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ON THE SUPER CONNECTIVITY OF DIRECT PRODUCT OF GRAPHS

Farnaz Soliemany1, Mohsen Ghasemi1,* and Rezvan Varmazyar2

Abstract. A vertex-cut 𝑆 is called a super vertex-cut if 𝐺 − 𝑆 is disconnected and it contains no
isolated vertices. The super-connectivity, 𝜅′, is the minimum cardinality over all super vertex-cuts. This
article provides bounds for the super connectivity of the direct product of an arbitrary graph and the
complete graph 𝐾𝑛. Among other results, we show that if 𝐺 is a non-complete graph with girth(𝐺) = 3
and 𝜅′(𝐺) = ∞, then 𝜅′(𝐺×𝐾𝑛) ≤ min{𝑚𝑛− 6, 𝑚(𝑛− 1) + 5, 5𝑛 + 𝑚− 8}, where |𝑉 (𝐺)| = 𝑚.
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1. Introduction

We follow [1] for graph theoretic terminologies and notations not defined here. Let 𝐺 be a simple undirected
graph, where 𝑉 (𝐺) and 𝐸(𝐺) denote the set of vertices and the set of edges of 𝐺, respectively. For two vertices
𝑢, 𝑣 ∈ 𝑉 (𝐺), 𝑢 and 𝑣 are neighbors if 𝑢 and 𝑣 are adjacent and we write 𝑢 ∼ 𝑣. If 𝑢 and 𝑣 are not adjacent in
𝐺, then we write 𝑢𝑣 ̸∈ 𝐸(𝐺). For each vertex 𝑣 ∈ 𝑉 (𝐺), the neighborhood 𝑁𝐺(𝑣) of 𝑣 is defined as the set of
all vertices adjacent to 𝑣 and 𝑑𝑒𝑔(𝑣) = |𝑁𝐺(𝑣)| is the degree of 𝑣. The number 𝛿(𝐺) = min{deg(𝑣) | 𝑣 ∈ 𝑉 (𝐺)}
is the minimum degree of 𝐺. Also the girth of the graph 𝐺, 𝑔𝑖𝑟𝑡ℎ(𝐺), is the length of its shortest cycle if 𝐺
contains cycle, define girth(𝐺) = ∞ otherwise. A wheel graph is a graph formed by connecting a single universal
vertex to all vertices of a cycle. We use 𝑊𝑛 to denote a wheel graph with 𝑛 ≥ 3 vertices. For an arbitrary subset
𝑆 ⊂ 𝑉 (𝐺) we use 𝐺− 𝑆 to denote the graph obtained by removing all vertices in 𝑆 from 𝐺. For any connected
graph 𝐺, if 𝐺 − 𝑆 is disconnected, then 𝑆 is a vertex-cut. The connectivity of a graph 𝐺, denoted by 𝜅(𝐺), is
the minimum cardinality of a set 𝑆 ⊂ 𝑉 (𝐺) such that 𝐺− 𝑆 is either disconnected or the trivial graph 𝐾1. It
is known that 𝜅(𝐺) ≤ 𝛿(𝐺). A vertex-cut 𝑆 is called a super vertex-cut if 𝐺− 𝑆 is disconnected and it contains
no isolated vertices. The super-connectivity 𝜅′ is the minimum cardinality over all super vertex-cuts, that is,

𝜅′(𝐺) = min{|𝑆| | 𝑆 ⊆ 𝑉 is a super vertex-cut of G}.

Clearly, the super connectivity 𝜅′(𝐺) does not always exist for a connected graph 𝐺. We write 𝜅′(𝐺) = ∞ if
𝜅′(𝐺) does not exist. For example, 𝜅′(𝐺) = ∞ if 𝐺 is the star 𝐾1,𝑛.

It is well known that when the underlying topology of an interconnection network is modeled by a graph
𝐺 = (𝑉,𝐸), where 𝑉 represents the set of processors and 𝐸 represents the set of communication links in the
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network, the connectivity 𝜅(𝐺) of 𝐺 is an important measurement for the fault tolerance of the network. It has
been shown that a super connected network is most reliable and has the smallest vertex failure rate among all
the networks with the same connectivity (see, e.g. [20, 21]).

The direct product 𝑋 × 𝑌 of two graphs 𝑋 and 𝑌 is the graph having 𝑉 (𝑋 × 𝑌 ) = 𝑉 (𝑋) × 𝑉 (𝑌 ) and
𝐸(𝑋 × 𝑌 ) = {(𝑥1, 𝑦1)(𝑥2, 𝑦2) | 𝑥1𝑥2 ∈ 𝐸(𝑋) and 𝑦1𝑦2 ∈ 𝐸(𝑌 )}.

We state two known results of the direct product of graphs that will be used in the proof of our main results.

Proposition 1.1 ([17]). Let 𝐺 and 𝐻 be connected graphs. The graph 𝐺×𝐻 is connected if and only if 𝐺 or
𝐻 contains an odd cycle.

Proposition 1.2 ([17]). Let 𝐺 be a connected graph. If 𝐺 has no odd cycle, then 𝐺 × 𝐾2 has exactly two
components isomorphic to 𝐺.

The direct product plays an important role in design and analysis of network [18]. This product has generated
a lot of interest mainly due to its various applications. For instance, it is used in complex networks to generate
realistic networks [12], in multiprocessor systems to model of concurrency [11] and in automata theory [5]. The
connectivity of direct product graphs has been investigated in [15] and [17]. Also the connectivity of direct
product of a bipartite graph and a complete graph has been presented by Guji and Vumar (see [6]). Moreover,
the super connectivity of 𝐾𝑚,𝑟×𝐾𝑛 is determined by Ekinci and Kirlangiç (see [3]). For more results we refer the
reader to [2,4,7–10,13,14,16,19,22]. In this paper we investigate the super connectivity 𝜅′ of the direct product
of an arbitrary graph and the complete graph 𝐾𝑛. We show that if 𝜅′(𝐺) = 𝑡 < ∞ then 𝜅′(𝐺×𝐾𝑛) ≤ 𝑡𝑛. Also
if 𝜅′(𝐺) = ∞ and girth(𝐺) = 3 , then 𝜅′(𝐺×𝐾𝑛) ≤ min{𝑚𝑛− 6, 𝑚(𝑛− 1) + 5, 5𝑛 + 𝑚− 8}, where |𝑉 (𝐺)| = 𝑚.

