RATIRO-Oper. Res. 56 (2022) 2293-2304 RAIRO Operations Research
https://doi.org/10.1051/ro/2022089 WWW.rairo-ro.org

RESTRAINED DOUBLE ROMAN DOMINATION OF A GRAPH

DoosT ALl MoJpEHY*®, IMAN MASOUMI? AND LUTZ VOLKMANN?

Abstract. For a graph G = (V, E), a restrained double Roman dominating function is a function
f:V — {0,1,2,3} having the property that if f(v) = 0, then the vertex v must have at least two
neighbors assigned 2 under f or one neighbor w with f(w) = 3, and if f(v) = 1, then the vertex v
must have at least one neighbor w with f(w) > 2, and at the same time, the subgraph G[V;] which
includes vertices with zero labels has no isolated vertex. The weight of a restrained double Roman
dominating function f is the sum f(V) = 3" ., f(v), and the minimum weight of a restrained double
Roman dominating function on G is the restrained double Roman domination number of G. We initiate
the study of restrained double Roman domination with proving that the problem of computing this
parameter is N P-hard. Then we present an upper bound on the restrained double Roman domination
number of a connected graph G in terms of the order of G and characterize the graphs attaining this
bound. We study the restrained double Roman domination versus the restrained Roman domination.
Finally, we investigate the bounds for the restrained double Roman domination of trees and determine
trees 1" attaining the exhibited bounds.
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1. INTRODUCTION

Dominations have become one of the major areas in graph theory. Their steady and rapid growth during the
past thirty years may be due to the diversity of their applications to both theoretical and real-world problems,
such as facility location problems, strategy of defence of cities and etc. Among the domination-type parameters
that have been studied, are the Roman [18], double Roman [3], Italian [4] and double Italian [13] domination
numbers in graphs.

The initial studies of Roman domination [14, 18] have been motivated by a historical application. In the 4th
century, Emperor Constantine was faced with a difficult problem of how to defend the Roman Empire with
limited resources. He decreed that for all cities in the Roman Empire, at most two legions should be stationed.
Further, if a location having no legions was attacked, then it must be within the vicinity of at least one city
at which two legions were stationed, so that one of the two legions could be sent to defend the attacked city.
Beeler et al. [3] have defined double Roman domination. What they propose is a stronger version of Roman
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domination that doubles the protection by ensuring that any attack can be defended by at least two legions.
In Roman domination at most two Roman legions are deployed at any one location. But as we will see in what
follows, the ability to deploy three legions at a given location provides a level of defense that is both stronger
and more flexible, at less than the anticipated additional cost. Here we define the double restrained domination
(double Roman dominating set for which the set of vertices with label 0 has a neighbor with label 0). In terms
of the double Roman Empire, this defense strategy requires that every location with no legion has at least also
a neighboring location with no legion for lessing the cost of expenses of empire.

Throughout this paper, we consider G as a finite simple graph with vertex set V' = V(G) and edge set
E = E(G). All definitions, symbols and terms used in this article are taken from the reference [20]. The
open neighborhood of a vertex v is denoted by N(v), and its closed neighborhood is N[v] = N(v) U {v}. The
minimum (maximum) degrees of G are denoted by §(G) (A(G)), respectively. Given subsets A, B C V(G),
we denote by [A, B] the set of all edges with one end point in A and the other in B. For a given subset
S C V(G), G[S] represents the subgraph induced by S in G. A tree T is a double star if it contains
exactly two vertices that are not leaves. A double star with p and ¢ leaves attached to each support ver-
tex, respectively, is denoted by S, ,. A wounded spider is a tree obtained from subdividing at most n — 1
edges of a star K3 ,,. A wounded spider obtained by subdividing ¢ < n—1 edges of K ,,, is denoted by ws(1,n,t).

A set S C V(GQ) is called a dominating set if every vertex not in S has a neighbor in S. The domination
number (G) of G is the minimum cardinality among all dominating sets of G. A restrained dominating set
(RD set) in a graph G is a dominating set S in G for which every vertex in V(G) — S is adjacent to another
vertex in V(G) — S. The restrained domination number (RD number) of G, denoted by 7,-(G), is the smallest
cardinality of an RD set of G. This concept was formally introduced in [6] (albeit, it was indirectly introduced
in [7,8]).

The variants of restrained domination have been considered in the literature. For instance, a total restrained
domination of a graph G is an RD set of G for which the subgraph induced by the dominating set of G has no
isolated vertex [5,19]. Secure restrained dominating set (SRDS) is a set S C V(G) for which S is restrained
dominating and for all uw € V' \ S there exists v € S N N(u) such that (S\ {v}) U{u} is restrained dominating
set [15].

The restrained Roman dominating function is a Roman dominating function f : V(G) — {0, 1,2} such that
the subgraph induced by the set {v € V(G) : f(v) = 0} has no isolated vertex [16]. The restrained Italian
dominating function (RIDF) is an Italian dominating function f : V(G) — {0, 1,2} such that the subgraph
induced by the set {v € V(G) : f(v) = 0} has no isolated vertex [17].

Now we consider a variant of double Roman dominating functions f (restrained double Roman dominating
functions) where the subgraph induced by Vof has no isolated vertex. This new parameter, namely restrained
double Roman domination, is the subject of this paper.

