
RAIRO-Oper. Res. 56 (2022) 1453–1490 RAIRO Operations Research
https://doi.org/10.1051/ro/2022059 www.rairo-ro.org

OPTIMAL POLICIES FOR A DETERMINISTIC CONTINUOUS-TIME
INVENTORY MODEL WITH SEVERAL SUPPLIERS: WHEN A SUPPLIER

INCURS NO SET-UP COST

Brian H. Gilding*

Abstract. The subject is a deterministic continuous-time continuous-state inventory control model.
Stock is replenished by ordering from one of a number of suppliers incurring a different cost per item
and a different set-up cost. Taking the cost of procurement into account, the objective is to minimize
the total discounted cost over an infinite planning horizon. The size of the order that is to be placed and
the supplier with which it is to be placed are to be decided. Earlier studies of the problem have relied
substantially on the assumption that the set-up cost of every supplier is strictly positive. Removing
this restriction calls for a significant modification of the adopted approach. This is realized in the
present study. It is shown that there is a stable unique optimal policy of a type that encompasses (𝑠, 𝑆)
and generalized (𝑠, 𝑆) policies. Conditions that are necessary and sufficient for it to reduce to each of
these types are established. The case of two suppliers is studied in detail, properties of the solution
are investigated, numerical examples illustrating various aspects are included, and the connection with
antecedent results is assessed.
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1. Introduction

An inventory can be defined as a stock of goods held for use in a production process, the provision of a
service, or sale. These goods could be raw materials, components, consumable commodities, or finished prod-
ucts. Carrying such an inventory entails the cost of storage, handling, obsolescence, depreciation, deterioration,
insurance, taxation, and miscellaneous other transactions. Not carrying an adequate inventory involves the cost
of replenishing stock, lost sales, lost production, loss of good will, overtime, extraordinary administration, and
other penalties that might be incurred. The goal of efficient inventory management is to balance these costs.
Decisions have to be made on when best to replenish stock and the quantity of goods that should be ordered
at these junctures. Mathematical modelling can assist in making these decisions [2, 9, 13,19,23,30,41].

The subject of the present paper is a mathematical model for an inventory comprising a single item. Shortages
are simulated by the admission of negative inventory levels. The model may be categorized as deterministic,
continuous-time, and continuous-state. In the absence of intervention, the inventory level decreases according
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to an evolution process in which changes in inventory level are governed by a differential equation. The level
of stock is continuously monitored, and the cost of holding stock or maintaining a backlog is prescribed as a
function of the inventory level. Stock can be replenished by ordering from several available suppliers, each of
which offers an unlimited supply. Ordering from each supplier incurs a fixed cost per item and a fixed set-up
cost. The objective is to minimize the total cost of procurement, holding the inventory, and permitting shortages
over an infinite planning horizon. The challenges of managing an inventory when there are multiple potential
suppliers have been reviewed in [10,22,33,36].

When there is a single supplier, the decision problem reduces to the search for an optimal policy of a type
that is well-documented, namely an (𝑠, 𝑆) policy. This sets two stock levels, 𝑠 and 𝑆 > 𝑠. If the inventory level
is greater than 𝑠, a manager does not intervene. If it is 𝑠 or less, the manager orders to bring the inventory level
up to 𝑆. An (𝑠, 𝑆) policy was introduced by Arrow et al. [1]. The further historical development can be traced
to [2, 20, 31, 35, 40]. More contemporary exposés are to be found in [8, 28]. The complication with the model
with several suppliers is that determining an optimal management policy means not only finding the inventory
level from which a replenishment should take place, and the quantity of goods that should be ordered, but also
identifying the supplier with which the order should be placed.

Given any two suppliers, the first of which incurs both a greater cost per item and a greater set-up cost than
the other, an order would naturally be placed with the second. This can also be said if only one of these costs is
greater and the other is the same. By the same token, given any two suppliers incurring the same cost per item
and set-up cost, it is economically immaterial with which an order would be placed. The essence of the problem
is that given any two suppliers, one incurs a lesser cost per item and a greater set-up cost than the other. This
enables the suppliers to be ranked in strictly increasing order of cost per item and strictly decreasing order of
set-up cost, or vice versa.

The model considered was proposed in [5], where, under the assumption that the set-up cost of every supplier
is strictly positive, it was shown that the following alternatives are mutually exclusive.

– There is a unique optimal (𝑠, 𝑆) policy involving only one predetermined supplier.
– There is a unique optimal generalized (𝑠, 𝑆) policy involving more than one supplier.
– There is no optimal generalized (𝑠, 𝑆) policy, let alone an optimal (𝑠, 𝑆) policy.

A generalized (𝑠, 𝑆) policy involves 𝑁 suppliers and stock levels

𝑠(𝑁) < 𝑠(𝑁−1) < · · · < 𝑠(1) < 𝑆(1) < 𝑆(2) < · · · < 𝑆(𝑁) (1.1)

for some natural number 𝑁 ≥ 2. If the inventory level is greater than 𝑠(1), one does not replenish stock. If it is
between 𝑠(𝑛+1) and 𝑠(𝑛) for 𝑛 from 1 to 𝑁 −1, one orders from supplier (𝑛) up to the level 𝑆(𝑛). If it is less than
𝑠(𝑁) one orders from supplier (𝑁) up to the level 𝑆(𝑁). This policy may deliberately exclude a selection of the
available suppliers. For instance, it could involve just three of five available suppliers, with supplier (1) being
number 4 in the original ranking, supplier (2) being number 3, supplier (3) being number 1, and, suppliers 2
and 5 dispensed with. A generalized (𝑠, 𝑆) policy was first proposed as a viable optimal inventory-control policy
by Porteus [26,27]. Further discourse can be found in [5, 6, 8, 28].

Building upon the investigation of the model in [5] and with retention of the assumption of strict positivity of
every set-up cost, it has since been shown [6] that in the event of a generalized (𝑠, 𝑆) policy not being optimal,
nonetheless there is a unique optimal policy. This has a feature not previously documented, and has been termed
a hyper-generalized (𝑠, 𝑆) policy . Like a generalized (𝑠, 𝑆) policy, it entails 𝑁 suppliers and stock levels (1.1). In
addition, it contains stock levels 𝑟(𝑛), where

𝑠(𝑛+1) ≤ 𝑟(𝑛) ≤ 𝑠(𝑛) for 1 ≤ 𝑛 ≤ 𝑁 − 1, (1.2)

for which the following applies. If the inventory level is greater than 𝑠(1), one does not replenish, as with a
generalized (𝑠, 𝑆) policy. If it is between 𝑟(𝑛) and 𝑠(𝑛) for some 𝑛 indicated, one orders from supplier (𝑛) up to
the level 𝑆(𝑛). However, if it is between 𝑠(𝑛+1) and 𝑟(𝑛) for some such 𝑛, one again does not intervene, just as
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if the inventory level were greater than 𝑠(1). Regardless, if the inventory level is less than 𝑠(𝑁), one orders from
supplier (𝑁) up to the level 𝑆(𝑁), once more as with a generalized (𝑠, 𝑆) policy. Such a hyper-generalized (𝑠, 𝑆)
policy reduces to a generalized (𝑠, 𝑆) policy when 𝑟(𝑛) = 𝑠(𝑛+1) for every 𝑛 from 1 to 𝑁 − 1.

According to the above definition of a hyper-generalized (𝑠, 𝑆) policy with 𝑁 suppliers, when 𝑟(𝑖) = 𝑟(𝑖−1) for
some 𝑖 ∈ {2, 3, . . . , 𝑁 −1}, this policy is indistinguishable from that with 𝑁 −1 suppliers in which the inventory
levels 𝑟(𝑖) and 𝑠(𝑖) have been removed and supplier (𝑛+1) has become supplier (𝑛) for 𝑛 from 𝑖 to 𝑁 −1. Hence,
in addition to (1.1) and (1.2), it can be taken that

𝑟(𝑁−1) < 𝑟(𝑁−2) < · · · < 𝑟(1). (1.3)

In everyday terms, a hyper-generalized (𝑠, 𝑆) policy arises when there are backlogging levels for which it
does not pay to replenish in excess of the conventional cut-off level. If the backlog were less, there would be
an optimal course of action in placing an order with a supplier incurring a relatively low set-up cost. However,
the high cost per item of such a supplier is prohibitive. On the other hand, if the backlog were greater, there
would be an optimal course of action in placing an order with a supplier incurring a relatively low cost per item.
However, the high set-up cost of a supplier in this category prohibits this too. The best thing to do is to let
the backlog accumulate further until such time that the amount that has to be ordered is so great that is it is
indeed worthwhile to replenish from a supplier incurring a low cost per item, whereby the high set-up cost can
be set off against the size of the order.

To recapitulate, under the assumption that the set-up cost of every supplier is strictly positive:

– When there is no optimal generalized (𝑠, 𝑆) policy, there is a unique optimal hyper-generalized (𝑠, 𝑆) policy.

The present paper extends the preceding results to the situation that the set-up cost of one of the available
suppliers may be negligible. One may think of a number of suppliers at different locations, whereby a supplier
offering a lesser cost per item is situated further away from the customer, entailing a greater delivery cost. In
this scenario, an order from a supplier located in close proximity to the customer may incur no transportation
cost. Alternatively, when a supplier and the customer are subsidiaries of the same company, transportation of
goods from one to the other may be merely a bookkeeping transaction or be covered by sundry overheads.

Extension of the current results to the situation that one of the available suppliers may incur a negligible
set-up cost is not achievable by simply considering this to be the limit of the case that the supplier has a positive
set-up cost. It requires substantive development of the theory expounded in [5,6], and adaptation of the notion
of a generalized and a hyper-generalized (𝑠, 𝑆) policy. In realizing this, the earlier results will be expanded and
consolidated with novel results in a unifying framework.

The problem with a stochastic demand and two suppliers, one of which incurs a negligible set-up cost and
the other a significant set-up cost and lesser cost per item, has been investigated heretofore by Fox et al. [11].
They concluded that when the sale of unsatisfied demand is lost, an optimal inventory-control policy must be
one of three types. The first is an (𝑠, 𝑆) policy involving only the supplier with a significant set-up cost. The
second is a base policy involving only the supplier with a negligible set-up cost. The third is a mixed-ordering
policy involving both suppliers. When excess demand is back-ordered, an optimal inventory-control policy is
necessarily of the first or third type. In the present setting, the base policy can be viewed as a degenerate (𝑠, 𝑆)
policy in which 𝑠 = 𝑆, while the mixed-ordering policy can be seen as a degenerate generalized (𝑠, 𝑆) policy with
𝑁 = 2 in which 𝑠(2) < 𝑠(1) = 𝑆(1) < 𝑆(2), supplier (1) is the supplier with no set-up cost, and supplier (2) is the
supplier with a significant set-up cost. We shall show that the admissible alternatives are either a conventional
(𝑠, 𝑆) policy involving only the supplier with a significant set-up cost, a degenerate generalized (𝑠, 𝑆) policy as
just described, or a (degenerate) hyper-generalized (𝑠, 𝑆) policy with 𝑁 = 2, 𝑠(2) < 𝑟(1) ≤ 𝑠(1) = 𝑆(1) < 𝑆(2),
and a like configuration of suppliers.

More recently, the problem with a stochastic demand, several suppliers, one of which may incur a negligible
set-up cost, periodic review, and a finite planning horizon has been studied by Benjaafar et al. [4]. They concluded
that for each period, except for a bounded interval of inventory levels, a generalized (𝑠, 𝑆) policy is optimal, and,
provided an explicit example demonstrating that this result is best possible as far as the exceptional interval
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of inventory levels is concerned. They further reported extensive numerical experiments testing the ancillary
problem with an infinite planning horizon. The latter discrete-time problem has since been studied by Helal
et al. [15]. For the case of two available suppliers, they have established conditions under which an (𝑠, 𝑆) policy
involving the supplier with the greater set-up cost is optimal, and, in the event that the demand distribution is
exponential, antithetical conditions under which a generalized (𝑠, 𝑆) involving both suppliers is optimal.

The counterpart to the problem studied in the present paper in which the objective is to minimize the long-
term average cost of procurement, holding the inventory, and permitting shortages in continuous time has been
examined for a deterministic demand by Perera et al. [24] and for a stochastic demand by a number of authors
[3, 14, 16–18, 25, 38, 39]. The prevailing conclusion is that the optimal inventory control policy is given by an
(𝑠, 𝑆) policy, which may degenerate into a singular policy with 𝑠 = 𝑆 when a supplier incurs no set-up cost.

The organization of the remainder of the paper is as follows. Section 2 reviews the formal statement of the
inventory control problem. Section 3 elucidates the difficulty in expanding the current theory in which ordering
from every supplier incurs a positive set-up cost to the situation in which ordering from a supplier may incur
a negligible set-up cost. Sections 4–7 subsequently develop a theory that encompasses both situations in a
comprehensive setting. Incidentally, this simplifies and consolidates aspects of the earlier analysis. This part of
the paper culminates in the establishment that the inventory control problem with or without a supplier with
a negligible set-up cost has a stable unique solution which depends monotonically on the number of suppliers
and the costs of each supplier. Section 8 deals with the determination of the conditions under which, with a
slight adjustment of the notions, this solution corresponds to an (𝑠, 𝑆) policy, a generalized (𝑠, 𝑆) policy, or a
hyper-generalized (𝑠, 𝑆) policy. Section 9 subsequently delves deeper into the occurrence of these policies for
the specific case of two suppliers. Computation of the solution and the attendant optimal policy is the subject
of Section 10, which includes numerical examples. The connection between the present results and those of Fox
et al. [11], Benjaafar et al. [4] and Helal et al. [15] is discussed in Section 11. The paper closes with a conclusion
constituting Section 12. A list of notation is included as Appendix A.