2. super connectivity of 𝐺×𝐾𝑛

Throughout this section, 𝐺 is a connected non-complete graph.
Let 𝐺 be a graph with 𝑉 (𝐺) = {𝑥1, 𝑥2, . . . , 𝑥𝑚} and 𝑉 (𝐾𝑛) = {𝑣1, 𝑣2, . . . , 𝑣𝑛}. Suppose that 𝑆𝑖 = 𝑉 (𝐺)× 𝑣𝑖

for 𝑖 ∈ Z𝑛, where Z𝑛 = {1, 2, 3, . . . , 𝑛}. Hence 𝑉 (𝐺 × 𝐾𝑛) = 𝑆1 ∪ 𝑆2 ∪ · · · ∪ 𝑆𝑛 where {𝑆𝑖} is a partition of
𝐺×𝐾𝑛.

Theorem 2.1. Let 𝐺 be a graph with 𝜅′(𝐺) = 𝑡 < ∞. Then 𝜅′(𝐺×𝐾𝑛) ≤ 𝑡𝑛.

Proof. Let 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑡} be a minimum super vertex-cut of 𝐺. Then 𝑆 = {(𝑥𝑗 , 𝑣𝑖) | 𝑗 ∈ Z𝑡, 𝑖 ∈ Z𝑛} is a
super vertex-cut in 𝐺×𝐾𝑛. So 𝜅′(𝐺×𝐾𝑛) ≤ 𝑡𝑛. �

Let 𝐶𝑛 be a cycle of length 𝑛 ≥ 6 and 𝑉 (𝐶𝑛) = {𝑥1, . . . , 𝑥𝑛} where 𝑥1 ∼ 𝑥2 ∼ 𝑥3 ∼ · · · ∼ 𝑥𝑛 ∼ 𝑥1. Then
𝑆 = {𝑥1, 𝑥4} is a super vertex-cut in 𝐶𝑛. Hence, for a graph 𝐺 with girth(𝐺) ≥ 6 we have 𝜅′(𝐺) < ∞ and by
Theorem 2.1, 𝜅′(𝐺 ×𝐾𝑛) < ∞. Thus we may suppose that girth(𝐺) ≤ 5. First suppose that girth(𝐺) = 5. If
|𝐸(𝐺)| ≥ 6 then 𝜅′(𝐺) < ∞ and so again by Theorem 2.1, 𝜅′(𝐺×𝐾𝑛) < ∞. Thus in the following theorem we
may suppose that girth(𝐺) = 5 and |𝐸(𝐺)| = 5. It is easy to see that 𝜅′(𝐺×𝐾2) = 2.

Theorem 2.2. Let 𝐺 be a cycle of length 5. Then 𝜅′(𝐺×𝐾𝑛) = min{5𝑛− 8, 3𝑛} for 𝑛 ≥ 3.

Proof. Suppose that 𝐺 is a cycle of length 5 and 𝑉 (𝐺) = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} where 𝑎 ∼ 𝑏 ∼ 𝑐 ∼ 𝑑 ∼ 𝑒 ∼ 𝑎. Let 𝑗 ∈ Z𝑛

be constant. Then by deleting all vertices {(𝑎, 𝑣𝑗), (𝑏, 𝑣𝑖), (𝑐, 𝑣𝑗), (𝑑, 𝑣𝑡), (𝑒, 𝑣𝑡) | 𝑖 ∈ Z𝑛, 𝑡 ∈ Z𝑛−{𝑗}} we obtain a
disconnected graph without any isolated vertex. Therefore, 𝜅′(𝐺×𝐾𝑛) ≤ 1 + 𝑛 + 1 + 2(𝑛− 1) = 3𝑛. Now, let 𝑆
be a super vertex-cut of 𝐺×𝐾𝑛. Hence (𝐺×𝐾𝑛)−𝑆 has at least two components, say 𝐶1, 𝐶2. Let (𝑥, 𝑣𝑟) ∈ 𝐶1

and (𝑦, 𝑣𝑡) ∈ 𝐶2 for some 𝑥, 𝑦 ∈ 𝑉 (𝐺). We have four cases:

Case 1. Let 𝑥 = 𝑦. Hence 𝑣𝑟 ̸= 𝑣𝑡. Without loss of generality, let 𝑥 = 𝑎. So (𝑎, 𝑣𝑟) ∈ 𝐶1 and (𝑎, 𝑣𝑡) ∈ 𝐶2.
Since 𝑁𝐺(𝑎) = {𝑏, 𝑒}, for every 𝑗 ∈ Z𝑛 − {𝑟, 𝑡}, (𝑎, 𝑣𝑟) ∼ (𝑏, 𝑣𝑗) ∼ (𝑎, 𝑣𝑡) and (𝑎, 𝑣𝑟) ∼ (𝑒, 𝑣𝑗) ∼ (𝑎, 𝑣𝑡)
are paths between (𝑎, 𝑣𝑟) and (𝑎, 𝑣𝑡) in 𝐺 × 𝐾𝑛. Therefore {(𝑏, 𝑣𝑗), (𝑒, 𝑣𝑗) | 𝑗 ∈ Z𝑛 − {𝑟, 𝑡}} ⊂ 𝑆. Clearly



ON THE SUPER CONNECTIVITY OF DIRECT PRODUCT 2769

(𝑏, 𝑣𝑡), (𝑒, 𝑣𝑡) ∈ 𝐶1 and (𝑏, 𝑣𝑟), (𝑒, 𝑣𝑟) ∈ 𝐶2. Also, for every 𝑗 ∈ Z𝑛 − {𝑟, 𝑡}, (𝑏, 𝑣𝑡) ∼ (𝑎, 𝑣𝑗) ∼ (𝑏, 𝑣𝑟)
and (𝑒, 𝑣𝑟) ∼ (𝑎, 𝑣𝑗) ∼ (𝑒, 𝑣𝑡) are paths in 𝐺 × 𝐾𝑛. Thus, {(𝑎, 𝑣𝑗) | 𝑗 ∈ Z𝑛 − {𝑟, 𝑡}} ⊂ 𝑆. Similarly,
{(𝑑, 𝑣𝑗), (𝑐, 𝑣𝑗) | 𝑗 ∈ Z𝑛 − {𝑟, 𝑡}} ⊂ 𝑆. By deleting these vertices of 𝐺×𝐾𝑛 we obtain an 10−gone, say 𝑃10,
where

𝑉 (𝑃10) = {(𝑎, 𝑣𝑡), (𝑏, 𝑣𝑟), (𝑐, 𝑣𝑡), (𝑑, 𝑣𝑟), (𝑒, 𝑣𝑡), (𝑎, 𝑣𝑟), (𝑏, 𝑣𝑡), (𝑐, 𝑣𝑟), (𝑑, 𝑣𝑡), (𝑒, 𝑣𝑟)}.