Beeler et al. [3] introduced the concept of double Roman domination number of a graph. This parameter has

been studied further in [1,11,21].
Let f: V(G) — {0,1,2,3} be a function, and (Vy, V1, Vo, V3) an ordered subsets of V(@) induced by f, where
Vi={veV(Q): f(v) =i} for i =0,1,2,3 and there is a 1-1 correspondence between the function f and the
ordered partition (Vp, V4, Va, V3). That is, f = (Vo, V1, V2, V3). A double Roman dominating (DRD) function of
a graph G is a function f for which the following conditions are satisfied.

(a) If f(v) =0, then the vertex v must have at least two neighbors in V5 or one neighbor in V.
(b) If f(v) =1, then the vertex v must have at least one neighbor in V5 U V3.

Accordingly, a restrained double Roman dominating (RDRD) function is a DRD function f such that the
subgraph induced by Vp (the vertices with zero labels under f) G[Vp] has no isolated vertex. The RDRD number
Yrar(G) is the minimum weight of an RDRD function f of G. For the sake of convenience, an RDRD function
f of a graph G with weight v,.qr(G) is called a 7,.qr(G)-function.
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This paper is organized as follows. In Section 2, we prove that the RDRD problem is N P-hard even for
general graphs and we obtain RDRD number of some custom graphs in Section 3. Then in Section 4, we present
an upper bound on the RDRD number of a connected graph G in terms of the order of G and characterize the
graphs attaining this bound. We study the restrained double Roman domination versus the restrained Roman
domination in Section 5. Finally in Section 6, we characterize trees T" by the given restrained double Roman
domination number of T'.

2. COMPLEXITY AND COMPUTATIONAL ISSUES

We consider the problem of deciding whether a graph G has an RDRD function whose weight is at most a
given integer p < |V(G)|.
We prove its IV P-completeness by reducing the following vertex cover decision:

Consider a graph G = (V, E)) and a positive integer p < |V(G)].
Does there exist a subset C' C V(G) of size at most p such that
for each edge zy € E(G) we have x € C' or y € C?

This vertex cover decision problem is N P-complete for general graphs [12].
Theorem 2.1. RDRD is N P-complete for general graphs.

Proof. We transform the vertex cover decision problem for general graphs to the restrained double Roman
domination decision problem for general graphs. For a given graph G = (V(G), E(G)), let m = 3|V (G)|+4 and
construct a graph H = (V(H), E(H)) as follows. Let V(H) = {z; : 1 <i <m}U{y} UV(G)U{u;, :1<i<
m for each e; € E(G)}, and let

E(H) ={x;zit1: (mod m) 1 <i<m}

Wziy:1<i<m}U{vy:veV(G)}
U{vu;, @ v is the vertex of edge e; € E(G) and 1 <i < m}
U{ug,u),,,, (mod m) 11 <i<m}.

i

Figure 1 shows the graph H obtained from G = Py = ajasaszay by the above procedure. Because m =
3|[V(G)| +4 = 16 for this example, and G has three edges ey, es,e3, H[{z; : 1 <i <16} =2 H[{uy, : 1 <i <
16}] = H[{ug, : 1 <14 < 16}] = H[{us, : 1 < i < 16}] = Cis, y is adjacent to x; for 1 < ¢ < 16 and q; for
1 <1 <45 uy, is adjacent to both aj, aj4q for 1 < j <3,1 <4 <16.

We claim that G has a vertex cover of size at most k if and only if H has an RDRD function with weight
at most 3k + 3. Hence the N P-completeness of the restrained double Roman domination problem in general
graphs will be equivalent to the N P-completeness of vertex cover problem. First, if G has a vertex cover C of
size at most k, then the function f defined on V(G) by f(v) =3 for v € C' U {y} and f(v) = 0 otherwise, is an
RDRDF with weight at most 3k 4+ 3. On the other hand, suppose that g is an RDRDF on H with weight at
most 3k + 3. If g(y) # 3, then there exist two cases.

Case 1. Let g(y) € {0,1}. Then

m

Zg(%) > 77‘dR(Om) > ’YdR(Om) >m> 3|V(G)| +3 > 3k +3

i=1

which is a contradiction.

Case 2. Let g(y) = 2 and Cy, = {z;x;41 : ( mod m) 1 < i < m}. Then g(Cy,) > 2m/3 and g(H) >
2m/3 + 2k +2 = 2(3|V(G)| + 4)/3 + 2k + 2 > 4k + 14/3 > 3k + 3 which is a contradiction. Thus g(y) = 3.
Similarly, we have g(u) = 3 or g(v) = 3 for any e = uv € E(G). Therefore C = {v € V : g(v) = 3} is a vertex
cover of G and 3|C|+ 3 < w(g) < 3k + 3. Consequently, |C| < k.

O
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FI1GURE 1. The graphs G = P4 and H.

3. RDRD NUMBER OF SOME GRAPHS

In this section we investigate the exact value of the RDRD number of some graphs.

Observation 3.1. For a complete graph K, and a complete bipartite graph K, »,

(i) Yrar(Ky) = 3 forn > 2.
(ii) Yrar(Knm) =6 form > 2, n > 2.
(lll) VTdR(Kl m) m+ 2.
3, difmin{ny,na, - 0y} =1,
() Yrar(Kny o, o) = {6, otherwise. :

Theorem 3.2. For a path P, (n > 4), vrar(P,) =n+ 2.