2. Problem statement

A stock of a single item is considered, whereby the level of stock at time 𝑡 is 𝑥(𝑡). A level 𝑥 ≥ 0 corresponds
to the number of items held. A level 𝑥 < 0 indicates a shortage of −𝑥 items. In the absence of intervention,
changes in the stock level are governed by the evolution equation

𝑥̇(𝑡) = −𝐺(𝑥(𝑡)), (2.1)

where 𝐺 is a positive continuous function defined on R accounting for stock-dependent demand and deterioration
of items. If 𝑥 satisfies (2.1) then

𝑥̃ =
∫︁ 𝑥

0

d𝜂

𝐺(𝜂)
satisfies the equation

𝑥̇(𝑡) = −1. (2.2)

Conversely, if 𝑥̃ is governed by (2.2) and∫︁ 𝑥

0

d𝜂

𝐺(𝜂)
→ ±∞ as 𝑥 → ±∞ (2.3)

then the reverse transformation leads to (2.1). The condition (2.3) is fulfilled by the commonly used expressions
for 𝐺, which are encapsulated in the generic expression 𝐺(𝑥) = 𝑔0 + 𝑔1 max{𝑥, 0} + 𝑔𝛽 max{𝑥, 0}𝛽 for some
𝑔0 > 0, 𝑔1 ≥ 0, 𝑔𝛽 ≥ 0 and 0 < 𝛽 < 1 [12, 34]. Hence, with nominal loss of generality, it is supposed that 𝑥
evolves according to (2.2).

To replenish stock there are 𝐽 available suppliers. Placing an order with supplier 𝑗 ∈ 𝒥 , where

𝒥 = {1, 2, . . . , 𝐽},
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entails a fixed cost 𝑐𝑗 per item and set-up cost 𝑘𝑗 . The suppliers are ordered so that

𝑐1 < 𝑐2 < · · · < 𝑐𝐽 (2.4)

and
𝑘1 > 𝑘2 > · · · > 𝑘𝐽 ≥ 0. (2.5)

The running cost is given by a continuous nonnegative function 𝑓 defined on R. This amalgamates the diverse
costs of maintaining an inventory when there is stock in hand, and those in the nature of an incurred penalty
when there is a shortage. A commonly-used expression is

𝑓(𝑥) =

{︃
−𝑝𝑥 for 𝑥 < 0
𝑞𝑥 for 𝑥 ≥ 0,

(2.6)

where 𝑝 > 0 and 𝑞 > 0 are constants [3, 4, 8, 11,14,15,19,21,23,28,30,32].
Variability of money-value in time is considered by the exponential discount of costs at a constant rate

𝛼 > 0. (2.7)

This is a well-established method of discounting costs which can be traced to [29] and is a component of the
continuous-time inventory models in [7, 8, 13,15,16,21,28,32,41].

Under the above conditions [5, 6], the optimal total future cost 𝑢(𝑥) associated with a level of stock 𝑥 that
has evolved according to equation (2.2) will satisfy the equation

(︀
𝐴𝑢

)︀
(𝑥) = 𝑓(𝑥), where(︀

𝐴𝑢
)︀
(𝑥) = 𝑢′(𝑥) + 𝛼𝑢(𝑥).

On the other hand, placing an order of size 𝜉 with supplier 𝑗 when the level of stock is 𝑥 will incur a cost of 𝑘𝑗+𝑐𝑗𝜉
and bring the inventory level up to 𝑥+𝜉. Hence, 𝜉 should minimize 𝑘𝑗 +𝑐𝑗𝜉 +𝑢(𝑥+𝜉) [3,4,8,11,15,21,26,28,32].
In other words, one should have 𝑢(𝑥) =

(︀
𝑀𝑗𝑢

)︀
(𝑥), where(︀

𝑀𝑗𝑢
)︀
(𝑥) = 𝑘𝑗 + min{𝑢(𝑥 + 𝜉) + 𝑐𝑗𝜉 : 𝜉 ≥ 0}. (2.8)

Consequently, defining (︀
𝑀𝑢

)︀
(𝑥) = min

{︀(︀
𝑀𝑗𝑢

)︀
(𝑥) : 𝑗 ∈ 𝒥

}︀
, (2.9)

an optimal impulse control policy is a solution of the quasi-variational inequality (QVI)⎧⎪⎨⎪⎩
𝐴𝑢 ≤ 𝑓

𝑢 ≤ 𝑀𝑢

(𝐴𝑢− 𝑓)(𝑢−𝑀𝑢) = 0.

(2.10)

3. The approach

The key to the successful resolution of many a sophisticated mathematical problem is the notion of a solution
of the problem. A restrictive notion makes it difficult to find a solution. With regard to applications, this may
result in only being able to establish that there is a solution in limited circumstances. On the other hand, a lax
notion makes it difficult to exclude a multiplicity of solutions. This can lead to an inconclusive outcome with
regard to applications. There is tradeoff in posing a credible notion. Concerning the problem in hand, one would
like a notion of a solution of (2.10) that delivers the kind of optimal inventory control policy that one would
intuitively expect and can be applied in practice, and, at the same time, is backed by a conclusive theory.

In the earlier paper devoted to (2.10) with strictness in the rightmost inequality in (2.5) [5], the notion of an
admissible solution had too narrow a scope to yield a solution under all circumstances. In the later paper [6],
widening the scope led to a successful resolution of the problem. The expanded notion is the following.
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Ansatz 3.1. The solution of (2.10) is a continuous real function 𝑢 such that 𝑢 = 𝑀𝑢 in (−∞, 𝑠] ∖ 𝒮, where 𝒮
is the union of a finite number of bounded open subintervals of (−∞, 𝑠), and, 𝑢 is differentiable, 𝐴𝑢 = 𝑓 , and
𝑢 < 𝑀𝑢 in 𝒮 ∪ (𝑠,∞), for some number 𝑠.

The precursor to Ansatz 3.1 limited the set 𝒮 to the empty set, or, if one so prefers, the number of subintervals
comprising 𝒮 to zero. Given such a limitation, the ansatz partitions R into a stopping region (−∞, 𝑠] in which
𝑢 = 𝑀𝑢, and a continuation region (𝑠,∞) in which 𝑢 < 𝑀𝑢 and 𝐴𝑢 = 𝑓 . This is a primary feature of an
(𝑠, 𝑆) policy and a generalized (𝑠, 𝑆) policy. Permitting 𝒮 to comprise one or more nonempty bounded open
subintervals opened the way to the realization of a hyper-generalized (𝑠, 𝑆) policy.

When the rightmost inequality in (2.5) is not strict, the theorem below reveals that Ansatz 3.1 is wanting.
The proof of this theorem is given in Appendix B.

Theorem 3.2. Suppose that 𝑘𝐽 = 0. Let 𝑢 be a real function with the property that 𝑀𝑢 is well defined in R.
Then 𝑢 ≤ 𝑀𝑢 in R if and only if 𝑢 = 𝑀𝑢 = 𝑀𝐽𝑢 everywhere in R.

Theorem 3.2 implies that when 𝑘𝐽 = 0, asking that a solution 𝑢 of (2.10) be such that 𝑢 = 𝑀𝑢 in a subset
of R is superfluous. Conversely, asking that a solution 𝑢 be such that 𝑢 < 𝑀𝑢 in a subset of R disqualifies it.

To deal with the failure of Ansatz 3.1 when 𝑘𝐽 = 0, we propose the following notion covering 𝑘𝐽 > 0 and
𝑘𝐽 = 0.

Ansatz 3.3. The solution of (2.10) is a continuous real function 𝑢 with the following properties. The set Ω of
𝑥 ∈ R for which

𝑢(𝑥) = 𝑘ℓ + 𝑢(𝑥 + 𝜉) + 𝑐ℓ𝜉 for some 𝜉 > 0 and ℓ ∈ 𝒥 (3.1)

is not empty, Ω has a finite least upper bound 𝑠, and 𝒮 = (−∞, 𝑠)∖Ω is the union of a finite number of bounded
open intervals. Furthermore, 𝑢 is differentiable and 𝐴𝑢 = 𝑓 at the left endpoint of any subinterval of 𝒮 ∪ (𝑠,∞).

The theorem below, whose proof is given in Appendix C, confirms that this new ansatz is equivalent to the
preceding one when 𝑘𝐽 > 0.

Theorem 3.4. Suppose that 𝑘𝐽 > 0. Then 𝑢 is a solution of (2.10) satisfying Ansatz 3.1 if and only if it is a
solution of (2.10) satisfying Ansatz 3.3.

Armed with Ansatz 3.3, we adopt the strategy previously used to tackle the inventory control problem
in [5, 6]. We start, under the mere assumption that 𝑓 is continuous, by extracting characteristics of a solution
of (2.10) that are concealed in the ansatz. This is the subject of the next section. In the subsequent section
we instate the hypothesis that led to the successful resolution of the problem when 𝑘𝐽 > 0, and show that
under this hypothesis the QVI has at most one solution with the extracted characteristics (therewith proving
the uniqueness of a solution). In the section thereafter, we construct a solution embodying these characteristics
(therewith proving existence). A supplementarily section shows that the solution found is stable with respect
to perturbations of (2.5), and depends monotonically on 𝐽 and the components of (2.4) and (2.5).

4. Preliminary characterization

Inherently a solution of (2.10) satisfying Ansatz 3.3 embodies a number of features. The most significant of
these are summarized in the next theorem. The proof of its forerunner in [6] relies heavily on the assumption that
𝑘𝐽 > 0, and cannot be easily modified to contend with 𝑘𝐽 = 0. The search for an alternative has inadvertently
uncovered a proof for 𝑘𝐽 ≥ 0 which is simpler than the previous one for 𝑘𝐽 > 0. This is delivered in Appendix D.

Theorem 4.1. Suppose that (2.4) and (2.5) hold and 𝑓 is continuous on R. Let 𝑢 be a solution of (2.10)
satisfying Ansatz 3.3. Then 𝑢 = 𝑦 in [𝑠,∞), where 𝑦 is a solution of the differential equation

𝑦′ + 𝛼𝑦 = 𝑓 𝑖𝑛 R (4.1)
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satisfying
𝑦′(𝑠) = 𝑦′(𝑆) = −𝑐𝑗 , (4.2)

𝑦(𝑠) = 𝑦(𝑆) + 𝑘𝑗 + 𝑐𝑗(𝑆 − 𝑠) (4.3)

and
𝑦(𝑠) = (𝑀𝑗𝑦)(𝑠) = (𝑀𝑦)(𝑠) (4.4)

for some 𝑗 ∈ 𝒥 and 𝑆 ≥ 𝑠. Furthermore,

𝑦 ≤ 𝑢 ≤ 𝑣 𝑖𝑛 (−∞, 𝑠), 𝑎𝑛𝑑 𝑢 < 𝑣 𝑖𝑛 𝒮,

where
𝑣(𝑥) = min{(𝑀ℓ𝑦)(𝑠) + 𝑐ℓ(𝑠− 𝑥) : ℓ ∈ 𝒥 }. (4.5)

Theorem 4.1 seems to be as far as one can take the characterization of a solution of (2.10) satisfying Ansatz 3.3
without further hypotheses on the function 𝑓 or the numbers (2.4), (2.5) and (2.7). To progress, we impose the
hypothesis under which it was shown in [5] that when each supplier ℓ is the sole supplier, the QVI has a unique
solution corresponding to an (𝑠, 𝑆) policy no matter how large the set-up cost. This reads as follows.

Hypothesis 4.2. The function 𝑓ℓ defined by

𝑓ℓ(𝑥) = 𝑓(𝑥) + 𝛼𝑐ℓ𝑥 for 𝑥 ∈ R,

is continuous in R, strictly decreasing in (−∞, 𝛾ℓ], and strictly increasing in [𝛾ℓ,∞) for some 𝛾ℓ ∈ R, 𝑓ℓ(𝑥) →∞
as 𝑥 → −∞, and ∫︁ ∞

𝛾ℓ

e𝛼𝜂 d𝑓ℓ(𝜂) ≥ −
∫︁ 𝛾ℓ

−∞
e𝛼𝜂 d𝑓ℓ(𝜂).

The above inequality is automatically satisfied when 𝑓ℓ(𝑥) →∞ as 𝑥 →∞.
Compatibility of (2.4) and (2.7) with the assumption that Hypothesis 4.2 holds for every ℓ ∈ 𝒥 requires

𝛾1 ≥ 𝛾2 ≥ · · · ≥ 𝛾𝐽 . (4.6)

Remark 4.3. For the archetypical function (2.6), Hypothesis 4.2 holds for every ℓ ∈ 𝒥 if and only if

𝑝 > 𝛼𝑐𝐽 and 𝑞 > −𝛼𝑐1, (4.7)

under which circumstance 𝛾ℓ = 0 for every ℓ ∈ 𝒥 .

The condition (4.7) in one form or another can be found in [8, 11,15,21,26,28,32].

5. Uniqueness

Given Hypothesis 4.2, we can state the following.