Hence
⋃︀𝑛

𝑖=1(𝑖̸=𝑟,𝑡) 𝑆𝑖 with two more vertices is 𝑆, that is, |𝑆| = 5(𝑛− 2) + 2 = 5𝑛− 8.
Case 2. Let 𝑥 ̸= 𝑦, 𝑣𝑟 = 𝑣𝑡 and 𝑥 ∼ 𝑦. Without loss of generality, let 𝑥 = 𝑎 and 𝑦 = 𝑏. Hence 𝑆 =

{(𝑎, 𝑣𝑗), (𝑏, 𝑣𝑗) | 𝑗 ∈ Z𝑛 − {𝑟}} ∪ {(𝑒, 𝑣𝑟), (𝑐, 𝑣𝑟)} ∪ {(𝑑, 𝑣𝑖) | 𝑖 ∈ Z𝑛}. Therefore, in this case |𝑆| = 2(𝑛− 1) +
2 + 𝑛 = 3𝑛.

Case 3. Let 𝑥 ̸= 𝑦 , 𝑣𝑟 = 𝑣𝑡 and 𝑥𝑦 ̸∈ 𝐸(𝐺). Without loss of generality, let 𝑥 = 𝑎 and 𝑦 = 𝑐. Since (𝑎, 𝑣𝑟) ∼
(𝑏, 𝑣𝑗) ∼ (𝑐, 𝑣𝑟) is a path in 𝐺 ×𝐾𝑛, for every 𝑣𝑗 ̸= 𝑣𝑟, the set {(𝑏, 𝑣𝑗) | 𝑗 ∈ Z𝑛 − {𝑟}} lies in 𝑆. Now, we
choose one element 𝑙 ∈ Z𝑛 with 𝑙 ̸= 𝑟. Since (𝑒, 𝑣𝑙) ∈ 𝐶1, (𝑑, 𝑣𝑙) ∈ 𝐶2 and (𝑒, 𝑣𝑖) ∼ (𝑑, 𝑣𝑗) for 𝑖 ̸= 𝑗, the set
{(𝑒, 𝑣𝑗), (𝑑, 𝑣𝑗) | 𝑗 ∈ Z𝑛−{𝑙}} lies in 𝑆. In the remaining graph the vertex (𝑏, 𝑣𝑟) is adjacent to all vertices of
{(𝑎, 𝑣𝑗) ∈ 𝐶1, (𝑐, 𝑣𝑗) ∈ 𝐶2 | 𝑗 ̸= 𝑟}, so (𝑏, 𝑣𝑟) ∈ 𝑆. Finally, (𝑎, 𝑣𝑙) and (𝑐, 𝑣𝑙) are isolated vertices. Thus they
belong to 𝑆. Therefore, in this case |𝑆| = 𝑛 + 2 + 2(𝑛− 1) = 3𝑛.

Case 4. Let 𝑥 ̸= 𝑦 , 𝑣𝑟 ̸= 𝑣𝑡. Clearly 𝑥𝑦 ̸∈ 𝐸(𝐺). Suppose that 𝑥 = 𝑎, 𝑦 = 𝑐 and 𝑙 ̸= 𝑟, 𝑡. Thus (𝑒, 𝑣𝑙) ∈ 𝐶1 and
(𝑑, 𝑣𝑙) ∈ 𝐶2. Now with the similar arguments in Case 3, we get 𝑆 = {(𝑒, 𝑣𝑗), (𝑑, 𝑣𝑗) | 𝑗 ∈ Z𝑛−{𝑙}}∪ {(𝑏, 𝑣𝑖) |
𝑖 ∈ Z𝑛} ∪ {(𝑎, 𝑣𝑙), (𝑐, 𝑣𝑙)}. Therefore, in this case |𝑆| = 3𝑛.

Thus 𝜅′(𝐺 × 𝐾𝑛) ≤ min{5𝑛 − 8, 3𝑛}. Furthermore, by the process of the proof, in all cases if |𝑆| <
min{5𝑛− 8, 3𝑛} then (𝐺×𝐾𝑛)− 𝑆 is either connected or has some isolated vertices. Therefore, 𝜅′(𝐺×𝐾𝑛) =
min{5𝑛− 8, 3𝑛}. �

By the above theorem, the following result holds.

Corollary 2.3. Let 𝐺 be a cycle of length 5. Then 𝜅′(𝐺×𝐾𝑛) = 3𝑛 for 𝑛 ≥ 4.

Suppose that 𝐺 is a bipartite graph with 𝜅′(𝐺) = ∞. Hence girth(𝐺) = ∞ or girth(𝐺) is even. If girth(𝐺) ≥ 6
then 𝜅′(𝐺) < ∞ and by Theorem 2.1, 𝜅′(𝐺×𝐾𝑛) < ∞. So we have the following result when girth(𝐺) = 4 or
girth(𝐺) = ∞.

Theorem 2.4. Let 𝐺 be a bipartite graph and 𝜅′(𝐺) = ∞. Then 𝜅′(𝐺×𝐾𝑛) ≤ 𝑚(𝑛− 2), where |𝑉 (𝐺)| = 𝑚.

Proof. By Proposition 1.2, (𝐺×𝐾𝑛)− (∪𝑛
𝑖=3𝑆𝑖) ∼= 𝐺×𝐾2 has two components isomorphic to 𝐺. Thus 𝜅′(𝐺×

𝐾𝑛) ≤ 𝑚(𝑛− 2). �

Finally in Theorem 2.5, we investigate 𝜅′(𝐺×𝐾𝑛) when girth(𝐺) = 3 and 𝜅′(𝐺) = ∞.