Proof. Assume that n > 4 and P, = vyvy -

Let n = 0(mod 3). Define h : V(P,) — {0 1 2 3} by h(vg) = 3 for k = 2 (mod 3), h(v1) = h(v,) = 1 and
h(v) = 0 otherwise.

Let n =1 (mod 3). Define h : V(P,) — {0,1,2,3} by h(vy) = 3 for k =1 (mod 3) and h(v) = 0 otherwise.

Let n = 2 (mod 3). Define h : V(P,) — {0,1,2,3} by h(vx, = 3 for k = 1 (mod 3), h(v1) = 1 and h(v) =
otherwise. Therefore v,.qr(P,) < n+ 2 for n > 4.

Now we prove the inverse inequality. We have ,.qr(P,) = n+ 2 for 4 < n < 6. For n > 7 we proceed by
induction on n. Let n > 7 and let the inverse inequality be true for every path of order less than n. Assume
that f = (Vo, V1, Vo, V3) is a v,qr-function of P,. We have f(v,) # 0. If f(v,) = 1, then f(v,—1) > 2. Define
g:Po1—{0,1,2,3}, g(v;) = f(v;) for 1 < i < n—1. But, g is an RDRD function of P,_;. It follows from the
induction hypothesis that

Yrar(Pn) = w(f) =w(g) + 1 > Ypar(Pa—1) +1> (n—1)+2+1>n+2.

If f(v,) =2, then f(v,—1) =1 and f(v,—2) > 1. Define g : P,_o — {0,1,2,3}, g(v;) = f(v;) for 1 <i<n—2.
g is an RDRD function of P,_5. As above we obtain,

Yrdr(Pn) = w(f) = w(g) +3 > Yrar(Po-2) +3> (n—2) +2+3 =n+3.
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If f(vn) = 3» then f(vnfl) = 07 f(vn72) =0 and f(vn73) = 3. Define g: Pn73 - {07 1a273}7 g(vz) = f(vl) for
1<i<n-3.gisan RDRD function of P,_3. It also follows from the induction hypothesis that

Yrdr(Ppn) = w(f) =w(g) + 3> Ypar(Pn—3) +3>(n—3)+2+3=n+2.
Thus the proof is complete. O

n, if n =0 (mod 3),

Theorem 3.3. For a cycle Cy,, (n > 3), vrar(Cp) = {n £ 9. otherwise

Proof. Assume that n > 3 and C,, = vivs - - - vy v7.
Let n = 0 (mod 3). Define h: V(C,,) — {0,1,2,3} by h(vg) =3 for k =0 (mod 3) and h(v) = 0 otherwise.
Let n =1 (mod 3). Define h: V(C,,) — {0,1,2,3} by h(vg) =3 for k =1 (mod 3) and h(v) = 0 otherwise.
Let n = 2(mod 3). Define h : V(C,) — {0,1,2,3} by h(vy) = 3 for &k = 2 (mod 3), h(vy) =1 and h(v) =0
otherwise,
n, if n =0 (mod 3),
Yrar(Cn) < { n—+ 2, otherwisg. )

Now we prove the inverse inequality. For n = 0 (mod 3), since v,qr(Cr) > vir(Cr) = n, (see [1,3]), the result
holds. Let n # 0 (mod 3) and let f = (Vy, V1, Vo, V3) be a v,.qr-function of C,,. Since the neighbor of vertex
of weight 0 is a vertex of weight 3 and a vertex of weight 0, if n #Z 0 (mod 3), there are two adjacent vertices
Vi, V41 in C, such that their weights are positive. Now, if f(v;) > 2 and f(v;+1) > 2, then by removing the
edge v;v;41, the resulted graph is P,. Define g : P, — {0,1,2,3}, g(v;) = f(v;) for 1 < i < n. But, g is an
RDRD function of P, with w(g) = w(f). Since w(g) > n + 2 then w(f) > n+ 2.

Let f(v;) > 2 and f(v;41) = 1. Then f(v;y2) > 1. Now remove the edge v;41v;12 and obtain a P,. Define
g: P, — {0,1,2,3}, g(v;) = f(v;) for 1 < i < n. But, g is an RDRD function of P,, with w(g) = w(f). Thus
w(f) >n+2.

Let f(v;) = f(vi+1) = 1. As above, we remove the edge v;v;11 and the resulted graph P, has an RDRD function
g of weight at least w(f). That is w(f) > n + 2. Therefore the proof is complete. O

4. UPPER BOUNDS ON THE RDRD NUMBER

In this section we obtain sharp upper bounds on the restrained double Roman domination number of a graph.

Proposition 4.1. Let G be a connected graph of order n > 2. Then v,qr(G) < 2n— 1, with equality if and only
ifn=2.

