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GLOBAL MULTI-PERIOD PERFORMANCE EVALUATION - NEW MODEL
AND PRODUCTIVITY INDEX

Zohreh Moghaddas1, Amar Oukil2,* and Mohsen Vaez-Ghasemi3

Abstract. In this paper, we introduce a novel multi-period data envelopment analysis (MDEA) model
that attempts to circumvent the limitations of the existing MDEA models. The proposed global MDEA
model is essentially based on major modifications of fundamental DEA axioms to enable a decision
making unit (DMU), defined with inputs and outputs of period 𝑡, to be evaluated within the production
possibility set (PPS) of another period 𝑙, 𝑡 ̸= 𝑙. Building on the properties of the global MDEA model,
we also introduce a global productivity index, identified as Global Progress and Regress index (GPRI),
that render possible the evaluation of a DMU’s extent of progress or regress over multi-period time
horizons under variable returns to scale (VRS) production technologies. This lifts the restrictions to
two successive periods and constant returns to scale (CRS) of existing productivity indices. The most
salient features of the new MDEA model as well as the GPRI are highlighted using an application that
involves a real-life sample of 25 bank branches considered over 4 years.
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1. Introduction

Data envelopment analysis (DEA) is an optimization approach proven for its strength in evaluating perfor-
mance of decision making units (DMUs) that employ multiple inputs to produce multiple outputs ([43,44]). In
standard DEA models, the efficiency of a DMU is evaluated using input and output data bundles related to a
specific time period ([31, 34]). However, when the fluctuation of inputs and outputs is important over different
time periods, more advanced DEA models may be needed.

The Malmquist Productivity Index (MPI), introduced by Malmquist [22] and improved by Caves et al. [7],
is the first known metric for evaluating a DMU’s performance between two time periods. Later on, Grifell-
Tat́je and Lovell [11] defined the quasi-MPI conjunctly with the “one-sided” efficiency concept. In spite of its
importance in informing managers on the progress or the regress of a DMU over the time-axis, the MPI is not
concerned with estimating the DMU’s efficiency scores. Therefore, a new class of DEA models was introduced
to assess performance for multi-period production systems.
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In multi-period data envelopment analysis (MDEA), the relative efficiency of a set of DMUs can be evaluated
by considering time serial data. Park and Park [37] presented a two-phase DEA approach for measuring the
aggregative efficiency of a DMU over multi-period production systems. Sohn and Kim [42] considered as a ground
for performance analysis the simple average of the efficiency scores of multiple periods, while Esmaeilzadeh and
Hadi-Vencheh [10] proposed a super-efficiency model to measure the efficiency scores without setting weighs
on the inputs and the outputs over the time periods. The production possibility sets (PPSs) of all individual
periods are aggregated into a single PPS, which may cause overestimation of the efficiency scores besides having
observations, that do not belong to any individual PPS, included into the aggregated PPS.

In overall efficiency evaluation, standard DEA models can be used with the data aggregated over multiple
time periods. Since such approach ignores the specific situation of each time period, Kao and Liu [17] suggested
a relational network model that allows the efficiency to be assessed under each individual period. Oh and
Shin [24] used Monte Carlo analysis based on stochastic frontier analysis (SFA) and DEA to remedy the mis-
measurement that affects budget allocation and system performance when frontier estimation models are applied.
The authors considered measurement errors for scenarios with different multi-period budgeting strategies and
different production frontier estimation models. While considering the operations of individual periods, Kou and
Wang [16] introduced a multi-period two-stage DEA model that evaluates simultaneously overall and period
efficiencies, where the overall efficiency is expressed as a weighted average of the period efficiencies. In an attempt
to measure and decompose the overall efficiency of multi-period and multi-division systems (MPMDS), Kou et
al. [18] proposed a new formulation for dynamic network DEA (DNDEA) models based on system thinking to
assess performance of MPMDS for complex investment and management decisions. Razavi Hajiagha et al. [40]
noted that, in a single time point, DEA is a cross-sectional approach for relative efficiency evaluation and, hence,
considering the input-output data over multi-period time series provides an unnecessary compensating impact
and makes the efficiency appraisal unrealistic. Therefore, the authors proposed a two-stage approach based on
Chebyshev inequality bounds to avoid the negative impact of data accumulation. Li et al. [21] extended the
cross-sectional DEA model to time-varying Malmquist DEA for dynamic financial distress prediction. Lee et al.
[20] proposed a DEA model with consistent weights for time lag effects throughout the time periods, where the
inputs of a period can be used to produce the outputs of several subsequent periods. Chen et al. [9] presented
a model for the evaluation of the overall efficiency of multi-period regional R&D investment activities, which
accounts for the dynamic interdependence between these activities over different periods.

In a bid to generalize the MPI and overcome its shortcommings, Pastor and Lovell [38] and Portela [39]
introduced the global and the circular MPIs, which can provide more accurate results for productivity analysis
while considering the convex combination of the PPSs.

In a similar vein, Munisamy and Arabi [23] and Wang et al. [45] addressed the multi-period evaluation of
DMUs within a meta-frontier that considers the union of several PPSs. It is noteworthy that all MDEA models
developed in the aforementioned studies are based on the union of PPSs, which allows implicitly observations,
that belong to none of the individual PPSs, to enter the global PPS (convex combination of the PPSs or
meta-frontier). Thus, the efficiency evaluation is likely to be conducted with reference to “fictive” observations
and the outcomes might not reflect the true performance of the assessed DMUs. In this paper, we introduce
a novel MDEA model that aims to circonvent these limitations of the existing MDEA models. Although the
proposed approach adopts the union of the PPSs too, its key distinctive feature stems in its ability to guarantee
that the reference set includes solely observations that belong effectively to the individual PPSs. As such, the
efficiency evaluation process becomes more reliable and more rational under the new approach. The proposed
global MDEA model involves major modifications of fundamental DEA axioms so that to render possible for a
DMU, defined with inputs and outputs of period 𝑡, to be evaluated within the PPS of another period 𝑙, 𝑡 ̸= 𝑙.
Furthermore, building on the properties of the global MDEA model, we introduce a global productivity index,
termed Global Progress and Regress index (GPRI). Unlike the existing productivity indices that are restricted
to two successive periods for only constant returns to scale (CRS) production technologies, the GPRI enables
the DMU’s efficiency as well as the extent of its progress or regress to be evaluated over multi-period time
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horizons under variable returns to scale (VRS) assumption. The most salient features of the new MDEA model
as well as the GPRI are highlighted using a real-life sample of 25 bank branches considered over 4 years.

This paper sets out as follows. The methodological background relating to the proposed approach is presented
in Section 2. Section 3 will be dedicated to the global MDEA model, where new axioms will be defined, followed
by an explicit formulation of the new approach with a numerical illustration. Next, we introduce the GPRI,
before applying the new concepts on a real-life problem in the the banking sector in Section 4. Finally, conclusions
and new research venues can be found in Section 5.

2. Methodological background

2.1. Standard DEA models

Assume that we have 𝑛 DMUs to be evaluated. Let 𝑋 ∈ R𝑚×𝑛
+ and 𝑌 ∈ R𝑠×𝑛

+ represent the matrices of
inputs and outputs of the 𝑛 DMUs, with 𝑥𝑗 and 𝑦𝑗 denoting the 𝑗th column of 𝑋 and 𝑌 , respectively. Each
𝐷𝑀𝑈𝑗 (𝑗 = 1, . . . , 𝑛), consumes 𝑚 inputs 𝑥𝑖𝑗 (𝑖 = 1, . . . ,𝑚) to produce 𝑠 outputs 𝑦𝑟𝑗 (𝑟 = 1, . . . , 𝑠).

