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IMAGE SPACE BRANCH-REDUCTION-BOUND ALGORITHM FOR GLOBALLY
MINIMIZING A CLASS OF MULTIPLICATIVE PROBLEMS

Hongwei Jiao1,*, Wenjie Wang1, Jingben Yin1 and Youlin Shang2

Abstract. This paper presents an image space branch-reduction-bound algorithm for solving a class of
multiplicative problems (MP). First of all, by introducing auxiliary variables and taking the logarithm
of the objective function, an equivalent problem (EP) of the problem (MP) is obtained. Next, by
using a new linear relaxation technique, the parametric linear relaxation programming (PLRP) of the
equivalence problem (EP) can be established for acquiring the lower bound of the optimal value to the
problem (EP). Based on the characteristics of the objective function of the equivalent problem and
the structure of the branch-and-bound algorithm, some region reduction techniques are constructed
for improving the convergence speed of the algorithm. Finally, the global convergence of the algorithm
is proved and its computational complexity is estimated, and numerical experiments are reported to
indicate the higher computational performance of the algorithm.
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1. Introduction

This paper considers the following a class of multiplicative problems:

(MP) :

{︃
min 𝐺(𝑦) =

∏︀𝑝
𝑗=1(

∑︀𝑛
𝑖=1 𝑒𝑗𝑖𝑦𝑖 + 𝑓𝑗)𝛼𝑗 ,

s.t. 𝑦 ∈ 𝐷 = {𝑦 ∈ R𝑛|𝐴𝑦 ≤ 𝑏},

where 𝑒𝑗𝑖, 𝑓𝑗 , and 𝛼𝑗 , 𝑗 = 1, . . . , 𝑝, 𝑖 = 1, . . . , 𝑛, are all arbitrary real numbers; 𝐴 ∈ R𝑚×𝑛, 𝑏 ∈ R𝑚; 𝐷 is a
nonempty bounded set, and for any 𝑦 ∈ 𝐷,

∑︀𝑛
𝑖=1 𝑒𝑗𝑖𝑦𝑖 + 𝑓𝑗 > 0, 𝑗 = 1, 2, . . . , 𝑝.

The problem (MP) and its special form are worth studying, and which have attracted much attention from
scholars. The first reason is that the problem (MP) and its special form have a wide of practical applications,
such as network flows [3, 4], VLISI chip design [6], robust optimization [26], decision tree optimization [1],
financial optimization [19,24], and so on [10,14,15]. The second reason is that the problem (MP) and its special
form are all non-convex programming problem, which generally contain multiple local optimal solutions that
are not global optimal, so that there are many computational difficulties.
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In the past several decades, some algorithms have been proposed for solving such problems, which can
be classified into the following categories: branch-and-bound algorithms [7, 9, 12, 23, 25, 29, 35–38], level set
algorithm [22], outer-approximation [21], cutting-plane method [2], finite algorithms [20,27], etc. In recent years,
Shen et al. [30] proposed an outer space branch-and-bound algorithm for linear multiplicative programming
problem by combining the linear relaxation method with the rectangular branching technique and the outer
space region reduction technique; by using the decomposability of the problem, Shen and Huang [28] proposed
a decomposition branch-and-bound algorithm for linear multiplicative problem; Jiao et al. [13] presented an
efficient outer space branch-and-bound algorithm for generalized linear multiplicative programming problem
based on the outer space search and the branch-and-bound framework; Zhang et al. [39] presented a new
relaxation bounding method based on the search of the output space; based on the characteristics of the initial
problem, Shen et al. [31] proposed a branch-and-bound algorithm for globally solving the linear multiplicative
problem. Zhang et al. [40] proposed an efficient polynomial time algorithm for a class of generalized linear
multiplicative programs with positive exponents by utilizing a new two-stage acceleration technique; Jiao and
Shang [11] gave a two-Level linear relaxation method for generalized linear fractional programming problem,
which includes linear multiplicative problem; by using new affine relaxed technique, Jiao et al. [16] formulated a
novel branch-and-bound algorithm for solving generalized polynomial problem. However, although many scholars
have proposed some algorithms, these algorithms either can only solve a certain special form of the problem
(MP), or it is difficult to solve the problem (MP) with large-size variables. Therefore, it is still very necessary
to propose a new effective algorithm for globally solving the general form of the problem (MP).

In this paper, an image space branch-reduction-bound algorithm is proposed for globally solving the problem
(MP). In the algorithm, first of all, by introducing new auxiliary variables and taking the logarithm of the
objective function, an equivalent problem (EP) of the problem (MP) is constructed. Next, by using the first-
order differential median theorem, we present a new linear relaxation technique, which can be used to construct
the parametric linear relaxation programming problem of the problem (EP). By subsequently refining the
initial image space rectangle, and by solving a series of parametric linear relaxation programming problems, the
optimal solution of the parametric linear relaxation programming problem (PLRP) can infinitely approximate
the optimal solution of the problem (EP). Finally, the numerical results show that the proposed algorithm can
effectively find the globally optimal solutions of all test instances with the given tolerance 𝜖.

Compared with the known methods, the main advantages of the proposed algorithm are given as follows.
Firstly, the branching search takes place in the image space R𝑝 of the affine function

∑︀𝑛
𝑖=1 𝑒𝑗𝑖𝑦𝑖 + 𝑓𝑗 , rather

than in the variable dimension space R𝑛, since 𝑛 usually far exceeds 𝑝, which mitigates the required compu-
tational efforts. Secondly, some image region reduction techniques are proposed based on the characteristics of
the objective function of the equivalent problem (EP) and the structure of the branch-and-bound algorithm,
which provide a possibility to compress the investigated region, so that we can improve the computational effi-
ciency of the algorithm. Thirdly, by analysing the computational complexity of the algorithm, we estimate the
maximum iterations of the proposed algorithm for the first time. Finally, numerical comparison demonstrates
the superiority of the algorithm.

The paper is organized as follows. In Section 2, the equivalence problem (EP) of the problem (MP) and its
parametric linear relaxation programming problem (PLRP) are established. In Section 3, some image region
reduction techniques are presented for improving the convergence speed of the algorithm. In Section 4, we pro-
pose an image space branch-reduction-bound algorithm, the global convergence of the algorithm is proved, and
the complexity of the algorithm is analyzed. Numerical comparisons of some test examples in recent literatures
are reported in Section 5. Finally, some conclusions are presented in Section 6.

2. Equivalent problem and its parametric linear relaxation programming

In order to globally solve the problem (MP), we first convert the problem (MP) into an equivalent
problem (EP). Without losing generality, for each 𝑗 = 1, 2, . . . , 𝑝, let 𝑙0𝑗 = min𝑦∈𝐷

∑︀𝑛
𝑖=1 𝑒𝑗𝑖𝑦𝑖 + 𝑓𝑗 and
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𝑢0
𝑗 = max𝑦∈𝐷

∑︀𝑛
𝑖=1 𝑒𝑗𝑖𝑦𝑖 + 𝑓𝑗 . Since

∑︀𝑛
𝑖=1 𝑒𝑗𝑖𝑦𝑖 + 𝑓𝑗 is an affine function, we can get the values of 𝑙0𝑗 and

𝑢0
𝑗 by solving the corresponding linear programming problems.

Let Λ0 = {𝑧 ∈ R𝑝|𝑙0𝑗 ≤ 𝑧𝑗 ≤ 𝑢0
𝑗 , 𝑗 = 1, 2, . . . , 𝑝}, by taking the logarithm of the objective function of the

problem (MP) and introducing new variables 𝑧𝑗 =
∑︀𝑛

𝑖=1 𝑒𝑗𝑖𝑦𝑖 + 𝑓𝑗 , 𝑗 = 1, 2, . . . , 𝑝, we can convert the problem
(MP) into the equivalent problem (EP) as follows:

(EP) :

⎧⎪⎨⎪⎩
min 𝜑(𝑧) =

∑︀𝑝
𝑗=1 𝛼𝑗 ln 𝑧𝑗 ,

s.t. 𝑧𝑗 =
∑︀𝑛

𝑖=1 𝑒𝑗𝑖𝑦𝑖 + 𝑓𝑗 , 𝑗 = 1, 2, . . . , 𝑝,

𝑦 ∈ 𝐷, 𝑧 ∈ Λ0.

It is obvious that, if
(︀
𝑦*, 𝑧*1 , 𝑧

*
2 , . . . , 𝑧

*
𝑝

)︀
is a global optimal solution of the problem (EP), then 𝑦* is a global

optimal solution of the problem (MP), where 𝑧*𝑗 =
∑︀𝑛

𝑖=1 𝑒𝑗𝑖𝑦
*
𝑖 + 𝑓𝑗 , 𝑗 = 1, 2, . . . , 𝑝. On the contrary, if 𝑦* is a

global optimal solution of the problem (MP), let 𝑧*𝑗 =
∑︀𝑛

𝑖=1 𝑒𝑗𝑖𝑦
*
𝑖 + 𝑓𝑗 , 𝑗 = 1, 2, . . . , 𝑝, then

(︀
𝑦*, 𝑧*1 , 𝑧

*
2 , . . . , 𝑧

*
𝑝

)︀
is a global optimal solution of the problem (EP).

In the following, for globally solving the problem (MP), we can solve its equivalent problem (EP) instead. Next,
to design the branch-and-bound algorithm for solving the problem (EP), we need to construct the parametric
linear relaxation programming of the problem (EP), which can provide a reliable lower bound for the global
optimal value of the problem (EP).