Proof. If w is a vertex of G, then define the function f by f(w) = 1 and f(z) = 2 for x € V(G) \ {w}.
Since G is connected of order n > 2, we observe that f is an RDRD function of G of weight 2n — 1 and thus
Yrdr(G) < 2n—1.If n > 3, then G contains a vertex w with at least two neighbors w, v. Now define the function
g by glu) =g(v) =1, g(z) =2 for x € V(G) \ {u,v}. Then g is an RDRD function of G of weight 2n — 2 and
30 Yrar(G) < 2n — 2 in this case. Since y,.qr(K2) =3 =2 -2 — 1, the proof is complete. O

Proposition 4.2. Let G be a connected graph of order n > 2. Then vpqr(G) < 2n + 1 — diam(G) and this
bound is sharp for the path P, (n >4).

Proof. By Theorem 3.2, ¥rqr(Pn) < n+ 2. Let P = v1v2 - - Vgiam(g)+1 be a diametrical path in G. Let g be a
~Yrag-function of P. Then w(g) < diam(G) + 3. Now we define an RDRD function f as:

2, x¢V(P),
flz) = {g(x), otflervx(/isg.
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f is an RDRD function of G of weight w(f) < 2(n — (diam(G) + 1)) + diam(G) + 3. Therefore v,qr(G) <
2n 4+ 1 — diam(G).
Theorem 3.2 shows this bound is sharp. (I

A

Proposition 4.3. Let G be a connected graph of order n and circumference ¢(G) < oo. Then Y,.qr(G)
2n + 2 — ¢(Q), and this bound is sharp for each cycle C,, with n Z 0 (mod 3).

Proof. Let C be a longest cycle of G, that means |V (C)| = ¢(G). By Theorem 3.3, v,q4r(C) < ¢(G) + 2. Let h
be a yrqr-function on C. Then w(h) < ¢(G) + 2. Now we define an RDRD function f as:

flz) = {2, z ¢ V(O),

h(zx), otherwise.

f is an RDRD function of G of weight w(f) < 2(n — ¢(GQ)) + ¢(G) + 2. Therefore v,qr(G) < 2n + 2 — ¢(G).
For sharpness, if G = C,, and n # 0 (mod 3), then v,qr(Cp) =n+2=2n+2 —n=2n+ 2 — ¢(G). O

Observation 4.4. Let G be a graph and f = (Vo,V1,V2) a yrr-function of G. Then v,rqr(G) < 2|Vi| + 3|V2|.

Proof. Let G be a graph and f = (V,, V1, V2) a v,.g-function of G. We define a function g = (Vy, V5, V4) as
follows: Vj = Vo, V§ = V1, V§ = V4. Note that under g, every vertex with a label 0 has a neighbor assigned 3
and each vertex with label 1 becomes a vertex with label 2 and also G[V{] has no isolated vertex. Hence, g is a
restrained double Roman dominating function. Thus, v,qr(G) < 2|V5| + 3|V4| = 2|V4| + 3|V4]. O

The bound of observation 4.4 is sharp, as can be seen with the path G = P,, where v.zr(G) = 4 and
Yrdr(G) = 6. The strict inequality in the bound can be achieved by the subdivided star G = S(K; ;) which
formed by subdividing each edge of the star K , for k > 3, exactly once. Thus, we must have v, zr(G) = 2k +1
and v,q4r(G) = 3k. Hence, |V1| =1 and |Va| = k, and so, 3k = v,.qr(G) < 2|Vi| + 3|V2| = 2 + 3k.

Lemma 4.5. If a graph G has a non-pendant edge, then there exists a v,.qr(G)-function f = (Vp, V1, Va, Vs)
such that Vo UVy # 0.

Proof. If vqr(G) < 2n, then Vo UV; # 0. Now we show that v,.qr(G) < 2n. Let uw be a non-pendant edge
with deg(u) and deg(w) be at least 2.
Assume that Ng(u) N Ng(w) # 0, and let v be a vertex in Ng(u) N Ng(w). Then the function f = (Vp =
{u,whp, V1 =0, Vo = V(G) \ {u, w,v}, V3 = {v}) is an RDRD function of G with w(f) < 2n — 3.
Assume that Ng(u) N Ng(w) = 0, and let a € Ng(u) \ {w}, b € Ng(w) \ {u}. Then the function f = (Vo =
{u,wh, V1 = 0, Vo = V(G) \ {u,w,a,b},Vs = {a,b}) is an RDRD function of G with w(f) < 2n — 2. This
completes the proof.

(]

For any integer n > 3, let H,, be the graph obtained from (n — 2)/2 copies of K5 and a copy of K; by adding
a new vertex and joining it to both leaves of each K5 and the given K4, and let F), be the graph obtained from
(n—2)/2 copies of K5 by adding a new vertex and joining it to both leaves of each Ky. Thus for n > 4, H,, have
a vertex of degree n — 1, a vertex of degree 1 and other vertices of degree two and for n > 3, F), have a vertex of
degree n —1 and other vertices of degree two. Figure 2 shows the graphs Hyg, Fy. Let H = {H,, : n > 4 is even},
F={F, :n>3isodd}.

Theorem 4.6. For every connected graph G of order n > 3 with m edges, vrar(G) > 2n+ 1 — [(4m — 1)/3],
with equality if and only if G € HUF or G € {K1,2,K13,K1.4}.
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Hio Fy

FIGURE 2. The graphs Hig, Fy.