Theorem 2.5. Let 𝐺 be a graph with girth(𝐺) = 3, |𝑉 (𝐺)| = 𝑚 and 𝜅′(𝐺) = ∞. Then 𝜅′(𝐺 × 𝐾𝑛) ≤
min{𝑚𝑛− 6, 𝑚(𝑛− 1) + 5, 5𝑛 + 𝑚− 8}.

Proof. First suppose that 𝐺 has a unique triangle. Let 𝐶 be the only cycle of 𝐺 with 𝑉 (𝐶) = {𝑢1, 𝑢2, 𝑢3}. We
consider the following cases:

Case 1. Let deg(𝑢𝑗) = 2 for all 𝑗 ∈ Z3. Then 𝐺 is 𝐾3 and by Theorem 2.7 of [3] 𝜅′(𝐺×𝐾𝑛) = 3𝑛− 4.
Case 2. Let deg(𝑢𝑗) ≥ 3 for all 𝑗 ∈ Z3. Also let 𝑁𝐺−{𝑢2,𝑢3}(𝑢1) = {𝑥𝑟′ | 𝑟′ ∈ Z𝑟}, 𝑁𝐺−{𝑢1,𝑢3}(𝑢2) = {𝑦𝑠′ |

𝑠′ ∈ Z𝑠} and 𝑁𝐺−{𝑢1,𝑢2}(𝑢3) = {𝑤𝑡′ | 𝑡′ ∈ Z𝑡} where 𝑟 + 𝑠 + 𝑡 = 𝑚 − 3. Now, 𝜅′(𝐺) = ∞ implies that
deg(𝑥𝑟′) = deg(𝑦𝑠′) = deg(𝑤𝑡′) = 1, for every 𝑟′ ∈ Z𝑟, 𝑠′ ∈ Z𝑠 and 𝑡′ ∈ Z𝑡. Hence 𝑆 = {(𝑢𝑗 , 𝑣𝑙) | 𝑗 ∈ Z3, 𝑙 ∈
Z𝑛 − {1}} ∪ {(𝑥𝑟′ , 𝑣1), (𝑦𝑠′ , 𝑣1), (𝑤𝑡′ , 𝑣1) | 𝑟′ ∈ Z𝑟, 𝑠

′ ∈ Z𝑠, 𝑡
′ ∈ Z𝑡} is a super vertex-cut in 𝐺 × 𝐾𝑛 with

|𝑆| = 3(𝑛− 1) + (𝑚− 3) = 3𝑛 + 𝑚− 6.
Case 3. Let deg(𝑢1) ≥ 3 and deg(𝑢2) = deg(𝑢3) = 2. In this case 𝑆 = ∪𝑛

𝑖=3𝑆𝑖 ∪ {(𝑢3, 𝑣1), (𝑢3, 𝑣2)} is a super
vertex-cut in 𝐺×𝐾𝑛 with |𝑆| = 𝑚(𝑛− 2) + 2.
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Figure 1.

Figure 2.

Case 4. Let deg(𝑢1) ≥ 3, deg(𝑢2) ≥ 3 and deg(𝑢3) = 2. Let 𝑁𝐺−{𝑢2,𝑢3}(𝑢1) = {𝑥𝑟′ | 𝑟′ ∈ Z𝑟} and
𝑁𝐺−{𝑢1,𝑢3}(𝑢2) = {𝑦𝑠′ | 𝑠′ ∈ Z𝑠} where 𝑟 + 𝑠 = 𝑚− 3. We have two subcases:

Subcase 1. If deg(𝑥𝑟′) = deg(𝑦𝑠′) = 1 for every 𝑥𝑟′ ∈ 𝑁𝐺−{𝑢2,𝑢3}(𝑢1) and 𝑦𝑠′ ∈ 𝑁𝐺−{𝑢1,𝑢3}(𝑢2) then
𝑆 = {(𝑢3, 𝑣𝑖) | 𝑖 ∈ Z𝑛} ∪ {(𝑢1, 𝑣𝑗), (𝑢2, 𝑣𝑗) | 𝑗 ∈ Z𝑛 − {1}} ∪ {(𝑦𝑠′ , 𝑣1), (𝑥𝑟′ , 𝑣1) | 𝑟′ ∈ Z𝑟, 𝑠

′ ∈ Z𝑠} is a
super vertex-cut in 𝐺×𝐾𝑛 with |𝑆| = 𝑛 + 2(𝑛− 1) + (𝑚− 3) = 3𝑛 + 𝑚− 5.

Subcase 2. Let there exist some vertices 𝑥𝑝 ∈ 𝑁𝐺−{𝑢2,𝑢3}(𝑢1) and 𝑦𝑞 ∈ 𝑁𝐺−{𝑢1,𝑢3}(𝑢2) such that 𝑥𝑝 ∼ 𝑦𝑞.
Since 𝜅′(𝐺) = ∞ if 𝑥𝑝 ∼ 𝑦𝑞 and 𝑥𝑝′ ∼ 𝑦𝑞′ then 𝑥𝑝 ∼ 𝑦𝑞′ or 𝑥𝑝′ ∼ 𝑦𝑞. Let ℎ be the number of
vertices 𝑥𝑟′ with deg(𝑥𝑟′) ≥ 2 and 𝑙 be the number of vertices 𝑦𝑠 with deg(𝑦𝑠′) ≥ 2. Without loss of
generality let 𝑙 ≤ ℎ, and {𝑦1, 𝑦2, . . . , 𝑦𝑙} ⊂ 𝑁𝐺−{𝑢1,𝑢3}(𝑢2) be such that deg(𝑦𝑞) ≥ 2 for 𝑞 ∈ Z𝑙. Then
𝑆 = {(𝑢3, 𝑣𝑖) | 𝑖 ∈ Z𝑛}∪{(𝑢1, 𝑣𝑗), (𝑢2, 𝑣𝑗) | 𝑗 ∈ Z𝑛−{1}}∪{(𝑦𝑞, 𝑣𝑖) | 𝑞 ∈ Z𝑙, 𝑖 ∈ Z𝑛−{1}}∪{(𝑦𝑠′ , 𝑣1) | 𝑙 <
𝑠′ ≤ 𝑠}∪{(𝑥𝑟′ , 𝑣1) | 𝑟′ ∈ Z𝑟} is a super vertex-cut in 𝐺×𝐾𝑛 with |𝑆| = 𝑛+2(𝑛−1)+𝑙(𝑛−1)+(𝑠−𝑙)+𝑟 =
3𝑛+𝑚−5 + 𝑙(𝑛−2). If 𝑙 = 𝑠 then (𝑢2, 𝑣1) is an isolated vertex in (𝐺×𝐾𝑛)−𝑆. So 𝑙 < 𝑠. Now 𝑙 ≤ 𝑚−5
implies that |𝑆| ≤ 𝑛(𝑚− 2)−𝑚 + 5.
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Now, let deg(𝑥𝑟′) ≥ 2 and deg(𝑦𝑠′) ≥ 2 for every 𝑥𝑟′ ∈ 𝑁𝐺−{𝑢2,𝑢3}(𝑢1), 𝑦𝑠′ ∈ 𝑁𝐺−{𝑢1,𝑢3}(𝑢2). We choose a
constant 𝑙 ̸= 1 of Z𝑛. Hence 𝑆 = {(𝑢3, 𝑣𝑖) | 𝑖 ∈ Z𝑛} ∪ {(𝑢1, 𝑣𝑖), (𝑢2, 𝑣𝑖) | 𝑖 ∈ Z𝑛 − {1}} ∪ {(𝑥𝑟′ , 𝑣𝑖), (𝑦𝑠′ , 𝑣𝑖) | 𝑖 ∈
Z𝑛 − 𝑙} is a super vertex-cut in 𝐺×𝐾𝑛 with |𝑆| = 𝑛 + 2(𝑛− 1) + (𝑚− 3)(𝑛− 1) = 𝑚(𝑛− 1) + 1.