Without losing generality, for any Λ = {𝑧 ∈ R𝑝|𝑙𝑗 ≤ 𝑧𝑗 ≤ 𝑢𝑗 , 𝑗 = 1, 2, . . . , 𝑝} ⊆ Λ0, for any 𝑧𝑗 ∈ [𝑙𝑗 , 𝑢𝑗 ], 𝑗 =
1, 2, . . . , 𝑝, let 𝜙𝑗(𝑧𝑗) = ln 𝑧𝑗 , by the first-order differential median theorem, ∃𝜉𝑗 ∈ [𝑙𝑗 , 𝑢𝑗 ], s.t. ln 𝑧𝑗 = ln 𝑙𝑗 +
1
𝜉𝑗

(𝑧𝑗 − 𝑙𝑗), so that we have

ln 𝑧𝑗 ≥ ln 𝑙𝑗 +
1
𝑢𝑗

(𝑧𝑗 − 𝑙𝑗) and ln 𝑧𝑗 ≤ ln 𝑙𝑗 +
1
𝑙𝑗

(𝑧𝑗 − 𝑙𝑗).

Similarly, for any Λ = {𝑧 ∈ R𝑝|𝑙𝑗 ≤ 𝑧𝑗 ≤ 𝑢𝑗 , 𝑗 = 1, 2, . . . , 𝑝} ⊆ Λ0, for any 𝑧𝑗 ∈ [𝑙𝑗 , 𝑢𝑗 ], 𝑗 = 1, 2, . . . , 𝑝, by the
first-order differential median theorem, ∃𝜂𝑗 ∈ [𝑙𝑗 , 𝑢𝑗 ], s.t. ln 𝑧𝑗 = ln𝑢𝑗 + 1

𝜂𝑗
(𝑧𝑗 − 𝑢𝑗), so that we have

ln 𝑧𝑗 ≥ ln𝑢𝑗 +
1
𝑙𝑗

(𝑧𝑗 − 𝑢𝑗) and ln 𝑧𝑗 ≤ ln𝑢𝑗 +
1
𝑢𝑗

(𝑧𝑗 − 𝑢𝑗).

By the above discussions, for any 𝑧𝑗 ∈ [𝑙𝑗 , 𝑢𝑗 ], 𝑗 = 1, 2, . . . , 𝑝, we can obtain that

ln 𝑧𝑗 ≥ max
{︂

ln 𝑙𝑗 +
1
𝑢𝑗

(𝑧𝑗 − 𝑙𝑗), ln𝑢𝑗 +
1
𝑙𝑗

(𝑧𝑗 − 𝑢𝑗)
}︂

= 𝜙𝑙
𝑗(𝑧𝑗),

ln 𝑧𝑗 ≤ min
{︂

ln 𝑙𝑗 +
1
𝑙𝑗

(𝑧𝑗 − 𝑙𝑗), ln𝑢𝑗 +
1
𝑢𝑗

(𝑧𝑗 − 𝑢𝑗)
}︂

= 𝜙𝑢
𝑗 (𝑧𝑗).

Therefore, for any 𝑧 ∈ Λ ⊆ Λ0, we have

𝜙𝑙
𝑗(𝑧𝑗) ≤ 𝜙𝑗(𝑧𝑗) ≤ 𝜙𝑢

𝑗 (𝑧𝑗), 𝑗 = 1, 2, . . . , 𝑝.

Theorem 2.1. For any 𝑧 ∈ Λ = {𝑧 ∈ R𝑝|𝑙𝑗 ≤ 𝑧𝑗 ≤ 𝑢𝑗 , 𝑗 = 1, 2, . . . , 𝑝}, let ∆1
𝑗 (𝑧𝑗) = 𝜙𝑗(𝑧𝑗) − 𝜙𝑙

𝑗(𝑧𝑗),
∆2

𝑗 (𝑧𝑗) = 𝜙𝑢
𝑗 (𝑧𝑗)− 𝜙𝑗(𝑧𝑗), consider the functions 𝜙𝑙

𝑗(𝑧𝑗), 𝜙𝑗(𝑧𝑗), and 𝜙𝑢
𝑗 (𝑧𝑗), 𝑗 = 1, 2, . . . , 𝑝, then we have

lim
‖𝑢−𝑙‖→0

max
𝑧∈Λ

∆1
𝑗 (𝑧𝑗) = lim

‖𝑢−𝑙‖→0
max
𝑧∈Λ

∆2
𝑗 (𝑧𝑗) = 0.

Proof. For any 𝑧𝑗 ∈ [𝑙𝑗 , 𝑢𝑗 ], 𝑗 = 1, 2, . . . , 𝑝, by the first-order differential median theorem, we know that ∃ 𝜉𝑗 ∈
[𝑙𝑗 , 𝑢𝑗 ], s.t. ln 𝑧𝑗 − ln 𝑙𝑗 = 1

𝜉𝑗
(𝑧𝑗 − 𝑙𝑗) and ∃ 𝜂𝑗 ∈ [𝑙𝑗 , 𝑢𝑗 ], s.t. ln 𝑧𝑗 − ln𝑢𝑗 = 1

𝜂𝑗
(𝑧𝑗 − 𝑢𝑗). Thus, we can obtain that

∆1
𝑗 (𝑧𝑗) = 𝜙𝑗(𝑧𝑗)− 𝜙𝑙

𝑗(𝑧𝑗)
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= ln 𝑧𝑗 −max
{︂

ln 𝑙𝑗 +
1
𝑢𝑗

(𝑧𝑗 − 𝑙𝑗), ln𝑢𝑗 +
1
𝑙𝑗

(𝑧𝑗 − 𝑢𝑗)
}︂

= min
{︂

ln 𝑧𝑗 − ln 𝑙𝑗 −
1
𝑢𝑗

(𝑧𝑗 − 𝑙𝑗), ln 𝑧𝑗 − ln𝑢𝑗 −
1
𝑙𝑗

(𝑧𝑗 − 𝑢𝑗)
}︂

= min
{︂

1
𝜉𝑗

(𝑧𝑗 − 𝑙𝑗)− 1
𝑢𝑗

(𝑧𝑗 − 𝑙𝑗),
1
𝜂𝑗

(𝑧𝑗 − 𝑢𝑗)− 1
𝑙𝑗

(𝑧𝑗 − 𝑢𝑗)
}︂

= min
{︂(︂

1
𝜉𝑗
− 1
𝑢𝑗

)︂
(𝑧𝑗 − 𝑙𝑗),

(︂
1
𝜂𝑗
− 1
𝑙𝑗

)︂
(𝑧𝑗 − 𝑢𝑗)

}︂
= min

{︂
1

𝜉𝑗𝑢𝑗
(𝑢𝑗 − 𝜉𝑗)(𝑧𝑗 − 𝑙𝑗),

1
𝜂𝑗 𝑙𝑗

(𝜂𝑗 − 𝑙𝑗)(𝑢𝑗 − 𝑧𝑗)
}︂

≤ min
{︂

1
𝑙𝑗𝑢𝑗

(𝑢𝑗 − 𝑙𝑗)(𝑢𝑗 − 𝑙𝑗),
1

(𝑙𝑗)2
(𝑢𝑗 − 𝑙𝑗)(𝑢𝑗 − 𝑙𝑗)

}︂
=

1
𝑙𝑗𝑢𝑗

(𝑢𝑗 − 𝑙𝑗)2,

since ∆1
𝑗 (𝑧𝑗) → 0 as 𝑢𝑗 − 𝑙𝑗 → 0, we can obtain that lim‖𝑢−𝑙‖→0 max𝑧∈Λ ∆1

𝑗 (𝑧𝑗) = 0.
Similarly, we can get that

∆2
𝑗 (𝑧𝑗) = 𝜙𝑢

𝑗 (𝑧𝑗)− 𝜙𝑗(𝑧𝑗)

= min
{︂

ln 𝑙𝑗 +
1
𝑙𝑗

(𝑧𝑗 − 𝑙𝑗), ln𝑢𝑗 +
1
𝑢𝑗

(𝑧𝑗 − 𝑢𝑗)
}︂
− ln 𝑧𝑗

= min
{︂

ln 𝑙𝑗 − ln 𝑧𝑗 +
1
𝑙𝑗

(𝑧𝑗 − 𝑙𝑗), ln𝑢𝑗 − ln 𝑧𝑗 +
1
𝑢𝑗

(𝑧𝑗 − 𝑢𝑗)
}︂

= min
{︂
− 1
𝜉𝑗

(𝑧𝑗 − 𝑙𝑗) +
1
𝑙𝑗

(𝑧𝑗 − 𝑙𝑗),− 1
𝜂𝑗

(𝑧𝑗 − 𝑢𝑗) +
1
𝑢𝑗

(𝑧𝑗 − 𝑢𝑗)
}︂

= min
{︂(︂

1
𝑙𝑗
− 1
𝜉𝑗

)︂
(𝑧𝑗 − 𝑙𝑗),

(︂
1
𝑢𝑗
− 1
𝜂𝑗

)︂
(𝑧𝑗 − 𝑢𝑗)

}︂
= min

{︂
1
𝜉𝑗 𝑙𝑗

(𝜉𝑗 − 𝑙𝑗)(𝑧𝑗 − 𝑙𝑗),
1

𝑢𝑗𝜂𝑗
(𝑢𝑗 − 𝜂𝑗)(𝑢𝑗 − 𝑧𝑗)

}︂
≤ min

{︂
1

(𝑙𝑗)2
(𝑢𝑗 − 𝑙𝑗)(𝑢𝑗 − 𝑙𝑗),

1
𝑙𝑗𝑢𝑗

(𝑢𝑗 − 𝑙𝑗)(𝑢𝑗 − 𝑙𝑗)
}︂

=
1
𝑙𝑗𝑢𝑗

(𝑢𝑗 − 𝑙𝑗)2,

since ∆2
𝑗 (𝑧𝑗) → 0 as 𝑢𝑗 − 𝑙𝑗 → 0, we can get that lim‖𝑢−𝑙‖→0 max𝑧∈Λ ∆2

𝑗 (𝑧𝑗) = 0.
Taken together above, we can obtain lim‖𝑢−𝑙‖→0 max𝑧∈Λ ∆1

𝑗 (𝑧𝑗) = lim‖𝑢−𝑙‖→0 max𝑧∈Λ ∆2
𝑗 (𝑧𝑗) = 0, and the

proof is complete. �

Next, let 𝜓(𝑧) denote the underestimating function of the function 𝜑(𝑧), by Theorem 2.1, we have

