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A PROFIT MAXIMIZATION SINGLE ITEM INVENTORY PROBLEM
CONSIDERING DETERIORATION DURING CARRYING FOR PRICE

DEPENDENT DEMAND AND PRESERVATION TECHNOLOGY INVESTMENT

Sourav Mahata and Bijoy Krishna Debnath*

Abstract. This paper addresses a single item two-level supply chain inventory model considering
deterioration during carrying of deteriorating item from a supplier’s warehouse to a retailer’s warehouse
as well as deterioration in the retailer’s warehouse. The model assumes preservation technology in the
retailer’s warehouse to prevent the rate of deterioration. An upper limit for the preservation technology
investment has been set as a constraint to the model. The model maximizes the retailer’s profit per unit
time, simultaneously calculated optimal order quantity. A price dependent demand and storage-time
dependent holding cost is considered to develop the model. Some theorems are proven to get optimal
values of the total cost. A numerical problem is workout as per the developed algorithm and with the
help of MATLAB software to study the applicability of our theoretical results.
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1. Introduction

Basic inventory models are classified into two types such as Economical Order Quantity (E.O.Q.) and Eco-
nomical Production Quantity (E.P.Q.). In E.O.Q. model, we optimize order quantity to maximize the total
profit of the retailer or minimize total cost. In this regard, first inventory model was introduced by Harris [15].
There are many developments on the basic E.O.Q model as of now considering different realistic assumptions
which we will discuss in the literature review section.

We know that deterioration plays an important role in an inventory model as if the deterioration rate increases
then the profit of a retailer decreases and if the deterioration rate decreases then profit of a retailer increases
that is profit varies dis-proportionally with the deterioration rate. So, we can not ignore the deterioration rate
in the present study of an inventory model. The deterioration is generally suitable for the items such as raw
food items (fruit, vegetables, fishes, meat, eggs, etc.), processed food items, grocery items (salt, sugar, etc.),
medical items (Bloods, medicine, vaccine, etc.), radioactive elements, alcohol etc.

This paper is developed considering different types of realistic assumptions. One such realistic assumption
is deterioration during carrying. During carrying some quantity of the total order is spoiled because of many
reasons. Some of the reasons may be long journey of the carrying vehicle (This type of reason is suitable for
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radioactive elements, blood, medicine, vaccine, vegetables, fruits, etc.), weather during carrying (This type of
reason is suitable for salt, sugar, eggs, fruit, vegetable, meat, fish, etc.), carelessness during loading and unloading
(It’s the main reason for untrained labor force and this type of reason is suitable for any type of product), etc.

Preservation technology is very much useful to increase products lifetime. Also, during the carrying time,
we can not apply preservation technology for more lifetime of the product but in the retailer’s warehouse we
can apply preservation technology to prevent deterioration. So, deterioration rate of the item during carrying
is higher than the deterioration rate in the warehouse.

Another realistic assumption is retailer can sell the defective products in a certain price (which is less then
the buying cost) to reduce the loss. This phenomena is used in our model. Retailer can use the equipment
(for example – refrigeration equipment) to increase the self life of the item in retailer’s warehouse after the
item arrives. Thus, retailer has to invest some amount of money to operate the equipment for preservation;
which is called preservation technology investment. If preservation technology investment increases then the
deterioration rate decreases and if preservation technology investment decreases then deterioration rate increases
that is preservation technology investment varies dis-proportionally with the deterioration rates. Also, retailer’s
can not invest most of the money in preservation technology and hence in this paper we consider an upper
bound for the preservation technology investment.

In most cases, tendency of a customer is to buy a product in lesser price. So, if price of an item goes down
then demand of the item increases. In this paper we have considered that the demand of an item is depending on
the selling price and it varies dis-proportionally with the selling price of an item. Another realistic assumption
is that the holding cost varies proportionally to time due to the rent of the warehouse that is if stock time
increases then the holding cost increases and if stock time decreases then holding cost decreases. Now we will
discuss on the various inventory models developed during the past years in literature review section.

2. Literature review

Mondal et al. [27] first introduced a model for an ameliorating item with demand of the product dependent
on price. Then, Mukhopadhayay et al. [28] proposed an ordering policy on pricing inventory model for deterio-
rating items. Later, Mukhopadhayay et al. [29] modified their previous problem by introducing the deterioration
rate as weibull distribution and price dependent demand. Roy and Chaudhari [33] formulated a model for a
deteriorating item and demand depends on price with special sale of the product and later Roy [32] modified his
previous problem by incorporating time dependent holding cost. Then Maiti et al. [24] formulated an inventory
problem with price dependent demand and stochastic lead time in advance payment system. Next, Sridevi et al.
[40] built a price dependent model for deteriorating items with weibull rate of replenishment. Then, Sana [35]
formulated an inventory model for perishable items with price-sensitive demand. Maihaimi and Kamalabadi [23]
formulated a model with time and price dependent demand for non-instantaneous deteriorating items on jointly
time and price. Then, Avinadav et al. [4] introduced a supply chain problem for perishable items. Then, Bhunia
and Shaikh [5] formulated an inventory problem for deteriorating items with selling price dependent demand
and three-parameter weibull distribution. Next, Ghorieshi et al. [14] formulated an inventory model with price
dependent demand and customer returns for non-instantaneous deteriorating items with partial backlogging.
Then, Alfares and Ghaitan [2] formulated quantity discount offered to the customer with time dependent holding
cost. Then, Jaggi et al. [18] formulated an inventory model for demand dependent on price with credit financing
in two storage facilities and non-instantaneous deterioration. Shaikh et al. [36] developed an inventory model
with variable demand dependent on price for three-parameter Weibull distributed deteriorating item. Next, Dey
et al. [9] formulated an integrated inventory model with price-dependent demand and discrete setup cost reduc-
tion. Then, Khanna et al. [20] considered non-linear price-dependent demand for an inventory model with
inspection error. In this direction, Gautam et al. [12] developed an inventory model with price-dependent
demand for defective items.