Now, suppose that 𝐺 contains 𝑡 cycles which have common edges. We consider the following cases:

Case 1. Let 𝐺 be isomorphic to 𝑡 triangles which have a common edge {𝑎, 𝑏}. Also, let the other vertices be the
set {𝛼1, 𝛼2, . . . , 𝛼𝑚−2}. Now 𝑆 = {(𝛼𝑗 , 𝑣𝑖), (𝑎, 𝑣𝑖) | 𝑗 ∈ Z𝑚−2, 𝑖 ∈ Z𝑛 − {1, 2}} ∪ {(𝑏, 𝑣𝑖) | 𝑖 ∈ Z𝑛} is a super
vertex-cut in 𝐺×𝐾𝑛 with |𝑆| = 𝑚𝑛− 2𝑚 + 2. Also let 𝐺 be isomorphic to 𝑡 triangles and a square which
have a common edge {𝑎, 𝑏}. Let {𝑎, 𝑏, 𝛼1, 𝛼2} be vertices of square and {𝛼3, . . . , 𝛼𝑚−2} be other vertices.
Again 𝑆 is a super vertex-cut in 𝐺 × 𝐾𝑛 with |𝑆| = 𝑚𝑛 − 2𝑚 + 2. Furthermore, if 𝐺 has more than one
square with common edge {𝑎, 𝑏} then it is clear that 𝜅′(𝐺) < ∞, a contradiction. Assume that 𝐺 contains
more than one square and there are some edges between the vertices of squares such that 𝜅′(𝐺) = ∞ then
we have two subcases:
Subcase 1. If the vertices of square are such that there is no pentagon then 𝑆 is as above.
Subcase 2. Let {𝛼1, 𝛼2, . . . , 𝛼𝑠} be the vertices of triangles and {𝛼𝑠+1, 𝛼𝑠+2, . . . , 𝛼𝑚−2} be the vertices

of squares. We have to delete some vertices for removing pentagons. Let {𝛼𝑠+1, 𝛼𝑠+2, . . . , 𝛼𝑠+𝑙} be the
minimum vertices which deleting them removes pentagons. Hence 𝑆 = {(𝑏, 𝑣𝑖) | 𝑖 ∈ Z𝑛} ∪ {(𝑎, 𝑣𝑖) | 𝑖 ∈
Z𝑛 − {1, 2}} ∪ {(𝛼𝑗 , 𝑣𝑖) | 𝑗 ∈ Z𝑠, 𝑖 ∈ Z𝑛 − {1, 2}} ∪ {(𝛼𝑗 , 𝑣𝑖) | 𝑠 + 1 ≤ 𝑗 ≤ 𝑠 + 𝑙, 𝑖 ∈ Z𝑛} ∪ {(𝛼𝑗 , 𝑣𝑖) |
𝑠 + 𝑙 + 1 ≤ 𝑗 ≤ 𝑚− 2, 𝑖 ∈ Z𝑛 − {1, 2}}} is a super vertex-cut in 𝐺×𝐾𝑛 with |𝑆| = 𝑛 + (𝑛− 2) + 𝑠(𝑛−
2) + 𝑙𝑛 + (𝑚− 2− 𝑠− 𝑙− 1 + 1)(𝑛− 2) = 𝑚𝑛− 2𝑚 + 2 + 2𝑙. Thus 𝑙 ≤ 𝑚− 5 implies that |𝑆| ≤ 𝑚𝑛− 8.

Moreover, if 𝐺 is isomorphic to Figure 1, then 𝑆 = {(𝑎, 𝑣𝑖), (𝑏, 𝑣𝑖) | 𝑖 ∈ Z𝑛 − {1}} ∪ {(𝛽𝑗 , 𝑣1), (𝛾𝑟, 𝑣1) | 𝑗 ∈
Z𝑓 , 𝑟 ∈ Z𝑓} ∪ {(𝛼𝑒, 𝑣𝑖) | 𝑒 ∈ Z𝑓 , 𝑖 ∈ Z𝑛} is a super vertex-cut in 𝐺×𝐾𝑛 with |𝑆| = 2(𝑛− 1) + 𝑓 + 𝑓 + 𝑓𝑛. Now,
𝑓 + 𝑓 + 𝑓 = 𝑚− 2 and 𝑓 ≤ 𝑚− 4 implies that |𝑆| ≤ 2(𝑛− 1) + 𝑚− 2 + 𝑓(𝑛− 1) ≤ 𝑛(𝑚− 2).