The CCR model, initially proposed by Charnes, Cooper and Rhodes [8], is a standard DEA model that
assumes constant returns to scale (CRS) for the production technology and considers the following axioms for
its PPS 𝑇𝑐.
𝐴1. Feasibility: ∀ 𝑗, (𝑥𝑗 , 𝑦𝑗) ∈ 𝑇𝑐.
𝐴2. Convexity: 𝑇𝑐 is a convex set.
𝐴3. Constant returns to scale: ∀ (𝑥𝑗 , 𝑦𝑗) ∈ 𝑇𝑐, (𝛼 𝑥𝑗 , 𝛼 𝑦𝑗) ∈ 𝑇𝑐, 𝛼 ∈ R.
𝐴4. Free disposability: If (𝑥, 𝑦) ∈ 𝑇𝑐, 𝑦 ≥ 𝑦′ ≥ 0 and 𝑥 ≤ 𝑥′ then 𝑥′, 𝑦′) ∈ 𝑇𝑐.
𝐴5. Closedness: 𝑇𝑐 is a closed set.
𝐴6. Minimum extrapolation: 𝑇𝑐 is the minimal set that satisfies axioms 𝐴1-𝐴5.

With axioms 𝐴1–𝐴6, 𝑇𝑐 can be defined as follows:

𝑇𝑐 =
{︂

(𝑥, 𝑦) ∈ R𝑚
+ × R𝑠

+|
𝑛∑︁

𝑗=1

𝜆𝑗𝑥𝑗 ≤ 𝑥,

𝑛∑︁
𝑗=1

𝜆𝑗𝑦𝑗 ≥ 𝑦, 𝜆𝑗 ≥ 0, 𝑗 = 1, . . . , 𝑛

}︂
(2.1)

Assuming variable returns to scale (VRS), Banker, Charnes and Cooper [5] introduced BCC model, whose PPS
discards 𝐴3 and is defined as follows:

𝑇𝑣 =
{︂

(𝑥, 𝑦) ∈ R𝑚
+ × R𝑠

+|
𝑛∑︁

𝑗=1

𝜆𝑗𝑥𝑗 ≤ 𝑥,

𝑛∑︁
𝑗=1

𝜆𝑗𝑦𝑗 ≥ 𝑦,

𝑛∑︁
𝑗=1

𝜆𝑗 = 1, 𝜆𝑗 ≥ 0, 𝑗 = 1, . . . , 𝑛

}︂
(2.2)

Under a DEA framework, the relative efficiency of a DMU can be assessed through input contraction and/or
output increment [30]. The latter approach in known as output orientation while the former is an input orien-
tation of the DEA model [35]. The output oriented CCR model that estimates the efficiency 𝜙 of 𝐷𝑀𝑈𝑜 can
be formulated as the following linear programming (LP).

max 𝜙

𝑠.𝑡.

𝑛∑︁
𝑗=1

𝜆𝑗𝑥𝑖𝑗 ≤ 𝑥𝑖𝑜 𝑖 = 1, . . . ,𝑚

𝑛∑︁
𝑗=1

𝜆𝑗𝑦𝑟𝑗 ≥ 𝜙𝑦𝑟𝑜 𝑟 = 1, . . . , 𝑠

𝜆𝑗 ≥ 0 𝑗 = 1, . . . , 𝑛

(2.3)
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𝜙* = 1 if 𝐷𝑀𝑈𝑜 is located on the efficiency frontier. Otherwise, 𝜙* > 1 and 𝐷𝑀𝑈𝑜 is declared inefficient.
Similarly, the input oriented BCC model can write as follows.

min 𝜃

𝑠.𝑡.

𝑛∑︁
𝑗=1

𝜆𝑗𝑥𝑖𝑗 ≤ 𝜃𝑥𝑖𝑜 𝑖 = 1, . . . ,𝑚

𝑛∑︁
𝑗=1

𝜆𝑗𝑦𝑟𝑗 ≥ 𝑦𝑟𝑜 𝑟 = 1, . . . , 𝑠

𝑛∑︁
𝑗=1

𝜆𝑗 = 1

𝜆𝑗 ≥ 0 𝑗 = 1, . . . , 𝑛

(2.4)

Here, 𝜃* = 1 if 𝐷𝑀𝑈𝑜 is efficient, and 𝜃* < 1 for an inefficient 𝐷𝑀𝑈𝑜.
In models (2.3) and (2.4), the potential benchmark(s) of 𝐷𝑀𝑈𝑜 can be obtained from the equations (𝑥𝑜, 𝜙

*𝑦𝑜)
and (𝜃*𝑥𝑜, 𝑦𝑜), respectively, which define the radial projections of 𝐷𝑀𝑈𝑜 on the corresponding efficiency frontiers
[1].

It is noteworthy that the standard DEA models, such as (2.3) and (2.4), assume that the input and output data
belong to the same time period. In most real world problems, several events do potentially affect a production
system’s performance over multi-period time horizons. Under these conditions, conducting performance analysis
with the standard DEA models may undermine the DMU’s true performance.

In the next section, we present a brief review of two models that dealt with multi-period performance
evaluation in the DEA literature, prior to developing a new alternative DEA model.

2.2. Multi-period efficiency evaluation

Consider 𝑛 DMUs to be evaluated over 𝐿 different time periods 𝑡, 𝑡 ∈ {𝑡1, . . . , 𝑡𝐿}. Let 𝑋𝑡 ∈ R𝑚×𝑛
+ and

𝑌 𝑡 ∈ R𝑠×𝑛
+ be the matices of observed input and output measures of the 𝑛 DMUs in time period 𝑡. With 𝑥𝑡

𝑗

and 𝑦𝑡
𝑗 denoting the 𝑗th column of 𝑋𝑡 and 𝑌 𝑡, respectively, each 𝐷𝑀𝑈𝑗 (𝑗 = 1, . . . , 𝑛) consumes 𝑚 inputs

𝑥𝑡
𝑖𝑗 (𝑖 = 1, . . . ,𝑚) to produce 𝑠 outputs 𝑦𝑡

𝑟𝑗 (𝑟 = 1, . . . , 𝑠).

2.2.1. Multi aggregative efficiency model

In order to evaluate the efficiency of 𝐷𝑀𝑈𝑜 within a multi-period production system, Park and Park [37]
proposed the Multi Aggregative Efficiency (MAE) model, which writes as follows under VRS:

max 𝜙

𝑠.𝑡.