An appreciable amount of research paper has been published on inventory control models for deteriorating
products. Ghare and Schrader [13] first introduced the concept of deterioration. Then Philip [30] has extended
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from constant deterioration to three parameters weibull deterioration. Thereafter a lot of researches have been
modified by several authors with different types of deterioration. Regarding this context, to reduce deteriora-
tion effect Hsu et al. [17] first introduced the preservation technology in his research paper. They introduced
an inventory model for deteriorating inventory with preservation technology investment. Next Dye [8] devel-
oped a model for non-instantaneous deteriorating item with preservation technology investment. Zhang et al.
[43] formulated an inventory model with stock dependent demand and preservation technology investment
for deteriorating inventory model. Mishra et al. [26] formulated an inventory model under price and stock
dependent demand for deteriorating item with shortage and preservation technology investment. Then Shaikh
et al. [39] investigated preservation technology for deteriorating item and time dependent demand with partial
backlogging. Li et al. [22] considered preservation technology investment for non-instantaneous deteriorating
item and replenishment. Aditi Khanna et al. [21] formulated an inventory model for deteriorating items with
stock-dependent demand and time-dependent holding cost. Yongrui and Yu Cao [10] developed an inventory
model with stochastic demand with reference price effect for the deteriorating product. Next, Mashud et al. [25]
considered a joint pricing inventory model with price-dependent demand and time-dependent deterioration rate
under a discount facility system. Also, Asim Paul et al. [3] formulated an inventory model for a deteriorating
product with price-sensitive demand and discussed the effect of default risk on optimal credit period in the
inventory model. Then, Bashair Ahmad and Lakdere Benkherouf [1] derived an optimal replenishment policy
inventory model for the deteriorating product with stock-dependent demand and partial backlogging. Then,
Rout et al. [31] formulated a production inventory model for deteriorating items with constant deterioration
rate and backlog-dependent demand. After that, Ali Akbar Shaikh et al. [37] developed an inventory model
for the deteriorating product with constant deterioration rate and price dependent demand also discussed the
decision support system for customers under trade credit policy. Then, Choudhury and Mahata [7] developed
an inventory model for growing deteriorating items with price-dependent demand.

Many inventory model developed assuming the holding cost per unit is not constant. Ferguson et al. [11]
introduced an inventory model with holding cost as non-linear dependence on the storage time. Next San-Jose
et al. [34] developed an E.O.Q. model with the holding cost function having two components: a fixed cost and a
variable cost that increases with storage time and partial backlogging. Then Alfares and Ghaithan [2] formulated
an inventory and pricing model with time varying holding cost, price dependent demand and quantity discount.
Then, Ali-Akbar Shaikh [38] formulated an E.O.Q. model for time dependent holding cost and price discount
facility with stock dependent demand.

3. Research gaps and our contributions

The main highlights of our contribution in this paper are

– Table 1 depicts that several researchers considered deterioration and preservation technology in the retailer’s
warehouse but no one considered deterioration during carrying of an item from supplier warehouse to

Table 1. The comparison between earlier published work and our present work.

Source Deteriorating items Demand Holding cost Preservation technology Deterioration during carrying

Maiti et al. [24] No Price dependent Constant NO NO.

He and Huang [16] Yes Price dependent Constant Yes NO.

Zhang et al. [43] Yes Price dependent Constant Yes NO.

Tayal et al. [42] No Price and exponential rate Constant NO NO.

Taleizadeh et al. [41] No Price dependent Constant No NO.

Alfares and Ghaithan [2] No Price dependent Time dependent No NO.

Mishra et al. [26] Yes Price dependent Constant Yes NO.

Al-Amin Khan et al. [19] Yes Price dependent Time dependent No NO.

Ali Akbar Shaikh et al. [38] Yes Price and stock dependent Time dependent No NO.

Aditi Khanna et al. [21] Yes Stock dependent Time dependent Yes NO.

Present paper Yes Price dependent Time dependent Yes Yes.
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retailer’s warehouse. This model fulfills this gap of research considering different deterioration rate for
two intervals. This model can be consider as a generalization of the existing work on deterioration and
preservation technology.

– Many authors considered that the preservation technology function (𝜆 (𝛼)) dependent on initial deterioration
rate. But during transportation of the items from the supplier warehouse to the retailer’s the items has to
survive various extreme condition (such as weather during transportation, road condition, etc.) and once the
items are arrived at retailer’s warehouse the items will be in under preservation technology system, which
is a stable system. So, the deterioration rate during carrying and deterioration rate under preservation
technology can not be always dependent. So, here we consider the deterioration rate under preservation
technology (𝜆 (𝛼)) is an independent function of initial deterioration rate (𝜃) and it is define by

𝜆 (𝛼) = 𝑒−𝜂𝛼

where 𝜂 is the sensitivity parameter of investment to the deterioration rate and 𝛼 is the preservation tech-
nology investment per unit time and 𝜆 (𝛼) ≪ 𝜃.

– To prove the optimality of the total cost function in this paper we derive two theorems and by using the
results 3.2.1 & 3.2.10 from Combini and Martein [6] we prove those theorems analytically.

– Here to handle the numerical problem we modify an algorithm from Khan et al. [19] and the modified
algorithm is suitable for any similar type of model, which is considered in this paper.

4. Notation and assumptions

The following assumptions and notation have been used to formulate the mathematical model.

4.1. Notation

Tables 2 and 3 describes the notation for the developed model.

4.2. Assumptions

Our inventory model is established based on the following assumptions:
(1) The model is developed for a single deteriorating item.
(2) We consider the deterioration during carrying. We assume that during carrying the deterioration rate is

𝜃 (0 < 𝜃 ≪ 1) is constant.
(3) We assume that the retailer will sell the defective item with a price 𝑃 ; Which is less than the purchasing

cost 𝑐 per unit item.
(4) Any replacement or repair for the deteriorated products is not considerable during the cycle length 𝑇 .
(5) We know that if the price of a product is low then demand appears highly in the market. From this

observation, we assume that the price is dependent on demand same as Alfares and Ghaithan [2], which is
expressed below

𝐷 (𝑝) = 𝛿1 − 𝛿2𝑝

where 𝛿1 is the constant amount demand of the item when selling price 𝑝 = 0 and 𝛿2 is a constant such that
𝛿1 − 𝛿2𝑝 > 0.

(6) In the retailer’s warehouse inventory level is gradually decreases because of the demand 𝐷 and reduced
deterioration rate due to the investment on preservation technology is

𝜆 (𝛼) = 𝑒−𝜂𝛼

where 𝜂 is the sensitivity parameter of investment to the deterioration rate and 𝛼 is the preservation technology
investment per unit time and 𝜆 (𝛼) ≪ 𝜃. The relationship between deterioration rate and preservation technology
investment parameter are

𝜕𝜆 (𝛼)
𝜕𝛼

< 0



A PROFIT MAXIMIZATION SINGLE ITEM INVENTORY PROBLEM 1845

Table 2. Notation.