Also, if 𝐺 is isomorphic to Figure 2, then 𝑆 = {(𝑎, 𝑣𝑖), (𝑏, 𝑣𝑖), (𝛼1, 𝑣𝑖) | 𝑖 ∈ Z𝑛 − {1}} ∪
{(𝛽𝑗 , 𝑣1), (𝛾𝑟, 𝑣1), (𝜆𝑤, 𝑣1) | 𝑗 ∈ Z𝑓 , 𝑟 ∈ Z𝑓 , 𝑤 ∈ Z𝑓} ∪ {(𝛼𝑒, 𝑣𝑖) | 2 ≤ 𝑒 ≤ 𝑓, 𝑖 ∈ Z𝑛} is a super vertex-cut in
𝐺×𝐾𝑛. Now 𝑓 +𝑓 +𝑓 +𝑓 = 𝑚−2 and 𝑓−1 ≤ 𝑚−6 implies that |𝑆| ≤ 3(𝑛−1)+𝑓 +𝑓 +𝑓 +(𝑓−1)𝑛 ≤ 𝑛(𝑚−3).

Case 2. Let 𝐺 contains three cycles 𝐶1, 𝐶2 and 𝐶3 with V(𝐺) = {𝑢1, 𝑢2, 𝑢3, . . . , 𝑢𝑚}. Let 𝑉 (𝐶1) = {𝑢1, 𝑢2, 𝑢3},
𝑉 (𝐶2) = {𝑢2, 𝑢3, 𝑢4} and 𝑉 (𝐶3) = {𝑢2, 𝑢4, 𝑢5}. If deg(𝑢1) = deg(𝑢5) = 2, deg(𝑢2) = 4 and deg(𝑢3) =
deg(𝑢4) = 3 then 𝑆 = ∪𝑛

𝑖=3𝑆𝑖∪{(𝑢2, 𝑣1), (𝑢2, 𝑣2)} is a super vertex-cut in 𝐺×𝐾𝑛 with |𝑆| = 𝑚(𝑛−2)+2. Now
suppose that deg(𝑢2) ≥ 5 and either deg(𝑢3) ≥ 4 or deg(𝑢4) ≥ 4. Let 𝑁𝐺−{𝑢1,𝑢3,𝑢4,𝑢5}(𝑢2) = {𝑥𝑟′ | 𝑟′ ∈ Z𝑟},
𝑁𝐺−{𝑢1,𝑢2,𝑢4}(𝑢3) = {𝑦𝑠′ | 𝑠′ ∈ Z𝑠} and 𝑁𝐺−{𝑢2,𝑢3,𝑢5}(𝑢4) = {𝑤𝑡′ | 𝑡′ ∈ Z𝑡} where 𝑟 + 𝑠 + 𝑡 = 𝑚 − 5. Let
deg(𝑥𝑟′) = deg(𝑦𝑠′) = deg(𝑤𝑡′) = 1, for every 𝑟′ ∈ Z𝑟, 𝑠′ ∈ Z𝑠 and 𝑡′ ∈ Z𝑡. So 𝑆 = {(𝑢𝑗 , 𝑣𝑖) | 2 ≤ 𝑗 ≤ 4, 𝑖 ∈
Z𝑛 − {1}} ∪ {(𝑢1, 𝑣1)} ∪ {(𝑢5, 𝑣𝑖) | 𝑖 ∈ Z𝑛} ∪ {(𝑥𝑟′ , 𝑣1), (𝑦𝑠′ , 𝑣1), (𝑤𝑡′ , 𝑣1) | 𝑟′ ∈ Z𝑟, 𝑠

′ ∈ Z𝑠, 𝑡
′ ∈ Z𝑡} is a super

vertex-cut in 𝐺×𝐾𝑛 with |𝑆| = 3(𝑛−1)+1+𝑛+(𝑚−5) = 4𝑛−7+𝑚. Also if 𝑥𝑟𝑖
′ ∼ 𝑥𝑟𝑗

′ or 𝑦𝑠𝑖
′ ∼ 𝑦𝑠𝑗

′ or 𝑤𝑡𝑖
′ ∼

𝑤𝑡𝑗
′ or 𝑥𝑟𝑖

′ ∼ 𝑦𝑠𝑗
′ or 𝑥𝑟𝑖

′ ∼ 𝑤𝑡𝑗
′ or 𝑦𝑠𝑖

′ ∼ 𝑤𝑡𝑗
′ for some 𝑖, 𝑗 then 𝜅′(𝐺) < ∞. Moreover if 𝑢3 ∼ 𝑤𝑡𝑖

′ or 𝑢4 ∼ 𝑦𝑠𝑖
′

then 𝑆 = {(𝑢𝑗 , 𝑣𝑖) | 2 ≤ 𝑗 ≤ 4, 𝑖 ∈ Z𝑛 − {1}} ∪ {(𝑢1, 𝑣𝑖), (𝑢5, 𝑣𝑖) | 𝑖 ∈ Z𝑛} ∪ {(𝑥𝑟′ , 𝑣1), (𝑦𝑠′ , 𝑣1), (𝑤𝑡′ , 𝑣1) | 𝑟′ ∈
Z𝑟, 𝑠

′ ∈ Z𝑠, 𝑡
′ ∈ Z𝑡} is a super vertex-cut in 𝐺×𝐾𝑛 with |𝑆| = 3(𝑛− 1) + 2𝑛 + (𝑚− 5) = 5𝑛− 8 + 𝑚. Now