𝜑(𝑧) =
𝑝∑︁

𝑗=1

𝛼𝑗 ln 𝑧𝑗 ≥
𝑝∑︁

𝑗=1,𝛼𝑗>0

𝛼𝑗𝜙
𝑙
𝑗(𝑧𝑗) +

𝑝∑︁
𝑗=1,𝛼𝑗<0

𝛼𝑗𝜙
𝑢
𝑗 (𝑧𝑗) = 𝜓(𝑧).
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Therefore, by the above discussions, and introduce parameters 𝑠𝑗 , 𝑗 = 1, 2, . . . , 𝑝, we can construct the
parametric linear relaxation programming problem (PLRP) of the problem (EP) as follows:

(PLRP) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min 𝜓(𝑧) =
∑︀𝑝

𝑗=1,𝛼𝑗>0 𝛼𝑗𝑠𝑗 +
∑︀𝑝

𝑗=1,𝛼𝑗<0 𝛼𝑗𝑠𝑗 ,

s.t. ln 𝑙𝑗 + 1
𝑢𝑗

(𝑧𝑗 − 𝑙𝑗) ≤ 𝑠𝑗 , if 𝛼𝑗 > 0, 𝑗 = 1, 2, . . . , 𝑝,

ln𝑢𝑗 + 1
𝑙𝑗

(𝑧𝑗 − 𝑢𝑗) ≤ 𝑠𝑗 , if 𝛼𝑗 > 0, 𝑗 = 1, 2, . . . , 𝑝,

ln 𝑙𝑗 + 1
𝑙𝑗

(𝑧𝑗 − 𝑙𝑗) ≥ 𝑠𝑗 , if 𝛼𝑗 < 0, 𝑗 = 1, 2, . . . , 𝑝,

ln𝑢𝑗 + 1
𝑢𝑗

(𝑧𝑗 − 𝑢𝑗) ≥ 𝑠𝑗 , if 𝛼𝑗 < 0, 𝑗 = 1, 2, . . . , 𝑝,

𝑧𝑗 =
∑︀𝑛

𝑖=1 𝑒𝑗𝑖𝑦𝑖 + 𝑓𝑗 , 𝑗 = 1, 2, . . . , 𝑝,
𝑦 ∈ 𝐷, 𝑧 ∈ Λ.

It is obvious that the optimal value of the parametric linear relaxation programming problem (PLRP) is less
than or equal to the optimal value of the problem (EP).

3. Image space region reduction techniques

In order to improve the convergence speed of the algorithm, we propose some image space region reduction
techniques, which provide a possibility to reduce the current rectangle to a smaller rectangle or delete the
rectangle without losing the global optimal solution of the problem (EP). Thus, without losing generality, we
assume that UB is a best currently known upper bound of the global optimal value of the problem (EP), for
any 𝑧 ∈ Λ = {𝑧 ∈ R𝑝 : 𝑙𝑗 ≤ 𝑧𝑗 ≤ 𝑢𝑗 , 𝑗 = 1, 2, . . . , 𝑝} ⊆ Λ0, we let

̂︀𝜃 =
𝑝∑︁

𝑗=1,𝛼𝑗>0

𝛼𝑗 ln 𝑙𝑗 +
𝑝∑︁

𝑗=1,𝛼𝑗<0

𝛼𝑗 ln𝑢𝑗 .

The specific region reduction process is given by the following theorem.

Theorem 3.1. For any 𝑧 ∈ Λ = {𝑧 ∈ R𝑝 : 𝑙𝑗 ≤ 𝑧𝑗 ≤ 𝑢𝑗 , 𝑗 = 1, 2, . . . , 𝑝} ⊆ Λ0, the following conclusions hold:
if ̂︀𝜃 > UB, then there exists no globally optimal solution of the problem (EP) over Λ; otherwise, we have the
following two cases: if 𝛼𝜏 > 0 for some index 𝜏 ∈ {1, 2, . . . , 𝑝} and 𝑙𝜏 ≤ exp

(︁
UB−̂︀𝜃+𝛼𝜏 ln 𝑙𝜏

𝛼𝜏

)︁
≤ 𝑢𝜏 , then there

exists no globally optimal solution of the problem (EP) over ̂︀Λ1; if 𝛼𝜏 < 0 for some index 𝜏 ∈ {1, 2, . . . , 𝑝}
and 𝑙𝜏 ≤ exp

(︁
UB−̂︀𝜃+𝛼𝜏 ln 𝑢𝜏

𝛼𝜏

)︁
≤ 𝑢𝜏 , then there exists no globally optimal solution of the problem (EP) over ̂︀Λ2,

where ̂︀Λ1 =

{︃
𝑙𝑗 ≤ 𝑧𝑗 ≤ 𝑢𝑗 , 𝑗 = 1, 2, . . . , 𝑝, 𝑗 ̸= 𝜏,

exp
(︁

UB−̂︀𝜃+𝛼𝜏 ln 𝑙𝜏
𝛼𝜏

)︁
< 𝑧𝜏 ≤ 𝑢𝜏 , 𝑗 = 𝜏,

and ̂︀Λ2 =

{︃
𝑙𝑗 ≤ 𝑧𝑗 ≤ 𝑢𝑗 , 𝑗 = 1, 2, . . . , 𝑝, 𝑗 ̸= 𝜏,

𝑙𝜏 ≤ 𝑧𝜏 < exp
(︁

UB−̂︀𝜃+𝛼𝜏 ln 𝑢𝜏

𝛼𝜏

)︁
, 𝑗 = 𝜏.

Proof. If ̂︀𝜃 > UB, then we have that

min
𝑧∈Λ

𝜑(𝑧) = min
𝑧∈Λ

𝑝∑︁
𝑗=1

𝛼𝑗 ln 𝑧𝑗 =
𝑝∑︁

𝑗=1,𝛼𝑗>0

𝛼𝑗 ln 𝑙𝑗 +
𝑝∑︁

𝑗=1,𝛼𝑗<0

𝛼𝑗 ln𝑢𝑗 = ̂︀𝜃 > UB.

Therefore, there exists no globally optimal solution of the problem (EP) over Λ.
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If ̂︀𝜃 ≤ UB, for any 𝑧 ∈ ̂︀Λ1, consider the 𝜏𝑡ℎ component 𝑧𝜏 of 𝑧, we have exp
(︁

UB−̂︀𝜃+𝛼𝜏 ln 𝑙𝜏
𝛼𝜏

)︁
< 𝑧𝜏 ≤ 𝑢𝜏 , Thus,

we can obtain

𝑧𝜏 > exp

(︃
UB− ̂︀𝜃 + 𝛼𝜏 ln 𝑙𝜏

𝛼𝜏

)︃
,

since 𝛼𝜏 > 0, and taking the logarithm of both sides of the above formula, we can follow that

𝛼𝜏 ln 𝑧𝜏 > UB− ̂︀𝜃 + 𝛼𝜏 ln 𝑙𝜏 .

Also because ̂︀𝜃 =
𝑝∑︁

𝑗=1,𝛼𝑗>0

𝛼𝑗 ln 𝑙𝑗 +
𝑝∑︁

𝑗=1,𝛼𝑗<0

𝛼𝑗 ln𝑢𝑗 ,

we can follow that

min
𝑧∈̂︀Λ1

𝜑(𝑧) = min
𝑧∈̂︀Λ1

⎛⎝ 𝑝∑︁
𝑗=1

𝛼𝑗 ln 𝑧𝑗

⎞⎠ >

𝑝∑︁
𝑗=1,𝑗 ̸=𝜏,𝛼𝑗>0

𝛼𝑗 ln 𝑙𝑗 +
𝑝∑︁

𝑗=1,𝑗 ̸=𝜏,𝛼𝑗<0

𝛼𝑗 ln𝑢𝑗 +𝛼𝜏 ln

(︃
exp

(︃
UB− ̂︀𝜃 + 𝛼𝜏 ln 𝑙𝜏

𝛼𝜏

)︃)︃
= ̂︀𝜃 − 𝛼𝜏 ln 𝑙𝜏 + UB− ̂︀𝜃 + 𝛼𝜏 ln 𝑙𝜏
= UB.

Thus, there exists no globally optimal solution of the problem (EP) over ̂︀Λ1.

For any 𝑧 ∈ ̂︀Λ2, consider the 𝜏𝑡ℎ component 𝑧𝜏 of 𝑧, we have 𝑙𝜏 ≤ 𝑧𝜏 < exp
(︁

UB−̂︀𝜃𝜏+𝛼𝜏 ln 𝑢𝜏

𝛼𝜏

)︁
, Thus, we can

obtain

𝑧𝜏 < exp

(︃
UB− ̂︀𝜃 + 𝛼𝜏 ln𝑢𝜏

𝛼𝜏

)︃
,

since 𝛼𝜏 < 0, and taking the logarithm of both sides of the above formula, we can follow that

𝛼𝜏 ln 𝑧𝜏 > UB− ̂︀𝜃 + 𝛼𝜏 ln𝑢𝜏 .