Proof. If G = K; ,—1 is a star, then v,qr(G) = n+ 1 and m = n — 1. Now we have, vrqr(K1n-1) = 2n +
1—1[(4m—1)/3] for 3 < n <5 and Ypqr(K1pn-1) > 2n+ 1 — [(4m — 1)/3] for n > 6. Next assume that
G is not a star. By Lemma 4.5 there is a 7,.qr(G)-function of f = (Vp, V1, Vs, V3) such that Vo U V; # 0.
It is well known that, the induced subgraph G[V;] has no isolated vertex. Therefore, |E(G[Vo])| > |Vol/2.
Let Vi = {v € Vo : N(v) C Vo} and V' = {v € Vj : v has a neighbor in V3}. Then |E(Vy, Va)| > 2|V{],
|[E(Vo, V)| > |Vy'| and |E(Vh, Vo U V3)| > |V4|. Therefore

[E(G)| =m = [Vol/2 + 2[Vg | + VY| + [VAl.
Since |Vo| = |V§| + |V§'|, we deduce that

(4m —1)/3 > 2|Vo| +4/3|Vy| +4/3|V1]| —1/3 (4.1)
and thus
2n+1—[(4m—1)/3] <2n+1—(4m—1)/3 <2n+1—2|Vy| — 4/3|Vy| — 4/3|V1| +1/3. (4.2)

Because v,qr(G) = [Vi|+2|Va|+3|Va], [Vo| + V1| +[Va| +[V5] = n and 2n+1 = 2|Vo|+2[V1|+2|Va| +2[V3] +1,
we obtain

2n + 1 —2|Vo| — 4/3|Vg| — 4/3|Va| + 1/3 = —4/3|Vy| + 2/3|Vi| + 2|Va| 4 2| V5| 4 4/3
= var(G) — 4/3|Vg| — 1/3|Vi| — |V5| +4/3.

Next we show that
Yrar(G) — 4/3|Vg| = 1/3[Vi| = [Vs] +4/3 < 7,4r(G) (4.3)

or vrar(G) > 2n+ 1 — [(4m — 1)/3]. If |Vg| > 1, then —4/3|Vy| — 1/3|Vi| — |V53| + 4/3 < 0 and so
Yrar(G) — 4/3|Vg| = 1/3[Vi| — V3| + 4/3 < 7,4r(G).
Let now |V{| = 0. The condition Vo U V; # 0 implies V3’ U V] # 0.

We now distinguish the two cases: V3 = ), and V4 # (0. When V; = ), we deduce that |Vy’| > 1 and therefore
|[V3| > 1. If there are at least two vertices of weight 3, then 7,qr(G) —4/3|Vy| — 1/3|Vi| — |V5| +4/3 < vrar(G).

If there is only one vertex of weight 3, then m > n — 1 + "T_l = w We deduce that

Yrar(G) > 3 > 2n+1 — [%] > 2n + 1 — [42=1], with equality if and only if [V5| = 0, n is

odd and m = w, that means G € F.

When Vi # 0; i.e., when |V4] > 1, we further distinguish two cases. If |V{§’| > 1, then |V3] > 1 and thus
Y0an(G) — A/3IVi] — /3IVA|  [Vy| + 4/3 < 7ean(G). Next let [VJ'| = 0. Tf [Va] > 1, then 7,an(G) — 4/3V{| —
1/3|Vi] — |V5] + 4/3 < 4par(G). Now assume that |V3| = 0. This implies that all vertices have weight 1 or
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2. If 3 < n < 5, then it is easy to see that yrqr(G) > 2n + 1 — [4%=1]. Let now n > 6. If [V4| > 5, then
Yrar(G) — 4/3|Vy| = 1/3|V1| — |V5] + 4/3 < Ypar(G). Otherwise |V1| < 4, |[Va| > n— 4 and m > n — 1. This
implies

4n—1)—1 4dm — 1
’deR(G)ZQ(n—4)—|—4:2n—4>2n—|—1—’V(ng)—‘22n+1—{m “

3

Thus v,qr(G) > 2n+1— (4m —1)/3>2n+1— [(4m — 1)/3].
For equality: If G € H, then G = H,, for n > 4 even and |E(H,,)| = 3(n—2)/2+1. Thus 2n+1—(4(3(n—2)/2+
1)-1)/3=2n+1-[(4(3(n—2)/2+1)—1)/3] =2n+1-2(n—2)—1 =4 = v,qr(H,). If G € F, then G = F,, for
n >3 odd and |E(F,)| =3(n—1)/2. Thus 2n+1—[(4(3(n—1)/2)) —=1/3] =2n+1-2(n—1) = 3 = ar(Fn).
Conversely, assume that v,4r(G) = 2n+1—[(4m—1)/3]. Then all inequalities occurring in the proof become
equalities. When |V | = 0, the equality holds if and only if G € F. When |V;| > 1, [V3]| > 1. Therefore the equality
in Inequality (4.3) leads to |V3| = |V4]| = 1 and |V{j| = 0. Hence V; = Vj’. Thus equality in (4.1) or equivalently, in
the inequality |E(G)| =m > |Vo|/2+2|Vy| +|Vy' |+ |V1| leads to m = 3/2|V0”| —|—1. Now let the vertices v, u be of

weight 3, 1 respectively. Then m = |E(G)| > |E(v, V§')|[+G[Vy']+1 > |Vi'|+1/2|Vy'|+1 = 3/2|Vy'|+1. If | V5] # 0,
then the connectivity of G leads to the contradlctlon m > 3/2|V”\ +2. Consequently, [V2| =0, |V0\ (2m—2)/3
and u and v are adjacent. Since G is connected, G € H. O

5. RDRD-SET VvERSUS RRD-SET

In this section we study the comparability between the RDRD-set and RRD-set.
Proposition 5.1. For any graph G, v,qr(G) < 27v,.r(G) with equality if and only if G = K,,.

