 𝐺[𝑅] is trivial.

If there is an edge between ℎ and 𝑅, then we also obtain the contradiction 𝛾𝑟𝑑𝑅(𝐺) ≤ 3 + 2𝑝− 1 = 2𝑝 + 2 ≤
2𝛾𝑟𝑅(𝐺)− 2.

If 𝑁(ℎ)∩𝑁(𝑅) = 𝑁(ℎ), then 𝑓 = (𝐻, ∅, {ℎ}∪𝑅, ∅) is an RDRD function of 𝐺, and hence 𝛾𝑟𝑑𝑅(𝐺) ≤ 2𝑝+2 ≤
2𝛾𝑟𝑅(𝐺)− 2, a contradiction. �
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6. Trees

In this section we study the restrained double Roman domination of trees.

Theorem 6.1. If 𝑇 is a tree of order 𝑛 ≥ 2, then 𝛾𝑟𝑑𝑅(𝑇 ) ≤ ⌈ 3𝑛−1
2 ⌉. The equality holds if 𝑇 ∈

{𝑃2, 𝑃3, 𝑃4, 𝑃5, 𝑆1,2, 𝑤𝑠(1, 𝑛, 𝑛− 1), 𝑤𝑠(1, 𝑛, 𝑛− 2)}.

Proof. Let 𝑇 be a tree of order 𝑛 ≥ 2. We will proceed by induction on 𝑛. If 𝑛 = 2, then 𝛾𝑟𝑑𝑅(𝑇 ) = 3 = ⌈ 3𝑛−1
2 ⌉.

If 𝑛 ≥ 3, then 𝑑𝑖𝑎𝑚(𝑇 ) ≥ 2. If 𝑑𝑖𝑎𝑚(𝑇 ) = 2, then 𝑇 is the star 𝐾1,𝑛−1 for 𝑛 ≥ 3 and 𝛾𝑟𝑑𝑅(𝑇 ) = 𝑛+1 ≤ ⌈ 3𝑛−1
2 ⌉.

If 𝑑𝑖𝑎𝑚(𝑇 ) = 3, then 𝑇 is a double star 𝑆𝑟,𝑠 for 1 ≤ 𝑟 ≤ 𝑠. Hence, 𝑛 = 𝑟 + 𝑠 + 2 ≥ 4. If 𝑟 = 1 = 𝑠, then 𝑇 = 𝑃4

and 𝛾𝑟𝑑𝑅(𝑇 ) = 6 ≤ ⌈ 12−1
2 ⌉. If 𝑟 = 1, 𝑠 ≥ 2, then 𝑛 = 𝑠 + 3 and 𝛾𝑟𝑑𝑅(𝑇 ) = 𝑠 + 5 ≤ ⌈ 3(𝑠+3)−1

2 ⌉. If 𝑟 ≥ 2, 𝑠 ≥ 2,
then 𝑛 = 𝑟 + 𝑠 + 2 and 𝛾𝑟𝑑𝑅(𝑇 ) = 𝑟 + 𝑠 + 4 ≤ ⌈ 3(𝑟+𝑠+2)−1

2 ⌉.
Hence, we may assume that 𝑑𝑖𝑎𝑚(𝑇 ) ≥ 4. This implies that 𝑛 ≥ 5. Assume that any tree 𝑇 ′ with order

2 ≤ 𝑛′ < 𝑛 has 𝛾𝑟𝑑𝑅(𝑇 ′) ≤ ⌈3𝑛′ − 1
2

⌉. Among all longest paths in 𝑇 , choose 𝑃 to be one that maximizes
the degree of its next-to-last vertex 𝑣, and let 𝑤 be a leaf neighbor of 𝑣. Note that by our choice of 𝑣, every
child of 𝑣 is a leaf. Since 𝑑𝑒𝑔(𝑣) ≥ 2, the vertex 𝑣 has at least one leaf as a child. Now we put 𝑇 ′ = 𝑇 − 𝑇𝑣

where the order of the substar 𝑇𝑣 is 𝑘 + 1 with 𝑘 ≥ 1. Note that since 𝑑𝑖𝑎𝑚(𝑇 ) ≥ 4, 𝑇 ′ has at least three
vertices, that is, 𝑛′ ≥ 3. Let 𝑓 ′ be a 𝛾𝑟𝑑𝑅-function of 𝑇 ′. Form 𝑓 from 𝑓 ′ by letting 𝑓(𝑥) = 𝑓 ′(𝑥) for all
𝑥 ∈ 𝑉 (𝑇 ′), 𝑓(𝑣) = 2, and 𝑓(𝑧) = 1 for all leaf neighbors of 𝑣. Thus 𝑓 is a restrained double Roman dominat-

ing function of 𝑇 , implying that 𝛾𝑟𝑑𝑅(𝑇 ) ≤ 𝛾𝑟𝑑𝑅(𝑇 ′)+𝑘+2 ≤ ⌈3(𝑛− 𝑘 − 1)− 1
2

⌉+𝑘+2 = ⌈3𝑛− 𝑘

2
⌉ ≤ ⌈3𝑛− 1

2
⌉.