Notation Units Description

𝛿1 Constant Constant part of demand rate (𝛿1 > 0).
𝛿2 Constant Co-efficient of the price in the demand rate (𝛿2 > 0).
𝑝 $/Unit Selling price per unit item.
𝑐 $/Unit Purchasing cost per unit item.
𝐶 $/Unit Ordering cost per unit item.
𝜃 Constant Deterioration rate at during carring.
𝑔 $/Unit Constant part of holding cost.
ℎ $/Unit Co-efficient of linearly time dependent holding cost.
𝑃 $/Unit Selling price of the defective item.
𝜆 (𝛼) Constant the proportion of reduced deterioration rate, 0 ≤ 𝜆 (𝛼) ≤ 1.
𝑞 (𝑡) Units Inventory level at a time t.
𝑡1 Week Time at which the stock arrived at the retailer’s warehouse.
𝑇 Week Length of each replenishment cycle.
𝑄 Units The number of order placed per cycle.
𝑇 Week Length of each replenishment cycle.
𝛼 $/Unit time the preservation technology investment per unit time.
𝑀 Units Inventory level at the time 𝑡 = 𝑡1.
𝑆 Units Defective product quantity due to carrying.
𝑇 * Week Optimal length of the cycle.
𝑝* $/Unit Optimal selling price.
𝑄* Unit Optimal Order quantity.
𝑆* Unit Optimal quantity of defective items due to crrying.
𝑀* Unit Optimal quantity arrived at retailer’s warehouse.
𝜂 Constant the sensitivity parameter of investment to the deterioration rate.
𝛼̄ $/Unit time the maximum investment cost in preservation technology.

Table 3. Decision variables.

Notation Units Description

𝑝 $/Unit Selling price per unit item.

𝑇 Week Length of each replenishment cycle.

and
𝜕2𝜆 (𝛼)

𝜕𝛼2
< 0.

(7) In our model preservation technology investment per unit time is 𝛼 and it satisfies the condition

0 ≤ 𝛼 ≤ 𝛼̄

where 𝛼̄ is the maximum investment on preservation technology.
(8) Similar to Alfares and Ghaithan [2], we consider storage time-dependent holding cost. The holding cost

of the products increases linearly concerning the storage time of each unit and it’s proportional to the purchase
cost 𝑐 per unit item. Also, the holding cost contained two constant parts, one is the 𝑔 and another one is ℎ. So,
the holding cost function can be expressed as

𝐻 (𝑡) = 𝑐 (𝑔 + ℎ𝑡) .
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5. Mathematical model

The retailer ordered 𝑄 units of deteriorating item. Therefore, the inventory level at 𝑡 = 0 is 𝑄. During carrying
from the supplier’s warehouse to retailers warehouse, the stock level gradually declines due to the deterioration
rate 𝜃 and drops at 𝑀 at the time 𝑡 = 𝑡1. In the retailer’s warehouse inventory level gradually decreases because
of the demand (𝐷) and the reduced deterioration rate due to the investment on preservation technology (𝜆 (𝛼)).
To prevent deterioration in the retailer’s warehouse we applied preservation technology (Fig. 1).

The demand function is 𝐷 (𝑝) = 𝛿1 − 𝛿2𝑝. Based on above description, the inventory at any time 𝑡 ∈ [0, 𝑇 ] is
given by the differential equation:

d𝑞1

d𝑡
+ 𝜃𝑞1 = − (𝛿1 − 𝛿2𝑝) , 0 ≤ 𝑡 ≤ 𝑡1 (5.1)

d𝑞2

d𝑡
+ 𝜆 (𝛼) 𝑞2 = − (𝛿1 − 𝛿2𝑝) , 𝑡1 ≤ 𝑡 ≤ 𝑇. (5.2)

Equations (5.1) and (5.2) can be rewritten as

d𝑞1

d𝑡
+ 𝜃𝑞1 = −𝐷, 0 ≤ 𝑡 ≤ 𝑡1 (5.3)

d𝑞2

d𝑡
+ 𝜆 (𝛼) 𝑞2 = −𝐷, 𝑡1 ≤ 𝑡 ≤ 𝑇 (5.4)

where 𝐷 = 𝛿1− 𝛿2𝑝. Also 𝑞1 (𝑡1) = 𝑀 (< 𝑄) . Now after solving equation (5.3) by using the boundary condition
𝑞1 (𝑡1) = 𝑀 , we get the inventory level at any time 𝑡 ∈ [0, 𝑡1] and is given by

𝑞1 (𝑡) = −𝐷

𝜃
+

(︂
𝑀 +

𝐷

𝜃

)︂
𝑒𝜃(𝑡1−𝑡). (5.5)

The solution of equation (5.4) by using 𝑞2 (𝑇 ) = 0 implies the inventory level at any time 𝑡 ∈ [𝑡1, 𝑇 ] is given by

𝑞2 (𝑡) =
𝐷

𝜆 (𝛼)

(︁
𝑒𝜆(𝛼)(𝑇−𝑡) − 1

)︁
. (5.6)

Figure 1. Pictorial presentation of the proposed problem.
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Using the continuity at 𝑡 = 𝑡1, we get

𝑀 =
𝐷

𝜆 (𝛼)

(︁
𝑒𝜆(𝛼)(𝑇−𝑡1) − 1

)︁
. (5.7)

Also initially 𝑞1 (0) = 𝑄. Therefore from the equation (5.5) we get

𝑄 = −𝐷

𝜃
+

(︂
𝑀 +

𝐷

𝜃

)︂
𝑒𝜃𝑡1

= −𝐷

𝜃
+

{︂
𝐷

𝜆 (𝛼)

(︁
𝑒𝜆(𝛼)(𝑇−𝑡1) − 1

)︁
+

𝐷

𝜃

}︂
𝑒𝜃𝑡1 . (5.8)

We know that 𝑆 = 𝑄−𝑀 . Therefore,

𝑆 =
[︂
−𝐷

𝜃
+

{︂
𝐷

𝜆 (𝛼)

(︁
𝑒𝜆(𝛼)(𝑇−𝑡1) − 1

)︁
+

𝐷

𝜃

}︂
𝑒𝜃𝑡1

]︂
−

[︂
𝐷

𝜆 (𝛼)

(︁
𝑒𝜆(𝛼)(𝑇−𝑡1) − 1

)︁]︂
. (5.9)

The profit function of the inventory system involves the following components:

(1) Ordering Cost (𝑂𝐶) = 𝐶.

(2) Holding Cost (𝐻𝐶) =
∫︀ 𝑇

𝑡1
𝑐 (𝑔 + ℎ𝑡) 𝑞2 (𝑡) d𝑡

= 𝑐

∫︁ 𝑇

𝑡1

(𝑔 + ℎ𝑡)
{︂

𝐷

𝜆 (𝛼)

(︁
𝑒𝜆(𝛼)(𝑇−𝑡) − 1

)︁}︂
d𝑡

=
𝑐𝐷𝑔

𝜆 (𝛼)

∫︁ 𝑇

𝑡1

(︁
𝑒𝜆(𝛼)(𝑇−𝑡) − 1

)︁
d𝑡 +

𝑐𝐷ℎ

𝜆 (𝛼)

∫︁ 𝑇

𝑡1

𝑡
(︁
𝑒𝜆(𝛼)(𝑇−𝑡) − 1

)︁
d𝑡

=

⎡⎣ 𝑐𝐷𝑔
𝜆(𝛼)

{︁
1

𝜆(𝛼)

(︀
𝑒𝜆(𝛼)(𝑇−𝑡1) − 1

)︀
+ (𝑡1 − 𝑇 )

}︁
+ 𝑐𝐷ℎ

𝜆(𝛼)

(︁
𝑡21
2 −

𝑇 2

2

)︁
+ 𝑐𝐷ℎ

𝜆(𝛼)

{︁
1

𝜆(𝛼)2

(︀
𝑒𝜆(𝛼)(𝑇−𝑡1) − 1

)︀
+ 1

𝜆(𝛼)

(︀
𝑡1𝑒

𝜆(𝛼)(𝑇−𝑡1) − 𝑇
)︀}︁

⎤⎦ .