Lemma 5.1. Equation (4.1) has a solution satisfying (4.2) and (4.3) with 𝑗 = ℓ for some 𝑆 ≥ 𝑠 if and only if
𝑆 = 𝑆ℓ and 𝑠 = 𝑠ℓ for a unique ordered pair (𝑠ℓ, 𝑆ℓ) ∈ R2. The numbers 𝑆ℓ and 𝑠ℓ are the unique solution of
the simultaneous equations ∫︁ 𝑆ℓ

𝑠ℓ

e𝛼𝜂 d𝑓ℓ(𝜂) = 0 𝑎𝑛𝑑 𝑓ℓ(𝑠ℓ) = 𝑓ℓ(𝑆ℓ) + 𝛼𝑘ℓ (5.1)

satisfying
𝑠ℓ ≤ 𝛾ℓ ≤ 𝑆ℓ, (5.2)
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depend continuously and strictly monotonically on 𝑘ℓ ≥ 0, 𝑆ℓ = 𝑠ℓ = 𝛾ℓ when 𝑘ℓ = 0, and 𝑠ℓ → −∞ when
𝑘ℓ →∞. Furthermore, the concurrent solution 𝑦ℓ of equation (4.1) is unique, expressible as

𝑦ℓ(𝑥) =
1
𝛼

{︂
𝑓(𝑥) + 𝑐ℓ − e−𝛼𝑥

∫︁ 𝑥

𝑠ℓ

e𝛼𝜂 d𝑓ℓ(𝜂)
}︂

, (5.3)

depends continuously and strictly decreasingly on 𝑠ℓ ≤ 𝛾ℓ, and is such that

𝑦′ℓ < −𝑐ℓ 𝑖𝑛 (𝑠ℓ, 𝑆ℓ), 𝑎𝑛𝑑 𝑦′ℓ > −𝑐ℓ 𝑖𝑛 (−∞, 𝑠ℓ) ∪ (𝑆ℓ,∞). (5.4)

Proof. Allowing for the omission of 𝑘ℓ = 0, expression (5.3) and the dependency of 𝑦ℓ on 𝑠ℓ, the lemma
can be found in Section 3 of [5]. Augmentation of the proof accommodates the omissions. With no loss of
generality, it can be supposed that 𝑐ℓ = 0. By extension of Lemma 3.4 of [5], there exists a unique function
𝜙ℓ : (−∞, 𝛾ℓ] → [𝛾ℓ,∞) such that (4.1) admits a solution 𝑦 satisfying (4.2) with 𝑗 = ℓ for 𝑠 ≤ 𝑆 if and only if
𝑠 ≤ 𝛾ℓ and 𝑆 = 𝜙ℓ(𝑠). Furthermore, 𝜙ℓ(𝛾ℓ) = 𝛾ℓ, 𝜙ℓ is continuous and strictly decreasing, 𝑦 is unique, 𝑦′ < 0 in
(𝑠, 𝑆), and 𝑦′ > 0 in (−∞, 𝑠)∪ (𝑆,∞). Subsequently, condition (4.3) with 𝑗 = ℓ can be formulated as 𝐹ℓ(𝑠) = 𝑘ℓ,
where 𝐹ℓ(𝑠) = {𝑓ℓ(𝑠)− 𝑓ℓ(𝜙ℓ(𝑠))}/𝛼. By extension of Lemma 3.5 of [5], 𝐹ℓ(𝛾ℓ) = 0, 𝐹ℓ(𝑠) →∞ as 𝑠 → −∞, and
𝐹ℓ is continuous and strictly decreasing in (∞, 𝛾ℓ]. The upshot is Lemma 5.1 saving (5.3) and the dependency
of 𝑦ℓ on 𝑠ℓ. Expression (5.3) can be found by solving (4.1) subject to the initial condition 𝑦′(𝑠ℓ) = −𝑐ℓ. This
gives

𝑦ℓ(𝑥) = e−𝛼𝑥

{︂
𝑓(𝑠ℓ) + 𝑐ℓ

𝛼
e𝛼𝑠ℓ +

∫︁ 𝑥

𝑠ℓ

e𝛼𝜂𝑓(𝜂) d𝜂

}︂
.

Expressing the integrand in terms of 𝑓ℓ rather than 𝑓 , and applying the formula for integration by parts of
Riemann–Stieltjes delivers (5.3). The continuous and monotonic dependence of 𝑦ℓ on 𝑠ℓ is a consequence. �

Remark 5.2. When 𝑓 assumes the classical form (2.6) and (4.7) holds, the right-hand equation in (5.1) can
be solved for 𝑆ℓ explicitly, yielding

𝑆ℓ = −{𝛼𝑘ℓ + (𝑝− 𝛼𝑐ℓ)𝑠ℓ}/(𝑞 + 𝛼𝑐ℓ). (5.5)

Consequently, 𝑆ℓ can be eliminated from the left-hand equation in (5.1), making 𝑠ℓ the unique solution of the
transcendental equation

𝛼(𝑝− 𝛼𝑐ℓ)𝑠ℓ + (𝑞 + 𝛼𝑐ℓ) ln
{︀

[𝑝 + 𝑞 − (𝑝− 𝛼𝑐ℓ)e𝛼𝑠ℓ ]/(𝑞 + 𝛼𝑐ℓ)
}︀

+ 𝛼2𝑘ℓ = 0 (5.6)

in (−∞, 0]. Formula (5.3) gives

𝑦ℓ(𝑥) =

{︃[︀
𝑝(1− 𝛼𝑥)− (𝑝− 𝛼𝑐ℓ)e𝛼(𝑠ℓ−𝑥)

]︀
/𝛼2 for 𝑥 ≤ 0[︀

𝑞(𝛼𝑥− 1) + (𝑞 + 𝛼𝑐ℓ)e𝛼(𝑆ℓ−𝑥)
]︀
/𝛼2 for 𝑥 > 0.

(5.7)

Supposing that Hypothesis 4.2 holds for every ℓ ∈ 𝒥 , Lemma 5.1 supplies the existence of a unique solution 𝑦ℓ

of equation (4.1) satisfying (4.2) and (4.3) with 𝑗 = ℓ for some 𝑆 ≥ 𝑠 and the uniqueness of the accompanying
numbers, 𝑆ℓ and 𝑠ℓ, for every ℓ. Theorem 4.1 subsequently tells us that (2.10) has a solution 𝑢 satisfying
Ansatz 3.3 only if 𝑠 = 𝑠𝑗 , 𝑢 = 𝑦𝑗 in [𝑠𝑗 ,∞), and 𝑢 ≥ 𝑦𝑗 in (−∞, 𝑠𝑗) for some 𝑗 ∈ 𝒥 . The task ahead is to
identify 𝑗.

We begin the quest for 𝑗 with an observation.

Lemma 5.3. Given any 𝑗 ∈ 𝒥 and ℓ ∈ 𝒥 , either 𝑦𝑗 < 𝑦ℓ and 𝑦′𝑗 > 𝑦′ℓ in R, 𝑦𝑗 > 𝑦ℓ and 𝑦′𝑗 < 𝑦′ℓ in R, or,
𝑦𝑗 ≡ 𝑦ℓ in R.

Proof. The function 𝑦𝑗 − 𝑦ℓ is a solution of 𝑦′ + 𝛼𝑦 = 0 in R. Therefore,
(︀
𝑦𝑗 − 𝑦ℓ

)︀
(𝑥) = 𝒞e−𝛼𝑥 for all 𝑥 ∈ R, for

some constant 𝒞. The trichotomy follows from whether 𝒞 is negative, positive or zero. �



OPTIMAL POLICIES FOR AN INVENTORY MODEL WITH SEVERAL SUPPLIERS 1461

Remark 5.4. When 𝑓 takes the prototypical form (2.6) and (4.7) holds, formula (5.7) implies that 𝑦𝑗 < 𝑦ℓ if
and only if 𝛼𝑠𝑗 + ln(𝑝− 𝛼𝑐𝑗) > 𝛼𝑠ℓ + ln(𝑝− 𝛼𝑐ℓ).

Lemma 5.3 is relevant to the following.

Lemma 5.5. Suppose that (2.10) has a solution 𝑢 satisfying Ansatz 3.3 such that 𝑢 = 𝑦𝑗 in [𝑠𝑗 ,∞), and 𝑢 ≥ 𝑦𝑗

in (−∞, 𝑠𝑗) for some 𝑗 ∈ 𝒥 . Let ℓ ∈ 𝒥 ∖ {𝑗}. Then 𝑦𝑗 ≤ 𝑦ℓ. Moreover, 𝑦𝑗 = 𝑦ℓ only if 𝑐𝑗 > 𝑐ℓ or 𝑘ℓ = 0.

Proof. When 𝑘ℓ > 0, it can be shown that 𝑦𝑗 ≤ 𝑦ℓ with equality only if 𝑐𝑗 > 𝑐ℓ, following the proof of Lemma 4.11
of [5]. To deal with the case 𝑘ℓ = 0, suppose, contrarily, that 𝑦𝑗 > 𝑦ℓ. Then, by Lemma 5.3, 𝑦′𝑗 < 𝑦′ℓ in R. Since
Lemma 5.1 says that 𝑦′ℓ(𝛾ℓ) = −𝑐ℓ, this gives 𝑦′𝑗(𝛾ℓ) < −𝑐ℓ. If 𝑐ℓ ≥ 𝑐𝑗 , it follows that 𝑦′𝑗(𝛾ℓ) < −𝑐𝑗 . Hence, by
(5.4) for ℓ = 𝑗, 𝛾ℓ ≥ 𝑠𝑗 . On the other hand, if 𝑐ℓ < 𝑐𝑗 , then 𝛾ℓ ≥ 𝛾𝑗 by (4.6), and 𝛾𝑗 ≥ 𝑠𝑗 by (5.2) with ℓ = 𝑗.
So either way, 𝛾ℓ ≥ 𝑠𝑗 . This means that 𝑢 is differentiable at 𝛾ℓ, and 𝑢′(𝛾ℓ) = 𝑦′𝑗(𝛾ℓ) < −𝑐ℓ, which contradicts
Lemma B.1 in Appendix B. Therefore, by reductio ad absurdum, 𝑦𝑗 ≤ 𝑦ℓ. �

When 𝑘𝐽 > 0, Lemma 5.5 leads to the conclusion that 𝑗 must be the greatest minimizer of 𝑦ℓ with respect to
ℓ ∈ 𝒥 . This identifies 𝑗 precisely. When 𝑘𝐽 = 0 such a definitive conclusion cannot be drawn. Should there be
several minimizers, one of which is 𝐽 , the lemma fails to narrow down the selection beyond 𝐽 and the second
greatest minimizer. This presents yet another hurdle in extending the theory from 𝑘𝐽 > 0 to 𝑘𝐽 ≥ 0. Fortunately,
it is the last.

Providentially, we can continue the development merely supposing that 𝑗 is a minimizer.

Lemma 5.6. Suppose that 𝑗 is a minimizer of {𝑦ℓ : ℓ ∈ 𝒥 }. Then 𝑀ℓ𝑦𝑗 is well defined in R for every ℓ ∈ 𝒥 .
Moreover,

𝑦′𝑗 < −𝑐ℓ 𝑖𝑛 (𝑠𝑗 , 𝑆𝑗,ℓ), 𝑎𝑛𝑑 𝑦′𝑗 > −𝑐ℓ 𝑖𝑛 (𝑆𝑗,ℓ,∞) (5.8)

for a sequence of numbers
𝑆𝑗,𝑗 = 𝑆𝑗 < 𝑆𝑗,𝑗−1 < 𝑆𝑗,𝑗−2 < · · · < 𝑆𝑗,1.

Each 𝑆𝑗,ℓ with 1 ≤ ℓ ≤ 𝑗 is the unique number in [𝑆𝑗 ,∞) for which∫︁ 𝑆𝑗,ℓ

𝑆𝑗

e𝛼𝜂 d𝑓ℓ(𝜂) = (𝑐𝑗 − 𝑐ℓ)e𝛼𝑆𝑗 . (5.9)

Proof. See the proof of Lemmas 4.12 and 4.16 of [5] for the main result, and Corollary 4.20 of [5] for the formula∫︁ 𝑆𝑗,ℓ

𝑆𝑗

e𝛼𝜂 d𝑓𝑗(𝜂) = (𝑐𝑗 − 𝑐ℓ)e𝛼𝑆𝑗,ℓ . (5.10)

Substitution of 𝑓𝑗(𝜂) = 𝑓ℓ(𝜂) + 𝛼(𝑐𝑗 − 𝑐ℓ)𝜂 in (5.10) yields (5.9). �

Remark 5.7. In the specific case that 𝑓 is given by (2.6) and (4.7) holds, formula (5.9) gives

𝑆𝑗,ℓ = 𝑆𝑗 + ln
{︀

(𝑞 + 𝛼𝑐𝑗)/(𝑞 + 𝛼𝑐ℓ)
}︀
/𝛼. (5.11)

In the light of Theorem 4.1, Lemma 5.6 reveals that (4.5) can be more succinctly expressed

𝑣(𝑥) = min
{︀
𝑣ℓ(𝑥) : 1 ≤ ℓ ≤ 𝑗

}︀
, (5.12)

where
𝑣ℓ(𝑥) = 𝑦𝑗(𝑆𝑗,ℓ) + 𝑘ℓ + 𝑐ℓ(𝑆𝑗,ℓ − 𝑥). (5.13)

Considering (5.12) and (5.13) as definitions for all 𝑥 ∈ R, the function 𝑣 is piecewise-linear and concave in R.
Consequently, 𝑣 has a right derivative 𝐷+𝑣 and a left derivative 𝐷−𝑣 everywhere in R. Furthermore, there is a
partition

𝜎1 = 𝑠𝑗 > 𝜎2 > 𝜎3 > · · · > 𝜎N (5.14)
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such that 𝑣 is affine in each interval

𝐼1 = (𝜎2, 𝜎1), 𝐼2 = (𝜎3, 𝜎2), . . . , 𝐼N = (−∞, 𝜎N). (5.15)

Defining N as the smallest number for which such a partition exists, this partition is unique. Moreover, since
(2.4), (5.12) and (5.13) imply that 𝑣(𝑥)/𝑥 → −𝑐1 as 𝑥 → −∞,

𝑣 = 𝑣1 in 𝐼N.

The function 𝑣 has additional relevant properties stated in the two lemmas below, in which

ℳ = {1, 2 . . . , N}. (5.16)

Lemma 5.8. Let 𝑥 ≤ 𝑆𝑗. Then 𝑣(𝑥) ≥ 𝑦𝑗(𝑥) with equality if and only if 𝑦𝑗 = 𝑦ℓ and 𝑥 = 𝑠ℓ for some
ℓ ∈ {1, 2, . . . , 𝑗}, in which event 𝑣 is differentiable at 𝑠ℓ, 𝑣(𝑠ℓ) = 𝑣ℓ(𝑠ℓ), and 𝑣′(𝑠ℓ) = 𝑣′ℓ(𝑠ℓ) = 𝑦′𝑗(𝑠ℓ) = −𝑐ℓ.