𝑛∑︁
𝑗=1

𝜆𝑡
𝑗𝑥

𝑡
𝑖𝑗 ≤ 𝑥𝑡

𝑖𝑜 𝑖 = 1, . . . ,𝑚; 𝑡 = 𝑡1, . . . , 𝑡𝐿

𝑛∑︁
𝑗=1

𝜆𝑡
𝑗𝑦

𝑡
𝑟𝑗 ≥ 𝜙𝑦𝑡

𝑟𝑜 𝑟 = 1, . . . , 𝑠; 𝑡 = 𝑡1, . . . , 𝑡𝐿

𝑛∑︁
𝑗=1

𝜆𝑡
𝑗 = 1 𝑡 = 1, . . . , 𝐿

𝜆𝑡
𝑗 ≥ 0 𝑗 = 1, . . . , 𝑛; 𝑡 = 𝑡1, . . . , 𝑡𝐿

(2.5)

In model (2.5), Park and Park [37] adopt an optimistic viewpoint for assessing 𝐷𝑀𝑈𝑜 by considering its best
efficiency score over 𝐿 aggregated time periods.
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2.2.2. Multi-period super-efficiency evaluation

Esmaeilzadeh and Hadi-Vencheh [10] proposed a modified version of the super-efficiency model [3] that takes
into account time serial data. Instead of evaluating 𝐷𝑀𝑈𝑜 from an optimistic viewpoint, as the MAE model,
the authors claim that it is more rational to consider the average of the efficiency scores over all periods. The
VRS form of this model follows.

max 𝜙𝑜 = 1
𝐿

𝐿∑︁
𝑡=1

𝜙𝑡

𝑠.𝑡.

𝑛∑︁
𝑗=1
𝑗 ̸=𝑜

𝜆𝑡
𝑗𝑥

𝑡
𝑖𝑗 ≤ 𝑥𝑡

𝑖𝑜 𝑖 = 1, . . . ,𝑚; 𝑡 = 1, . . . , 𝐿

𝑛∑︁
𝑗=1
𝑗 ̸=𝑜

𝜆𝑡
𝑗𝑦

𝑡
𝑟𝑗 ≥ 𝜙𝑡𝑦𝑡

𝑟𝑜 𝑟 = 1, . . . , 𝑠; 𝑡 = 𝑡1, . . . , 𝑡𝐿

𝑛∑︁
𝑗=1

𝜆𝑡
𝑗 = 1 𝑡 = 1, . . . , 𝐿

𝜆𝑡
𝑗 ≥ 0 𝑗 = 1, . . . , 𝑛; 𝑡 = 𝑡1, . . . , 𝑡𝐿

(2.6)

Model (2.6) enables the measurement of the efficiency score 𝜙𝑡 of each 𝐷𝑀𝑈𝑜 in each period 𝑡, 𝑡 ∈ {𝑡1, . . . , 𝑡𝐿},
while providing its aggregative efficiency 𝜙𝑜 over 𝐿 time periods. The important feature of model (2.6) resides
in the fact that it does not require any information on price or preferential weightings of data.

3. Global multi-period DEA model

Consider a DMU 𝑝 to be evaluated over three time periods 𝑡1, 𝑡2 and 𝑡3. Assume that the efficiency score
of DMU 𝑝 is 0.8 in period 𝑡1. Due to possible changes of the production technology in periods 𝑡2 and 𝑡3, the
efficiency of DMU 𝑝 can also change, that is, it may improve or deteriorate, or remain unchanged. Consider a
situation where DMU 𝑝 preserves the efficiency score 0.8 in period 𝑡2, despite better production conditions, and
the same score in period 𝑡3, even with worse production conditions. Under such scenarios, the decision maker
(DM) would certainly face controversial issues, such as:

– Is the efficiency score 0.8 suitable for evaluating the performance of DMU 𝑝 in each period?
– Does the score 0.8 have the same meaning in each period?

To answer these questions, Hosseinzadeh et al. [14] introduced the periodic efficiency (PE) model, which considers
the data of different periods simultaneously for the evaluation. Building on the PE model, this paper aims to
bring more plausible answers to the aforementioned questions through a global multi-period approach.

3.1. Illustrative example

Given a set of DMUs that employ one input 𝑥 to produce one output 𝑦, Figure 1 shows in red and blue lines,
respectively, the efficiency frontiers at different time periods 𝑡1 and 𝑡2 under an output oriented DEA setting.
Let PPS𝑡1 and PPS𝑡2 refer to their respective PPSs. On the same graph, the dotted lines represent the PE
frontier induced by PPS𝑡1 and PPS𝑡2 , and whose PPS will be denoted PPS𝑃𝐸 . It can be said that PPS𝑡1 and
PPS𝑡2 are enveloped by PPS𝑃𝐸 . In Figure 1, the gray area appears as part of PPS𝑃𝐸 , although it belongs to
neither PPS𝑡1 nor PPS𝑡2 .

In Figure 2, with PPS𝑃𝐸 shown in dotted lines, the inefficient DMU 𝑝 can improve its efficiency by reducing
its input through its horizontal projection 𝑝′ on the PE frontier. Here, it is important to note that 𝑝′ does not
belong to PPS𝑡1 nor PPS𝑡2 . Therefore, 𝑝′ cannot be reached by using standard DEA models with the data of
times 𝑡1 and 𝑡2. In order to overcome such an obstacle, we consider the projection 𝑝′′ of DMU 𝑝 on the union
of the original efficiency frontiers, as depicted in Figure 3. Accordingly, we develop an axiomatic approach for
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Figure 1. Original PPSs at time periods 𝑡1 and 𝑡2 with Induced PE frontier.

Figure 2. Setting 𝑝′ as initial target for efficiency improvement.

a global multi-period model, which adopts as PPS the union of the PPSs over all the time periods (𝑡1 and 𝑡2),
identified as the global multi-period PPS (PPS𝐺). Indeed, 𝑝′ belongs neither to PPS𝑡1 nor to PPS𝑡2 . Hence, it
is more rational to find the coordinates of 𝑝′′ as a valid reference point instead of 𝑝′. It is not possible to find
the coordinates of 𝑝′′ by using the standard DEA models over PPS𝑡1 or PPS𝑡2 .

Unlike the global multi-period methods reviewed in the literature (e.g., [23,38,39,45]), the proposed approach
ensures that the reference point considered for the evaluation of 𝑝 belongs effectively to the existing PPSs, which
exempts explicitly those areas that are not part of these PPSs. In Figure 4, the Global Efficient frontier depicted
with purple lines can be interpreted as the union of PPS𝑡1 and PPS𝑡2 . As such, the input-projection 𝑝′′ of DMU
𝑝 will be located on PPS𝐺.
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Figure 3. Establishing 𝑝′′ as a desired target for efficiency improvement.

Figure 4. PPS of Global Efficiency.

3.2. Axioms for the Global multi-period approach

The GMP-PPS can be defined as follows:

𝑇𝐺 =
{︀

(𝑥𝑡, 𝑦𝑡)| 𝑥𝑡 can produce 𝑦𝑡, 𝑡 = 𝑡1, . . . , 𝑡𝐿
}︀
.

The construction of the VRS form of 𝑇𝐺 requires the following axioms.
Non emptiness: Considering the data sets in successive years 𝑡1 to 𝑡𝐿, we have:

∀𝑗 (𝑥𝑙
𝑗 , 𝑦

𝑙
𝑗)𝑡 ∈ 𝑇 𝑣

𝐺, 𝑙 ∈ {𝑡1, . . . , 𝑡𝐿}
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This axiom emphasizes that, in the GMP-PPS, each year contains its own observations (DMUs). Convexity:
Under the convexity assumption, in successive years, we have, for each year 𝑙:

(𝑥𝑙, 𝑦𝑙)𝑡 =
𝑛∑︁

𝑗=1

𝜇𝑗(𝑥𝑙
𝑗 , 𝑦

𝑙
𝑗)𝑡,

𝑛∑︁
𝑗=1

𝜇𝑗 = 1, 𝜇𝑗 ≥ 0, 𝑗 = 1, . . . , 𝑛 and 𝑙 ∈ {𝑡1, . . . , 𝑡𝐿}

The convexity assumption holds for each data set, from 𝑡1 to 𝑡𝐿. In this situation, 𝑇 𝑣
𝐺 is defined as the union of

the convex combinations of each separate data set, from 𝑡1 to 𝑡𝐿.