let 𝑥𝑟𝑖
′ ∼ 𝑢3 or 𝑥𝑟𝑗

′ ∼ 𝑢4 for some 𝑖, 𝑗. Let 𝐴 = {𝑥 ∈ 𝑁𝐺−{𝑢1,𝑢3,𝑢4,𝑢5}(𝑢2) | 𝑥 ∼ 𝑢3 and 𝑥 ∼ 𝑢4}, 𝐵 = {𝑥 ∈
𝑁𝐺−{𝑢1,𝑢3,𝑢4,𝑢5}(𝑢2) | 𝑥 ∼ 𝑢3 and 𝑥𝑢4 ̸∈ 𝐸(𝐺)}, 𝐶 = {𝑥 ∈ 𝑁𝐺−{𝑢1,𝑢3,𝑢4,𝑢5}(𝑢2) | 𝑥𝑢3 ̸∈ 𝐸(𝐺) and 𝑥 ∼ 𝑢4},
𝐷 = {𝑥 ∈ 𝑁𝐺−{𝑢1,𝑢3,𝑢4,𝑢5}(𝑢2) | 𝑥 ∼ 𝑥́ for some 𝑥́; (𝑥́ ∈ 𝑁𝐺−{𝑢1,𝑢3,𝑢4,𝑢5}(𝑢2) ∩ 𝑁𝐺−{𝑢1,𝑢2,𝑢4}(𝑢3) and 𝑥́ ̸∈
𝑁𝐺−{𝑢1,𝑢3,𝑢4,𝑢5}(𝑢2) ∩ 𝑁𝐺−{𝑢2,𝑢3,𝑢5}(𝑢4) or (𝑥́ ∈ 𝑁𝐺−{𝑢1,𝑢3,𝑢4,𝑢5}(𝑢2) ∩ 𝑁𝐺−{𝑢2,𝑢3,𝑢5}(𝑢4) and 𝑥́ ̸∈
𝑁𝐺−{𝑢1,𝑢3,𝑢4,𝑢5}(𝑢2) ∩ 𝑁𝐺−{𝑢1,𝑢2,𝑢4}(𝑢3) and 𝐹 = {𝑥 ∈ 𝑁𝐺−{𝑢1,𝑢3,𝑢4,𝑢5}(𝑢2) | 𝑥 ̸∈ 𝐴 ∪ 𝐵 ∪ 𝐶 ∪ 𝐷} with
|𝐴| = 𝑙, |𝐵 ∪ 𝐶| = 𝑙́, |𝐷| = 𝑙 and |𝐹 | = 𝑙̀. Then 𝑆 = {(𝑢3, 𝑣𝑖), (𝑢4, 𝑣𝑖) | 𝑖 ∈ Z𝑛 − {1}} ∪ {(𝑢2, 𝑣𝑖) | 𝑖 ∈
Z𝑛} ∪ {(𝑢1, 𝑣1), (𝑢5, 𝑣1)} ∪ {(𝑥, 𝑣𝑖) | 𝑥 ∈ 𝐴 or 𝑥 ∈ 𝐹, 𝑖 ∈ Z𝑛} ∪ {(𝑥, 𝑣1) | 𝑥 ∈ 𝐵 ∪ 𝐶} ∪ {(𝑦𝑠, 𝑣1), (𝑤𝑡, 𝑣1)} is a
super vertex-cut in 𝐺×𝐾𝑛 with |𝑆| = 2(𝑛− 1) + 𝑛 + 2 + (𝑙 + 𝑙̀)𝑛 + (𝑙́) + (𝑚− 5− 𝑟). Now, 𝑙 + 𝑙́ + 𝑙̀ = 𝑟− 𝑙,
𝑙 ≤ 𝑚− 7 and 𝑙 + 𝑙̀ ≤ 𝑚− 5 implies that |𝑆| ≤ 𝑛(𝑚− 2)−𝑚 + 7.

Moreover, if there are vertices ℎ ∈ 𝑁𝐺−{𝑢2,𝑢3}(𝑢1)−𝑁𝐺−{𝑢2,𝑢4}(𝑢5) or ℎ́ ∈ 𝑁𝐺−{𝑢2,𝑢4}(𝑢5)−𝑁𝐺−{𝑢2,𝑢3}(𝑢1)
then 𝜅′(𝐺) < ∞, a contradiction. Let {ℎ1, . . . , ℎ𝑓} = 𝑁𝐺−{𝑢2,𝑢3}(𝑢1)∩𝑁𝐺−{𝑢2,𝑢4}(𝑢5). If for some 𝑖, 𝑗, ℎ𝑖 ∼ ℎ𝑗
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or deg(𝑢3) ≥ 4 or deg(𝑢4) ≥ 4 then 𝜅′(𝐺) < ∞, a contradiction. Hence let for every 𝑖, 𝑗, ℎ𝑖ℎ𝑗 ̸∈ 𝐸(𝐺),
deg(𝑢3) = deg(𝑢4) = 3 and 𝑁𝐺−{𝑢1,𝑢3,𝑢4,𝑢5}(𝑢2) = {𝑥𝑟′ | 𝑟′ ∈ Z𝑟}. So 𝑆 = {(𝑢3, 𝑣𝑖), (𝑢4, 𝑣𝑖)) | 𝑖 ∈ Z𝑛} ∪
{(𝑢1, 𝑣𝑖), (𝑢2, 𝑣𝑖), (𝑢5, 𝑣𝑖) | 𝑖 ∈ Z𝑛 − {1}} ∪ {(ℎ𝑗 , 𝑣1), (𝑥𝑟′ , 𝑣1) | 𝑗 ∈ Z𝑓 , 𝑟 ∈ Z𝑟} is a super vertex-cut in 𝐺 ×𝐾𝑛

with |𝑆| = 2𝑛 + 3(𝑛− 1) + (𝑚− 5) = 5𝑛 + 𝑚− 8.
Now, let deg(𝑢2) = 4, deg(𝑢3) = 3, deg(𝑢4) = 3 and 𝑢1 ∼ 𝑢5. The graph is 𝑊4 and has four triangles. In

this case, 𝑆 = {(𝑢2, 𝑣𝑖) | 𝑖 ∈ Z𝑛} ∪ {(𝑢𝑗 , 𝑣𝑖) | 𝑗 ∈ Z5 − {2}, 𝑖 ∈ Z𝑛 − {1, 2}} is a super vertex-cut in 𝐺 × 𝐾𝑛

with |𝑆| = 𝑛 + 4(𝑛 − 2) = 5𝑛 − 8. Furthermore, let 𝑢1 ∼ 𝑢5, deg(𝑢2) ≥ 4, deg(𝑢3) ≥ 3 and deg(𝑢4) ≥ 3. Let
𝑁𝐺−{𝑢1,𝑢3,𝑢4,𝑢5}(𝑢2) = {𝑥𝑟′ | 𝑟′ ∈ Z𝑟}, 𝑁𝐺−{𝑢1,𝑢2,𝑢4}(𝑢3) = {𝑦𝑠′ | 𝑠′ ∈ Z𝑠} and 𝑁𝐺−{𝑢2,𝑢3,𝑢5}(𝑢4) = {𝑤𝑡′ | 𝑡′ ∈
Z𝑡} where 𝑟 + 𝑠 + 𝑡 = 𝑚− 5, and deg(𝑥𝑟′) = deg(𝑦𝑠′) = deg(𝑤𝑡′) = 1 for each 𝑟′, 𝑠′, 𝑡′. Then 𝑆 = {(𝑢𝑗 , 𝑣𝑖) | 2 ≤
𝑗 ≤ 4, 𝑖 ∈ Z𝑛 − {1}} ∪ {(𝑢5, 𝑣𝑖), (𝑢1, 𝑣𝑖) | 𝑖 ∈ Z𝑛} ∪ {(𝑥𝑟′ , 𝑣1), (𝑦𝑠′ , 𝑣1), (𝑤𝑡′ , 𝑣1) | 𝑟′ ∈ Z𝑟, 𝑠