Also because ̂︀𝜃 =
𝑝∑︁

𝑗=1,𝛼𝑗>0

𝛼𝑗 ln 𝑙𝑗 +
𝑝∑︁

𝑗=1,𝛼𝑗<0

𝛼𝑗 ln𝑢𝑗 ,

Thus, we can follow that

min
𝑧∈̂︀Λ2

𝜑(𝑧) = min
𝑧∈̂︀Λ2

⎛⎝ 𝑝∑︁
𝑗=1

𝛼𝑗 ln 𝑧𝑗

⎞⎠ >

𝑝∑︁
𝑗=1,𝑗 ̸=𝜏,𝛼𝑗>0

𝛼𝑗 ln 𝑙𝑗 +
𝑝∑︁

𝑗=1,𝑗 ̸=𝜏,𝛼𝑗<0

𝛼𝑗 ln𝑢𝑗 +𝛼𝜏 ln

(︃
exp

(︃
UB− ̂︀𝜃 + 𝛼𝜏 ln𝑢𝜏

𝛼𝜏

)︃)︃
= ̂︀𝜃 − 𝛼𝜏 ln𝑢𝜏 + UB− ̂︀𝜃 + 𝛼𝜏 ln𝑢𝜏

= UB.

Thus, there exists no globally optimal solution of the problem (EP) over ̂︀Λ2, and the proof is complete. �

According to Theorem 3.1, we can construct some image space region reduction techniques, which can provide
the possibility for deleting the whole investigated rectangle Λ or part of it, in which there is no globally optimal
solution of the problem (EP).



IMAGE SPACE BRANCH-REDUCTION-BOUND ALGORITHM FOR A CLASS OF MULTIPLICATIVE PROBLEMS 1539

4. Algorithm and its computational complexity

In this section, we firstly present a fundamental branching rule. Next, we propose an image space branch-
reduction-bound algorithm for solving the problem (EP) based on the former parametric linear relaxation
programming problem. Furthermore, the global convergence of the algorithm is proved, and the computational
complexity of the algorithm is analysed.

4.1. Branching rule

Consider the rectangle Λ = {𝑧 ∈ R𝑝|𝑙𝑗 ≤ 𝑧𝑗 ≤ 𝑢𝑗 , 𝑗 = 1, 2, . . . , 𝑝} ⊆ Λ0, the proposed branching rule is given
as follows:

(i) let 𝑞 = arg max{𝑢𝑗 − 𝑙𝑗 |𝑗 = 1, 2, . . . , 𝑝};
(ii) let

Λ1 =
{︂
𝑧 ∈ R𝑝|𝑙𝑗 ≤ 𝑧𝑗 ≤ 𝑢𝑗 , 𝑗 ̸= 𝑞, 𝑗 = 1, 2, . . . , 𝑝; 𝑙𝑗 ≤ 𝑧𝑗 ≤

𝑙𝑗 + 𝑢𝑗

2
, 𝑗 = 𝑞

}︂
and

Λ2 =
{︂
𝑧 ∈ R𝑝|𝑙𝑗 ≤ 𝑧𝑗 ≤ 𝑢𝑗 , 𝑗 ̸= 𝑞, 𝑗 = 1, 2, . . . , 𝑝;

𝑙𝑗 + 𝑢𝑗

2
≤ 𝑧𝑗 ≤ 𝑢𝑗 , 𝑗 = 𝑞

}︂
.

By the branching rule, the rectangle Λ can be subdivided into two new sub-rectangles Λ1 and Λ2.

4.2. Algorithm statement

Let LB(Λ) and (𝑦(Λ), 𝑧(Λ)) be the optimal value and the optimal solution of the (PLRP) over the sub-
rectangle Λ, respectively. Next, the basic steps of the proposed algorithm can be summarized as follows.

Step 1. Initialize the set all active nodes Ω0 = {Λ0}, the upper bound UB = +∞, the set of feasible points
𝐹 = ∅, the termination tolerance 𝜖 > 0, and the iteration counter 𝑘 = 0.
Solve the problem (PLRP) for Λ = Λ0. Let LB0 = LB(Λ0), (𝑦0, 𝑧0) =

(︀
𝑦(Λ0), 𝑧

(︀
Λ0
)︀)︀

, UB = 𝜑
(︀
𝑧0
)︀
, and

𝐹 = 𝐹
⋃︀{︀(︀

𝑦0, 𝑧0
)︀}︀

.
If UB − LB0 ≤ 𝜖, then the algorithm stops: (𝑦0, 𝑧0) is a global 𝜖-optimal solution of the problem (EP).
Otherwise, proceed with Step 2.

Step 2. Use the proposed branching rule to subdivide Λ𝑘 into two new sub-rectangles, and denote the set of
new partitioning sub-rectangles as Λ

𝑘
. For each Λ ∈ Λ

𝑘
, use the proposed image space region reduction

techniques to reduce the sub-rectangle Λ, and still denote the remaining sub-rectangles and their set as Λ
and Λ

𝑘
, respectively.

Step 3. If Λ
𝑘 ̸= ∅, for each Λ ∈ Λ

𝑘
, solve the following improved parametric linear relaxation programming

problem:

(IPLRP) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min 𝜓(𝑧) =
∑︀𝑝

𝑗=1,𝛼𝑗>0 𝛼𝑗𝑠𝑗 +
∑︀𝑝

𝑗=1,𝛼𝑗<0 𝛼𝑗𝑠𝑗 ,

s.t. ln 𝑙𝑗 + 1
𝑢𝑗

(𝑧𝑗 − 𝑙𝑗) ≤ 𝑠𝑗 , if 𝛼𝑗 > 0, 𝑗 = 1, 2, . . . , 𝑝,

ln𝑢𝑗 + 1
𝑙𝑗

(𝑧𝑗 − 𝑢𝑗) ≤ 𝑠𝑗 , if 𝛼𝑗 > 0, 𝑗 = 1, 2, . . . , 𝑝,

ln 𝑙𝑗 + 1
𝑙𝑗

(𝑧𝑗 − 𝑙𝑗) ≥ 𝑠𝑗 , if 𝛼𝑗 < 0, 𝑗 = 1, 2, . . . , 𝑝,

ln𝑢𝑗 + 1
𝑢𝑗

(𝑧𝑗 − 𝑢𝑗) ≥ 𝑠𝑗 , if 𝛼𝑗 < 0, 𝑗 = 1, 2, . . . , 𝑝,

𝑧𝑗 =
∑︀𝑛

𝑖=1 𝑒𝑗𝑖𝑦𝑖 + 𝑓𝑗 , 𝑗 = 1, 2, . . . , 𝑝,∑︀𝑝
𝑗=1,𝛼𝑗>0 𝛼𝑗𝑠𝑗 +

∑︀𝑝
𝑗=1,𝛼𝑗<0 𝛼𝑗𝑠𝑗 ≤ UB,

𝑦 ∈ 𝐷, 𝑧 ∈ Λ,

we can obtain LB(Λ) and (𝑦(Λ), 𝑧(Λ)).
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If LB(Λ) > UB, set Λ
𝑘

= Λ
𝑘∖Λ. Otherwise, update the upper bound UB, the feasible point set 𝐹 , and the

best feasible solution (𝑦𝑘, 𝑧𝑘).
Denote the remaining partitioning set as Ω𝑘 = (Ω𝑘∖Λ)

⋃︀
Λ

𝑘
, and denote the new lower bound as LB𝑘 =

infΛ∈Ω𝑘
LB(Λ).

Step 4. Let Ω𝑘+1 = Ω𝑘∖{Λ|UB− LB(Λ) ≤ 𝜖,Λ ∈ Ω𝑘}. If Ω𝑘+1 = ∅, then the algorithm stops: UB and (𝑦𝑘, 𝑧𝑘)
are the global 𝜖-optimal value and the global 𝜖-optimal solution of the problem (EP), respectively. Otherwise,
select an active node Λ𝑘+1 such that Λ𝑘+1 = arg minΛ∈Ω𝑘+1 LB(Λ), let 𝑘 = 𝑘 + 1, and return to Step 2 of
the algorithm.

Remark. In fact, the objective function of the problem (PLRP) is always less than or equal to the currently
known upper bound, when we add this condition to the problem (PLRP) as a linear constraint, we can get an
improved parameter linear relaxation programming problem (IPLRP).

4.3. Global convergence analysis

In the subsection, we will discuss the global convergence of the above algorithm.

Theorem 4.1. The presented algorithm either terminates finitely at the global optimum solution of the problem
(MP) or generates an infinite sequence {𝑦𝑘} of which any gathering point of the sequence {𝑦𝑘} is a global optimal
solution for the problem (MP).

Proof. If the presented algorithm is finite, by steps of the presented algorithm, then it terminates at some step
𝑘 ≥ 0. According to the termination condition of the algorithm, we have that

UB− LB𝑘 ≤ 𝜖.

By Steps 1 and 4 of the presented algorithm, a better feasible solution
(︀
𝑦𝑘, 𝑧𝑘

)︀
for the problem (EP) can be

found, and we have the following inequality:

𝜑
(︀
𝑧𝑘
)︀
− LB𝑘 ≤ 𝜖.

Let 𝑣 be the global optimal value of the problem (EP), we have that

LB𝑘 ≤ 𝑣.

Since
(︀
𝑦𝑘, 𝑧𝑘

)︀
is a feasible solution for the problem (EP), we can obtain that

𝜑
(︀
𝑧𝑘
)︀
≥ 𝑣.

Taken together above, it implies that

𝑣 ≤ 𝜑
(︀
𝑧𝑘
)︀
≤ LB𝑘 + 𝜖 ≤ 𝑣 + 𝜖.

So
(︀
𝑦𝑘, 𝑧𝑘

)︀
is a global 𝜖-optimal solution for the problem (EP) in the sense that

𝑣 ≤ 𝜑
(︀
𝑧𝑘
)︀
≤ 𝑣 + 𝜖.

Hence, when the presented algorithm finitely terminates after 𝑘 iterations, it follows that 𝑦𝑘 is a global 𝜖-optimal
solution for the problem (MP).