Proof. Let f = (Vo, V1, V2) be a 7, g-function of G. Since v,r(G) = |Vi| + 2|Va|, by Observation 4.4, we have
that Yan(G) < 2[Vi| + 3[Va| = 1r(G) + V| + Va| < 2%n(G)- If rar(G) = 29,1(G) = 2(Vi| + 4Va], then
since Vrar(G) < 2|Vi| + 3|Va|, we must have Vo = (). Hence, Vp = () must hold, and so V = V;. By definition
of ~,.g-function, we deduce that no two vertices in G are adjacent, for otherwise, if u and v are adjacent, then
only one of them in every 7,qr-function on G has a label of 2 which contradicts with v,.qr(G) = 2v,r(G). O

As an immediate consequence of Proposition 5.1, we have the following Corollary and Theorem.
Corollary 5.2. For any nontriwial connected graph G, vrar(G) < 27-r(G).

The proof of Lemma 4.5 shows the next proposition.
Proposition 5.3. If G contains a triangle, then v.qr(G) < 2n — 3.
Theorem 5.4. For every graph G, v,.r(G) < Yrar(G).

Proof. Let f = (Vp, V1, V2, V3) be a v,qr(G)-function. If Vi # (), then (V§ = Vo, V{ = W,V = Vo U V3) is an
RRD function g such that w(g) < w(f). Let V3 = 0. If V5 = 0, then, since Vo # 0, g = (0, V] = V4 U V4, 0)
is an RRD function such that w(g) < w(f). If Vy # 0, then |V5| > 2. Let f(v) = 2 for a vertex v. Then

= (V§ = Vo,V{ = Vi u{v}h,Vj = V5 — {v}) is an RRD function g for which w(g) < w(f). Therefore
1rr(G) < Yrar(G). O

Theorem 5.5. Let G be a graph of order n. Then v,qr(G) = v-r(G)+1 if and only if G is one of the following
graphs.

1. G has a vertex of degree n — 1.

2. There exists a subset S of V(G) such that:

2.1. every vertex of V — S is adjacent to a vertex in S, 2.2. there are two subsets Ag and Ay of V. — S with
AoUA; =V — 5 such that Ag is the set of non-isolated vertices in N(S) and each vertex in Ay has at least two
neighbors in S,

2.3. for any 2-subset {a,b} of S, N({a,b}) U Ay # 0 and for a 3-subset {z,y,z} of S, if {x,y,2} N Ag # 0,
then there are three vertices u, v, w in Ay such that N(u)US = {z,y}, N(v)US = {z, 2z} and N(w)US = {y, z}.
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Proof. Let v.qr(G) = %r(G) + 1 with a v.4r(G)-function f = (Vy,V1,V2,V3) and a ~,.g(G)-function
g = (Uo,U1,Us). If V3 # ), then |V3| = 1. If |[V3| > 2 then by changing 3 to 2 we obtain a RRD function
h with w(h) < w(g), a contradiction. Let V3 = {v}. In addition, we must have |Va| = 0. If we suppose that
[Va| > 1, then let w € V. Then h = (V] = Vo, V{ = Vi U {u}, V4 = Vo U {v}) is an RRD function g for which
w(h) < w(g), a contradiction. Thus all vertices different from v are adjacent to the vertex v such that the
non-isolated vertices in N(v) are attributed to 0 and the isolated vertices in N(v) are attributed to 1. In this
case Uy = Vp,U; = V5 and Uy = V3.

If V3 = 0, then V5 # @ and |V2| > 2. In this case, there must exist a vertex v € V3 such that
Up = Vo, Uy = V1 U{v} and Uz = V, — {v}. There is such a function f if we guarantee a subset S of V(G) with
each vertex of weight 2 for which every other vertex in V — S has to adjacent to a vertex of S, that is the
condition 2.1 holds.

Since we can only change one of vertices of weight 2 in f to a vertex of weight 1 in g, there must be existed
two subsets Ag and A7 in V' — S such that the conditions 2.2 and 2.3 hold.

Conversely, if the condition 1 holds, then f = (Vo, V1,0, Vs = {v}) and g = (Uy = Vo, U1 = V1, Uz = {v}) are
Yrar(G)-function and v, g (G)-function respectively where V; is the set of non-isolated vertices in N(v) and V3
is the set of isolated vertices in N(v). Thus v,qr(G) = v-r(G) + 1.