𝑇 𝑣
𝐺 =

{︂
(𝑥, 𝑦)|

𝑡𝐿⋃︁
𝑙=𝑡1

(︂
𝑦 ≥

𝑛∑︁
𝑗=1

𝜆𝑙
𝑗𝑥

𝑙
𝑗 , 𝑦 ≤

𝑛∑︁
𝑗=1

𝜆𝑙
𝑗𝑦

𝑙
𝑗 ,

𝑛∑︁
𝑗=1

𝜆𝑙
𝑗 = 1, 𝜆𝑙

𝑗 ≥ 0, 𝑗 = 1, . . . , 𝑛

)︂}︂
It should be noted that 𝑇 𝑣

𝐺 does not consider the convexity assumption for the entire data set from 𝑡1 to 𝑡𝐿.

Disposability: If (𝑥, 𝑦) ∈ 𝑇 𝑣
𝐺 and 𝑥′ ≥ 𝑥 and 𝑦 ≤ 𝑦′ then (𝑥′, 𝑦′) ∈ 𝑇 𝑣

𝐺.

Minimality: Under VRS assumption, 𝑇 𝑣
𝐺) is the smallest set satisfying the above axioms, defined as:

𝑇 𝑣
𝐺 =

{︁
(𝑥, 𝑦)|

(︁
𝑥 ≥
∑︀𝑛

𝑗=1 𝜆𝑡1
𝑗 𝑥𝑡1

𝑗 , 𝑦 ≤
∑︀𝑛

𝑗=1 𝜆𝑡1
𝑗 𝑦𝑡1

𝑗 ,
∑︀𝑛

𝑗=1 𝜆𝑡1
𝑗 = 1, 𝜆𝑡1

𝑗 ≥ 0, 𝑗 = 1, . . . , 𝑛
)︁

∨ . . . ∨
(︁
𝑥 ≥
∑︀𝑛

𝑗=1 𝜆𝑡𝐿
𝑗 𝑥𝑡𝐿

𝑗 , 𝑦 ≤
∑︀𝑛

𝑗=1 𝜆𝑡𝐿
𝑗 𝑦𝑡𝐿

𝑗 ,
∑︀𝑛

𝑗=1 𝜆𝑡𝐿
𝑗 = 1, 𝜆𝑡𝐿

𝑗 ≥ 0, 𝑗 = 1, . . . , 𝑛
)︁}︁

3.3. Modeling the Global multi-period approach

Considering 𝑇 𝑣
𝐺 for the efficiency evaluation of 𝐷𝑀𝑈𝑜, the corresponding input oriented model for each period

𝑙 ∈ {𝑡1, . . . , 𝑡𝐿} writes as follows:

min 𝜃𝑙

𝑠.𝑡. (𝜃𝑙𝑥𝑙
𝑜, 𝑦

𝑙
𝑜)𝑡 ∈ 𝑇 𝑣

𝐺, 𝑙 = 𝑡1, . . . , 𝑡𝐿.
(3.1)

For a data set involving 𝐿 time periods 𝑡1, . . . , 𝑡𝐿, model (3.1) can be written as:

min 𝜃𝑙

𝑠.𝑡.

𝑛∑︁
𝑗=1

𝜆𝑓
𝑗 𝑥𝑓

𝑖𝑗 ≤ 𝜃𝑙𝑥𝑙
𝑖𝑜 + 𝑉𝑓𝑀 𝑖 = 1, . . . ,𝑚; 𝑓 = 𝑡1, . . . , 𝑡𝐿

𝑛∑︁
𝑗=1

𝜆𝑓
𝑗 𝑦𝑓

𝑖𝑗 ≥ 𝑦𝑙
𝑟𝑜 − 𝑉𝑓𝑀 𝑟 = 1, . . . , 𝑠; 𝑓 = 𝑡1, . . . , 𝑡𝐿

𝑛∑︁
𝑗=1

𝜆𝑓
𝑗 = 1, 𝑓 = 𝑡1, . . . , 𝑡𝐿

𝑡𝐿∑︁
𝑓=𝑡1

𝑉𝑓 = 𝐿− 1

𝜆𝑓
𝑗 ≥ 0, 𝑗 = 1, . . . , 𝑛; 𝑓 = 𝑡1, . . . , 𝑡𝐿

𝑉𝑓 ∈ {0, 1}

(3.2)

Model (3.2) is a mixed integer linear program (MILP), where 𝑉𝑓 is a binary variable and 𝑀 is a large positive
number. The big 𝑀 and 𝑉𝑓 ensure that the global multi-period efficiency score of 𝐷𝑀𝑈𝑜 is minimal at a

specific time period 𝑡 ∈ {𝑡1, . . . , 𝑡𝐿}. Indeed, constraint
𝑡𝐿∑︁

𝑓=𝑡1

𝑉𝑓 = 𝐿− 1 allows for the minimum efficiency score
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of 𝐷𝑀𝑈𝑜 to be reached as a result of its evaluation with respect to each of the 𝐿 efficiency frontiers 𝑡 using
its observations (𝑥𝑜, 𝑦𝑜)𝑡, 𝑡 = 𝑡1, . . . , 𝑡𝐿. Thus, the constraints corresponding to 𝑉𝑓 = 0 are active and enable
𝐷𝑀𝑈𝑜 to be assessed based on the efficiency frontier at time 𝑓 , while the constraints for which 𝑉𝑓 = 1 are
redundant.

To avoid the computational complexity that may result out of the binary constraint in model (3.2), we develop
model (3.3) to evaluate 𝐷𝑀𝑈𝑜 at time 𝑙 (𝑙 ∈ {𝑡1, . . . , 𝑡𝐿}) with reference to all the efficiency frontiers 𝑡1, . . . , 𝑡𝐿.

min 𝜃𝑙

𝑠.𝑡.

𝑛∑︁
𝑗=1

𝜆𝑓
𝑗 𝑥𝑓

𝑖𝑗 ≤ 𝜃𝑙𝑥𝑙
𝑖𝑜 𝑖 = 1, . . . ,𝑚; 𝑓 = 𝑡1, . . . , 𝑡𝐿,

𝑛∑︁
𝑗=1

𝜆𝑓
𝑗 𝑦𝑓

𝑖𝑗 ≥ 𝑦𝑙
𝑟𝑜 𝑟 = 1, . . . , 𝑠; 𝑓 = 𝑡1, . . . , 𝑡𝐿,

𝑛∑︁
𝑗=1

𝜆𝑓
𝑗 = 1, 𝑓 = 𝑡1, . . . , 𝑡𝐿

𝜆𝑓
𝑗 ≥ 0, 𝑗 = 1, . . . , 𝑛; 𝑓 = 𝑡1, . . . , 𝑡𝐿

(3.3)

Model (3.3) can be viewed as a set of separable models in periods 𝑡1, . . . , 𝑡𝐿, contrary to the unified model
(3.2). Model (3.3) evalutes 𝐷𝑀𝑈𝑜 with reference to each separate efficiency frontier, 𝑡1 through 𝑡𝐿, for each set
of inputs and outputs (𝑥𝑜, 𝑦𝑜)𝑙 observed in period 𝑙 (𝑙 ∈ {𝑡1, . . . , 𝑡𝐿}).