If the presented algorithm creates an infinite sequence {(𝑦𝑘, 𝑧𝑘)} of solution which is obtained by solving the
problem (PLRP) over Λ𝑘, then it is obvious that {(𝑦𝑘, 𝑧𝑘)} is a sequence of feasible solution for the problem
(EP) over Λ0, where 𝑧𝑘

𝑗 =
∑︀𝑛

𝑖=1 𝑒𝑗𝑖𝑦
𝑘
𝑖 + 𝑓𝑗 , 𝑗 = 1, 2, . . . , 𝑝. Let (𝑦*, 𝑧*) be a gathering point of the sequence

{
(︀
𝑦𝑘, 𝑧𝑘

)︀
}, and we have

lim
𝑘→∞

(︀
𝑦𝑘, 𝑧𝑘

)︀
= (𝑦*, 𝑧*).
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So we have

lim
𝑘→∞

𝑧𝑘
𝑗 = lim

𝑘→∞

𝑛∑︁
𝑖=1

𝑒𝑗𝑖𝑦
𝑘
𝑖 + 𝑓𝑗 =

𝑛∑︁
𝑖=1

𝑒𝑗𝑖𝑦
*
𝑖 + 𝑓𝑗 = 𝑧*𝑗 , 𝑗 = 1, 2, . . . , 𝑝.

By the continuity of
∑︀𝑛

𝑖=1 𝑒𝑗𝑖𝑦𝑖 + 𝑓𝑗 ,
∑︀𝑛

𝑖=1 𝑒𝑗𝑖𝑦
𝑘
𝑖 + 𝑓𝑗 = 𝑧𝑘

𝑗 ∈
[︀
𝑙𝑘𝑗 , 𝑢

𝑘
𝑗

]︀
, 𝑗 = 1, 2, . . . , 𝑝, and the exhaustiveness of

the partitioning method, we can obtain that

𝑛∑︁
𝑖=1

𝑒𝑗𝑖𝑦
*
𝑖 + 𝑓𝑗 = lim

𝑘→∞

𝑛∑︁
𝑖=1

𝑒𝑗𝑖𝑦
𝑘
𝑖 + 𝑓𝑗 = lim

𝑘→∞
𝑧𝑘
𝑗 = lim

𝑘→∞

[︀
𝑙𝑘𝑗 , 𝑢

𝑘
𝑗

]︀
= lim

𝑘→∞

⋂︁
𝑘

[︀
𝑙𝑘𝑗 , 𝑢

𝑘
𝑗

]︀
= 𝑧*𝑗 .

Thus, (𝑦*, 𝑧*) is a feasible solution for the problem (EP) over Λ0. Since {LB(Λ𝑘)} is a real increasing sequence,
we have that

lim
𝑘→∞

LB(Λ𝑘) ≤ 𝜑(𝑧*).

From the renewal process of lower bound and Theorem 2.1, we have that

lim
𝑘→∞

LB(Λ𝑘) = lim
𝑘→∞

𝜓
(︀
𝑧𝑘
)︀

and lim
𝑘→∞

𝜓
(︀
𝑧𝑘
)︀

= lim
𝑘→∞

𝜑
(︀
𝑧𝑘
)︀

= 𝜑(𝑧*).

Therefore, we can get that
lim

𝑘→∞
LB(Λ𝑘) = 𝜑(𝑧*).

Therefore, (𝑦*, 𝑧*) is a global optimum solution for the problem (EP) over Λ0. At the same time, by the
equivalence conclusions of the problems (EP) and (MP), it follows that 𝑦* is a global optimum solution for the
problem (MP), and the proof of the theorem is completed. �

4.4. Computational complexity of the algorithm

In this subsection, we will analyze the computational complexity of the presented algorithm for estimating
the maximum iterations of the algorithm. To this end, we define the size 𝛿(Λ) of a rectangle

Λ = {𝑧 ∈ R𝑝 : 𝑙𝑗 ≤ 𝑧𝑗 ≤ 𝑢𝑗 , 𝑗 = 1, 2, . . . , 𝑝}

as
𝛿(Λ) := max{𝑢𝑗 − 𝑙𝑗 | 𝑗 = 1, 2, . . . , 𝑝},

and for convenience, we also define

𝜇 = max
𝑗=1,...,𝑝

|𝛼𝑖| and 𝜎 = max
𝑗=1,...,𝑝

1(︀
𝑙0𝑗
)︀2 ·

Theorem 4.2. For any given termination tolerance 𝜖 > 0, for any Λ ⊆ Λ0, if 𝛿2(Λ) ≤ 𝜖, then, for any feasible
solution (𝑦, 𝑧) to the problem (PLRP) over Λ, we have that

|𝜑(𝑧)− 𝜓(𝑧)| ≤ 𝑝𝜇𝜎𝜖.

Proof. For any feasible solution (𝑦, 𝑧) to the problem (PLRP) over Λ, it is obvious that (𝑦, 𝑧) is a feasible
solution to the problem (EP) over Λ. From Theorem 2.1, for any 𝑧 ∈ Λ, if 𝛿2(Λ) ≤ 𝜖 for any sufficiently small
positive number 𝜖, we have that

|𝜑(𝑧)− 𝜓(𝑧)| =
𝑝∑︁

𝑗=1

𝛼𝑗 ln 𝑧𝑗 −

⎡⎣ 𝑝∑︁
𝑗=1,𝛼𝑗>0

𝛼𝑗𝑠𝑗 +
𝑝∑︁

𝑗=1,𝛼𝑗<0

𝛼𝑗𝑠𝑗

⎤⎦
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=
𝑝∑︁

𝑗=1,𝛼𝑗>0

𝛼𝑗

[︂
ln 𝑧𝑗 −max

{︂
ln 𝑙𝑗 +

1
𝑢𝑗

(𝑧𝑗 − 𝑙𝑗), ln𝑢𝑗 +
1
𝑙𝑗

(𝑧𝑗 − 𝑢𝑗)
}︂]︂

+
𝑝∑︁

𝑗=1,𝛼𝑗<0

𝛼𝑗

[︂
ln 𝑧𝑗 −min

{︂
ln 𝑙𝑗 +

1
𝑙𝑗

(𝑧𝑗 − 𝑙𝑗), ln𝑢𝑗 +
1
𝑢𝑗

(𝑧𝑗 − 𝑢𝑗)
}︂]︂

=
𝑝∑︁

𝑗=1,𝛼𝑗>0

𝛼𝑗

[︀
𝜙𝑗(𝑧𝑗)− 𝜙𝑙

𝑗(𝑧𝑗)
]︀
−

𝑝∑︁
𝑗=1,𝛼𝑗<0

𝛼𝑗

[︀
𝜙𝑢

𝑗 (𝑧𝑗)− 𝜙𝑗(𝑧𝑗)
]︀

≤
𝑝∑︁

𝑗=1

|𝛼𝑗 | ×
1
𝑙𝑗𝑢𝑗

(𝑢𝑗 − 𝑙𝑗)2

≤
𝑝∑︁

𝑗=1

|𝛼𝑗 | ×
1(︀
𝑙0𝑗
)︀2 (𝑢𝑗 − 𝑙𝑗)2

≤ 𝑝𝜇𝜎𝛿2(Λ)
≤ 𝑝𝜇𝜎𝜖,

and the proof of the theorem is completed. �

Theorem 4.3. For any given termination tolerance 𝜖 ∈ (0, 1), the presented algorithm can obtain a global
𝜖-optimal solution in at most

𝑝 ·

[︃
1
2

log2

𝑝𝜇𝜎𝛿2
(︀
Λ0
)︀

𝜖

]︃
iterations.

Proof. Without losing generality, we assume that, at each iteration, the rectangle partition is performed in the
selected sub-rectangle Λ at step 2 of the algorithm. After 𝑘 · 𝑝 iterations, we have that

𝛿(Λ) ≤ 1
2𝑘
𝛿
(︀
Λ0
)︀
,

thus, we can obtain that

𝛿2(Λ) ≤ 1
22𝑘

𝛿2
(︀
Λ0
)︀
,

by the proof of Theorem 4.2, if
1

22𝑘
𝛿2
(︀
Λ0
)︀
≤ 𝜖

𝑝𝜇𝜎
,

i.e.,

𝑘 ≥ 1
2

log2

𝑝𝜇𝜎𝛿2
(︀
Λ0
)︀

𝜖
,

we can get that |𝜑(𝑧)− 𝜓(𝑧)| ≤ 𝜖. Therefore, after at most

𝑝 ·

[︃
1
2

log2

𝑝𝜇𝜎𝛿2
(︀
Λ0
)︀

𝜖

]︃

iterations, we have that
0 ≤ 𝜑(𝑧)− 𝜑(𝑧*) ≤ 𝜑(𝑧)− LB(Λ) = |𝜑(𝑧)− 𝜓(𝑧)| ≤ 𝜖,
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where (𝑦*, 𝑧*) is the global optimal solution for the problem (EP). From Step 3 of the proposed algorithm,
(𝑦𝑘, 𝑧𝑘) is the current best feasible point for the problem (EP), and by Theorem 4.2, we know that

{︀
𝜑
(︀
𝑧𝑘
)︀}︀

is
a decreasing sequence and it satisfies 𝜑

(︀
𝑧𝑘
)︀
≤ 𝜑(𝑧). Therefore, we have

𝜑
(︀
𝑧𝑘
)︀
− 𝜑(𝑧*) ≤ 𝜑(𝑧)− 𝜑(𝑧*) ≤ 𝜖,

which shows that, when the presented algorithm terminates, (𝑦𝑘, 𝑧𝑘) is a global 𝜖-optimal solution for the
problem (EP). Therefore, 𝑦𝑘 is a global 𝜖-optimal solution for the problem (MP), and the proof of the theorem
is completed. �

5. Numerical experiments

In this section, we numerically compare our algorithm with the software BARON [18] and the known branch-
and-bound algorithms [5,8,22,32,34,39]. All numerical tests are implemented in MATLAB R2014a and run on a
microcomputer with Intel(R) Core(TM) i5-7200U CPU @2.50 GHz processor and 16 GB RAM. In all numerical
tests, the maximum CPU time limit is set to 3600 s.