Proof. The leading statement can be verified by the argument used to prove Lemma 4.24 of [6]. With regard
to the subsidiary statement, suppose that 𝑠ℓ < 𝑆𝑗 and 𝑣(𝑠ℓ) = 𝑦𝑗(𝑠ℓ). Then, by the leading statement, 𝑠ℓ is
a minimum of 𝑣 − 𝑦𝑗 in (−∞, 𝑆𝑗). Hence, 𝐷+𝑣 − 𝑦′𝑗 ≥ 0 and 𝐷−𝑣 − 𝑦′𝑗 ≤ 0 at 𝑠ℓ. Inasmuch the concavity
of 𝑣 implies 𝐷+𝑣 ≤ 𝐷−𝑣 everywhere, it follows that 𝑣 is differentiable and 𝑣′ = 𝑦′𝑗 at 𝑠ℓ. When 𝑠ℓ = 𝑆𝑗 and
𝑣(𝑠ℓ) = 𝑦𝑗(𝑠ℓ), we may likewise deduce that 𝐷−𝑣 − 𝑦′𝑗 ≤ 0 at 𝑠ℓ. Hence,

(︀
𝐷−𝑣

)︀
(𝑠ℓ) ≤ 𝑦′𝑗(𝑠ℓ) = 𝑦′𝑗(𝑆𝑗) = −𝑐𝑗 .

However, by (2.4), (5.12) and (5.13), 𝐷−𝑣 ≥ 𝐷+𝑣 ≥ −𝑐𝑗 everywhere. Thus, in this case too, 𝑣 is differentiable
and 𝑣′ = 𝑦′𝑗 at 𝑠ℓ. Subsequently, in both cases, 𝑣′(𝑠ℓ) = 𝑦′𝑗(𝑠ℓ) = 𝑦′ℓ(𝑠ℓ) = −𝑐ℓ. Given the structure of 𝑣, this
leads to 𝑣(𝑠ℓ) = 𝑣ℓ(𝑠ℓ) and 𝑣′(𝑠ℓ) = 𝑣′ℓ(𝑠ℓ). �

Lemma 5.9. The combination 𝑓 −𝐴𝑣 is strictly decreasing in 𝐼𝑚 for every 𝑚 ∈ℳ. Moreover, 𝑓 −𝐴𝑣 has no
upper bound in 𝐼N.

Proof. Fix 𝑚 ∈ℳ, and let ℓ ∈ {1, 2, . . . , 𝑗} be such that 𝑣 = 𝑣ℓ in 𝐼𝑚. Then, by substitution, it can be verified
that 𝑓 − 𝐴𝑣 = 𝑓ℓ + 𝒞 in 𝐼𝑚 for some constant 𝒞. By Hypothesis 4.2, 𝑓ℓ is strictly decreasing in (−∞, 𝛾ℓ], and
𝑓ℓ(𝑥) →∞ as 𝑥 → −∞. Furthermore, by (4.6), (5.2), and (5.14), 𝐼𝑚 ⊂ (−∞, 𝛾ℓ]. Together, these observations
confirm the lemma. �

From Lemma 5.9 it follows that 𝐴𝑣 ≤ 𝑓 in 𝐼𝑚 for 𝑚 ∈ℳ if and only if 𝑇𝑚 ≥ 0, where

𝑇𝑚 =
(︀
𝑓 −𝐷−𝑣 − 𝛼𝑣

)︀
(𝜎𝑚). (5.17)

By (5.14) and Lemma 5.8,
𝑇1 =

(︀
𝑓 −𝐴𝑦𝑗

)︀
(𝑠𝑗) = 0. (5.18)

Last but not least, the next lemma concerning 𝑣 is of importance. For clarification, in the statement of this
lemma, 𝐴𝑣 < 𝑓 is taken in the standard sense in 𝐼𝑚 for 𝑚 ∈ ℳ. However, at 𝜎𝑚 for 𝑚 ∈ ℳ ∖ {1}, it is to be
interpreted as 𝐷+𝑣 + 𝛼𝑣 < 𝐷−𝑣 + 𝛼𝑣 ≤ 𝑓 . By the above, this is equivalent to 𝑇𝑚 ≥ 0.

Lemma 5.10. There exists a uniquely defined nonnegative integer 𝐿 and uniquely defined

𝑎1 < 𝑏1 ≤ 𝑎2 < 𝑏2 ≤ · · · ≤ 𝑎𝐿 < 𝑏𝐿 ≤ 𝑎𝐿+1 = 𝑠𝑗 (5.19)

such that 𝐴𝑣 < 𝑓 in (−∞, 𝑎1), 𝑣 is differentiable and 𝐴𝑣 = 𝑓 at 𝑎𝜈 , 𝑣 > 𝑌𝜈 in (𝑎𝜈 , 𝑏𝜈), where

𝑌𝜈 is the unique solution of (4.1) satisfying 𝑌𝜈(𝑎𝜈) = 𝑣(𝑎𝜈), (5.20)

𝑣 = 𝑌𝜈 at 𝑏𝜈 , and 𝐴𝑣 < 𝑓 in (𝑏𝜈 , 𝑎𝜈+1) for 𝜈 = 1, 2, . . . , 𝐿.
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Proof. We refer to [6] for the proof of this lemma, which is a synopsis of Lemmas 4.12–4.14 and Subsection 4.3
prior to Lemma 4.25 of [6]. �

In the light of the preceding considerations, 𝐿 = 0 if and only if 𝑇𝑚 ≥ 0 for every 𝑚 ∈ℳ∖{1}. Furthermore,
when 𝐿 ≥ 1, every interval (𝑎𝜈 , 𝑏𝜈) with 1 ≤ 𝜈 ≤ 𝐿 contains a 𝜎𝑚 for which 𝑇𝑚 < 0. Indeed the least 𝜎𝑚 in
said interval possesses this property. Complementarily, no interval [𝑏𝜈 , 𝑎𝜈+1] nor (−∞, 𝑎1] contains such a 𝜎𝑚.

The crux of the above is the next lemma.

Lemma 5.11. Continuing on from Lemma 5.10, define

𝒮𝑗 = (𝑎1, 𝑏1) ∪ (𝑎2, 𝑏2) ∪ · · · ∪ (𝑎𝐿, 𝑏𝐿), (5.21)

Ω𝑗 = (−∞, 𝑠𝑗 ] ∖ 𝒮𝑗 , (5.22)

and 𝑈𝑗 on R by

𝑈𝑗 = 𝑦𝑗 𝑖𝑛 (𝑠𝑗 ,∞), 𝑈𝑗 = 𝑣 𝑖𝑛 Ω𝑗 , 𝑎𝑛𝑑 𝑈𝑗 = 𝑌𝜈 𝑖𝑛 (𝑎𝜈 , 𝑏𝜈) for 1 ≤ 𝜈 ≤ 𝐿.

Suppose that 𝑢 is a solution of (2.10) satisfying Ansatz 3.3 with 𝑠 = 𝑠𝑗, 𝑢 = 𝑦𝑗 in [𝑠𝑗 ,∞), and 𝑢 ≥ 𝑦𝑗 in
(−∞, 𝑠𝑗). Then 𝑢 = 𝑈𝑗 and 𝒮 = 𝒮𝑗.

Proof. See Subsection 4.2 of [6]. �

Let us recapitulate. We have shown that any solution 𝑢 of (2.10) satisfying Ansatz 3.3 has the properties
stated in Theorem 4.1 for some 𝑗 ∈ 𝒥 . By Lemma 5.5, we know that 𝑗 must be a minimizer of 𝑦ℓ with respect
to ℓ ∈ 𝒥 , and, consequently, by Lemma 5.11, that 𝑢 = 𝑈𝑗 . It follows that if {𝑦ℓ : ℓ ∈ 𝒥 } has a unique minimizer
then (2.10) has at most one solution satisfying Ansatz 3.3. If not, rather than attempt to whittle down the
number of minimizers by some further means, we adopt a different tactic. We show that whatever the choice of
the minimizer, we end up with the same function 𝑢. The next three lemmas do the trick.

Lemma 5.12. Let 𝑗 and 𝜃 < 𝑗 be minimizers of {𝑦ℓ : ℓ ∈ 𝒥 }. Then 𝑠𝜃 < 𝑠𝑗 ≤ 𝑆𝑗 < 𝑆𝜃.

Proof. By (5.4) with ℓ = 𝑗, 𝑦𝑗 ≤ −𝑐𝑗 in [𝑠𝑗 , 𝑆𝑗 ]. Hence, recalling (2.4), 𝑦𝜃 = 𝑦𝑗 ≤ −𝑐𝑗 < −𝑐𝜃 in [𝑠𝑗 , 𝑆𝑗 ]. By (5.4)
with ℓ = 𝜃, this necessitates [𝑠𝑗 , 𝑆𝑗 ] ⊂ (𝑠𝜃, 𝑆𝜃). �

Lemma 5.13. Further to Lemma 5.12, let 𝑣 be the function defined by (5.8), (5.12) and (5.13), N be the
smallest natural number for which there is a partition (5.14) with the property that 𝑣 is affine in each of the
intervals (5.15), and 𝑇𝑚 be given by (5.17) for 𝑚 ∈ℳ. Then 𝑠𝜃 ∈ 𝐼𝑚 and 𝑇𝑚 < 0 for some 𝑚 ∈ℳ ∖ {1}.

Proof. Lemma 5.8 implies that 𝑣 is differentiable at 𝑠𝜃. So, 𝑠𝜃 ∈ 𝐼𝑚 for some 𝑚 ∈ℳ. Furthermore, Lemma 5.8
states that

𝑣(𝑠𝜃) = 𝑣𝜃(𝑠𝜃) = 𝑦𝜃(𝑠𝜃) = 𝑦𝑗(𝑠𝜃) (5.23)

and 𝑣′(𝑠𝜃) = 𝑦′𝑗(𝑠𝜃). Hence,
(︀
𝑓−𝐴𝑣

)︀
(𝑠𝜃) =

(︀
𝑓−𝐴𝑦𝑗

)︀
(𝑠𝜃) = 0. Lemma 5.9 subsequently yields 𝑇𝑚 < 0. Recalling

(5.18), this excludes 𝑚 = 1. �

Lemma 5.14. Further to Lemma 5.12, 𝑈𝑗 ≡ 𝑈𝜃 and 𝑈𝜃 = 𝑦𝑗 in [𝑠𝜃,∞).

Proof. With no loss of generality, we may suppose that 𝜃 and 𝑗 are consecutive minimizers of {𝑦ℓ : ℓ ∈ 𝒥 }.
Retaining the notation 𝑣 for the function defined by (5.8), (5.12) and (5.13), and the notation 𝐿 and (5.19) for
the numbers given by Lemma 5.10, we add an asterisk superscript to their counterparts when 𝑗 is replaced by
𝜃. By Lemma 5.12, 𝑠𝜃 < 𝑠𝑗 . So 𝑈𝑗 = 𝑦𝑗 = 𝑦𝜃 = 𝑈𝜃 in [𝑠𝑗 ,∞), and 𝑆𝑗,ℓ = 𝑆𝜃,ℓ for 1 ≤ ℓ ≤ 𝜃. This means that we
can dispense with notation to distinguish between the functions (5.13) entering the construction of 𝑈𝑗 and 𝑈𝜃.
By (2.4), (5.12), (5.13) and (5.23),(︀

𝑣ℓ − 𝑣𝜃

)︀
(𝑥) =

(︀
𝑣ℓ − 𝑣𝜃

)︀
(𝑠𝜃) + (𝑐ℓ − 𝑐𝜃)(𝑠𝜃 − 𝑥) ≥

(︀
𝑣ℓ − 𝑣𝜃

)︀
(𝑠𝜃) ≥

(︀
𝑣 − 𝑣𝜃

)︀
(𝑠𝜃) = 0 for 𝜃 ≤ ℓ ≤ 𝑗
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and 𝑥 ≤ 𝑠𝜃. Consequently, 𝑣 = min{𝑣ℓ : 1 ≤ ℓ ≤ 𝑗} = min{𝑣ℓ : 1 ≤ ℓ ≤ 𝜃} = 𝑣* in (−∞, 𝑠𝜃]. This
leads to 𝑈𝑗 = 𝑈𝜃 in (−∞, 𝑠𝜃]. Whereupon, Lemma 5.8 and (5.23) necessitate 𝑠𝜃 = 𝑎𝐿*+1. Therewith, there
is no need to distinguish the functions (5.20) given by Lemma 5.10 for 𝑣 and 𝑣*. Furthermore, 𝐿 > 𝐿*,
𝑎𝐿*+1 = 𝑎*𝐿*+1 = 𝑠𝜃 < 𝑠𝑗 , and, 𝑌𝐿*+1(𝑠𝜃) = 𝑦𝜃(𝑠𝜃) = 𝑦𝑗(𝑠𝜃). The uniqueness of solutions of the initial-value
problem for equation (4.1) subsequently implies that 𝑌𝐿*+1 ≡ 𝑦𝑗 . However, by Lemmas 5.8 and 5.12 and the
consecutiveness of 𝜃 and 𝑗, 𝑦𝑗 < 𝑣 in (𝑠𝜃, 𝑠𝑗). Hence, 𝑏𝐿*+1 = 𝑠𝑗 and 𝐿 = 𝐿* + 1. Thus, 𝒮𝑗 = 𝒮𝜃 ∪ (𝑠𝜃, 𝑠𝑗) and
𝑈𝑗 = 𝑦𝑗 = 𝑦𝜃 = 𝑈𝜃 in (𝑠𝜃, 𝑠𝑗). �

The above delivers the desired uniqueness result.

Theorem 5.15. Suppose that (2.4) and (2.5) hold and 𝑓ℓ satisfies Hypothesis 4.2 for every ℓ ∈ 𝒥 . Then (2.10)
has at most one solution satisfying Ansatz 3.3.

Proof. By the preamble to Lemma 5.12, a solution 𝑢 of (2.10) satisfying Ansatz 3.3 is necessarily equal to 𝑈𝑗

where 𝑗 is a minimizer of {𝑦ℓ : ℓ ∈ 𝒥 }. Pursuant to Lemma 5.14, this prescribes 𝑢 uniquely. �

6. Existence

From the preceding section, we know that if (2.10) has a solution satisfying Ansatz 3.3 then this solution is
necessarily the function 𝑈𝑗 , defined by (5.8), (5.12), (5.13), Lemma 5.10 and Lemma 5.11, for a minimizer 𝑗 of
𝑦ℓ with respect to ℓ ∈ 𝒥 . In the light of Lemma 5.14, we may drop the subscript from the notation of 𝑈 . To
prove that (2.10) admits a solution satisfying Ansatz 3.3 it subsequently suffices to verify that 𝑈 solves (2.10)
and possesses the hallmarks of the ansatz. It is convenient to divide this undertaking into five steps, whereby,
without further mention, it is supposed that 𝑗 is the greatest minimizer of {𝑦ℓ : ℓ ∈ 𝒥 }.