If 𝑇 ∈ {𝑃2, 𝑃3, 𝑃4, 𝑃5, 𝑆1,2, , 𝑤𝑠(1, 𝑛, 𝑛− 1), 𝑤𝑠(1, 𝑛, 𝑛− 2)}, then we must have 𝛾𝑟𝑑𝑅(𝑇 ) = ⌈3𝑛− 1
2

⌉. �

Theorem 6.2. For every tree 𝑇 of order 𝑛 ≥ 3, with 𝑙 leaves and 𝑠 support vertices, we have 𝛾𝑟𝑑𝑅(𝑇 ) ≤
4𝑛 + 2𝑠− 𝑙

3
, and this bound is sharp for the family of stars (𝐾1,𝑛−1 𝑛 ≥ 3), double stars, caterpillars for which

each vertex is a leaf or a support vertex and all support vertices have even degree 2𝑚 or at most two end support
vertices has degree 2𝑚 − 1 and the other support vertices has degree 2𝑚, wounded spiders in which the central
vertex is adjacent with at least two leaves.

Proof. Let 𝑇 be a tree with order 𝑛 ≥ 3. Since 𝑛 ≥ 3, 𝑑𝑖𝑎𝑚(𝑇 ) ≥ 2. If 𝑑𝑖𝑎𝑚(𝑇 ) = 2, then 𝑇 is the star 𝐾1,𝑛−1

for 𝑛 ≥ 3 and 𝛾𝑟𝑑𝑅(𝑇 ) = 𝑛 + 1 ≤ 4𝑛 + 2− (𝑛− 1)
3

=
3𝑛 + 3

3
= 𝑛 + 1. If 𝑑𝑖𝑎𝑚(𝑇 ) = 3, then 𝑇 is a double star

𝑆𝑟,𝑡 for 1 ≤ 𝑟 ≤ 𝑡. We have 𝛾𝑟𝑑𝑅(𝑇 ) = 𝑛 + 2 =
4𝑛 + 2𝑠− 𝑙

3
. Hence, we may assume 𝑑𝑖𝑎𝑚(𝑇 ) ≥ 4. Thus, 𝑛 ≥ 5.

Assume that any tree 𝑇 ′ with order 3 ≤ 𝑛′ < 𝑛, 𝑙′ leaves and 𝑠′ support vertices has 𝛾𝑟𝑑𝑅(𝑇 ′) ≤ 4𝑛′ + 2𝑠′ − 𝑙′

2
.

Among all longest paths in 𝑇 , choose 𝑃 to be one that maximizes the degree of its next-to-last vertex 𝑢, and
let 𝑥 be a leaf neighbor of 𝑢, 𝑤 be a parent vertex of 𝑣 and 𝑣 be a parent vertex of 𝑢. Note that by our choice of
𝑢, every child of 𝑢 is a leaf. Since 𝑡 = 𝑑𝑒𝑔(𝑢) ≥ 2, the vertex 𝑢 has at least one leaf children. We now consider
the two cases are as follows:
Case 1. 𝑑𝑒𝑔(𝑣) ≥ 3. In this case, we put 𝑇 ′ = 𝑇 − 𝑇𝑢, where the order of the star 𝑇𝑢 is 𝑡 with 𝑡 ≥ 2. Note that
since 𝑑𝑖𝑎𝑚(𝑇 ) ≥ 4, 𝑇 ′ has at least three vertices, that is, 𝑛′ ≥ 3. Let 𝑓 ′ be a 𝛾𝑟𝑑𝑅-function of 𝑇 ′. Thus we have

𝑛′ = 𝑛− 𝑡, 𝑙′ = 𝑙− (𝑡−1) and 𝑠′ = 𝑠−1. But, 𝛾𝑟𝑑𝑅(𝑇 ) ≤ 𝛾𝑟𝑑𝑅(𝑇 ′)+ 𝑡+1 ≤ 4(𝑛− 𝑡) + 2(𝑠− 1)− (𝑙 − (𝑡− 1))
3

+

𝑡 + 1 =
4𝑛 + 2𝑠− 𝑙

3
.

Case 2. 𝑑𝑒𝑔(𝑣) = 2. We now consider the following two subcases.
i. 𝑑𝑒𝑔(𝑤) > 2. Then we put 𝑇 ′ = 𝑇 − 𝑇𝑣 where order of subtree 𝑇𝑣 is 𝑡 + 1. But, we have 𝑛′ = 𝑛 − (𝑡 + 1),
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𝑠′ = 𝑠−1 and 𝑙′ = 𝑙−(𝑡−1). Thus, 𝛾𝑟𝑑𝑅(𝑇 ) ≤ 𝛾𝑟𝑑𝑅(𝑇 ′)+𝑡+2 ≤ 4(𝑛− 𝑡− 1) + 2(𝑠− 1)− (𝑙 − (𝑡− 1))
3

+𝑡+2 =
4𝑛 + 2𝑠− 𝑙 − 1

3
≤ 4𝑛 + 2𝑠− 𝑙

3
.