(3) Purchasing Cost (𝑃𝐶) = 𝑐𝑄.

= 𝑐

[︂
−𝐷

𝜃
+

{︂
𝐷

𝜆 (𝛼)

(︁
𝑒𝜆(𝛼)(𝑇−𝑡1) − 1

)︁
+

𝐷

𝜃

}︂
𝑒𝜃𝑡1

]︂
.

Defective product quantity due to carrying is 𝑆 = 𝑄−𝑀 , which is given by the equation (5.9).
We can sell the defective product with lesser price 𝑃 . Therefore the revenue by selling defective item is

=𝑃 (𝑄−𝑀) = 𝑃𝑆.

(4) Sale Revenue (𝑆𝑅) = 𝑝
∫︀ 𝑇

𝑡1
(𝛿1 − 𝛿2𝑝) d𝑡 + 𝑃𝑆

= 𝑝 (𝛿1 − 𝛿2𝑝) (𝑇 − 𝑡1) + 𝑃𝑆

= 𝑝 (𝛿1 − 𝛿2𝑝) (𝑇 − 𝑡1) + 𝑃

[︂
−𝐷

𝜃
+

{︂
𝐷

𝜆 (𝛼)

(︁
𝑒𝜆(𝛼)(𝑇−𝑡1) − 1

)︁
+

𝐷

𝜃

}︂
𝑒𝜃𝑡1 − 𝐷

𝜆 (𝛼)

(︁
𝑒𝜆(𝛼)(𝑇−𝑡1) − 1

)︁]︂
.

= 𝑝 (𝛿1 − 𝛿2𝑝) (𝑇 − 𝑡1)− 𝑃𝐷

𝜃
+ 𝑃

{︂
𝐷

𝜆 (𝛼)

(︁
𝑒𝜆(𝛼)(𝑇−𝑡1) − 1

)︁
+

𝐷

𝜃

}︂
𝑒𝜃𝑡1 − 𝑃𝐷

𝜆 (𝛼)

(︁
𝑒𝜆(𝛼)(𝑇−𝑡1) − 1

)︁
.

We assumed that cost of preservation technology investment per unit item is 𝛼.
(5) Preservation Technology Cost (𝑃𝑇𝐶) = 𝛼 (𝑇 − 𝑡1).
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Therefore the profit function is given by

𝑇𝑃 (𝑝, 𝑇 ) =
1
𝑇

[𝑆𝑅−𝑂𝐶 − 𝑃𝐶 −𝐻𝐶 − 𝑃𝑇𝐶]

=
1
𝑇

⎡⎢⎢⎢⎣
𝑝𝐷 (𝑇 − 𝑡1)− 𝑃𝐷

𝜃 + 𝑃
{︁

𝐷
𝜆(𝛼)

(︀
𝑒𝜆(𝛼)(𝑇−𝑡1) − 1

)︀
+ 𝐷

𝜃

}︁
𝑒𝜃𝑡1 − 𝑃𝐷

𝜆(𝛼)

(︀
𝑒𝜆(𝛼)(𝑇−𝑡1) − 1

)︀
−𝐶 + 𝑐𝐷

𝜃 − 𝑐𝑒𝜃𝑡1
{︁

𝐷
𝜆(𝛼)

(︀
𝑒𝜆(𝛼)(𝑇−𝑡1) − 1

)︀
+ 𝐷

𝜃

}︁
− 𝑐𝐷𝑔

𝜆(𝛼)

{︁
1

𝜆(𝛼)

(︀
𝑒𝜆(𝛼)(𝑇−𝑡1) − 1

)︀
+ (𝑡1 − 𝑇 )

}︁
− 𝑐𝐷ℎ

𝜆(𝛼)

(︁
𝑡21
2 −

𝑇 2

2

)︁
− 𝑐𝐷ℎ

𝜆(𝛼)

{︁
1

𝜆(𝛼)2

(︀
𝑒𝜆(𝛼)(𝑇−𝑡1) − 1

)︀
+ 1

𝜆(𝛼)

(︀
𝑡1𝑒

𝜆(𝛼)(𝑇−𝑡1) − 𝑇
)︀}︁
− 𝛼 (𝑇 − 𝑡1)

⎤⎥⎥⎥⎦ .

Our target is to find the optimal selling price 𝑝* per unit item and the length of the cycle 𝑇 * to maximize
the retailer’s profit per unit time 𝑇𝑃 (𝑝, 𝑇 ).

6. Theoretical results

We formulated the concavity of the objective function for the above problem. To analyze the concavity for
the models, we used some results from Combini and Martein [6]. Depending on the Theorems 3.2.9 and 3.2.10
in Combini and Martein [6], we know that the function of the form

𝛾 (𝑥) =
𝑓 (𝑥)
𝑔 (𝑥)

; 𝑥 ∈ R (6.1)

is strictly pseudo-concave if 𝑓 (𝑥) is differentiable, non-negative and strictly concave function and 𝑔 (𝑥) is positive,
convex and differentiable function.

To represent the optimality of our problem by using the above results first, we determined the optimal value
of 𝑝* then we calculated the optimal value of replenishment 𝑇 *, which maximizes the retailer’s total profit per
unit time using the optimal selling price value 𝑝*.

Theorem 6.1. For a fixed 𝑝 > 0, 𝑇𝑃 (𝑝, 𝑇 ) is a pseudo-concave function of 𝑇 . Hence, there exist a unique 𝑇
(Say 𝑇 *) such that 𝑇𝑃 (𝑝, 𝑇 ) attains the maximum value.