First of all, with the given convergence tolerance 10−6, we tested some small-size examples, see
Appendices A.1–A.8 for details, compared with the existing branch-and-bound algorithms [5, 8, 22, 32, 34, 39]
and the software BARON, and the corresponding numerical comparisons are reported in Table 1.

Next, with the given convergence tolerance 10−6, we tested some large-size examples, see Problems 5.1–5.3 for
details, which are generated randomly to further verify the robustness and effectiveness of our algorithm, and the
corresponding numerical comparisons are reported in Tables 2 and 4–7. Moreover, with the given convergence
tolerance 10−2, we further tested Problem 5.1 with the larger 𝑝, and the numerical comparison results are shown
in Table 3.

Some notations have been used for column headers in Tables 1–7: Iter: the number of iteration for the
algorithm; CPU Time: the execution CPU time of algorithm in seconds; Avg.N: the average number of iterations;
Std.N: the standard deviations for number of iteration; Avg.T: the average execution CPU time of the algorithm
in seconds; Std.T: the standard deviation of the execution CPU time of the algorithm; and “−” denotes the
situation that some of ten random instances failed to be solved in 3600 s.

Problem 5.1 (Ref. [33]). {︃
min

∏︀𝑝
𝑗=1(

∑︀𝑛
𝑖=1 𝑒𝑗𝑖𝑦𝑖 + 1),

s.t. 𝐴𝑦 ≤ 𝑏, 𝑦 ≥ 0,

where 𝑒𝑗𝑖, 𝑗 = 1, 2, . . . , 𝑝, 𝑖 = 1, . . . , 𝑛, are all randomly generated in [0, 1], all components of the matrix 𝐴 are
randomly generated in [−1, 1], and 𝑏𝑖, 𝑖 = 1, . . . , 𝑛, are all randomly generated by setting 𝑏𝑖 =

∑︀𝑛
𝑗=1 𝑎𝑖𝑗 + 2𝜋,

where 𝜋 are randomly generated in [0, 1].

Problem 5.2 (Ref. [39]). ⎧⎪⎨⎪⎩
min

∏︀𝑝
𝑗=1 𝑒

⊤
𝑗 𝑦,

s.t.
∑︀𝑛

𝑖=1𝐴𝑠𝑖𝑦𝑖 ≤ 𝑏𝑠, 𝑠 = 1, 2, . . . ,𝑚,
0 ≤ 𝑦𝑖 ≤ 1, 𝑖 = 1, 2, . . . , 𝑛,

where all components of the vector 𝑒𝑗 , 𝑗 = 1, 2, . . . , 𝑝, are randomly generated in [0, 1], 𝐴𝑠𝑖, 𝑠 = 1, 2, . . . ,𝑚, 𝑖 =
1, 2, . . . , 𝑛, are all randomly generated in [−1, 1], and 𝑏𝑠, 𝑠 = 1, 2, . . . ,𝑚, are all generated by setting 𝑏𝑠 =∑︀𝑛

𝑖=1𝐴𝑠𝑖 + 2𝜋, where 𝜋 is randomly generated in [0, 1].

Problem 5.3. {︃
min

∏︀𝑝
𝑗=1(

∑︀𝑛
𝑖=1 𝑒𝑗𝑖𝑦𝑖 + 𝑓𝑗)𝛼𝑗 ,

s.t. 𝐴𝑦 ≤ 𝑏, 𝑦 ≥ 0,
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Table 1. Numerical comparisons among the software BARON, the algorithms of references
[5, 8, 22,32,34,39] and our algorithm on Appendices A.1–A.8.

Example Refs. Optimal value Optimal solution Iter CPU time

1 Our 0.89019 (1.3148, 0.1396, 0.0, 0.4233) 1 0.04
[34] 0.8902 (1.3148, 0.1396, 0.0, 0.4233) 1 0.19
BARON 0.8902 (1.3148, 0.1396, 0.0, 0.4233) 3 0.05

2 Our 0.53333 (0.0, 0.0) 23 0.95
[32] 0.53333 (0.0, 0.0) 16 0.05
BARON 0.5333 (0.0, 0.0) 1 0.03

3 Our 10.0 (2.0, 8.0) 3 0.12
[5] 10.0 (2.0, 8.0) 41 0.02
BARON 10.0000 (2, 8) 1 0.05

4 Our 997.66127 (1, 1) 0 0.01
[22] 997.66127 (1, 1) 3 0.09
BARON 997.6613 (1, 1) 1 0.03

5 Our 263.78893 (1.25, 1) 1 0.01
[22] 263.7889 (1.25, 1) 11 0.30
BARON 263.7889 (1.25, 1) 3 0.03

6 Our 5.00931 (3, 2) 0 0.01
[22] 5.00931 (3, 2) 2 0.05
BARON 5.0093 (3, 2) 1 0.03

7 Our 0.90123 (0.0, 8.0, 1.0) 9 0.09
[8] 0.901235 (0.0, 8.0, 1.0) 3 0.05
BARON 0.9012 (0.0, 8.0, 1.0) 7 0.06

8 Our 9504.0 (1.0, 2.0, 1.0, 1.0, 1.0) 4 0.14
[39] 9504.0 (1.0, 2.0, 1.0, 1.0, 1.0) 2 0.07
BARON 9504.0 (1.0, 2.0, 1.0, 1.0, 1.0) 1 0.03

where 𝑒𝑗𝑖, 𝑗 = 1, 2, . . . , 𝑝, 𝑖 = 1, 2, . . . , 𝑛, and 𝑓𝑗 , 𝑗 = 1, 2, . . . , 𝑝, are all randomly generated in [0, 1], all compo-
nents of the matrix 𝐴 and 𝛼𝑗 , 𝑗 = 1, 2, . . . , 𝑝, are all generated in [−1, 1], and all the components of the vector
𝑏 are generated by setting 𝑏𝑖 =

∑︀𝑛
𝑗=1 𝑎𝑖𝑗 + 2𝜋, where 𝜋 is randomly generated in [0, 1].

According to the numerical results in Table 1, for small-size examples A.1–A.8 in appendix, it can be observed
that, with almost the same computational efficiency, our algorithm can obtain the same optimal solutions and
optimal values as the existing branch-and-bound algorithms [5, 8, 22, 32, 34, 39] and the software BARON [18].
At the same time, we can also observe that, when the variable 𝑛 ≤ 5, the software BARON is more effective for
solving the problem (MP).

For large-size Problems 5.1–5.3, we solved ten independently generated instances and recorded their average
number of iteration and average CPU time. For Problems 5.1–5.3, when 𝑛 > 20, the software BARON failed
to solve some of ten independently generated instances in 3600 s, so that we only numerically compared our
algorithm with the algorithm of Jiao et al. [17] in Table 3, and we only numerically compared our algorithm
with the algorithm of Zhang et al. [39] in Table 5, and we only reported the numerical results of our algorithm
in Tables 4 and 7. Meanwhile, we use graphs to show the numerical comparison results of Tables 3 and 5
respectively, and see Figures 1–3 for details.

According to the numerical results in Table 2, it can be understood that, compared with the algorithm of
Wang and Liu [33], our algorithm takes less average time and average number of iteration to solve Problem 5.1
with large-size variables, and the software BARON is only effective for Problem 5.1 with small-size variables,
such as 𝑝 = 2, 𝑚 ≤ 10 and 𝑛 ≤ 20. When 𝑝 = 2, 𝑚 ≥ 20, and 𝑛 ≥ 20, the software BARON failed to
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Figure 1. Numerical comparisons between our algorithm and that of Jiao et al. [17] on the
average number of iteration (left) and the average CPU time (right) for Problem 5.1 with the
fixed 𝑚 = 10 and 𝑛 = 10.

Figure 2. Numerical comparisons between our algorithm and that of Jiao et al. [17] on the
average number of iteration (left) and the average CPU time (right) for Problem 5.1 with the
fixed 𝑝 = 2 and 𝑚 = 10.

Figure 3. Numerical comparisons between our algorithm and that of Zhang et al. [39] on the
average number of iteration (left) and the average CPU time (right) for Problem 5.2 with the
fixed 𝑚 = 10 and 𝑛 = 2000.
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Table 2. Numerical comparisons among the software BARON, algorithms of Wang and Liu
[33], and our algorithm on Problem 5.1.

Algorithm of Wang and Liu [33] Our algorithm BARON
(𝑝, 𝑚, 𝑛) Avg(Std).N Avg(Std).T Avg(Std).N Avg(Std).T Avg(Std).N Avg(Std).T

(2, 10, 20) 14.2(1.5492) 0.6062(0.0695) 27.0(14.0712) 1.0567(0.5579) 8.8(9.21) 0.1(0.0267)
(2, 20, 20) 17.4(1.7127) 0.8368(0.0756) 21.3(11.0860) 1.4858(0.9255) − −
(2, 22, 20) 18.5(1.9003) 0.9460(0.1235) 16.6(9.1797) 1.3410(0.7558) − −
(2, 20, 30) 19.9(0.5676) 1.0781(0.0674) 29.1(9.4569) 1.9719(1.0081) − −
(2, 35, 50) 21.2(0.4316) 1.8415(0.1338) 31.1(2.9981) 2.0209(0.3103) − −
(2, 45, 60) 23.0(0.6667) 2.4338(0.1016) 30.9(2.9981) 3.2201(0.5866) − −
(2, 45, 100) 35.7(1.1595) 5.1287(0.0935) 36.1(2.6437) 3.8516(0.5096) − −
(2, 60, 100) 36.1(0.7379) 6.8143(0.1713) 32.1(2.9981) 4.6820(0.6611) − −
(2, 70, 100) 36.6(1.2649) 8.1967(0.2121) 30.5(3.8370) 5.3423(0.8261) − −
(2, 70, 120) 39.1(1.6633) 9.5642(0.2975) 33.3(3.0569) 6.7911(0.9495) − −
(2, 100, 100) 37.5(2.1731) 13.0578(0.3543) 22.1(6.5735) 7.2817(2.1901) − −

Table 3. Numerical comparisons between our algorithm and that of Jiao et al. [17] on Problem 5.1.