If the condition 2 holds, then we can have only one vertex of weight 2 in G under f such that it changes to the
weight 1 in G under g. Thus v,q4r(G) = 7+r(G) + 1. O

_ We showed that for any graph G, ¥,4r(G) < 27,r(G) and the equality holds if and on if G is a trivial graph
K,,. Hence, for any nontrivial graph G, v,.qr(G) < 27v,r(G)— 1. Now we characterise graph G with this property
’Y’I‘dR(G) = Q’YTR(G) - L

Theorem 5.6. If G is a nontrivial graph, then v,.qr(G) < 2vr(G) — 1. If vpar(G) = 27.r(G) — 1, then G
consists of a Ko and n — 2 isolated vertices or G consists of a verter h and two disjoint vertexr sets H and R
such that H = N(h), G[H] does not have isolated vertices, G[R] is trivial, there is no edge between h and R
and N(h) N N(R) # N(h).

Proof. Since G is a nontrivial graph, Proposition 5.1 implies v,qr(G) < 27v,r(G) — 1. Now we investigate the
equality.
Let vrar(G) = 2v-r(G) — 1, where f = (Vo, V1, Va, V3) is a vrqr(G)-function and g = (Uy, U1, Us) is a v,gr(G)-
function. Then 2|Uy| +4|Us| — 1 = |V1|+2|Va| + 3|V3|. On the other hand, since 2|U; |+ 4|Us| — 1 = |V1| +2|Va|+
3|IVa| = vrar(G) < 2|Up| + 3|Us|, it follows that |Us| < 1.

If Uy = 0, then |Up| = 0 and therefore |U;| = n. Using the inequality above, we obtain

2n — 1 =2|U1| =1 < vrar(G) < 2|U| = 2n.

If vrqr(G) = 2n, then G is trivial, a contradiction. If 4,.qr(G) = 2n — 1, then Proposition 4.1 shows that G
consists of a K5 and n — 2 isolated vertices.

Let now |Us| = 1 such that Uy = {h}, H = N(h), R =V(G) \ N[h] = {u1,u1,...,up}. Then, Uy C H and
R CU;.

If H contains exactly s > 1 isolated vertices, then v, r(G) = 2 4+ s + p and therefore v,qr(G) <3+ s+ 2p <
279,r(G) — 2, a contradiction. Hence H = N (h) does not contain isolated vertices and thus v,r(G) = p + 2.

If G[R] contains an edge, then we obtain the contradiction v,4r(G) < 3+2p—1=2p+2 < 27v,5(G) — 2.
Thus G[R] is trivial.

If there is an edge between h and R, then we also obtain the contradiction v,qr(G) <3+4+2p—1=2p+2 <
2vr(G) — 2.

If N(h)NN(R) = N(h), then f = (H,0,{h}UR,0) is an RDRD function of G, and hence v,qr(G) < 2p+2
27-r(G) — 2, a contradiction.

OIA



2302 D. A. MOJDEH ET AL.

6. TREES

In this section we study the restrained double Roman domination of trees.

Theorem 6.1. If T is a tree of order n > 2, then vqr(T) < [2%1]. The equality holds if T €
{P27P3,P4,P5751727’(1]8(1,’/1771—1),’(1]8(1,71771—2)}.

Proof. Let T be a tree of order n > 2. We will proceed by induction on n. If n = 2, then ~,4r(T) = 3 = [%]
If n > 3, then diam(T') > 2. If diam(T) = 2, then T is the star K; ,—1 for n > 3 and v,qr(T) =n+1 < f%l
If diam(T) = 3, then T is a double star S, ; for 1 <r <s.Hence,n=r+s+2>4.Ifr=1=s,then T = P,
and v.qr(T) =6 < [122—’1] Ifr=1,s>2 then n=s+3 and vqr(T) =s+5 < (3(5+723)71] Ifr>2s5>2,
thenn=r+s+2and vqr(T)=r+s+4 < [W]

Hence, we may assume that diam(T) > 4. This implies that n > 5. Assume that any tree 7" with order

3n' —1
2 < 0’ < n has Yar(T’) < [
the degree of its next-to-last vertex v, and let w be a leaf neighbor of v. Note that by our choice of v, every
child of v is a leaf. Since deg(v) > 2, the vertex v has at least one leaf as a child. Now we put 7/ =T — T,
where the order of the substar T, is k + 1 with k& > 1. Note that since diam(T) > 4, T’ has at least three
vertices, that is, n’ > 3. Let f’ be a 7,.qr-function of T'. Form f from f’ by letting f(x) = f'(x) for all

x € V(T), f(v) =2, and f(z) =1 for all leaf neighbors of v. Thus f is a restrained double Roman dominat-

3n—k—-1)—1 _ 3n—k 3n—1
Lt N L Py ki)

3n—1
2 1

1. Among all longest paths in T, choose P to be one that maximizes

ing function of T', implying that v,qr(T) < Yrar(T')+k+2 < |

T € {Ps P3, Py, P5,512,,ws(1,n,n—1),ws(1,n,n —2)}, then we must have v,.qr(T) = [ |

Theorem 6.2. For every tree T of order n > 3, with | leaves and s support vertices, we have v,.qr(T) <

dn+2s —1
n—|-787 and this bound is sharp for the family of stars (K1 ,—1 n > 3), double stars, caterpillars for which

each vertex is a leaf or a support vertex and all support vertices have even degree 2m or at most two end support
vertices has degree 2m — 1 and the other support vertices has degree 2m, wounded spiders in which the central
vertex is adjacent with at least two leaves.