Lemma 6.1. The function 𝑈 is concave in (−∞, 𝑠𝑗 ]. Moreover, 𝑈 ′ is strictly decreasing in 𝒮𝑗.

Proof. This is part and parcel of the proof of Lemma 5.10. �

Lemma 6.2. Let ℓ ∈ 𝒥 and 𝑧 > 𝑥 ≥ 𝑠𝑗. Then

𝑈(𝑥) ≤ 𝑘ℓ + 𝑈(𝑧) + 𝑐ℓ(𝑧 − 𝑥) (6.1)

with equality if and only if ℓ = 𝑗, 𝑥 = 𝑠𝑗 and 𝑧 = 𝑆𝑗.

Proof. Recalling that 𝑈 = 𝑦𝑗 in [𝑠𝑗 ,∞), see the proof of Lemma 4.16 of [5]. �

Lemma 6.3. There holds 𝑈 ≤ 𝑀𝑈 in R.

Proof. For every ℓ ∈ 𝒥 , Lemma 6.2 implies that 𝑈 ≤ 𝑀ℓ𝑈 in [𝑠𝑗 ,∞). To show the same in (−∞, 𝑠𝑗), pick
𝑥 < 𝑠𝑗 . According to Lemma 6.1, 𝑈 is concave in (−∞, 𝑠𝑗 ]. This means that 𝜂 ↦→ 𝑈(𝜂) + 𝑐ℓ𝜂 is likewise concave.
Therefore, (︀

𝑀ℓ𝑈
)︀
(𝑥) = 𝑘ℓ − 𝑐ℓ𝑥 + min{𝑈(𝜂) + 𝑐ℓ𝜂 : 𝜂 ≥ 𝑥}

= 𝑘ℓ − 𝑐ℓ𝑥 + min{𝑈(𝜂) + 𝑐ℓ𝜂 : 𝜂 ≥ 𝑠𝑗 or 𝜂 = 𝑥}
= min{

(︀
𝑀ℓ𝑦𝑗

)︀
(𝑠𝑗) + 𝑐ℓ(𝑠𝑗 − 𝑥), 𝑘ℓ + 𝑈(𝑥)}.

Now if ℓ ≤ 𝑗, Lemma 5.6 implies that
(︀
𝑀ℓ𝑦𝑗

)︀
(𝑠𝑗) + 𝑐ℓ(𝑠𝑗 − 𝑥) = 𝑣ℓ(𝑥) ≥ 𝑣(𝑥). On the other hand if ℓ > 𝑗,

then by what we initially deduced,
(︀
𝑀ℓ𝑦𝑗

)︀
(𝑠𝑗) ≥ 𝑦𝑗(𝑠𝑗). Furthermore, by Lemma 5.8, 𝑦𝑗(𝑠𝑗) = 𝑣(𝑠𝑗) = 𝑣𝑗(𝑠𝑗).

So recalling (2.4),
(︀
𝑀ℓ𝑦𝑗

)︀
(𝑠𝑗) + 𝑐ℓ(𝑠𝑗 − 𝑥) ≥ 𝑣𝑗(𝑠𝑗) + 𝑐ℓ(𝑠𝑗 − 𝑥) ≥ 𝑣𝑗(𝑠𝑗) + 𝑐𝑗(𝑠𝑗 − 𝑥) = 𝑣𝑗(𝑥) ≥ 𝑣(𝑥). Hence,

whether ℓ ≤ 𝑗 or not, (︀
𝑀ℓ𝑈

)︀
(𝑥) ≥ min{𝑣(𝑥), 𝑘ℓ + 𝑈(𝑥)}. (6.2)

Since 𝑣(𝑥) ≥ 𝑈(𝑥) and 𝑘ℓ ≥ 0, this delivers
(︀
𝑀ℓ𝑈

)︀
(𝑥) ≥ 𝑈(𝑥), which, in view of the arbitrariness of 𝑥, leads to

𝑈 ≤ 𝑀ℓ𝑈 in (−∞, 𝑠𝑗). Thus 𝑈 ≤ 𝑀ℓ𝑈 in R for every ℓ ∈ 𝒥 . The conclusion 𝑈 ≤ 𝑀𝑈 follows. �
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Lemma 6.4. Let ℓ ∈ 𝒥 , 𝑥 < 𝑠𝑗 and 𝑧 > 𝑥. Then (6.1) holds. Furthermore, it holds with equality if ℓ ≤ 𝑗,
𝑈(𝑥) = 𝑣ℓ(𝑥) and 𝑧 = 𝑆𝑗,ℓ, and only if 𝑥 ∈ Ω𝑗.

Proof. The inequality (6.1) in itself is a corollary of Lemma 6.3. That it holds with equality if ℓ ≤ 𝑗, 𝑈(𝑥) = 𝑣ℓ(𝑥)
and 𝑧 = 𝑆𝑗,ℓ, follows from the construction of 𝑣. To show that (6.1) is strict if 𝑥 ∈ 𝒮𝑗 , we distinguish the cases
𝑘ℓ > 0 and 𝑘ℓ = 0. When 𝑥 ∈ 𝒮𝑗 , 𝑣(𝑥) > 𝑈(𝑥). So if 𝑘ℓ > 0, inequality (6.2) yields

(︀
𝑀ℓ𝑈

)︀
(𝑥) > 𝑈(𝑥).

Whereupon, Lemma C.1 in Appendix C tells us that (6.1) is strict. The proof for 𝑘ℓ = 0 is less straightforward.
Let (𝑎𝜈 , 𝑏𝜈) be the component of 𝒮𝑗 in which 𝑥 lies. By Lemma 6.1, 𝑈 ′(𝜂) >

(︀
𝐷−𝑈

)︀
(𝑏𝜈) ≥

(︀
𝐷−𝑈

)︀
(𝑠𝑗) for

all 𝜂 ∈ (𝑎𝜈 , 𝑏𝜈). Invoking Lemma 5.8, this gives 𝑈 ′(𝜂) > −𝑐𝑗 for all such 𝜂. However, as 𝑘ℓ = 0, necessarily
𝑐𝑗 ≤ 𝑐ℓ. Therefore, 𝑈 ′ + 𝑐ℓ > 0 in (𝑎𝜈 , 𝑏𝜈). Meanwhile, by Lemmas 6.3 and B.1 in Appendix B, 𝜂 ↦→ 𝑈(𝜂) + 𝑐ℓ𝜂
is nondecreasing in [𝑏𝜈 ,∞). Taken together, these two conclusions imply that 𝑈(𝑧) + 𝑐ℓ𝑧 > 𝑈(𝑥) + 𝑐ℓ𝑥, whether
𝑧 ≤ 𝑏𝜈 or 𝑧 > 𝑏𝜈 . The deduced inequality is equivalent to (6.1) with strictness. �

Lemma 6.5. Let 𝜃 be the least minimizer of {𝑦ℓ : ℓ ∈ 𝒥 }. Then there is a 𝑤 < 𝑠𝜃 such that (𝑤, 𝑠𝜃] ⊂ Ω𝑗.

Proof. By Lemma 5.12, 𝑠𝜃 ≤ 𝑠𝑗 . Subsequently, by Lemmas 5.8, 5.10 and 5.11, 𝑈 and 𝑣 are differentiable at
𝑠𝜃, 𝑈(𝑠𝜃) = 𝑣(𝑠𝜃) = 𝑦𝑗(𝑠𝜃) and 𝑈 ′(𝑠𝜃) = 𝑣′(𝑠𝜃) = 𝑦′𝑗(𝑠𝜃). Therefore, should the lemma be false, by Lem-
mas 5.10 and 5.11 there would be an 𝑎𝜈 < 𝑠𝜃 and a function (5.20) such that 𝑈 and 𝑣 are differentiable at 𝑎𝜈 ,
𝑈 = 𝑌𝜈 < 𝑣 in (𝑎𝜈 , 𝑠𝜃), 𝑌𝜈(𝑎𝜈) = 𝑣(𝑎𝜈), and 𝑌𝜈(𝑠𝜃) = 𝑣(𝑠𝜃) = 𝑦𝑗(𝑠𝜃). As solutions of the initial-value problem
for (4.1) are unique, the latter would imply that 𝑌𝜈 = 𝑦𝑗 . Consequently, by Lemma 5.8, there would be an
ℓ ∈ {1, 2, . . . , 𝑗} such that 𝑦𝑗 = 𝑦𝜃 = 𝑦ℓ and 𝑎𝜈 = 𝑠ℓ < 𝑠𝜃. By Lemma 5.12, this necessitates ℓ < 𝜃. Therewith,
we have arrived at a contradiction of 𝜃 being the least minimizer of {𝑦ℓ : ℓ ∈ 𝒥 }. So the lemma must be
true. �

Building upon the analysis in Section 5, Lemmas 6.2–6.5 lead to the desired existence result.

Theorem 6.6. Suppose that (2.4) and (2.5) hold and 𝑓ℓ satisfies Hypothesis 4.2 for every ℓ ∈ 𝒥 . Then (2.10)
has a unique solution satisfying Ansatz 3.3.

Proof. Let 𝑗 be the greatest minimizer of {𝑦ℓ : ℓ ∈ 𝒥 }, and 𝑢 be the function 𝑈𝑗 defined by Lemma 5.11.
Then by Lemma 6.3, 𝑢 ≤ 𝑀𝑢 in R. Furthermore, by Lemmas 5.10 and 5.11, 𝐴𝑢 ≤ 𝑓 in R. If now, 𝑢 < 𝑀𝑢 at
some 𝑥 ∈ R, Lemmas 6.2 and 6.4 imply that either 𝑥 > 𝑠𝑗 or 𝑥 ∈ 𝒮𝑗 . Hence, by Lemmas 5.10 and 5.11, 𝑢 is
differentiable and 𝐴𝑢 = 𝑓 at 𝑥. This confirms that (𝐴𝑢− 𝑓)(𝑢−𝑀𝑢) = 0 in R. Thus we have proven that 𝑢
solves (2.10). With regard to satisfaction of Ansatz 3.3, let Ω denote the set of 𝑥 ∈ R for which (3.1) holds. By
Lemmas 6.2 and 6.4,

Ω =

{︃
Ω𝑗 if 𝑘𝑗 > 0
Ω𝑗 ∖ {𝑠𝑗} if 𝑘𝑗 = 0.

This implies that 𝑠𝑗 is the least upper bound of Ω when 𝑘𝑗 > 0. In the light of Lemma 6.5, it likewise implies
that 𝑠𝑗 is the least upper bound of Ω when 𝑗 is the unique minimizer of {𝑦ℓ : ℓ ∈ 𝒥 }. However when 𝑘𝑗 = 0
and there is more than one such minimizer, Lemmas 5.8 and 5.14 say that the least upper bound of Ω is 𝑠𝑖,
where 𝑖 is the second greatest minimizer of {𝑦ℓ : ℓ ∈ 𝒥 }. Whatever, Ω has the structure set out in Ansatz 3.3.
Lemma 5.10 affirms that 𝑢 has the required regularity. �

Theorem 6.6 spawns a number of corollaries. The proof of the first is contained in that of the theorem. That
of the second, third and fourth is to be found in Section 5. The fifth is given by Lemmas 5.8, 5.14 and 6.5, and
the theorem.

Corollary 6.7. If 𝑘𝐽 = 0, 𝐽 is a minimizer of 𝑦ℓ with respect to ℓ ∈ 𝒥 , and there is at least one other such
minimizer, then 𝑗 in Theorem 4.1 is the second greatest of these minimizers. Otherwise, 𝑗 is the greatest.
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Corollary 6.8. Except in a finite subset of R, the unique solution 𝑢 of (2.10) satisfying Ansatz 3.3 is con-
tinuously differentiable. Let 𝑗 be the greatest minimizer of 𝑦ℓ with respect to ℓ ∈ 𝒥 . Define 𝑣 by (5.8), (5.12)
and (5.13), the partition (5.14) such that 𝑣 is affine in each of the intervals (5.15) with N the smallest natural
number for which such a partition exists, ℳ by (5.16), 𝑇𝑚 for 𝑚 ∈ℳ by (5.17), 𝐿 and (5.19) by Lemma 5.10,
and Ω𝑗 by (5.21) and (5.22). Then the finite subset referred to, Ξ say, comprises those 𝜎𝑚 ∈ Ω𝑗 for which
2 ≤ 𝑚 ≤ N and those 𝑏𝜈 for which 𝑏𝜈 < 𝑎𝜈+1 and 1 ≤ 𝜈 ≤ 𝐿. The derivative of 𝑢 has a jump discontinuity at
every 𝑥 ∈ Ξ.

Corollary 6.9. There holds 𝐷+𝑢 + 𝛼𝑢 < 𝐷−𝑢 + 𝛼𝑢 ≤ 𝑓 at every 𝑥 ∈ Ξ, 𝐴𝑢 < 𝑓 in the interior of Ω𝑗 ∖Ξ, and
𝐴𝑢 = 𝑓 elsewhere.

Corollary 6.10. If 𝑥 ∈ Ω𝑗 ∖ Ξ then 𝑢(𝑥) = 𝑣ℓ(𝑥) for a unique ℓ ∈ {1, 2 . . . , 𝑗}.

Corollary 6.11. Necessarily, 𝐿 ≥ n − 1, 𝑏𝐿+1−n < 𝑠𝜃 when 𝐿 ≥ n, 𝑎𝐿+2−n = 𝑠𝜃, and 𝑏𝜈 = 𝑎𝜈+1 = 𝑠𝜆(𝐿−𝜈+1)

for 𝐿 + 2− n ≤ 𝜈 ≤ 𝐿, where n is the total number of minimizers 𝜆(1) = 𝑗 > 𝜆(2) > · · · > 𝜆(n) = 𝜃 of 𝑦ℓ with
respect to ℓ ∈ 𝒥 .

7. Supplementary properties

The purpose of this section is to ascertain that the unique solution 𝑢 of (2.10) satisfying Ansatz 3.3 possesses
certain properties that can intuitively be expected of an optimal inventory control policy.