Proof. As we consider the value of 𝑝 > 0 is fixed. So, 𝑇𝑃 (𝑝, 𝑇 ) becomes function of 𝑇 .
�

Take,

𝑇𝑃 (𝑝, 𝑇 ) =
𝑓1 (𝑇 )
𝑔1 (𝑇 )

where 𝑔1 (𝑇 ) = 𝑇 and

𝑓1 (𝑇 ) =

⎡⎢⎢⎢⎣
𝑝𝐷 (𝑇 − 𝑡1)− 𝑃𝐷

𝜃 + 𝑃
{︁

𝐷
𝜆(𝛼)

(︀
𝑒𝜆(𝛼)(𝑇−𝑡1) − 1

)︀
+ 𝐷

𝜃

}︁
𝑒𝜃𝑡1 − 𝑃𝐷

𝜆(𝛼)

(︀
𝑒𝜆(𝛼)(𝑇−𝑡1) − 1

)︀
−𝐶 + 𝑐𝐷

𝜃 − 𝑐𝑒𝜃𝑡1
{︁

𝐷
𝜆(𝛼)

(︀
𝑒𝜆(𝛼)(𝑇−𝑡1) − 1

)︀
+ 𝐷

𝜃

}︁
− 𝑐𝐷𝑔

𝜆(𝛼)

{︁
1

𝜆(𝛼)

(︀
𝑒𝜆(𝛼)(𝑇−𝑡1) − 1

)︀
+ (𝑡1 − 𝑇 )

}︁
− 𝑐𝐷ℎ

𝜆(𝛼)

(︁
𝑡21
2 −

𝑇 2

2

)︁
− 𝑐𝐷ℎ

𝜆(𝛼)

{︁
1

𝜆(𝛼)2

(︀
𝑒𝜆(𝛼)(𝑇−𝑡1) − 1

)︀
+ 1

𝜆(𝛼)

(︀
𝑡1𝑒

𝜆(𝛼)(𝑇−𝑡1) − 𝑇
)︀}︁
− 𝛼 (𝑇 − 𝑡1)

⎤⎥⎥⎥⎦
Aim: (i) 𝑓1 (𝑇 ) is strictly concave and (ii) 𝑔1 (𝑇 ) is convex.

Also,

𝑓 ′′1 (𝑇 ) =
[︂
− (𝑐− 𝑃 ) 𝐷𝜆 (𝛼) 𝑒𝜃𝑡1𝑒𝜆(𝛼)(𝑇−𝑡1) − 𝑃𝜆 (𝛼) 𝐷𝑒𝜆(𝛼)(𝑇−𝑡1) − 𝑐𝐷𝑔𝑒𝜆(𝛼)(𝑇−𝑡1)

− 𝑐𝐷ℎ
𝜆(𝛼)

{︀(︀
𝑒𝜆(𝛼)(𝑇−𝑡1) − 1

)︀
+ 𝑡1𝜆 (𝛼) 𝑒𝜆(𝛼)(𝑇−𝑡1)

}︀ ]︂

Since we know that 𝑐 > 𝑃 . So, (𝑐− 𝑃 ) 𝐷𝜆 (𝛼) 𝑒𝜃𝑡1𝑒𝜆(𝛼)(𝑇−𝑡1) > 0.
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Also as
(︀
𝑒𝜆(𝛼)(𝑇−𝑡1) − 1

)︀
> 0, this implies

{︀(︀
𝑒𝜆(𝛼)(𝑇−𝑡1) − 1

)︀
+ 𝑡1𝜆 (𝛼) 𝑒𝜆(𝛼)(𝑇−𝑡1)

}︀
> 0

∴ 𝑓 ′′1 (𝑇 ) < 0.
Therefore, 𝑓1 (𝑇 ) is strongly concave function for all 𝑝 > 0. Also, 𝑓1 (𝑇 ) is a positive differentiable concave

function of 𝑇 . Additionally, 𝑔1 (𝑇 ) = 𝑇 is a differentiable convex function and 𝑔1 (𝑇 ) > 0.
Hence, for any fixed 𝑝 the total profit function 𝑇𝑃 (𝑝, 𝑇 ) is strongly pseudo-concave function of 𝑇 . So, there

exists an unique 𝑇 * such that 𝑇𝑃 (𝑝, 𝑇 ) attains the maximum value.

Theorem 6.2. For any specified value of the cycle length 𝑇 > 0, 𝑇𝑃 (𝑝, 𝑇 ) is a concave function of 𝑝. Hence
there exists a unique 𝑝 (Say 𝑝*) such that 𝑇𝑃 (𝑝, 𝑇 ) attains the maximum value.

Proof. As we consider the value of 𝑇 > 0 is fixed. So, 𝑇𝑃 (𝑝, 𝑇 ) becomes function of 𝑝. �

Take,

𝑇𝑃 (𝑝, 𝑇 ) = 𝑓2 (𝑝)

∴ 𝑓 ′2 (𝑝) =
1
𝑇

⎡⎢⎢⎢⎢⎢⎣
(𝛿1 − 2𝛿2𝑝) (𝑇 − 𝑡1) + 𝛿2𝑃

𝜃

−𝑃𝑒𝜃𝑡1
{︁

𝛿2
𝜆(𝛼)

(︀
𝑒𝜆(𝛼)(𝑇−𝑡1) − 1

)︀
+ 𝛿2

𝜃

}︁
+ 𝑃𝛿2

𝜆(𝛼)

(︀
𝑒𝜆(𝛼)(𝑇−𝑡1) − 1

)︀
− 𝑐𝛿2

𝜃 +

𝑐𝑒𝜃𝑡1
{︁

𝛿2
𝜆(𝛼)

(︀
𝑒𝜆(𝛼)(𝑇−𝑡1) − 1

)︀
+ 𝛿2

𝜃

}︁
+ 𝑐𝛿2𝑔

𝜆(𝛼)

{︁
1

𝜆(𝛼)

(︀
𝑒𝜆(𝛼)(𝑇−𝑡1) − 1

)︀
+ (𝑡1 − 𝑇 )

}︁
+ 𝑐𝛿2ℎ

𝜆(𝛼)

(︁
𝑡21
2 −

𝑇 2

2

)︁
+ 𝑐𝛿2ℎ

𝜆(𝛼)

{︁
1

𝜆2(𝛼)

(︀
𝑒𝜆(𝛼)(𝑇−𝑡1) − 1

)︀
+ 1

𝜆(𝛼)

(︀
𝑡1𝑒

𝜆(𝛼)(𝑇−𝑡1) − 𝑇
)︀}︁
− 0

⎤⎥⎥⎥⎥⎥⎦
∴ 𝑓 ′′2 (𝑝) =

−2𝛿2 (𝑇 − 𝑡1)
𝑇

As (𝑇 − 𝑡1) > 0 so, 𝑓 ′′2 (𝑝) < 0.
Therefore, for any specified value of 𝑇 > 0 𝑇𝑃 (𝑝, 𝑇 ) is a concave function. So, there exits a unique 𝑝 (say 𝑝*)

such that 𝑇𝑃 (𝑝, 𝑇 ) attains the maximum value. This completes the proof.
The necessary condition to find the optimal selling price (𝑝*) can be found by equating the first order partial

derivative of 𝑇𝑃 (𝑝, 𝑇 ) with respect to 𝑝 of 𝑇𝑃 (𝑝, 𝑇 ) equal to zero. After simplifying, the necessary condition
is given by ⎡⎢⎢⎢⎢⎢⎣

(𝛿1 − 2𝛿2𝑝) (𝑇 − 𝑡1) + 𝛿2𝑃
𝜃

−𝑃𝑒𝜃𝑡1
{︁

𝛿2
𝜆(𝛼)