Algorithm of Jiao et al. [17] Our algorithm
(𝑝, 𝑚, 𝑛) Avg(Std).N Avg(Std).T Avg(Std).N Avg(Std).T

(2, 10, 10) 51.6(27.1260) 0.5366(0.2774) 7.6(9.1797) 0.1440(0.1568)
(2, 10, 20) 81.1(29.0304) 0.8296(0.2990) 19.6(12.9974) 0.3642(0.2395)
(2, 10, 40) 90.4(24.3867) 0.9427(0.2610) 28.4(9.5475) 0.5349(0.1841)
(2, 10, 60) 93.8(27.3447) 1.2067(0.3675) 32.5(2.5927) 0.6421(0.0721)
(2, 10, 80) 87.2(23.3419) 0.9561(0.3115) 30.3(10.7708) 0.6612(0.2127)
(2, 10, 100) 105.3(43.7113) 1.1878(0.4902) 33.2(1.6193) 0.7862(0.0637)
(4, 10, 10) 385.6(304.8264) 4.6592(3.5951) 35.8(22.9918) 0.6465(0.3884)
(4, 10, 20) 1544.9(1034.5785) 15.3208(10.4886) 80.4(18.0012) 1.6899(0.4456)
(4, 10, 40) 3766.5(3714.9863) 41.3699(43.3325) 125.5(49.4711) 2.7247(1.4014)
(4, 10, 60) 3500.4(4733.4820) 42.8343(67.3455) 123.1(25.6924) 2.9937(0.7626)
(4, 10, 80) 6588.5(4183.8860) 108.5261(76.9548) 144.2(26.1950) 3.5831(0.6546)
(4, 10, 100) 4475.8(6161.0653) 82.6249(143.2454) 196.4(87.1183) 5.5485(2.6318)
(6, 10, 10) 2795.0(4542.3064) 53.9199(94.6386) 61.2(29.0777) 1.3197(0.7418)
(6, 10, 20) 27 365.3(31 428.9002) 426.2640(663.2382) 133.9(69.5453) 2.9194(1.6542)
(6, 10, 40) 66 717.5(73 801.7557) 1895.0217(3169.6473) 306.1(204.2659) 6.7800(4.7208)
(8, 10, 10) 12 192.2(17 724.0386) 169.3895(306.5079) 112.6(58.7995) 2.1026(1.2695)
(8, 10, 20) 79 305.9(68 019.9694) 1454.1710(1541.1460) 357.4(249.8036) 7.6240(5.5012)
(10, 10, 10) 57 421.5(54 655.0563) 911.9321(1098.6795) 135.6(72.0990) 3.2027(1.5347)

solve some of them in 3600 s. But, our algorithm can solve Problem 5.1 with large-size variables and has better
computational performance.

According to the numerical results in Table 3, and from Figures 1 and 2, it can be seen that our algorithm
takes less average time and average number of iteration than that of Jiao et al. [17] for solving Problem 5.1 with
the larger 𝑝, so our algorithm is superior than the algorithm of Jiao et al. [17].

According to the numerical results in Tables 4 and 7, we can see that our algorithm can solve Prob-
lems 5.2 and 5.3 with the large-size variables, but the software BARON failed to solve some of them in 3600 s,
so this indicates the effectiveness and robustness of our algorithm.
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Table 4. Numerical computational results of our algorithm for Problem 5.2.

(𝑚, 𝑛) 𝑝 = 4 𝑝 = 5 𝑝 = 6 𝑝 = 7

(10, 20) Avg(Std).N 37.2(22.2051) 96.9(84.0918) 159.7(94.3752) 302.6(240.4973)
Avg(Std).T 3.0331(2.3414) 6.8133(4.6833) 12.4855(9.3914) 18.3431(13.7249)

(20, 40) Avg(Std).N 57.9(62.9964) 68.7(30.2032) 116.7(64.0365) 289.2(338.0614)
Avg(Std).T 3.7998(3.9706) 5.1644(2.0187) 9.9100(4.9113) 23.0972(24.1184)

(30, 60) Avg(Std).N 52.8(33.0178) 94.1(45.9213) 178.4(93.5524) 273.3(197.6355)
Avg(Std).T 5.8097(4.5024) 10.4212(6.3453) 16.9114(8.2818) 25.4896(18.3698)

(40, 80) Avg(Std).N 41.9(17.3554) 78.8(40.0078) 144.4(78.5765) 228.8(137.0230)
Avg(Std).T 5.0930(2.1380) 10.3765(5.0349) 19.9002(10.7279) 33.8311(19.6794)

(50, 100) Avg(Std).N 45.8(19.2111) 77.8(54.5034) 103.3(42.0504) 189.1(91.1780)
Avg(Std).T 7.3425(3.6532) 13.1858(9.1603) 18.4209(7.6899) 35.1482(15.7116)

(60, 120) Avg(Std).N 32.0(10.5409) 65.9(35.9829) 98.2(58.9742) 208.5(152.8240)
Avg(Std).T 7.0007(2.5679) 14.8812(8.4005) 23.4874(15.0108) 50.3251(34.2680)

(70, 140) Avg(Std).N 32.9(12.4226) 86.4(32.7353) 84.5(22.4215) 113.5(57.7163)
Avg(Std).T 9.0893(3.2417) 28.4109(12.6269) 27.4017(7.6908) 37.3657(18.4767)

(80, 160) Avg(Std).N 26.8(8.5088) 51.1(15.6521) 98.7(37.6152) 141.9(52.4032)
Avg(Std).T 9.8870(2.9608) 20.2917(6.0380) 42.5319(16.5759) 66.4867(22.7845)

(90, 180) Avg(Std).N 29.0(3.6515) 49.4(11.4134) 92.5(30.9237) 139.4(44.7492)
Avg(Std).T 13.9006(2.1030) 26.1733(6.9935) 56.6390(20.6265) 95.1055(33.7132)

(100, 200) Avg(Std).N 27.2(5.3914) 52.8(24.2661) 63.7(24.7837) 119.7(65.0317)
Avg(Std).T 16.6237(3.3583) 38.6381(20.6037) 43.9363(17.9797) 96.7868(48.2903)

Table 5. Numerical comparisons between the algorithm of Zhang et al. [39] and our algorithm
on Problem 5.2.

Algorithm of Zhang et al. [39] Our new algorithm
(𝑝, 𝑚, 𝑛) Avg.N Avg.T Avg.N Avg.T

(2, 10, 1000) 15.5 2.6293 38.5 11.1218
(2, 10, 2000) 28.5 14.0012 43.5 25.0182
(3, 10, 1000) 101.8 19.3235 177.2 35.6843
(3, 10, 2000) 185.4 90.3898 293.1 131.6528
(4, 10, 1000) 757.6 156.5649 939.3 219.1879
(4, 10, 2000) 1352.1 995.4707 928.9 457.9584

According to the numerical results in Table 5, and from Figure 3, when 𝑝 ≥ 4 and 𝑛 ≥ 2000, compared with
the algorithm of Zhang et al. [39], it can be known that our algorithm spend less average time and average
number of iterations for solving Problem 5.2 with large-size variables, so our algorithm outperforms that of
Zhang et al. [39].

According to the numerical results in Table 6, for Problem 5.3, it can be obtained that, when 𝑝 = 2, 𝑚 ≥ 20
and 𝑛 ≥ 20, the software BARON failed to solve some of them in 3600 s, but our algorithm can solve such a
problem with large-size variables, so that our algorithm has strong robustness.

According to the numerical results in Tables 1–7, we can obtain that the software BARON is most effective for
small-size problems, but the software BARON is difficult to solve large-size Problems 5.1–5.3. In addition, our
algorithm outperforms the existing branch-and-bound algorithms [5, 8, 22, 32, 34, 39] and the software BARON
[18] for globally solving large-size Problems 5.1–5.3.
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Table 6. Numerical comparisons between the software BARON and our algorithm on Problem 5.3.

Our algorithm BARON
(𝑝, 𝑚, 𝑛) Avg(Std).N Avg(Std).T Avg(Std).N Avg(Std).T

(2, 10, 20) 38.1(16.1483) 2.3581(1.2124) 3.6(3.8930) 0.0760(0.0455)
(2, 20, 20) 16.1(12.9825) 1.3093(1.0285) − −
(2, 22, 20) 14.0(13.0979) 0.6381(0.6014) − −
(2, 20, 30) 21.2(17.5233) 1.7240(1.5391) − −
(2, 35, 50) 27.2(23.8225) 2.6217(2.6083) − −
(2, 45, 60) 21.4(19.0741) 2.3570(1.9797) − −
(2, 45, 100) 34.4(24.5909) 4.1453(3.1211) − −
(2, 60, 100) 22.6(17.3282) 4.0992(3.8821) − −
(2, 70, 100) 27.1(22.0477) 5.1873(4.0660) − −
(2, 70, 120) 16.7(19.1256) 3.4148(3.8112) − −
(2, 100, 100) 15.8(13.2816) 5.3048(4.5256) − −

Table 7. Numerical computational results of our algorithm for Problem 5.3.