The first of the afore-mentioned properties is the stability of 𝑢 in the sense that small perturbations of
(2.5) do not engender large changes in 𝑢. In other words, under the predominant supposition that every 𝑓ℓ

satisfies Hypothesis 4.2, 𝑢 depends continuously on the set-up costs (2.5). Taken together with the existence
and uniqueness results, this establishes that the problem of solving (2.10) under Ansatz 3.3 is mathematically
well posed in the sense ascribed to Hadamard. The precise stability statement is the following and is proven in
Appendix E.

Theorem 7.1. Let 𝑢 be the unique solution of (2.10) given by Theorem 6.6, and 𝑢(𝑖) the corresponding solution
with (2.5) replaced by a like set of numbers furnished with a superscript (𝑖) for 𝑖 ∈ N. If 𝑘(𝑖)

ℓ → 𝑘ℓ as 𝑖 →∞ for
every ℓ ∈ 𝒥 then 𝑢(𝑖) → 𝑢 uniformly in R.

It might further be expected that, given a selection of available suppliers, should a further supplier appear
on the scene, the total future cost of the optimal inventory control policy could fall, at least for some inventory
levels if not all. The cost would certainly not be expected to rise. As this property is equivalent to the property
that reducing the selection of available suppliers leads to the solution 𝑢 of (2.10) satisfying Ansatz 3.3 increasing
or remaining the same, and the latter property is easier to formulate, we shall view the phenomenon from this
perspective. The theorem below summarizes it and is proven in Appendix F.

Theorem 7.2. Suppose that 𝐽 ≥ 2 and ℓ ∈ 𝒥 . Let 𝑢 be the solution of (2.10) given by Theorem 6.6 and 𝑢* the
corresponding solution whereby 𝑐ℓ and 𝑘ℓ are omitted from (2.4) and (2.5) and 𝐽 is lessened by 1. Then 𝑢* ≥ 𝑢.

In the same vein as the previous property, should the cost per item or the set-up cost of one or more suppliers
within a set of available suppliers be increased, then the total future cost of the optimal inventory control policy
could be expected to rise for some if not all inventory levels. It is inconceivable that this will provoke a fall in the
cost. This monotonicity property is captured by the coming theorem, whose proof is presented in Appendix G.

Theorem 7.3. Let 𝑢± be solutions of (2.10) given by Theorem 6.6 corresponding to (2.4) and (2.5) furnished
with a superscript ±. If 𝑐+

ℓ ≥ 𝑐−ℓ and 𝑘+
ℓ ≥ 𝑘−ℓ for every ℓ ∈ 𝒥 then 𝑢+ ≥ 𝑢−.

Finally, in the introduction, it was argued that suppliers, that incur both a cost per item and a set-up cost
greater than or equal to those of another supplier, do not have to be taken into account. It could equally as well
be argued that, as long as no two suppliers have exactly the same costs, it should not be necessary to dismiss



OPTIMAL POLICIES FOR AN INVENTORY MODEL WITH SEVERAL SUPPLIERS 1467

such suppliers a priori . If the model were robust, then these suppliers would be excluded from an optimal policy
as an outcome. A sift through the theory developed in the preceding sections, verifies that the latter is indeed
the case. The theorem below abrogates the previously stated existence, uniqueness and stability results.

Theorem 7.4. Suppose that
𝑐1 ≤ 𝑐2 ≤ · · · ≤ 𝑐𝐽 ,

𝑘1 ≥ 0, 𝑘2 ≥ 0, . . . , 𝑘𝐽 ≥ 0,

𝑘ℓ > 𝑘ℓ+1 if 𝑐ℓ = 𝑐ℓ+1

for ℓ ∈ 𝒥 ∖ {𝐽}, and 𝑓ℓ satisfies Hypothesis 4.2 for every ℓ ∈ 𝒥 . Then (2.10) has a stable unique solution
satisfying Ansatz 3.3. Moreover, it is the same as that with

𝑐(𝑁) < 𝑐(𝑁−1) < · · · < 𝑐(1) 𝑎𝑛𝑑 𝑘(𝑁) > 𝑘(𝑁−1) > · · · > 𝑘(1) ≥ 0

for some {(1), (2), . . . , (𝑁)} ⊆ 𝒥 .

8. Type

In the prototypical circumstance that there is a single supplier, i.e. 𝐽 = 1, with a set-up cost 𝑘1 > 0, the
stable unique solution 𝑢 of (2.10) satisfying Ansatz 3.3 corresponds to a standard (𝑠, 𝑆) policy. The numbers 𝑠
and 𝑆 are 𝑠1 and 𝑆1 respectively. Confronted with an inventory level 𝑥 ≤ 𝑠, the policy is to place an order to
bring the inventory level up to 𝑆. Faced with an inventory level 𝑥 > 𝑠, the policy is not to intervene. When the
set-up cost 𝑘1 = 0, and therefore 𝑠1 = 𝑆1, Theorem 6.6 delivers a degenerate (𝑠, 𝑆) policy with 𝑆 = 𝑠. If 𝑥 < 𝑠
then the policy is to order up to the level 𝑆. If 𝑥 > 𝑠 then one does not intervene. However, if 𝑥 = 𝑠 = 𝑆, then
one maintains the inventory at this level. This is feasible as ordering incurs only the cost per item.

When there are several suppliers, i.e. 𝐽 ≥ 2, the exact type of the optimal policy propagated by 𝑢 depends
on three facets. Taking it as read that (2.4) and (2.5) apply, the foremost is the greatest minimizer 𝑗 of 𝑦ℓ with
respect to ℓ ∈ 𝒥 . In layman’s terms, this is the supplier for which the single-supplier (𝑠, 𝑆) policy involves the
least cost when there is a large stock in hand, or, if there is more than one such supplier, that one of these
suppliers with the least set-up cost. Of all these suppliers, that is also the supplier for which the single-supplier
policy has the least value of 𝑆 and the greatest value of 𝑠. When 𝑗 = 1, i.e. the supplier with the most favourable
single-supplier (𝑠, 𝑆) policy is also the supplier with the least cost per item overall, 𝑢 corresponds to an (𝑠, 𝑆)
policy. This is indistinguishable from the (𝑠, 𝑆) policy with supplier 1 as the sole available supplier. Otherwise,
𝑢 does not represent an (𝑠, 𝑆) policy.

When the pivotal supplier 𝑗 is not the supplier with the least cost per item overall, then, in the second
instance, the type of policy is determined by the numbers 𝑇𝑚 for 𝑚 ∈ ℳ ∖ {1}. These numbers are associated
with an inventory level 𝜎𝑚, which has the property that one would ostensibly order from one supplier if one
had a slightly smaller backlog and from another if one had a slightly greater backlog. The nonnegativity of 𝑇𝑚

is a way of testing that it is more economical to order from the second supplier than not to place an order at
all. The number 𝑇1 = 0 irrespective of any other considerations.

If 𝑗 ≥ 2, 𝑇𝑚 ≥ 0 for every 𝑚 ∈ℳ, and 𝑘𝑗 > 0, then 𝑢 corresponds to a generalized (𝑠, 𝑆) policy involving 𝑁
suppliers and numbers (1.1). In terms of the theory leading up to Theorem 6.6, 𝑁 = N, supplier (1) is supplier
𝑗, 𝑠(1) = 𝑠𝑗 , and 𝑆(1) = 𝑆𝑗 . For 2 ≤ 𝑛 ≤ 𝑁 , supplier (𝑛) is supplier ℓ, where ℓ is that number in {1, 2 . . . , 𝑗} for
which 𝑣 = 𝑣ℓ in 𝐼𝑛, 𝑠(𝑛) = 𝜎𝑛 and 𝑆(𝑛) = 𝑆𝑗,ℓ. Irrevocably, supplier (𝑁) is supplier 1.

The strategy espoused by the generalized (𝑠, 𝑆) policy is that if the inventory level 𝑥 is such that 𝑥 < 𝑠(𝑁)

one orders from supplier (𝑁) to bring the inventory level up to 𝑆(𝑁). If 𝑠(𝑛+1) < 𝑥 < 𝑠(𝑛) for 2 ≤ 𝑛 ≤ 𝑁 or
𝑥 = 𝑠(𝑛) for 𝑛 = 1, one orders from supplier (𝑛) to bring the inventory level up to 𝑆(𝑛). If 𝑥 > 𝑠(1) one does
not intervene. With regard to an inventory level 𝑥 = 𝑠(𝑛) for 2 ≤ 𝑛 ≤ 𝑁 , one may order from supplier (𝑛) or
supplier (𝑛 − 1) to bring the level of inventory up to the appropriate target level. Possibly there are further
suppliers, otherwise excluded from the policy, with which one could place an order from this level.
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When 𝑗 ≥ 2, 𝑇𝑚 ≥ 0 for every 𝑚 ∈ ℳ, and 𝑘𝑗 = 0, then 𝑢 betokens a degenerate generalized (𝑠, 𝑆) policy.
It is degenerate in the sense that (1.1) is replaced by

𝑠(𝑁) < 𝑠(𝑁−1) < · · · < 𝑠(1) = 𝑆(1) < 𝑆(2) < · · · < 𝑆(𝑁). (8.1)

Except in one detail, the policy has the same characteristics as the generalized (𝑠, 𝑆) policy just described. The
difference is that when 𝑥 = 𝑠(1) = 𝑆(1), the policy is to maintain the inventory at this level.

Should there be more than one minimizer of 𝑦ℓ with respect to ℓ ∈ 𝒥 , then necessarily 𝑇𝑚 < 0 for some
𝑚 ∈ℳ. Thus, without further ado, it can be stated that the solution 𝑢 of (2.10) satisfying Ansatz 3.3 will not
deliver a generalized (𝑠, 𝑆) policy let alone an (𝑠, 𝑆) policy.

Given that 𝑗 ≥ 2, 𝑇𝑚 < 0 for some 𝑚 ∈ ℳ, and 𝑘𝑗 > 0, the function 𝑢 given by Theorem 6.6 represents
a hyper-generalized (𝑠, 𝑆) policy that is not a generalized (𝑠, 𝑆) policy and certainly not an (𝑠, 𝑆) policy. This
involves numbers (1.1)–(1.3), with 𝑠(𝑛+1) < 𝑟(𝑛) for at least one 𝑛 ∈ {1, 2, . . . , 𝑁 − 1}. Supplier (1) is supplier
𝑗, 𝑠(1) = 𝑠𝑗 , and 𝑆(1) = 𝑆𝑗 as with a generalized (𝑠, 𝑆) policy. The numbers 𝑠(𝑛+1) and 𝑟(𝑛) for 1 ≤ 𝑛 ≤ 𝑁 − 1
are collectively the numbers 𝑎𝜈 and 𝑏𝜈 for 1 ≤ 𝜈 ≤ 𝐿, and those 𝜎𝑚 for 2 ≤ 𝑚 ≤ N within the set Ω𝑗 defined in
Section 5. Supplier (𝑛) for 𝑛 from 2 to 𝑁 can be identified in that order as the supplier ℓ for which 𝑣(𝑥) = 𝑣ℓ(𝑥)
for some 𝑥 ∈ Ω𝑗 at which 𝑣 is differentiable as 𝑥 decreases from 𝜎1. Thereupon, 𝑆(𝑛) = 𝑆𝑗,ℓ, 𝑠(𝑛) is the least
upper bound of such 𝑥, and 𝑟(𝑛) for 𝑛 ≤ 𝑁 − 1 is the greatest lower bound of these 𝑥. As with a generalized
(𝑠, 𝑆) policy, supplier (𝑁) is unavoidably supplier 1.

The strategy embodied in a hyper-generalized (𝑠, 𝑆) policy is as follows. If the inventory level 𝑥 is such that
𝑥 < 𝑠(𝑁) then one orders from supplier (𝑁) to bring the inventory level up to 𝑆(𝑁). If 𝑠(𝑛+1) < 𝑥 < 𝑟(𝑛) for
1 ≤ 𝑛 ≤ 𝑁 − 1 then one does not intervene. If 𝑟(𝑛) < 𝑥 < 𝑠(𝑛) for 1 ≤ 𝑛 ≤ 𝑁 − 1 one orders from supplier
(𝑛) to bring the inventory level up to 𝑆(𝑛). Finally, if 𝑥 > 𝑠(1) one does not intervene. Regarding the watershed
levels, if 𝑠(𝑛) < 𝑟(𝑛−1) for 𝑛 = 𝑁 , 𝑟(𝑛) < 𝑠(𝑛) < 𝑟(𝑛−1) for 2 ≤ 𝑛 ≤ 𝑁 − 1, or 𝑟(𝑛) < 𝑠(𝑛) for 𝑛 = 1, then
at the inventory level 𝑥 = 𝑠(𝑛) one should order from supplier (𝑛) to bring the inventory level up to 𝑆(𝑛). If
𝑠(𝑛+1) < 𝑟(𝑛) = 𝑠(𝑛) < 𝑟(𝑛−1) for 2 ≤ 𝑛 ≤ 𝑁 − 1, or 𝑠(𝑛+1) < 𝑟(𝑛) = 𝑠(𝑛) for 𝑛 = 1, then at the inventory level
𝑥 = 𝑟(𝑛) = 𝑠(𝑛) one may choose either to order from supplier (𝑛) to bring the inventory level up to 𝑆(𝑛) or
not to intervene. There are no other options. At an inventory level 𝑥 = 𝑠(𝑛), where 𝑠(𝑛) = 𝑟(𝑛−1) < 𝑠(𝑛−1) and
𝑛 = 𝑁 , or 𝑟(𝑛) < 𝑠(𝑛) = 𝑟(𝑛−1) < 𝑠(𝑛−1) and 2 ≤ 𝑛 ≤ 𝑁 − 1, one has the same ambiguity as with a generalized
(𝑠, 𝑆) policy. At an inventory level 𝑥 = 𝑟(𝑛), where 𝑠(𝑛+1) < 𝑟(𝑛) < 𝑠(𝑛) and 1 ≤ 𝑛 ≤ 𝑁 − 1, one may choose to
order from supplier (𝑛) to bring the inventory level up to 𝑆(𝑛) or not to intervene. There could also be suppliers
otherwise excluded from the policy, with which one could place an order from this level.