(︀
𝑒𝜆(𝛼)(𝑇−𝑡1) − 1

)︀
+ 𝛿2

𝜃

}︁
+ 𝑝1𝛿2

𝜆(𝛼)

(︀
𝑒𝜆(𝛼)(𝑇−𝑡1) − 1

)︀
− 𝑐𝛿2

𝜃 +

𝑐𝑒𝜃𝑡1
{︁

𝛿2
𝜆(𝛼)

(︀
𝑒𝜆(𝛼)(𝑇−𝑡1) − 1

)︀
+ 𝛿2

𝜃

}︁
+ 𝑐𝛿2𝑔

𝜆(𝛼)

{︁
1

𝜆(𝛼)

(︀
𝑒𝜆(𝛼)(𝑇−𝑡1) − 1

)︀
+ (𝑡1 − 𝑇 )

}︁
+ 𝑐𝛿2ℎ

𝜆(𝛼)

(︁
𝑡21
2 −

𝑇 2

2

)︁
+ 𝑐𝛿2ℎ

𝜆(𝛼)

{︁
1

𝜆2(𝛼)

(︀
𝑒𝜆(𝛼)(𝑇−𝑡1) − 1

)︀
+ 1

𝜆(𝛼)

(︀
𝑡1𝑒

𝜆(𝛼)(𝑇−𝑡1) − 𝑇
)︀}︁

⎤⎥⎥⎥⎥⎥⎦ = 0

Also, the necessary condition for finding the optimal cycle length (𝑇 *) for a given selling price (𝑝) can be
found by equating the partial derivative 𝜕𝑇𝑃 (𝑝,𝑇 )

𝜕𝑇 = 0. So the equation is

− 1
𝑇

⎡⎢⎢⎢⎣
𝑝𝐷 (𝑇 − 𝑡1)− 𝑃𝐷

𝜃 + 𝑃
{︁

𝐷
𝜆(𝛼)

(︀
𝑒𝜆(𝛼)(𝑇−𝑡1) − 1

)︀
+ 𝐷

𝜃

}︁
𝑒𝜃𝑡1 − 𝑃𝐷

𝜆(𝛼)

(︀
𝑒𝜆(𝛼)(𝑇−𝑡1) − 1

)︀
−𝐶 + 𝑐𝐷

𝜃 − 𝑐𝑒𝜃𝑡1
{︁

𝐷
𝜆(𝛼)

(︀
𝑒𝜆(𝛼)(𝑇−𝑡1) − 1

)︀
+ 𝐷

𝜃

}︁
− 𝑐𝐷𝑔

𝜆(𝛼)

{︁
1

𝜆(𝛼)

(︀
𝑒𝜆(𝛼)(𝑇−𝑡1) − 1

)︀
+ (𝑡1 − 𝑇 )

}︁
− 𝑐𝐷ℎ

𝜆(𝛼)

(︁
𝑡21
2 −

𝑇 2

2

)︁
− 𝑐𝐷ℎ

𝜆(𝛼)

{︁
1

𝜆(𝛼)2

(︀
𝑒𝜆(𝛼)(𝑇−𝑡1) − 1

)︀
+ 1

𝜆(𝛼)

(︀
𝑡1𝑒

𝜆(𝛼)(𝑇−𝑡1) − 𝑇
)︀}︁
− 𝛼 (𝑇 − 𝑡1)

⎤⎥⎥⎥⎦
+

[︃
𝑝𝐷 + 𝑃𝐷𝑒𝜆(𝛼)(𝑇−𝑡1)𝑒𝜃𝑡1 − 𝑃𝐷𝑒𝜆(𝛼)(𝑇−𝑡1) − 𝑐𝐷𝑒𝜃𝑡1𝑒𝜆(𝛼)(𝑇−𝑡1) − 𝑐𝐷𝑔

𝜆(𝛼)

{︀
𝑒𝜆(𝛼)(𝑇−𝑡1) − 1

}︀
+ 𝑐𝐷ℎ𝑇

𝜆(𝛼)

− 𝑐𝐷ℎ
𝜆(𝛼)

{︁
1

𝜆(𝛼)𝑒
𝜆(𝛼)(𝑇−𝑡1) + 1

𝜆(𝛼)

(︀
𝑡1𝜆 (𝛼) 𝑒𝜆(𝛼)(𝑇−𝑡1) − 1

)︀}︁
− 𝛼

]︃
= 0.

After getting the value of 𝑝* and 𝑇 *, we can calculate the optimal economic order quantity 𝑄* from the
equation (5.8). Also we can find the optimal values of the defective item quantity (𝑆*) and (𝑀*) (optimal
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quantity which is arrived at retailer’s warehouse) from the equation (5.9), (5.7) respectively by using optimal
values of 𝑝* and 𝑇 *.

7. Algorithm for the model

Step-1: Initialized 𝑇𝑃max (𝑝, 𝑇 ) = 0 and 𝑖 = 𝑛.

Step-2: Input all the value of given parameters.
Step-3: Set 𝑗 = 1, 𝑝𝑗 = 𝑝1; where 𝑝1 is the solution of 𝛿1 − 2𝛿2𝑝 = 0.

Step-4: Solve the equation 𝜕𝑇𝑃
𝜕𝑇 = 0 to find the 𝑇 = 𝑇 (𝑗) by using 𝑝 = 𝑝(𝑗).

Step-5: Substitute the value of 𝑇 (𝑗) in the equation 𝜕𝑇𝑃
𝜕𝑝 = 0 and solve for 𝑝

(𝑗)
1 ,

set 𝑝(𝑗+1) = 𝑝
(𝑗+1)
1 .

Step-6: If | 𝑝(𝑗+1) − 𝑝(𝑗) | ≤ 10−5 then go to step-7 else go to step-4; 𝑗 = 𝑗 + 1.

Step-7: Substitute the value of 𝑝 = 𝑝(𝑗) and 𝑇 = 𝑇 (𝑗) in the equation 𝑇𝑃 (𝑝, 𝑇 ),
Set 𝑇𝑃𝑖 (𝑝, 𝑇 ) = 𝑇𝑃 (𝑝, 𝑇 ) . If 𝑇𝑃𝑖 (𝑝, 𝑇 ) > 𝑇𝑃max (𝑝, 𝑇 ) then 𝑇𝑃max (𝑝, 𝑇 ) =

𝑇𝑃𝑖 (𝑝, 𝑇 ) .

Step-8: Find the total profit per unit time 𝑇𝑃max (𝑝, 𝑇 ) by using the optimal value of p
and T.

Step-9: Find the optimal order quantity per cycle 𝑄*, 𝑆, 𝑀 by using the value of 𝑝*, 𝑇 *.

8. Computational results

To inspect the applicability of our theoretical results we have demonstrate a numerical example using
MATLAB software with the help of our developed algorithms.