(𝑚, 𝑛) 𝑝 = 4 𝑝 = 5 𝑝 = 6 𝑝 = 7
(10, 20) Avg(Std).N 247.2(263.87) 354.4(356.52) 2729.2(2592.85) 3717.3(3263.63)

Avg(Std).T 9.86(10.64) 12.97(11.60) 95.65(89.26) 137.62(119.17)
(20, 40) Avg(Std).N 214.2(173.77) 1014.6(818.77) 2023.1(1842.23) 5409.6(5291.86)

Avg(Std).T 10.85(8.75) 48.42(37.25) 93.76(85.29) 270.44(268.75)
(30, 60) Avg(Std).N 401.5(452.72) 1181.5(894.69) 3625.8(3930.85) 9624.9(12243.0)

Avg(Std).T 26.12(30.83) 73.15(56.78) 229.65(238.37) 662.27(853.38)
(40, 80) Avg(Std).N 370.7(354.64) 989.4(1074.01) 4971.7(6468.19) 13029.5(14689.56)

Avg(Std).T 32.53(30.95) 82.32(82.72) 549.76(729.55) 1397.89(1880.44)
(50, 100) Avg(Std).N 92.1(175.08) 1499.9(1597.43) 4056.3(3662.31) 12680.7(20150.97)

Avg(Std).T 12.17(23.46) 221.58(233.72) 641.87(587.81) 2179.26(3445.89)
(60, 120) Avg(Std).N 599.2(461.27) 1343.6(1540.05) 4937.8(5198.42) 14711.4(20419.31)

Avg(Std).T 115.69(87.77) 267.6(297.65) 1030.96(1142.62) 3222.76(4555.49)
(70, 140) Avg(Std).N 541.8(530.41) 801.0(539.52) 3218.9(5362.54) 9445.5(5927.61)

Avg(Std).T 147.4(140.14) 191.96(126.11) 884.13(1573.26) 2612.33(1648.91)
(80, 160) Avg(Std).N 176.7(127.17) 1670.9(1999.67) 4821.6(5773.35) 4935.3(6383.97)

Avg(Std).T 56.04(42.38) 600.18(685.37) 1887.85(2183.56) 1871.4(2504.29)
(90, 180) Avg(Std).N 221.5(201.11) 1792.6(2208.91) 7978.9(14937.33) 12709.0(14685.25)

Avg(Std).T 96.01(87.51) 865.49(1062.07) 4084.24(7775.46) 6650.20(7774.70)
(100, 200) Avg(Std).N 509.2(438.99) 1654.3(2247.93) 4344.6(5054.17) 5312.3(5370.92)

Avg(Std).T 302.82(264.99) 969.45(1329.17) 2733.13(3079.83) 3607.57(3481.61)

6. Conclusion

This paper studies a class of multiplicative problems (MP) and presents an image space branch-reduction-
bound algorithm. In this algorithm, we proposed a novel linear relaxation technique for constructing the
parametric linear relaxation programming problem of the equivalent problem. In contrast to the existing
branch-and-bound algorithms, the branching search takes place in the image space R𝑝 of the affine function∑︀𝑛

𝑖=1 𝑒𝑗𝑖𝑦𝑖+𝑓𝑗 , 𝑗 = 1, . . . , 𝑝, which mitigates the required computational efforts and the computational complex-

ity of the algorithm. Our algorithm can find an 𝜖-approximate optimal solution in at most 𝑝 ·
[︂

1
2 log2

𝑝𝜇𝜎𝛿2(Λ0)
𝜖

]︂
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iterations. Numerical comparisons show the superiority and efficiency of our algorithm. The future work is to
extend our algorithm to solve generalized convex (concave) multiplicative programming problems.

Appendix A.

A.1. Reference [34]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min (0.813396𝑦1 + 0.67440𝑦2 + 0.305038𝑦3 + 0.129742𝑦4 + 0.217796)
×(0.224508𝑦1 + 0.063458𝑦2 + 0.932230𝑦3 + 0.528736𝑦4 + 0.091947)

s.t. 0.488509𝑦1 + 0.063458𝑦2 + 0.945686𝑦3 + 0.210704𝑦4 ≤ 3.562809,
−0.324014𝑦1 − 0.501754𝑦2 − 0.719204𝑦3 + 0.099562𝑦4 ≤ −0.052215,
0.445225𝑦1 − 0.346896𝑦2 + 0.637939𝑦3 − 0.257623𝑦4 ≤ 0.427920,
−0.202821𝑦1 + 0.647361𝑦2 + 0.920135𝑦3 − 0.983091𝑦4 ≤ 0.840950,
−0.886420𝑦1 − 0.802444𝑦2 − 0.305441𝑦3 − 0.180123𝑦4 ≤ −1.353686,
−0.515399𝑦1 − 0.424820𝑦2 + 0.897498𝑦3 + 0.187268𝑦4 ≤ 2.137251,
−0.591515𝑦1 + 0.060581𝑦2 − 0.427365𝑦3 + 0.579388𝑦4 ≤ −0.290987,
0.423524𝑦1 + 0.940496𝑦2 − 0.437944𝑦3 − 0.742941𝑦4 ≤ 0.373620,
𝑦1 ≥ 0, 𝑦2 ≥ 0, 𝑦3 ≥ 0, 𝑦4 ≥ 0.

A.2. Reference [32]

{︃
min (−𝑦1 + 2𝑦2 + 2)(4𝑦1 − 3𝑦2 + 4)(3𝑦1 − 4𝑦2 + 5)−1(−2𝑦1 + 𝑦2 + 3)−1

s.t. 𝑦1 + 𝑦2 ≤ 1.5, 0 ≤ 𝑦1 ≤ 1, 0 ≤ 𝑦2 ≤ 1.

A.3. Reference [5]

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min (𝑦1 + 𝑦2)(𝑦1 − 𝑦2 + 7)
s.t. 2𝑦1 + 𝑦2 ≤ 14, 𝑦1 + 𝑦2 ≤ 10,

−4𝑦1 + 𝑦2 ≤ 0, 2𝑦1 + 𝑦2 ≥ 6, 𝑦1 + 2𝑦2 ≥ 6,
𝑦1 − 𝑦2 ≤ 3, 𝑦1 + 𝑦2 ≥ 0,
𝑦1 − 𝑦2 + 7 ≥ 0, 𝑦1, 𝑦2 ≥ 0.

A.4. Reference [22]

⎧⎪⎨⎪⎩
min (𝑦1 + 𝑦2 + 1)2.5(2𝑦1 + 𝑦2 + 1)1.1(𝑦1 + 2𝑦2 + 1)1.9

s.t. 𝑦1 + 2𝑦2 ≤ 6, 2𝑦1 + 2𝑦2 ≤ 8,
1 ≤ 𝑦1 ≤ 3, 1 ≤ 𝑦2 ≤ 3.

A.5. Reference [22]

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min (3𝑦1 − 4𝑦2 + 5)(𝑦1 + 2𝑦2 − 1)0.5(2𝑦1 − 𝑦2 + 4)(𝑦1 − 2𝑦2 + 8)0.5(2𝑦1 + 𝑦2 − 1)
s.t. 5𝑦1 − 8𝑦2 ≥ −24, 5𝑦1 + 8𝑦2 ≤ 44,

6𝑦1 − 3𝑦2 ≤ 15, 4𝑦1 + 5𝑦2 ≥ 10,
1 ≤ 𝑦1 ≤ 3, 0 ≤ 𝑦2 ≤ 1.
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A.6. Reference [22]

⎧⎪⎨⎪⎩
min (3𝑦1 − 2𝑦2 − 2)

2
3 (𝑦1 + 2𝑦2 + 2)

2
5

s.t. 2𝑦1 − 𝑦2 ≥ 2, 𝑦1 − 2𝑦2 ≤ 2,
𝑦1 + 𝑦2 ≤ 5, 3 ≤ 𝑦1 ≤ 5, 1 ≤ 𝑦2 ≤ 3.

A.7. Reference [8]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min (𝑦1 + 1
9𝑦3)(𝑦2 + 1

9𝑦3)
s.t. 9𝑦1 + 9𝑦2 + 2𝑦3 ≤ 81,

8𝑦1 + 𝑦2 + 8𝑦3 ≤ 72,
𝑦1 + 8𝑦2 + 8𝑦3 ≤ 72,
7𝑦1 + 𝑦2 + 𝑦3 ≥ 9,
𝑦1 + 7𝑦2 + 𝑦3 ≥ 9,
𝑦1 + 𝑦2 + 7𝑦3 ≥ 9,
0 ≤ 𝑦1 ≤ 8, 0 ≤ 𝑦2 ≤ 8, 0 ≤ 𝑦3 ≤ 9.

A.8. Reference [39]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min (−4𝑦1 − 2𝑦4 + 3𝑦5 + 21)(4𝑦1 + 2𝑦2 + 3𝑦3 − 4𝑦4 + 4𝑦5 − 3)
×(3𝑦1 + 4𝑦2 + 2𝑦3 − 2𝑦4 + 2𝑦5 − 7)(−2𝑦1 + 𝑦2 − 2𝑦3 + 2𝑦5 + 11)

s.t. 4𝑦1 + 4𝑦2 + 5𝑦3 + 3𝑦4 + 𝑦5 ≤ 25,
−𝑦1 − 5𝑦2 + 2𝑦3 + 3𝑦4 + 𝑦5 ≤ 2,
𝑦1 + 2𝑦2 + 𝑦3 − 2𝑦4 + 2𝑦5 ≥ 6,
4𝑦2 + 3𝑦3 − 8𝑦4 + 11𝑦5 ≥ 8,
𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 + 𝑦5 ≤ 6,
𝑦1 ≥ 1, 𝑦2 ≥ 1, 𝑦3 ≥ 1, 𝑦4 ≥ 1, 𝑦5 ≥ 1.
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