When 𝑗 ≥ 2, 𝑇𝑚 < 0 for some 𝑚 ∈ ℳ, and 𝑘𝑗 = 0, then (1.1) is replaced by (8.1). Except for 𝑥 = 𝑠(1),
the advocated strategy is the same as that of the hyper-generalized (𝑠, 𝑆) policy just described. However, for
𝑥 = 𝑠(1) one should maintain the inventory level at 𝑥 when 𝑠(1) > 𝑟(1). For 𝑥 = 𝑠(1) when 𝑠(1) = 𝑟(1) one has
the choice of either maintaining the inventory level at 𝑥 or not intervening.

In a nutshell, the following has emerged.

Theorem 8.1. Relaxing (1.1) to

𝑠(𝑁) < 𝑠(𝑁−1) < · · · < 𝑠(1) ≤ 𝑆(1) < 𝑆(2) < · · · < 𝑆(𝑁), (8.2)

and adopting the convention that hyper-generalized (𝑠, 𝑆) policies include generalized (𝑠, 𝑆) policies, and gener-
alized (𝑠, 𝑆) policies include (𝑠, 𝑆) policies, the solution 𝑢 of (2.10) given by Theorem 6.6 represents a hyper-
generalized (𝑠, 𝑆) policy. With reference to the notation set out in Corollary 6.8, it is a generalized (𝑠, 𝑆) policy
if and only if 𝑇𝑚 ≥ 0 for every 𝑚 ∈ ℳ, and an (𝑠, 𝑆) policy if and only if 𝑗 = 1. The weak inequality in (8.2)
is strict if and only if 𝑘𝑗 > 0.

9. The case of two suppliers

As much as Theorem 8.1 establishes the necessary and sufficient conditions for the occurrence of a generalized
(𝑠, 𝑆) policy and an (𝑠, 𝑆) policy, it provides little insight into the way in which this occurrence is regulated by the
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costs of the suppliers. The present section addresses this lacuna by examining the particular case of two suppliers
in more detail. The next three theorems furnish a conspectus. Their proof can be found in Appendices H–J
respectively.

Theorem 9.1. Suppose that 𝐽 = 2, hypotheses (2.4) and (2.5) hold, and the functions 𝑓1 and 𝑓2 satisfy
Hypothesis 4.2. Then there are strictly increasing continuous functions 𝐾* and 𝐾† with domain [0,∞) such that

𝐾*(𝑘) > 𝐾†(𝑘) > 𝑘 for all 𝑘 ≥ 0 (9.1)

and the following holds. If 𝑘1 < 𝐾†(𝑘2) the solution of (2.10) satisfying Ansatz 3.3 corresponds to an (𝑠, 𝑆) policy
involving only supplier 1. If 𝑘1 ≥ 𝐾*(𝑘2) it corresponds to a generalized (𝑠, 𝑆) policy involving both suppliers.
If 𝐾†(𝑘2) ≤ 𝑘1 < 𝐾*(𝑘2) it corresponds to a hyper-generalized (𝑠, 𝑆) policy involving both suppliers that is not
a generalized (𝑠, 𝑆) policy.

Theorem 9.2. Suppose that the hypotheses of Theorem 9.1 are met by 𝑓±1 with numbers 𝑐±1 , delivering 𝐾±
† and

𝐾±
* respectively. If 𝑐+

1 > 𝑐−1 then 𝐾+
† < 𝐾−

† and 𝐾+
* < 𝐾−

* on [0,∞).

Theorem 9.3. Suppose that the hypotheses of Theorem 9.1 are met by 𝑓±2 with numbers 𝑐±2 , delivering 𝐾±
† and

𝐾±
* respectively. If 𝑐+

2 > 𝑐−2 then 𝐾+
† > 𝐾−

† and 𝐾+
* > 𝐾−

* on [0,∞).

Remark 9.4. When 𝑓 takes on the classical expression (2.6) and (4.7) holds,

𝐾†(𝑘2) = (𝑝− 𝛼𝑐1)
[︀
ln

{︀
(𝑝− 𝛼𝑐1)/(𝑝− 𝛼𝑐2)

}︀
− 𝛼𝑠2

]︀
/𝛼2

− (𝑞 + 𝛼𝑐1) ln
{︀

[𝑝 + 𝑞 − (𝑝− 𝛼𝑐2)e𝛼𝑠2 ]/(𝑞 + 𝛼𝑐1)
}︀
/𝛼2

and

𝐾*(𝑘2) = (𝑝− 𝛼𝑐1){𝑐2 − 𝑐1 − (𝑝− 𝛼𝑐2)𝑠2}/{𝛼(𝑝− 𝛼𝑐2)}
− (𝑞 + 𝛼𝑐1) ln

{︀
[𝑝 + 𝑞 − (𝑝− 𝛼𝑐2)e𝛼𝑠2 ]/(𝑞 + 𝛼𝑐1)

}︀
/𝛼2

where 𝑠2 is given by (5.6).

Theorem 9.1 establishes that in the case of two available suppliers ordered in terms of increasing cost per
item, there are two critical levels for the set-up cost of the first supplier relative to that of the second. When the
set-up cost of the first supplier is below the lesser critical level, the second supplier is excluded from the optimal
policy. When the set-up cost of the first supplier is at this level or above, both suppliers are involved. When
in addition the set-up cost of the first supplier is below the greater critical level, the optimal policy contains
shortage levels, between ones where a manager would order from one supplier or the other, for which the policy
is to let a backlog grow. When the set-up cost of the first supplier is at or above this greater critical level, the
optimal policy entails ordering from one supplier or the other for all inventory levels below the greatest for which
this is an option. This is perhaps counterintuitive. An explanation can be sought in looking at what happens
to the greatest inventory level, 𝑠(1), from which an order may be placed, as the set-up cost of the first supplier
increases. When the set-up cost of the first supplier cost is below the lesser critical level, 𝑠(1) has the value of
𝑠 in the (𝑠, 𝑆) policy of that supplier. When the cost reaches the critical level, it jumps to the value of 𝑠 in the
single-supplier (𝑠, 𝑆) policy of the other supplier. Thus, as it were, an interval of inventory levels for which the
policy was not to intervene is instantly annihilated. What one observes in the optimal policy is a remnant of
this interval in which it still pays not to intervene. Increasing the set-up cost of the first supplier further, traces
of the interval disappear. Theorem 9.1 also shows that as the set-up cost of the second supplier increases, the
critical levels for the first supplier adjust. The lesser the set-up cost of the first supplier or the greater that of
the second, the greater the likelihood that the second supplier is excluded from the policy. Theorems 9.2 and 9.3
confirm that the same applies with regard to the cost per item. These conclusions are as one would expect.
Indeed, they have been drawn on the basis of a numerical experiment in [6]. When more than two suppliers
are available, Example 4.29 of [6] illustrates that the prediction of the interrelation between the costs of several
suppliers becomes considerably more problematic.
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10. Computation

The stable unique solution 𝑢 of problem (2.10) satisfying Ansatz 3.3 is characterized in sufficient detail in
Section 5 to inform how to compute it. The algorithm below summarizes the procedure. This is a polished
version of Algorithm 4.27 of [6] taking advantage of the new insights. The most noteworthy alteration is that
the greatest minimizer of 𝑦ℓ with respect to ℓ ∈ 𝒥 is replaced by the least. Since it has been shown that
whichever minimizer is used, the end result is the same, this reduces the work when there is more than one. The
worst-case complexity of the algorithm is 𝑂(𝐽2) with regard to the total number of steps that will be executed
for a large number 𝐽 of available suppliers.

Algorithm 10.1. Step 1. For every ℓ ∈ 𝒥 , find the unique solution of the simultaneous equations (5.1).
Step 2. Pick a convenient 𝜁 ∈ R, and compute

Υℓ = 𝑐ℓe𝛼𝜁 −
∫︁ 𝜁

𝑠ℓ

e𝛼𝜂 d𝑓ℓ(𝜂) for ℓ ∈ 𝒥 .

Step 3. Define Λ = {ℓ ∈ 𝒥 : Υℓ ≤ Υ𝑖 for every 𝑖 ∈ 𝒥 }, 𝑗 = min Λ, and

𝐵𝑗 = {𝑓𝑗(𝑠𝑗) + 𝑐𝑗}/𝛼. (10.1)

Step 4. If 𝑗 = 1, set N = 1, 𝜎N = 𝑠𝑗 and 𝐿 = 0. Then proceed to Step 8. Otherwise, continue to Step 5.
Step 5. For ℓ = 1, 2, . . . , 𝑗 − 1, determine 𝑆𝑗,ℓ > 𝑆𝑗 from equation (5.9), and set

𝐵ℓ = 𝑘ℓ + {𝑓ℓ(𝑆𝑗,ℓ) + 𝑐ℓ}/𝛼. (10.2)

Step 6. Let 𝜎1 = 𝑠𝑗 , 𝜅(1) = 𝑗 and 𝑚 = 2.
(a) Define 𝒦 = {1, 2 . . . , 𝜅(𝑚− 1)− 1}.
(b) For every ℓ ∈ 𝒦, compute 𝜎(ℓ)

𝑚 =
(︀
𝐵𝜅(𝑚−1) −𝐵ℓ

)︀
/
(︀
𝑐𝜅(𝑚−1) − 𝑐ℓ

)︀
.

(c) Define 𝜎𝑚 = max{𝜎(ℓ)
𝑚 : ℓ ∈ 𝒦} and 𝜅(𝑚) = min{ℓ ∈ 𝒦 : 𝜎(ℓ)

𝑚 = 𝜎𝑚}.
(d) Let 𝑇𝑚 = 𝑓𝜅(𝑚)(𝜎𝑚) + 𝑐𝜅(𝑚) − 𝛼𝐵𝜅(𝑚).
(e) If 𝜅(𝑚) = 1, set N = 𝑚 and proceed to Step 7. Otherwise, increase 𝑚 by 1, and return to Step 6(a).

Step 7. Let n = N and 𝜈 = 0.
(a) Define 𝒩 = {2, 3, . . . , n}.
(b) If 𝑇𝑚 ≥ 0 for every 𝑚 ∈ 𝒩 , set 𝐿 = 𝜈, and proceed to Step 8. Otherwise, increase 𝜈 by 1, and continue

to Step 7(c).
(c) Define 𝜇(𝜈) = max{𝑚 ∈ 𝒩 : 𝑇𝑚 < 0} and ℓ = 𝜅(𝜇(𝜈)).
(d) Determine 𝑎𝜈 < 𝜎𝜇(𝜈) from the equation

𝑓ℓ(𝑎𝜈) = 𝛼𝐵ℓ − 𝑐ℓ. (10.3)

(e) Set

𝑌𝜈(𝑥) = e−𝛼𝑥

{︂
(𝐵ℓ − 𝑐ℓ𝑎𝜈)e𝛼𝑎𝜈 +

∫︁ 𝑥

𝑎𝜈

e𝛼𝜂𝑓(𝜂) d𝜂

}︂
. (10.4)

(f) Working through the sequence 𝜇(𝜈)−1, 𝜇(𝜈)−2, . . . , 1 in that order, let n be first such number encoun-
tered for which the equation

𝑌𝜈(𝑥) = 𝐵𝜅(n) − 𝑐𝜅(n)𝑥 (10.5)

has a solution in (𝜎n+1, 𝜎n].
(g) Let 𝑏𝜈 be the least solution of (10.5) in (𝜎n+1, 𝜎n].
(h) If n = 1, set 𝐿 = 𝜈, and proceed to Step 8. Otherwise, return to Step 7(a).

Step 8. Output 𝑢(𝑥) = 𝑌𝜈(𝑥) for 𝑎𝜈 < 𝑥 < 𝑏𝜈 and 1 ≤ 𝜈 ≤ 𝐿. For all other 𝑥 < 𝑠𝑗 , 𝑢(𝑥) = 𝐵1 − 𝑐1𝑥 if 𝑥 ≤ 𝜎N,
and 𝑢(𝑥) = 𝐵𝜅(𝑚) − 𝑐𝜅(𝑚)𝑥 if 𝜎𝑚+1 < 𝑥 ≤ 𝜎𝑚 and 1 ≤ 𝑚 ≤ N − 1. For 𝑥 ≥ 𝑠𝑗 , 𝑢(𝑥) is given by the
right-hand side of (10.4) with ℓ = 𝑗 and 𝑎𝜈 = 𝑠𝑗 . End.
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A few words regarding Algorithm 10.1 may be helpful. In Step 2, Λ is the set of minimizers of 𝑦ℓ with respect
to ℓ ∈ 𝒥 because, by (5.3), Υℓ = e𝛼𝜁

(︀
𝛼𝑦ℓ−𝑓

)︀
(𝜁) for ℓ ∈ 𝒥 . Hence, 𝑗 = min Λ identifies 𝑗 as the least minimizer

of {𝑦ℓ : ℓ ∈ 𝒥 }. The number 𝐵ℓ defined for ℓ = 𝑗 in Step 3 and for ℓ = 1, 2, . . . , 𝑗 − 1 in Step 5 is introduced
to succinctly express (5.13) as 𝑣ℓ(𝑥) = 𝐵ℓ − 𝑐ℓ𝑥. Step 6 extracts the partition (5.14) with the property that 𝑣
defined by (5.12) is affine in each of the intervals (5.15) and N is the smallest number for which such a partition
exists. The function 𝜅 : ℳ = {1, 2, . . . ,N} → {1, 2, . . . , 𝑗} is a device for recording that ℓ for which 𝑣 = 𝑣ℓ in
𝐼𝑚. Step 7 determines the number 𝐿, the numbers (5.19), and the functions (5.20) signalled in Lemma 5.10.
The function 𝜇 : {1, 2, . . . , 𝐿} →ℳ uncovered in this step keeps a tab of that 𝑚 for which 𝑎𝜈 ∈ 𝐼𝑚. In general,
equation (10.5) has a unique solution, a pair of solutions, or no solution in an interval (𝜎n+1, 𝜎n]. So ‘least’ in
Step 7(g) should be understood as ‘unique’ or ‘lesser’.