8.1. Numerical examples

Let, us assumed that the purchasing cost of an item is $40/unit. Along with 𝛿1 = 80, 𝛿2 = 0.9, 𝑔 = 0.2
($/unit/week), ℎ = 0.05 ($/unit/week), 𝜃 = 0.5, 𝜂 = 0.8, 𝛼̄ = 10, 𝛼 = 5 ∈ [𝑜, 𝛼̄], 𝜆 (𝛼) = 𝑒−𝜂𝛼 = 0.0183 (<𝜃),
𝑐 = 40 ($/unit), 𝑃 = 35 ($/unit), 𝑡1 = 3

7 week = 0.42857 week, 𝐶 = 10 ($).
Solution:
Step-1: Initialized 𝑇𝑃max (𝑝, 𝑇 ) = 0, 𝑖 = 1.

Step-2: Input all the values of given parameters.
Step-3: Set 𝑗 = 1, 𝑝(𝑗) = 𝑝1 = 𝑎

2𝑏 = 44.4444.

Step-4: After solving the equation 𝜕𝑇𝑃
𝜕𝑇 = 0, we get 𝑇 = 𝑇 (1) = 0.9783 by using 𝑝 = 𝑝(1).

Step-5: By using 𝑇 = 𝑇 (1) = 0.9783 after solving 𝜕𝑇𝑃
𝜕𝑝 = 0, we get 𝑝

(1)
1 = 68.5914.

∴ 𝑝(2) = 𝑝
(1)
1 = 68.5914

Step-6: | 𝑝(2) − 𝑝(1) |=| 68.5914− 44.4444 |� 10−5 go to step-4, 𝑗 = 𝑗 + 1 = 2
Step-4: 𝑝(2) = 68.5914 By using 𝑝 = 𝑝(2) from the equation 𝜕𝑇𝑃

𝜕𝑇 = 0,
we get 𝑇 = 𝑇 (2) = 1.6660.
Step-5: By using 𝑇 = 𝑇 (2) = 1.6660 after solving 𝜕𝑇𝑃

𝜕𝑝 = 0, we get 𝑝
(2)
1 = 69.2601.

∴ 𝑝(3) = 𝑝
(2)
1 = 69.2601

Step-6: | 𝑝(3) − 𝑝(2) |=| 69.2601− 68.5914 |� 10−5 go to step-4, 𝑗 = 𝑗 + 1 = 2 + 1 = 3
Step-4: 𝑝(3) = 69.2601 By using 𝑝 = 𝑝(3) and after solving the equation 𝜕𝑇𝑃

𝜕𝑇 = 0,
we get 𝑇 = 𝑇 (3) = 1.6806
Step-5: By using 𝑇 = 𝑇 (3) after solving the equation 𝜕𝑇𝑃

𝜕𝑝 = 0, we get 𝑝
(3)
1 = 69.2919.

∴ 𝑝(4) = 𝑝
(3)
1 = 69.2919
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Step-6: | 𝑝(4) − 𝑝(3) |=| 69.2919− 69.2601 |� 10−5 go to step-4, 𝑗 = 𝑗 + 1 = 3 + 1 = 4.
Step-4: By using 𝑝(4) = 69.2919 and after solving the equation 𝜕𝑇𝑃

𝜕𝑇 = 0,
we get 𝑇 = 𝑇 (4) = 1.6812.

Step-5: By using 𝑇 = 𝑇 (4) after solving the equation 𝜕𝑇𝑃
𝜕𝑝 = 0, we get 𝑝

(4)
1 = 69.2920.

∴ 𝑝(5) = 𝑝
(4)
1 = 69.2920

Step-6: | 𝑝(5) − 𝑝(4) |=| 69.2920− 69.2919 |� 10−5 go to step-4, 𝑗 = 𝑗 + 1 = 4 + 1 = 5.
Step-4: By using 𝑝(5) = 69.2920 and after solving the equation 𝜕𝑇𝑃

𝜕𝑇 = 0,
we get 𝑇 = 𝑇 (5) = 1.6812.

Step-5: By using 𝑇 = 𝑇 (5) after solving the equation 𝜕𝑇𝑃
𝜕𝑝 = 0, we get 𝑝

(5)
1 = 69.2920.

∴ 𝑝(6) = 𝑝
(5)
1 = 69.2920.

Step-6: | 𝑝(6) − 𝑝(5) |=| 69.2920− 69.2920 | ≤ 10−5 go to step-7.
Step-7: Using 𝑝 = 𝑝(6) = 69.2920 and 𝑇 = 𝑇 (5) = 1.6812, we get

𝑇𝑃𝑖 (𝑝, 𝑇 ) = 247.8542 > 𝑇𝑃max.

Step-8: The optimal solution is

𝑇𝑃 (𝑝, 𝑇 ) = $247.8542

𝑝* = $69.2920

and

𝑇 * = 1.6812 weeks.

Step-9: The economic order quantity

𝑄* = 457.5266 units.

Also, 𝑆* = 95.0523 units and 𝑀* = 362.4743 units.

8.2. Sensitivity analysis

Here, we have described the sensitity analysis of the optimal solutions with respect to different parame-
ters such as deterioration rate during carrying (𝜃), deterioration rate when preservation technology applied
𝜆 (𝛼), constant part of holding cost (𝑔), co-efficient of linearly time dependent holding cost (ℎ), time at which
stock arrived at retailer’s warehouse, purchasing cost per unit time (𝑐), constant part of demand rate (𝛿1),
co-efficient of the price in the demand rate (𝛿2) etc. We substitute the value of one parameter in a steps of
10% (−20%,−10%, +10%, +20%) but once at a time. From the sensitivity analysis Table 4, we can observe the
following results:

(1) The total profit (𝑇𝑃 *) for our model decreases if the value of 𝑡1, 𝜆 (𝛼), 𝜃, ℎ, 𝑔, 𝛿2 are enhanced. So, if
the values of the mentioned parameters increase the retailer will earn less amount of profit. Also, the value of
profit function (𝑇𝑃 *) increases with respect to the increasing values of 𝛿1 and 𝑃 . Hence, the retailer can earn
more profit if the values of 𝛿1 and 𝑃 increase. Additionally, the parameter 𝛿1 has a powerful influence on the
profit function 𝑇𝑃 * as the higher value of 𝛿1 can help to extend the profit.

(2) The optimal selling price of the item (𝑝*) increases if we increase the values of 𝑡1, 𝜆 (𝛼), 𝜃, 𝑔, 𝛿1, 𝑐. Also
the selling price (𝑝*) reduces with respect to the higher values of 𝑃 and 𝛿2. So, if the holding cost and the
purchasing cost of a unit item rises then the retailer will increase the unit selling price to obtain the maximum
profit. Additionally, the parameter 𝛿2 has a powerful influence on increasing 𝑝* but it also has a negative impact
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Table 4. Sensitivity analysis of different parameters.