Proof. Let T be a tree with order n > 3. Since n > 3, diam(T") > 2. If diam(T") = 2, then T is the star K; ,,—1
dn+2—-(mn—-1) 3n+3

for n > 3 and v,qr(T) =n+1 < 3 3 =" + 1. If diam(T) = 3, then T is a double star
dn +2s —1
Sy for 1 <r <t. We have y,qr(T) =n+2 = TH_% Hence, we may assume diam(T) > 4. Thus, n > 5.

/ / li
Assume that any tree 77 with order 3 < n' < n, I’ leaves and s’ support vertices has v,qr(7") < w
Among all longest paths in T, choose P to be one that maximizes the degree of its next-to-last vertex u, and
let = be a leaf neighbor of u, w be a parent vertex of v and v be a parent vertex of u. Note that by our choice of
u, every child of u is a leaf. Since t = deg(u) > 2, the vertex u has at least one leaf children. We now consider
the two cases are as follows:

Case 1. deg(v) > 3. In this case, we put 7" =T — T,,, where the order of the star T, is ¢ with ¢ > 2. Note that
since diam(T) > 4, T’ has at least three vertices, that is, n’ > 3. Let f’ be a 7,.qr-function of T". Thus we have

dn—-t)+2(s—1)—-(1—-(t—1
n=n—t10'=1—(t—1)and s’ =s—1. But, vqr(T) < Yar(T")+t+1 < (n=t)+2s 3) = )>—|—
dn+2s—1

t+1=

Case 2. deg(v) = 2. We now consider the following two subcases.
i. deg(w) > 2. Then we put 7' = T — T,, where order of subtree T, is t + 1. But, we have n’ = n — (¢t + 1),
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An—t—1)+2(s—1)— (I —(t— 1))
3

s'=s—landl' =1—(t—1). Thus, vrar(T) < Vrag(T')+t+2 <
dn+2s—1—1 < 4n +2s —1

+t+2 =

3 - 3
ii. deg(w) = 2. Then we put 77 = T — T,,, where the order of the subtree T, is ¢ + 1. Thus in this case,
w in the subtree T" becomes a leaf and we have n’ = n — (t +1), s < sand I’ =1 — (¢t — 1) + 1. Thus,

dn—t—1)+28)—(—(t—1)+1 A+ 25 —
Yrdr(T) < Yrar(T') +t +2 < G ) (5)3 t=te=is )+t+2:n+%. O

Theorem 6.3. If T is a tree, then v.(T) + 1 < vqr(T) < 3v,.(T), and equality for the lower bound holds if
and only if T is a star. The upper bound is sharp for the paths P, (m =1 mod 3).

Proof. Let T be a tree. Since at least one vertex has value 2 under any RDRD function of 7', we see that
Y (T) + 1 < vpar(T). If we assign the value 3 to the vertices in a ~,(T)-set, then we obtain an RDRD function
of T'. Therefore v,qr(T) < 3v,-(T).

The sharpness of the upper bound is deuced from Propositions 1-7 of [6] and Observation 3.1, Theorem 3.2 and
Theorem 3.3.

To prove equality at the lower bound, if T' = Kj ,,—1 is a star, then we have v,qr(T) =n+1 and v, (T) = n. If
T is a tree and ~y,qr(T) = v, (T) + 1, then we have only one vertex of value 2 in any v,.qr(T)-function and the
other vertices of positive weight have value 1. In addition, the vertices of value 1 are adjacent to the vertex of
value 2, and therefore 1" is a star. O

The following result gives us the RDRD of G in terms of the size of E(G), and order of G.

Proposition 6.4. Let G be a connected graph G of order n > 2 with m edges. Then vrqr(G) < 4m — 2n + 3,
with equality if and only if G is a tree with v,.qr(G) = 2n — 1.

Proof. For the given connected graph, m > n — 1 and according to Proposition 4.2 v,.4r(G) < 2n —1 =
dn —4—-2n+3<4m —2n + 3.

If vqr(G) =4m — 2n + 3, then m =n — 1 and G is a tree with v,qr(G) = 2n — 1.

Conversely, assume that G is a tree with v,.qr(G) = 2n — 1. Hence v,qr(G) = 4m — 2n + 3. O

7. CONCLUSIONS AND OPEN PROBLEMS

In this paper, we investigated the concept of restrained double Roman domination in graphs. We studied the
computational complexity of this concept and proved some bounds on the RDRD number of graphs. In the case
of trees, we characterized all trees attaining the exhibited bound. We end the paper with four open problems
emerge from this research.

1. Characterize the graphs G with small or large RDRD numbers.

2. It is also worthwhile proving some other nontrivial sharp bounds on 7,.qr(G) for general graphs G or some
well-known families such as, chordal, planar, triangle-free, or claw-free graphs.

3. The decision problem RDRD is NP-complete for general graphs, as proved in Theorem 2.1. By the way, there
might be some families of graphs such that RDRD is NP-complete for them or there might be some polynomial-
time algorithms for computing the RDRD number of some well-known families of graphs, for instance, trees.
Can you provide these families?

4. In Theorems 6.1 and 6.2 we showed upper bounds for v,.qr (7). The sufficient and necessity conditions for
equality can be posed as open problems.

Acknowledgements. We gratefully appreciate the careful comments of the referees on this paper. Their comments
improved its presentation.
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