As a result, 𝐿 efficiency scores, 𝜃𝑙* ∈ {𝜃*𝑡1 , 𝜃*𝑡2 , . . . , 𝜃*𝑡𝐿} are produced for each evaluation involving (𝑥𝑜, 𝑦𝑜)𝑙

over 𝐿 time periods. Ultimately, the global multi-period efficiency score 𝜃*𝑗 corresponding to 𝐷𝑀𝑈𝑗 (𝑗 =
1, . . . , 𝑛) is derived after 𝐿 series of 𝐿 evaluation runs. Accordingly, model (3.3) requires less computational
effort than model (3.2) as each 𝜃𝑙* is a result of a series of 𝐿 efficiency evaluations conducted over a single
solution run. However, model infeasibility may occur in situations where 𝐷𝑀𝑈𝑗 falls outside the intended
temporal PPS and, hence, cannot be assessed within the PPS’s efficiency frontier.

Theorem 3.1. Model (3.3) is always feasible and yields a minimum efficiency score.

Proof. Noting that 𝑙 and 𝑓 vary from 𝑡1 to 𝑡𝐿, setting, e.g., 𝑙 = 𝑡1 means 𝐷𝑀𝑈𝑜 as well as the PPS are at time
𝑡1 and solving model (3.3) under these conditions produces a regular efficiency score for 𝐷𝑀𝑈𝑜. If model (3.3)
is formulated for 𝐷𝑀𝑈𝑜 using a PPS corresponding to a different time, its efficiency score can be less than the
one obtained while it is being evaluated in time 𝑡1.

Assuming 𝜆𝑡1
𝑜 = 1, 𝜆𝑡1

𝑗 = 0, 𝑗 ̸= 𝑜, and 𝜃𝑡1 = 1, 𝜃*𝑡1 can be obtaind by solving a standard DEA model.
Therefore, 𝑚𝑖𝑛𝑡1≤𝑙≤𝑡𝐿

{𝜃*𝑡1 , . . . , 𝜃*𝑡𝐿} is not an empty set and it is always possible to have a global multi-period
efficiency score as the minimum of this set. �

3.4. Global progress and regress index (GPRI)

Measuring the efficiency scores of a DMU over serial time periods is not sufficient to support informed
decisions since production technologies may change over time, leading ineluctably to variations of the DMU’s
performance. To keep track of these changes, the MPI [7] enables the productivity status of a DMU to be
assessed between two successive time periods 𝑡1 and 𝑡2 (see, e.g., [12, 13] and [15]). However, managers would
also be interested in evaluating productivity over several time periods, which prompts the following questions:

1. Which metrics can better quantify a DMU’s change (progress or regress)?
2. How can productivity be evaluated over a time horizon of more than two periods?

To answer these questions, we propose a global progress and regress index (GPRI) that is based on the global
multi-period efficiency. The proposed index enables the progress or the regress of a DMU to be assessed under
VRS form of technology rather than assuming CRS, as the case of MPI.
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Figure 5. Profitability challenge.

Assume that the efficiency scores of 𝐷𝑀𝑈𝑝 and 𝐷𝑀𝑈𝑞 are, respectively, 0.2 and 0.8 in time 𝑡1 and reach 0.3
and 0.9 in time 𝑡2. Accordingly, we have:

𝐼𝑛𝑑𝑒𝑥𝑝 =
0.3
0.2

= 1.5 𝐼𝑛𝑑𝑒𝑥𝑞 =
0.9
0.8

= 1.125

In real life situations, increasing the efficiency level of a DMU from 0.8 to 0.9 is much harder than an increase
from 0.2 to 0.3. Because this aspect is not explicitly reflected in the above index values, we develop a procedure
that handles more formally the relative change and its extent. Consider the following function:

𝐹 (𝑥) = 𝑥2 where 𝐹 (0) = 0 and 𝐹 (1) = 1

Based on the area under the curve of F, Figure 5 shows that the progress is more substantial for 𝐷𝑀𝑈𝑞 as
compared to 𝐷𝑀𝑈𝑝, which translates better the real-life scenario. As such, the usage of function F can be seen
as a more practical way to measure a DMU’s change (progress or regress) from one period of time to another.
Subsequently, the GPRI can be defined as follows.

Definition 3.2. Given 𝐷𝑀𝑈𝑝 to be evaluated between two successive time periods 𝑡1 and 𝑡2,

GPRI𝑝 =
∫︁ 𝜃𝑡2

𝑝

𝜃
𝑡1
𝑝

𝑥2 𝑑𝑥 (3.4)

GPRI𝑝 is the extent of progress (regress) of 𝐷𝑀𝑈𝑝 if GPRI𝑝 > 0 (GPRI𝑝 < 0).
There is neither a progress nor a regress if GPRI𝑝 = 0.

In addition to its potential to determine the change status of a DMU as well as the extent of that change,
GPRI can also compare the performance of two DMUs between two successive time periods. For instance, if
𝐺𝑃𝑅𝐼𝑝 = 0.4 and 𝐺𝑃𝑅𝐼𝑞 = 0.8, one can conclude that 𝐷𝑀𝑈𝑞’s progress is twice 𝐷𝑀𝑈𝑝’s.



GLOBAL MULTI-PERIOD PERFORMANCE EVALUATION - NEW MODEL AND PRODUCTIVITY INDEX 1513

Table 1. Data of five 𝐷𝑀𝑈s.

𝐷𝑀𝑈 𝐼𝑡1 𝑂𝑡1 𝐼𝑡2 𝑂𝑡2 𝐼𝑡3 𝑂𝑡3 𝐼𝑡4 𝑂𝑡4

1 6 7 3 10 2 4 5 11
2 2 5 4 3 2 6 12 9
3 5 8 7 8 3 9 5 7
4 1 4 7 9 3 8 9 12
5 4 9 3 11 8 10 8 9

It is important to note that the GPRI has the merit to be the first index that enables such comparisons,
which certainly enhances the manager’s toolbox for more informed decisions. Moreover, the stated features
of the GPRI are not restricted to two successive time periods but can be easily extended to multiple period
horizons.

3.5. Numerical illustration

To better illustrate the proposed model, we use the example presented in Table 1. There are five 𝐷𝑀𝑈𝑠
to evaluate over four successive time periods, 𝑡1, . . . , 𝑡4. Each DMU employs a single input to produce a single
output.

If we solve model (3.3) for 𝐷𝑀𝑈1 in four time-periods, 𝑡1, 𝑡2, 𝑡3, and 𝑡4, we obtain the best efficiency score
of 𝐷𝑀𝑈1 for each of these periods.