Parameter Original value New value 𝑝* 𝑇 * 𝑇𝑃 *

𝛿1 80 64 60.0410 1.4937 68.3880
72 64.6599 1.5884 144.6982
88 73.9285 1.7699 378.5140
96 78.5653 1.8541 537.1993

𝛿2 0.9 0.7200 80.4905 1.8977 499.9213
0.8100 74.4479 1.7813 354.3366
0.9900 65.0753 1.5943 169.2436
1.0800 61.5662 1.5185 111.1003

g 0.2 0.1600 68.9755 1.7876 261.9281
0.1800 69.1375 1.7318 254.6832
0.2200 69.440 1.6351 241.3997
0.2400 69.5820 1.5928 235.2838

h 0.05 0.0400 69.2464 1.7119 250.7218
0.0450 69.2693 1.6962 249.2720
0.0550 69.3145 1.6669 246.4669
0.0600 69.3368 1.6532 245.1085

𝜃 0.5 0.4000 69.1393 1.6811 251.8729
0.4500 69.2149 1.6812 249.8803
0.5500 69.3707 1.6813 245.7945
0.6000 69.4510 1.6814 243.7006

𝜆 (𝛼) 0.0183 0.0147 69.2623 1.6923 249.2435
0.0165 69.2772 1.6867 248.5470
0.0201 69.3068 1.6758 247.1651
0.0220 69.3215 1.6704 246.4794

𝑃 35 28 71.6863 1.8468 195.2757
31.5000 70.5265 1.7673 220.4265
38.5000 67.9558 1.5866 277.8926
42 66.4711 1.4801 311.0286

𝑡1 0.42857 0.3429 68.7113 1.5086 272.6559
0.3857 68.0056 1.5970 259.8221
0.4714 69.5721 1.7619 236.6280
0.5143 69.8474 1.8394 226.0461

𝑐 40 32 62.1864 1.6978 470.1099
36 65.7328 1.6880 350.4032
44 72.8604 1.6772 162.4548
48 76.4358 1.6763 94.2004

𝐶 10 8 69.2800 1.6755 249.0459
9 69.2860 1.6784 248.4496
11 69.2980 1.6841 247.2600
12 69.3040 1.6869 246.667

on the demand function. So, It is important to maintain the balance between the higher selling price and the
demand of the item.

(3) The optimal cycle length (𝑇 *) increases with respect to the expanding values of 𝑡1 and 𝑃 . If the deterio-
ration rate (𝜃, 𝜆 (𝛼)) increases then the cycle length decreases. We observed that for the other parameters such
as 𝑐, 𝑔, ℎ etc. the cycle length is increasing first and then reduces.

(4) The optimal profit 𝑇𝑃 *(𝑝, 𝑇 ) increases if we increase the value of the demand constant 𝛿1 that is the
optimal profit 𝑇𝑃 *(𝑝, 𝑇 ) varies proportionally with the demand constant 𝛿1 and it is shown in the Figure 3.
Also, the optimal profit 𝑇𝑃 *(𝑝, 𝑇 ) decreases with respect to the increasing the purchasing cost 𝑐 and it is shown
in the Figure 4.
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Figure 2. Concavity of 𝑇𝑃 (𝑝, 𝑇 ) against 𝑝 and 𝑇 .

Figure 3. Profit function 𝑇𝑃 * (𝑝, 𝑇 ) vs. purchasing cost 𝑐 graph.
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Figure 4. Profit function 𝑇𝑃 * (𝑝, 𝑇 ) vs. demand constant (𝛿1) graph.

9. Conclusion and future research direction

In our paper, we solved a profit maximization problem under several realistic assumptions such as deteriora-
tion during carrying, price sensitivity of the demand function, time-dependent holding cost, uses of preservation
technology for deteriorating product, etc. Here we consider the deterioration rate due to carrying is constant but
after using preservation technology the deterioration rate depends only on the preservation technology invest-
ment, also it is an increasing function of preservation technology investment. In addition, the selling price of
the product (𝑝) and the total inventory cycle length (𝑇 ) are decision variables in the total profit function of our
model. By using the optimal values of the selling price of the product (𝑝⋆) & the total inventory cycle length
(𝑇 ⋆) we calculate the Economic Order Quantity (𝑄⋆), optimal quantity of the defective product due to carrying
(𝑆⋆) and the optimal inventory level (𝑀⋆) at the time 𝑡1. Finally, the numerical problem solved by using our
modified algorithm as well as the sensitivity analysis of the various parameters, which are involved in the profit
function are discussed. The numerical findings and approach of our model are applicable to several types of
industries or companies that handling various types of deteriorating product because of realistic assumption
of our model and mathematical generalization of various parameters. Therefore from our model and numerical
findings the following conclusions can be drawn

1. The optimal cycle length increases concerning the expanding values of 𝑡1. So, the total profit decreases due
to production increasing inventory cycle length. Therefore to make the maximum profit, the retailer has to
reduce the time taken to bring the deteriorating items from the supplier’s warehouse to retailer’s warehouse
by using various fast transportation modes.

2. The parameter 𝛿2 has significant impact on increasing 𝑝* but it also has a negative influence on the demand
function. So, It is important for a retailer to maintain the balance between the higher selling price and the
demand of the item by taking various marketing strategies.

3. Also, the value of profit function increases with respect to the increasing values of 𝑃 . So, the retailer can
earn more profit by selling the less defective product to the customers at highest possible price.

4. The total profit (𝑇𝑃 ⋆) for our model decreases when the value of 𝜆 (𝛼),ℎ, 𝑔, holding times are enhanced. It
indicates that the retailer can earn maximum amount of profit by decresing the values of 𝜆 (𝛼) by investing
more on preservation technology and also by reducing the values of constant coffecients of the holding cost
(ℎ, 𝑔) as well as reducing the holding time of the products.

5. When the purchasing cost of the product increases(𝐶), the total profit decreases but selling price of the
product (𝑝⋆) and the optimal cycle length (𝑇 ⋆) increases. Also, selling price of the product (𝑝⋆) has negative
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impact on demand. Hence, retailer can earn more profit by negotating the purchasing cost of the product
with wholesaler and it also gives an opportunity to a retailer to give the customer a discount on the selling
price of the product.

The limitations of our considered models are

1. In this paper, we used hypothetical data for numerical illustration instead of real data due to the company’s
secret business policy they denied to share their real data.

2. Our model is useful only for those companies that work with deteriorating items.

Our proposed model one can easily extend for future research in many aspects such as

1. By introducing expiry date-dependent deterioration rate during carrying time.
2. This model can be extended by applying a two-level trade credit policy or two warehouse systems or intro-

ducing several types of variables such as fuzzy types, interval-valued types.

Acknowledgements. The authors acknowledge the chief editor and area editor for their support and also the reviewer for
construction suggestions to improve the quality of the paper.
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