′ ∈ Z𝑠, 𝑡
′ ∈ Z𝑡} is a

super vertex-cut in 𝐺 ×𝐾𝑛 with |𝑆| = 3(𝑛 − 1) + 2𝑛 + (𝑚 − 5) = 5𝑛 − 8 + 𝑚. Now if 𝑥𝑟𝑖
′ ∼ 𝑢3 or 𝑥𝑟𝑗

′ ∼ 𝑢4

for some 𝑖, 𝑗, then by using 𝐴, 𝐵,𝐶, 𝐷 and 𝐹 as above, and putting {(𝑢1, 𝑣𝑖), (𝑢5, 𝑣𝑖) | 𝑖 ∈ Z𝑛} in 𝑆 we get 𝑆 a
super vertex-cut in 𝐺×𝐾𝑛 with |𝑆| ≤ 𝑛(𝑚− 2)−𝑚 + 7 + 2𝑛− 2 = 𝑚(𝑛− 1) + 5.

Now let 𝐺 be the graph 𝑊5 with vertices {𝑢𝑖}𝑖∈Z6 where 𝑢1 ∼ 𝑢3 ∼ 𝑢4 ∼ 𝑢5 ∼ 𝑢6 ∼ 𝑢1 and 𝑢2 is adjacent to
all others. Hence by putting {(𝑢2, 𝑣𝑖) | 𝑖 ∈ Z𝑛} in 𝑆 and using Theorem 2.2, we get |𝑆| = min{4𝑛, 6𝑛−8}. Now let
deg(𝑢2) ≥ 6, 𝑁𝐺−{𝑢1,𝑢3,𝑢4,𝑢5,𝑢6}(𝑢2) = {𝑥𝑟′ | 𝑟′ ∈ Z𝑟}. If for some 𝑖, 𝑗, 𝑥𝑟′

𝑖
∼ 𝑥𝑟′

𝑗
or 𝑥𝑟′

𝑖
∼ 𝑢𝑠 for 𝑠 ∈ Z𝑛−{2},

then 𝜅′(𝐺) < ∞, a contradiction. Let for all 𝑟 ∈ Z𝑟, deg(𝑥𝑟′) = 1. Then 𝑆 = {(𝑢1, 𝑣𝑖), (𝑢2, 𝑣𝑖)(𝑢5, 𝑣𝑖) | 𝑖 ∈
Z𝑛 − {1, 2}} ∪ {(𝑢3, 𝑣𝑖), (𝑢4, 𝑣𝑖), (𝑢6, 𝑣𝑖) | 𝑖 ∈ Z𝑛} ∪ {(𝑥𝑟′ , 𝑣𝑖) | 𝑟′ ∈ Z𝑟, 𝑖 ∈ Z𝑛 − {1, 2}} is a super vertex-cut
in 𝐺 × 𝐾𝑛 with |𝑆| = 𝑚(𝑛 − 2) + 6. Also let 𝑢1 ∼ 𝑢4 or 𝑢1 ∼ 𝑢5 or 𝑢3 ∼ 𝑢5 or 𝑢3 ∼ 𝑢6 or 𝑢4 ∼ 𝑢6 where
deg(𝑢2) = 5. Since 𝐺 is not complete we may assume that deg(𝑢1) = deg(𝑢4) = 4 and 𝑢1𝑢4 ̸∈ 𝐸(𝐺). Thus
𝑆 = {(𝑢2, 𝑣𝑖), (𝑢5, 𝑣𝑖), (𝑢6, 𝑣𝑖) | 𝑖 ∈ Z𝑛} ∪ {(𝑢1, 𝑣𝑖), (𝑢3, 𝑣𝑖), (𝑢4, 𝑣𝑖) | 𝑖 ∈ Z𝑛 − {1, 2}} is a super vertex-cut in
𝐺×𝐾𝑛 with |𝑆| = 6𝑛−6. Similarly, for any non complete graph 𝐺 with vertices {𝑥1, . . . , 𝑥𝑚} and girth(𝐺) = 3,
if 𝑥1𝑥3 ̸∈ 𝐸(𝐺) and 𝑥1 ∼ 𝑥2 ∼ 𝑥3, then 𝑆 = {(𝑥𝑗 , 𝑣𝑖) | 𝑗 ∈ Z𝑚 − {1, 2, 3}, 𝑖 ∈ Z𝑛} ∪ {(𝑥𝑗 , 𝑣𝑖) | 𝑗 ∈ Z3, 𝑖 ∈
Z𝑛 − {1, 2}} is a super vertex-cut in 𝐺 × 𝐾𝑛 with |𝑆| = (𝑚 − 3)𝑛 + 3(𝑛 − 2) = 𝑚𝑛 − 6. Also, 𝜅′(𝑊𝑛) < ∞
where 𝑛 ≥ 6. If a graph 𝐺 includes 𝑊𝑛 with more than 2𝑛 vertices where 𝜅′(𝐺) = ∞ then by above argument
we see that the cardinality of a super vertex-cut is 𝑚𝑛 − 6. Therefore, if girth(𝐺) = 3 and 𝜅′(𝐺) = ∞ then,
𝜅′(𝐺×𝐾𝑛) ≤ min{𝑚𝑛− 6, 𝑚(𝑛− 1) + 5, 5𝑛 + 𝑚− 8}. �

3. Conclusion

In this article we provide bounds for the super connectivity of the direct product of an arbitrary graph and
the complete graph 𝐾𝑛. Also, we show that if 𝐺 is a non-complete graph with girth(𝐺) = 3 and 𝜅′(𝐺) = ∞,
then 𝜅′(𝐺×𝐾𝑛) ≤ min{𝑚𝑛− 6, 𝑚(𝑛− 1) + 5, 5𝑛 + 𝑚− 8}, where |𝑉 (𝐺)| = 𝑚.
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