For instance, in time 𝑙 = 𝑡1, model (3.3) writes as shown in (3.5) and produces the optimal efficiency score
𝜃*𝑡1 = 0.32.

min 𝜃𝑡1

𝑠.𝑡. 6𝜆𝑡1
1 + 2𝜆𝑡1

2 + 5𝜆𝑡1
3 + 1𝜆𝑡1

4 + 4𝜆𝑡1
5 ≤ 6𝜃𝑡1

3𝜆𝑡2
1 + 4𝜆𝑡2

2 + 7𝜆𝑡2
3 + 7𝜆𝑡2

4 + 3𝜆𝑡2
5 ≤ 6𝜃𝑡1

2𝜆𝑡3
1 + 2𝜆𝑡3

2 + 3𝜆𝑡1
3 + 3𝜆𝑡3

4 + 8𝜆𝑡3
5 ≤ 6𝜃𝑡1

5𝜆𝑡4
1 + 12𝜆𝑡4

2 + 5𝜆𝑡4
3 + 9𝜆𝑡4

4 + 8𝜆𝑡4
5 ≤ 6𝜃𝑡1

7𝜆𝑡1
1 + 5𝜆𝑡1

2 + 8𝜆𝑡1
3 + 4𝜆𝑡1

4 + 9𝜆𝑡1
5 ≥ 7

10𝜆𝑡2
1 + 3𝜆𝑡2

2 + 8𝜆𝑡2
3 + 9𝜆𝑡2

4 + 11𝜆𝑡2
5 ≥ 7

4𝜆𝑡3
1 + 6𝜆𝑡3

2 + 9𝜆𝑡1
3 + 8𝜆𝑡3

4 + 10𝜆𝑡3
5 ≥ 7

11𝜆𝑡4
1 + 9𝜆𝑡4

2 + 7𝜆𝑡4
3 + 12𝜆𝑡4

4 + 9𝜆𝑡4
5 ≥ 7

𝜆𝑓
𝑗 ≥ 0, 𝑗 = 1, . . . , 5 𝑓 = 𝑡1, . . . , 𝑡4

(3.5)

In time 𝑙 = 𝑡2, 𝐷𝑀𝑈1 is evaluated using model (3.6), which yields 𝜃*𝑡2 = 0.97. Idem for times 𝑙 = 𝑡3 and
𝑙 = 𝑡4.

min 𝜃𝑡2

𝑠.𝑡. 6𝜆𝑡1
1 + 2𝜆𝑡1

2 + 5𝜆𝑡1
3 + 1𝜆𝑡1

4 + 4𝜆𝑡1
5 ≤ 3𝜃𝑡2

3𝜆𝑡2
1 + 4𝜆𝑡2

2 + 7𝜆𝑡2
3 + 7𝜆𝑡2

4 + 3𝜆𝑡2
5 ≤ 3𝜃𝑡2

2𝜆𝑡3
1 + 2𝜆𝑡3

2 + 3𝜆𝑡1
3 + 3𝜆𝑡3

4 + 8𝜆𝑡3
5 ≤ 3𝜃𝑡2

5𝜆𝑡4
1 + 12𝜆𝑡4

2 + 5𝜆𝑡4
3 + 9𝜆𝑡4

4 + 8𝜆𝑡4
5 ≤ 3𝜃𝑡2

7𝜆𝑡1
1 + 5𝜆𝑡1

2 + 8𝜆𝑡1
3 + 4𝜆𝑡1

4 + 9𝜆𝑡1
5 ≥ 10

10𝜆𝑡2
1 + 3𝜆𝑡2

2 + 8𝜆𝑡2
3 + 9𝜆𝑡2

4 + 11𝜆𝑡2
5 ≥ 10

4𝜆𝑡3
1 + 6𝜆𝑡3

2 + 9𝜆𝑡1
3 + 8𝜆𝑡3

4 + 10𝜆𝑡3
5 ≥ 10

11𝜆𝑡4
1 + 9𝜆𝑡4

2 + 7𝜆𝑡4
3 + 12𝜆𝑡4

4 + 9𝜆𝑡4
5 ≥ 10

𝜆𝑓
𝑗 ≥ 0, 𝑗 = 1, . . . , 5 𝑓 = 𝑡1, . . . , 𝑡4

(3.6)
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Table 2. Global multi-period efficiency scores.

𝑇 𝑖𝑚𝑒 𝐷𝑀𝑈1 𝐷𝑀𝑈2 𝐷𝑀𝑈3 𝐷𝑀𝑈4 𝐷𝑀𝑈5

𝑡1 0.32 0.75 0.44 1.00 0.64
𝑡2 0.97 0.29 0.30 0.34 1.00
𝑡3 0.67 1.00 1.00 0.89 0.43
𝑡4 1.00 0.31 0.60 0.56 0.47

Table 3. Global Multi-period indices.

𝑡𝑖𝑚𝑒𝑠 𝐷𝑀𝑈1 𝐷𝑀𝑈2 𝐷𝑀𝑈3 𝐷𝑀𝑈4 𝐷𝑀𝑈5

𝑡1 − 𝑡2 0.30 (Prog) −0.13 (Reg) −0.02 (Reg) −0.32 (Reg) 0.24 (Prog)
𝑡2 − 𝑡3 −0.21 (Reg) 0.33 (Prog) 0.32 (Prog) 0.22 (Prog) −0.31 (Reg)
𝑡3 − 𝑡4 0.23 (Prog) −0.32 (Reg) −0.26 (Reg) −0.18 (Reg) 0.01 (Prog)

Table 4. Malmquist productivity index.

𝑇 𝑖𝑚𝑒𝑠 𝐷𝑀𝑈1 𝐷𝑀𝑈2 𝐷𝑀𝑈3 𝐷𝑀𝑈4 𝐷𝑀𝑈5

𝑡1 − 𝑡2 1.03 (Prog) 0.34 (Reg) 0.17 (Reg) 0.14 (Reg) 0.70 (Reg)
𝑡2 − 𝑡3 0.423 (Reg) 0.75 (Reg) 1.23 (Prog) 0.37 (Reg) 0.55 (Reg)
𝑡3 − 𝑡4 1.49(Prog) 0.96(Reg) 1.22(Prog) 1.29(Prog) 0.65(Reg)

We repeat the same process for 𝐷𝑀𝑈2 and the remaining DMUs. The full results for all model runs are given
in Table 2.

Next, we compute the GPRI between each pair of successive time periods for each DMU. The results are
exhibited in Table 3.

Looking at the results related to 𝐷𝑀𝑈1, its multi-period efficiency scores are, respectively, 0.32 and 0.97
in 𝑡1 and 𝑡2, with a GPRI of 0.3 between these two time-periods, reflecting a progress. In the meantime, the
efficiency score drops to 0.67 in 𝑡3, resulting in a regress from 𝑡2 to 𝑡3, duly quantified with a GPRI of −0.21. The
increase of the multi-period efficiency score to 1 in 𝑡4 is associated with a GPRI of 0.32(𝑃𝑟𝑜𝑔) between 𝑡1 and 𝑡4.
Noticeably, 𝐷𝑀𝑈1’s GPRI is 0.03(𝑃𝑟𝑜𝑔) from 𝑡2 to 𝑡4 where the efficiency scores are 0.97 and 1, respectively.
Such a gap between the latter GPRI (0.03) and the former (0.32) stresses the fact that the competition for
reaching 1 is much harder from 0.32 than from 0.97. Similarly, if we consider 𝐷𝑀𝑈5, whose efficiency scores are
0.43 and 0.47 in 𝑡3 and 𝑡4, respectively, its GPRI is 0.008(𝑃𝑟𝑜𝑔). Although the efficiency score difference here
is almost the same as with 𝐷𝑀𝑈1 (between 𝑡2 and 𝑡4), the GPRI for the latter scenario is higher (0.03(𝑃𝑟𝑜𝑔)).