ii. 𝑑𝑒𝑔(𝑤) = 2. Then we put 𝑇 ′ = 𝑇 − 𝑇𝑣, where the order of the subtree 𝑇𝑣 is 𝑡 + 1. Thus in this case,
𝑤 in the subtree 𝑇 ′ becomes a leaf and we have 𝑛′ = 𝑛 − (𝑡 + 1), 𝑠′ ≤ 𝑠 and 𝑙′ = 𝑙 − (𝑡 − 1) + 1. Thus,

𝛾𝑟𝑑𝑅(𝑇 ) ≤ 𝛾𝑟𝑑𝑅(𝑇 ′) + 𝑡 + 2 ≤ 4(𝑛− 𝑡− 1) + 2(𝑠)− (𝑙 − (𝑡− 1) + 1)
3

+ 𝑡 + 2 =
4𝑛 + 2𝑠− 𝑙

3
. �

Theorem 6.3. If 𝑇 is a tree, then 𝛾𝑟(𝑇 ) + 1 ≤ 𝛾𝑟𝑑𝑅(𝑇 ) ≤ 3𝛾𝑟(𝑇 ), and equality for the lower bound holds if
and only if 𝑇 is a star. The upper bound is sharp for the paths 𝑃𝑚 (𝑚 ≡ 1 mod 3).

Proof. Let 𝑇 be a tree. Since at least one vertex has value 2 under any RDRD function of 𝑇 , we see that
𝛾𝑟(𝑇 ) + 1 ≤ 𝛾𝑟𝑑𝑅(𝑇 ). If we assign the value 3 to the vertices in a 𝛾𝑟(𝑇 )-set, then we obtain an RDRD function
of 𝑇 . Therefore 𝛾𝑟𝑑𝑅(𝑇 ) ≤ 3𝛾𝑟(𝑇 ).
The sharpness of the upper bound is deuced from Propositions 1-7 of [6] and Observation 3.1, Theorem 3.2 and
Theorem 3.3.
To prove equality at the lower bound, if 𝑇 = 𝐾1,𝑛−1 is a star, then we have 𝛾𝑟𝑑𝑅(𝑇 ) = 𝑛 + 1 and 𝛾𝑟(𝑇 ) = 𝑛. If
𝑇 is a tree and 𝛾𝑟𝑑𝑅(𝑇 ) = 𝛾𝑟(𝑇 ) + 1, then we have only one vertex of value 2 in any 𝛾𝑟𝑑𝑅(𝑇 )-function and the
other vertices of positive weight have value 1. In addition, the vertices of value 1 are adjacent to the vertex of
value 2, and therefore 𝑇 is a star. �

The following result gives us the RDRD of 𝐺 in terms of the size of 𝐸(𝐺), and order of 𝐺.

Proposition 6.4. Let 𝐺 be a connected graph 𝐺 of order 𝑛 ≥ 2 with 𝑚 edges. Then 𝛾𝑟𝑑𝑅(𝐺) ≤ 4𝑚 − 2𝑛 + 3,
with equality if and only if 𝐺 is a tree with 𝛾𝑟𝑑𝑅(𝐺) = 2𝑛− 1.

Proof. For the given connected graph, 𝑚 ≥ 𝑛 − 1 and according to Proposition 4.2 𝛾𝑟𝑑𝑅(𝐺) ≤ 2𝑛 − 1 =
4𝑛− 4− 2𝑛 + 3 ≤ 4𝑚− 2𝑛 + 3.
If 𝛾𝑟𝑑𝑅(𝐺) = 4𝑚− 2𝑛 + 3, then 𝑚 = 𝑛− 1 and 𝐺 is a tree with 𝛾𝑟𝑑𝑅(𝐺) = 2𝑛− 1.
Conversely, assume that 𝐺 is a tree with 𝛾𝑟𝑑𝑅(𝐺) = 2𝑛− 1. Hence 𝛾𝑟𝑑𝑅(𝐺) = 4𝑚− 2𝑛 + 3. �

7. Conclusions and open problems

In this paper, we investigated the concept of restrained double Roman domination in graphs. We studied the
computational complexity of this concept and proved some bounds on the RDRD number of graphs. In the case
of trees, we characterized all trees attaining the exhibited bound. We end the paper with four open problems
emerge from this research.

1. Characterize the graphs 𝐺 with small or large RDRD numbers.
2. It is also worthwhile proving some other nontrivial sharp bounds on 𝛾𝑟𝑑𝑅(𝐺) for general graphs 𝐺 or some

well-known families such as, chordal, planar, triangle-free, or claw-free graphs.
3. The decision problem RDRD is NP-complete for general graphs, as proved in Theorem 2.1. By the way, there

might be some families of graphs such that RDRD is NP-complete for them or there might be some polynomial-
time algorithms for computing the RDRD number of some well-known families of graphs, for instance, trees.
Can you provide these families?

4. In Theorems 6.1 and 6.2 we showed upper bounds for 𝛾𝑟𝑑𝑅(𝑇 ). The sufficient and necessity conditions for
equality can be posed as open problems.

Acknowledgements. We gratefully appreciate the careful comments of the referees on this paper. Their comments
improved its presentation.
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