Table 4 presents the values of the MPI as calculated for the above example.
The results show that there is a conflict in the change status (progress/regress) for 40% of the reported cases.
Meanwhile, based on the efficiency scores given in Table 2, the results may suggest that the MPI does not reflect
the changes correctly.

4. Application

We consider 25 bank branches over 4 years (2007 - 2010). Each bank branch is defined with three inputs
and three outputs. The inputs consist of Personal and administrative costs, Deposits, and Profit payments. The
outputs include Income from loans, Wage, and Revenue. The full data set is provided in Appendix A.
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Table 5. Standard CCR efficiency scores.

Bank 2007 2008 2009 2010

1 1 1 0.937 1
2 0.749 0.793 1 0.536
3 1 1 0.528 0.611
4 0.81 0.91 0.86 0.743
5 1 1 1 1
6 1 1 1 1
7 1 1 1 1
8 1 1 1 0.801
9 0.676 1 1 1
10 0.986 1 0.861 0.723
11 1 0.879 1 1
12 0.947 1 1 1
13 1 0.761 1 1
14 1 1 1 1
15 0.619 1 0.879 0.725
16 0.975 0.793 0.674 0.755
17 0.704 0.519 0.789 1
18 1 1 1 1
19 1 1 1 1
20 1 1 1 1
21 0.749 0.694 0.747 0.712
22 1 1 1 1
23 1 1 1 1
24 0.391 0.526 0.7 0.952
25 0.568 0.616 0.624 0.752

4.1. Global multi-period model

In the first step of the application, the bank’s performance is evaluated for each year through the standard
input oriented CCR model. The corresponding efficiency scores are displayed in Table 5.

Based on these results, 𝐵𝑎𝑛𝑘8 is fully efficient in the first three years but its efficiency score decreases
to 80% in the last year. Thus, 𝐵𝑎𝑛𝑘8 cannot be considered globally efficient. Global multi-period efficiency
evaluation models are more suitable to investigate the multi-period performance of each bank over four years
simultaneously. Using the input oriented forms of models (2.5) and (2.6) under VRS assumption, we obtain the
banks’ efficiency scores listed in the first two columns of Table 6. In regard to model (2.5), although Esmaeilzadeh
and Hadi-Venche [10] mentioned possible occurrence of infeasibility under VRS, as also noted in Seiford and
Zhu [41], we have not faced this problem in this application.

Next, we use model (3.3) to evaluate the global multi-period efficiency. The results are presented in the last
columns of Table 6 for each evaluation period.

The most significant difference between model (3.3) and the two previous models resides in its potential to
evaluate the efficiency of each bank with reference to the efficiency frontier that is induced by the union of the
PPSs corresponding to all time periods, as shown in Figure 6. Thus, model (3.3) produces global multi-period
efficiency scores that are more accurate since it does not require the efficiency scores to be computed for each
bank within each period as the case of model (2.5). In addition, model (3.3) encompasses the super efficiency
reflected in model (2.6).

More importantly, model (3.3) succeeded to overcome the inability of standard DEA models to compare
the efficiency scores of different periods with different frontiers. For instance, let us consider the evaluation of
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Table 6. Efficiency scores with multi-period efficiency models.

Bank Model (5) Model (6)
Model (9)

2007 2008 2009 2010

1 1 1.683 0.637 1 0.937 0.464
2 1 1.155 0.683 0.793 1 0.397
3 1 1.051 1 1 0.245 0.199
4 0.910 0.831 0.642 0.910 0.860 0.552
5 1 3.844 1 1 0.109 1
6 1 2.266 1 1 1 0.936
7 1 2.644 1 1 1 0.598
8 1 2.043 0.915 0.351 0.351 0.209
9 1 1.355 0.580 1 1 0.850
10 1 0.899 0.424 1 0.861 0.310
11 1 1.749 1 0.879 1 0.485
12 1 1.353 0.721 1 1 0.384
13 1 1.056 1 0.761 1 0.66
14 1 2.076 0.984 1 1 0.394
15 1 0.877 0.619 1 0.879 0.316
16 0.970 0.799 0.777 0.793 0.674 0.451
17 1 0.791 0.581 0.519 0.789 0.712
18 1 1.195 0.902 1 1 0.703
19 1 1.521 0.851 1 1 0.987
20 1 1.412 0.61 1 1 0.800
21 0.749 0.725 0.536 0.694 0.747 0.484
22 1 2.414 1 0.129 1 0.656
23 1 1.905 0.735 1 1 0.772
24 0.952 0.642 0.354 0.526 0.700 0.691
25 0.752 0.64 0.495 0.616 0.624 0.300

Table 7. Standard efficiency scores for three banks

Reference year 𝐵𝑎𝑛𝑘1 𝐵𝑎𝑛𝑘2 𝐵𝑎𝑛𝑘3

2007 1 0.748 1
2008 0.637 0.683 infeasible
2009 3.709 1.139 infeasible
2010 7.306 1.636 infeasible
𝜃* 0.637 0.683 1

𝐵𝑎𝑛𝑘1, 𝐵𝑎𝑛𝑘2, and 𝐵𝑎𝑛𝑘3 over years 2007 to 2010 with the observations (inputs and outputs) of 2007 using
standard DEA model. The results are summarized in Table 7 along the global multi-period efficiency scores 𝜃*

obtained via model (3.3). These are depicted geometrically in the two dimensional simulated diagram presented
in Figure 5.

As illustrated in Figure 6, 𝐵𝑎𝑛𝑘1 falls on the efficiency frontier of year 2007 but under the efficiency frontier
of 2008, which explains the scores 1 and 0.637, respectively. In 2009 and 2010, 𝐵𝑎𝑛𝑘1 is outside these years’
PPSs and, hence, performs as a super-efficient unit with scores 3.709 and 7.307, respectively. With regard to
the four-year evaluation, the projection of 𝐵𝑎𝑛𝑘1 on the global efficiency frontier (dotted line), which coincides
with the frontier of year 2008, and, hence, its global efficiency score is 2008’s standard efficiency, i.e., 0.637. A
similar discussion may apply to 𝐵𝑎𝑛𝑘2. Meanwhile, the efficiency score of 𝐵𝑎𝑛𝑘3 is 1 when it is assessed in 2007
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Figure 6. Standard and global efficiency evaluations.

Table 8. Super-efficiency scores of selected banks with model (2.6)

Reference year 𝐵𝑎𝑛𝑘1 𝐵𝑎𝑛𝑘2 𝐵𝑎𝑛𝑘6

2007 2.090 0.749 1.771
2008 1.712 0.793 2.991
2009 0.936 2.543 2.142
2010 1.993 0.535 2.162

Average 1.683 1.155 2.266

but its standard evaluation leads to infeasibility for the remaining years as it falls outside the corresponding
PPSs.

Based on the standard DEA model (Tab. 2.5), 𝐵𝑎𝑛𝑘1 performs efficiently in all periods except 2009 where its
efficiency score drops to 0.937. However, the corresponding global multi-period efficiency scores are quite different
due to the fact that model (3.3) tries to achieve the minimum possible efficiency score through projecting 𝐵𝑎𝑛𝑘1

on the farthest efficiency frontier. Accordingly, its global multi-period efficiency scores are 0.637 and 0.464 when
evaluated using its inputs and outputs of 2007 and 2010. Meanwhile, Table 6 reports, for 𝐵𝑎𝑛𝑘1, multi-period
efficiency scores of 1 and 1.683 with models (2.5) and (2.6), respectively, indicating successively full and super
efficiency.

Consider the super-efficiency scores in Table 8 produced by model (2.6) for three selected banks. 𝐵𝑎𝑛𝑘1

performs efficiently in years 2007, 2008, and 2010 and ends super-efficient on average. In the meantime, 𝐵𝑎𝑛𝑘2

performs efficiently only in 2009 but it is also declared globally super-efficient. Finally, 𝐵𝑎𝑛𝑘6 is the only bank
among these three that preserves overall the same efficiency status every year. On the other hand, one can see
in Table 6 that, based on model (2.5), all three banks are efficient.

4.2. Global Progress & Regress index

The MPI considers only two successive time periods for assessing a bank’s performance progress, regress,
or neutrality. One of the great features of the GPRI is its ability to address such objectives over several time
periods. In order to show the potential of the later index, we calculate the GPRIs and thw MPIs for the 25
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Table 9. Global Progress & Regress index and malmquist productivity index.

GPRI MPI
Bank 2007–2008 2008–2009 2009–2010 2007–2008 2008–2009 2009–2010

1 0.247 −0.060 −0.241 2.840 1.276 0.754
2 0.060 0.167 −0.313 2.421 1.876 0.531
3 0.000 −0.328 −0.002 0.680 0.457 0.420
4 0.163 −0.039 −0.156 1.867 1.671 0.669
5 0.000 −0.333 0.333 1.105 2.353 0.903
6 0.000 0.000 −0.060 1.996 2.586 1.061
7 0.000 0.000 −0.262 0.942 1.808 0.855
8 −0.241 0.319 −0.330 0.999 1.951 0.420
9 0.268 0.000 −0.129 1.860 2.154 1.033
10 0.308 −0.120 −0.203 1.134 1.903 0.550
11 −0.107 0.107 −0.295 0.565 2.775 0.800
12 0.208 0.000 −0.314 1.560 2.019 0.697
13 −0.186 0.186 −0.237 1.170 1.960 0.717
14 0.016 0.000 −0.313 2.249 1.688 0.691
15 0.254 −0.107 −0.216 1.138 2.533 0.463
16 0.010 −0.064 −0.072 1.021 1.352 0.765
17 −0.019 0.117 −0.043 1.652 1.636 1.041
18 0.089 0.000 −0.217 2.401 1.658 0.749
19 0.128 0.000 −0.013 1.530 1.508 1.118
20 0.258 0.000 −0.163 3.151 1.756 0.833
21 0.060 0.027 −0.101 1.940 1.569 0.676
22 −0.333 0.333 −0.239 0.967 2.060 0.918
23 0.201 0.000 −0.180 3.152 1.662 0.834
24 0.034 0.066 −0.004 2.266 1.356 1.044
25 0.037 0.003 −0.072 2.000 1.408 0.615

banks and the results are presented in Table 9. Negative, positive, and nil GPRIs refer to regress, progress, and
neurality status, respectively.

As can be seen, GPRI and MPI reveal the same productivity status for 24% of time sequences. It is also
noteworthy that the MPI is calculated under CRS assumption to avoid infeasibility in DEA models, while
GPRI is evaluated for VRS. In this application, attempts to compute MPI with VRS based DEA models led to
about 60% infeasible cases. For example, the GPRI status of 𝐵𝑎𝑛𝑘1 over the three successive time sequences
is progress, regress, and regress, successively. With MPI, the only difference is the status of the second time
sequence. Meanwhile, if we consider 𝐵𝑎𝑛𝑘5 and 𝐵𝑎𝑛𝑘6, it is evident that the associated productivity statuses
are completely different with the two indices. While showing neural, regress, and progress for GPRI, 𝐵𝑎𝑛𝑘5’s
status is progress, progress, and regress for MPI. Similarly, the status of 𝐵𝑎𝑛𝑘6 is neutral, neutral, and regress
for GPRI and progress, progress, and progress for MPI.

Let 𝜃𝑡
𝜏 denote the global efficiency of 𝐵𝑎𝑛𝑘1 when it is defined with its observations in time 𝑡 and assessed

within the efficiency frontier of time 𝜏. The results for four time sequences are shown in Table 10 alongside the
associated MPIs.

Note that 𝜃2008
2008 and 𝜃2009

2009 rerepresent here the standard efficiency scores of 𝐵𝑎𝑛𝑘1 in years 2008 and 2009,
respectively, since 𝑡 = 𝜏. Meanwhile, 𝜃2008

2009 = 24.6962 and 𝜃2009
2008 = 0.8344 are the efficiency scores of 𝐵𝑎𝑛𝑘1

obtained by solving model (3.3).
Figure 7 illustrates in dotted and solid lines, respectively, the CCR and the BCC efficiency frontiers in 2008

and 2009 with the positions of 𝐵𝑎𝑛𝑘1 in each year.
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Table 10. Global multi-period efficiency score and MPI for 𝐵𝑎𝑛𝑘1.

Time sequence 𝑡− 𝜏 𝜃𝑡
𝜏 𝑀𝑃𝐼

2008−2008 1.0000 1.0000
2008−2009 24.6962 0.6200
2009−2008 0.8344 2.4900
2009−2009 0.9365 0.9100

Figure 7. Comparison of BCC frontier and CCR frontier in time 2008.

𝐵𝑎𝑛𝑘1 is BCC-efficient in 2008 and it is CCR and BCC-inefficient in 2009, which justifies the regress noted
by a value of 𝐺𝑃𝑅𝐼 = −0.060 as opposed an MPI value of 1.276, indicating a “wrong” progress. The same
explanation applies to other cases that exhibit similar differences. Therefore, the results produced by the GPRI
appear much more accurate than those obtained using MPI.

5. Conclusion

Multi-period evaluation of production systems using time serial data are of utmost importance for managers.
In this paper, we introduced a new DEA model that allows the computation of global multi-period efficiency
scores for DMUs as well as the extent of their progress and regress over multi-period time horizons. The new
multi-period DEA (MDE) model is based upon underlying axioms for the DEA technique that enable handling
the efficiency assessment within a production possibility set (PPS) induced from the union of all periodic
PPSs. Accordingly, each DMU, defined with its observations in time period 𝑡, can easily be evaluated under
the production technology of a different time period 𝑙 before deciding on its global efficiency status. Moreover,
exploiting the features of the new model, we developed a new productivity index, identified as global progress
and regress index (GPRI), for measuring the extend of progress or regress of a DMU over two or more successive
time periods under variable returns to scale (VRS) assumption. With these features, the new productivity index
gains its merit of overcoming known limitations of the Malmquist productivity index (MPI) which is restricted
to constant returns to scale (CRS) and only two successive time periods.

The proposed MDEA model as well as related GPRI can be utilized in banking and insurance sectors where
periodic evaluation of units’ performance is extremely important for decision making. As such, we have chosen a
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real-life sample of 25 banks with four-year data set to highlight, through an extensive discussion, the theoretical
and the practical advantages of the proposed concepts.

Possible future research may include the extension of the proposed MDEA model to cross-efficiency DEA
settings ([27]–[36]) where the evaluation will engage not only the DMUs but also the associated time periods.
Under such a framework, more investigation might also be necessary to developping new metrics for a global
ranking of the DMUs. Also, sensitivity analysis of extreme efficient DMUs can be considered in the models
presented in this study.
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