Remark 10.2. Regarding Algorithm 10.1 when 𝑓 is given by (2.6) and (4.7) holds, 𝑠ℓ can be computed at
Step 1 via (5.6), whereupon 𝑆𝑗 can be found at Step 5 via (5.5). In Step 2, it is convenient to take 𝜁 = 0,
leading to

Υℓ = {𝑝− (𝑝− 𝛼𝑐ℓ)e𝛼𝑠ℓ}/𝛼. (10.6)

The expression (10.1) simplifies to
𝐵𝑗 = {𝑐𝑗 − (𝑝− 𝛼𝑐𝑗)𝑠𝑗}/𝛼, (10.7)

and (10.2) to
𝐵ℓ = 𝑘ℓ + {(𝑞 + 𝛼𝑐ℓ)𝑆𝑗,ℓ + 𝑐ℓ}/𝛼. (10.8)

Where needed, one can also explicitly solve (10.3) as

𝑎𝜈 = (𝑐ℓ − 𝛼𝐵ℓ)/(𝑝− 𝛼𝑐ℓ). (10.9)

The thrust of Algorithm 10.1 is the calculation of the solution 𝑢 of (2.10) satisfying Ansatz 3.3. The corre-
sponding hyper-generalized (𝑠, 𝑆) policy, and its identification as a generalized (𝑠, 𝑆) policy or an (𝑠, 𝑆) policy,
is distilled from this. The following sequel, employing the data acquired, outlines the procedure. The worst-case
complexity of the algorithm with regard to the total number of computational steps for a large number 𝐽 of
available suppliers is 𝑂(𝐽).

Algorithm 10.3. Step 1. Count the number n of elements of Λ.
Step 2. If n = 1 proceed to Step 4. Otherwise continue to Step 3.
Step 3. Sort the elements of Λ into the order 𝜆(1) > 𝜆(2) > · · · > 𝜆(n−1) > 𝑗, and, for 𝑛 from 1 to n−1, define

supplier (𝑛) to be supplier 𝜆(𝑛), 𝑟(𝑛) = 𝑠(𝑛) = 𝑠𝜆(𝑛), and 𝑆(𝑛) = 𝑆𝜆(𝑛).
Step 4. Set 𝑛 = n, 𝑠(𝑛) = 𝑠𝑗 and 𝑆(𝑛) = 𝑆𝑗 .
Step 5. If N = 1 proceed to Step 7. Otherwise, continue to Step 6.
Step 6. Let 𝑚 = 1 and 𝜈 = 𝐿.

(a) If 𝜈 ≥ 1 and 𝑏𝜈 ≥ 𝜎𝑚+1, define 𝑟(𝑛−1) = 𝑏𝜈 and 𝑠(𝑛) = 𝑎𝜈 . Set 𝑚 = 𝜇(𝜈). Then decrease 𝜈 by 1.
Otherwise, increase 𝑚 by 1, and define 𝑟(𝑛−1) = 𝑠(𝑛) = 𝜎𝑚.

(b) If 𝑚 = N proceed to Step 7. Otherwise, increase 𝑛 by 1, define supplier (𝑛) to be supplier 𝜅(𝑚) and
𝑆(𝑛) = 𝑆𝑗,𝜅(𝑚). Then return to Step 6(a).

Step 7. Set 𝑁 = 𝑛. The output is a hyper-generalized (𝑠, 𝑆) policy with numbers (8.2), (1.2) and (1.3). This is
a generalized (𝑠, 𝑆) policy, i.e. such that 𝑟(𝑛) = 𝑠(𝑛+1) for every 1 ≤ 𝑛 ≤ 𝑁 −1, if and only if n+𝐿 = 1.
It is an (𝑠, 𝑆) policy if and only if 𝑁 = 1. End.

Application of Algorithms 10.1 and 10.3 demonstrates that an (𝑠, 𝑆) policy, a generalized (𝑠, 𝑆) policy that
is not an (𝑠, 𝑆) policy, and a hyper-generalized (𝑠, 𝑆) policy that is not a generalized (𝑠, 𝑆) policy may each
occur when there are two suppliers available and one incurs no set-up cost. Each of the following three examples
concerns one of these mutually exclusive alternatives. Where transcendental equations have been encountered,
they have been solved using readily available propriety software.
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Figure 1. Cost function for Examples 10.4–10.6. That for Example 10.4 is the lowermost
curve, for Example 10.5 the uppermost curve, and for Example 10.6 the intermediate curve.

Example 10.4. Let 𝑓 be given by (2.6) with 𝑝 = 𝑞 = 4, 𝛼 = 1, 𝐽 = 2, 𝑐1 = 𝑘1 = 1, 𝑐2 = 3, and 𝑘2 = 0. So
(4.7) is satisfied. Following Algorithm 10.1, solution of (5.6) yields 𝑠1 ≈ −0.814, while it can be verified that
𝑠2 = 0. Formula (10.6) subsequently gives Υ1 ≈ 2.670 and Υ2 = 3. Therefore Λ = {1}, 𝑗 = 1, 𝜎1 = 𝑠1, N = 1
and 𝐿 = 0. Formula (5.5) leads to 𝑆1 ≈ 0.288. Proceeding to Algorithm 10.3, 𝑁 = 1. Therefore the solution of
(2.10) satisfying Ansatz 3.3 corresponds to an (𝑠, 𝑆) policy involving only supplier 1 with 𝑠(1) = 𝑠1 < 𝑆(1) = 𝑆1.

Example 10.5. Substitution of 𝑘1 = 5 in Example 10.4 gives similarly 𝑠1 ≈ −2.392 and Υ1 ≈ 3.726, while the
values of 𝑠2 and Υ2 remain the same. This means that Λ = {2}, 𝑗 = 2, and 𝜎1 = 𝑠2. By (10.7) 𝐵2 = 3, by
(5.5) 𝑆2 = 0, by (5.11) 𝑆2,1 ≈ 0.336, and, by (10.8) 𝐵1 ≈ 7.682. Step 6 of Algorithm 10.1 delivers 𝜅(1) = 2,
𝜎2 = (𝐵2 −𝐵1)/(𝑐2 − 𝑐1) ≈ −2.341, 𝜅(2) = 1, 𝑇2 = 𝑓1(𝜎2) + 𝑐1 − 𝛼𝐵1 ≈ 0.341, and N = 2. Thereafter, Step 7
gives 𝐿 = 0. Proceeding to Algorithm 10.3, n + 𝐿 = 1 and 𝑁 = 2. The outcome is a generalized (𝑠, 𝑆) policy
involving both suppliers with 𝑠(2) = 𝜎2 < 𝑠(1) = 𝑆(1) = 𝑠2 = 𝑆2 < 𝑆(2) = 𝑆2,1, supplier (1) is supplier 2, and
supplier (2) is supplier 1.

Example 10.6. Substitution of 𝑘1 = 2 in Example 10.4 leads to 𝑠1 ≈ −1.263 and Υ1 ≈ 3.152, while the
values of 𝑠2 and Υ2 are unchanged. This results in Λ = {2}. Subsequently 𝑗, 𝜎1 = 𝑠2, 𝐵2, 𝑆2 and 𝑆2,1 are as
calculated in Example 10.5. However (10.8) gives 𝐵1 ≈ 4.682. Step 6 of Algorithm 10.1 then delivers 𝜅(1) = 2,
𝜎2 = (𝐵2 −𝐵1)/(𝑐2 − 𝑐1) ≈ −0.841, 𝜅(2) = 1, 𝑇2 = 𝑓1(𝜎2) + 𝑐1 − 𝛼𝐵1 ≈ −1.159, and N = 2. Thereafter,
Step 7 leads to 𝜇(1) = 2, formula (10.9) with ℓ = 𝜅(2) = 1 gives 𝑎1 ≈ −1.227, formula (10.4) with ℓ = 1 gives
𝑌1(𝑥) ≈ −0.879e−𝑥 + 4 − 4𝑥, 𝑏1 ≈ −0.597, and 𝐿 = 1. Proceeding to Algorithm 10.3, n + 𝐿 = 1 and 𝑁 = 2.
The outcome is a hyper-generalized (𝑠, 𝑆) policy that is not a generalized (𝑠, 𝑆) policy involving both suppliers
with 𝑠(2) = 𝑎1 < 𝑟(1) = 𝑏1 < 𝑠(1) = 𝑆(1) = 𝑠2 = 𝑆2 < 𝑆(2) = 𝑆2,1, supplier (1) is supplier 2, and vice versa.

Figure 1 displays the cost function 𝑢 given by Examples 10.4–10.6. The lowermost curve is that for Exam-
ple 10.4 and corresponds to an (𝑠, 𝑆) policy, the uppermost curve is that for Example 10.5 corresponding to
a generalized (𝑠, 𝑆) policy, while the intermediate curve is that for Example 10.6 corresponding to a hyper-
generalized (𝑠, 𝑆) policy that is not a generalized (𝑠, 𝑆) policy. Note the discontinuity in the derivative of 𝑢
appearing in the uppermost curve at 𝑥 ≈ −2.341, and in the intermediate curve at 𝑥 ≈ −0.597, reflecting the
existence and uniqueness theory of Sections 5 and 6. All three examples have two available suppliers with the
same cost per item incurred using supplier 1, the same cost per item incurred using supplier 2, and the same
set-up cost incurred using supplier 2. The distinction is in the set-up cost 𝑘1 incurred using supplier 1. From
top to bottom, the curves in Figure 1 are those for progressively decreasing 𝑘1, as anticipated by Theorem 7.3.
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Figure 2. Cost function for Examples 10.7 and 10.8. That for Example 10.7 is the lower curve.

Examples where both suppliers have a positive set-up cost, complementary to Examples 10.4–10.6, have been
presented in [6]. The occurrence of each type of policy is in line with Theorem 9.1. We refer to Example 4.29
of [6] for an illustration of how the occurrence of the different types of policy becomes more opaque when more
than a couple of suppliers are available.

In the development of the theory of hyper-generalized (𝑠, 𝑆) policies in the preceding sections, marginal
possibilities arise. The objective of the coming examples is to show that, however unlikely it is that these may
appear in practice, they cannot be dismissed.

Example 10.7. Let 𝑓 be given by (2.6) with 𝑝 = 𝑞 = 9, 𝛼 = 1, 𝐽 = 8, 𝑐ℓ = ℓ for ℓ ∈ {1, 4, 5, . . . , 8}, 𝑘1 = 12,
𝑘4 = 6, and 𝑘8 = 0. Noting that (5.6) gives 𝑠8 = 0, define 𝑠ℓ = 𝑠8 − ln

{︀
(𝑝− 𝛼𝑐8)/(𝑝− 𝛼𝑐ℓ)}/𝛼 and 𝑘ℓ via (5.6)

for ℓ ∈ {5, 6, 7}. This yields 𝑘5 ≈ 2.827, 𝑘6 ≈ 1.418, and 𝑘7 ≈ 0.416. Next, define 𝑆5 by (5.5), 𝑆5,1 by (5.11),
𝐵5 by (10.7), 𝐵1 by (10.8) with 𝑆𝑗,ℓ = 𝑆5,1, 𝑎1 by (10.9) with ℓ = 1, and 𝑌1 by (10.4) with ℓ = 1. It can be
discerned that 𝑌1(𝑥) = 𝐵5 − 𝑐5𝑥 has a unique solution, 𝑏3 say, in (𝑎1, 𝑠5). Subsequently, set 𝑎2 = (2𝑎1 + 𝑏3)/3
and 𝑎3 = (𝑎1 + 2𝑏3)/3. Then for ℓ ∈ {2, 3}, take 𝑐ℓ = 𝑌 ′

1(𝑎ℓ), 𝐵ℓ = 𝑌1(𝑎ℓ) + 𝑐ℓ𝑎ℓ, 𝑆5,ℓ from (5.11), and 𝑘ℓ from
(10.8). This yields 𝑐2 ≈ 1.785, 𝑐3 ≈ 2.493, 𝑘2 ≈ 9.955 and 𝑘3 ≈ 8.234. Herewith we have a full complement of
numbers (2.4) and (2.5). By design, Υ5 = Υ6 = Υ7 = Υ8, and by computation using (5.6) and (10.6), Υℓ > Υ8

for ℓ ∈ {1, 2, 3, 4}. Thus Step 3 of Algorithm 10.1 gives Λ = {5, 6, 7, 8} and 𝑗 = 5. Step 6 subsequently delivers
𝜅(1) = 5, 𝜅(2) = 3, 𝑇2 < 0, 𝜅(3) = 2, 𝑇3 < 0, 𝜅(4) = 1, 𝑇4 < 0, and N = 4. By contrivance, Step 7 yields
𝜇(1) = 4, 𝑎1 as previously stated, 𝑏1 = 𝑎2, 𝜇(2) = 3, 𝑏2 = 𝑎3, 𝜇(3) = 2, 𝑏3 as previously mentioned, and 𝐿 = 3.
Algorithm 10.3 then leads to 𝑁 = 7 and n + 𝐿 = 7. The output is a hyper-generalized (𝑠, 𝑆) policy involving
seven suppliers, suppliers (1)–(7) being 8, 7, 6, 5, 3, 2 and 1 in the original ordering, for which (8.1) with 𝑁 = 7
holds. Furthermore, 𝑠(5) < 𝑟(4) < 𝑠(4), and, 𝑟(𝑛) = 𝑠(𝑛) for 𝑛 ∈ {1, 2, 3, 5, 6}, in agreement with (1.2) and (1.3).
The cost function is illustrated in Figure 2.

The remarkable feature of Example 10.7 is that in terms of the statement of Lemma 5.10 there are 𝜈 ∈
{1, 2, . . . , 𝐿} for which 𝑏𝜈 = 𝑎𝜈+1. For the final hyper-generalized (𝑠, 𝑆) policy this means that there are 𝑛 ∈
{1, 2, . . . , 𝑁 − 1} for which 𝑟(𝑛) = 𝑠(𝑛). In Example 10.7, this occurs for 𝑛 ∈ {1, 2, 3, 5, 6}. The set Ω𝑗 , where 𝑗
is the greatest minimizer of 𝑦ℓ with respect to ℓ ∈ 𝒥 , is

Ω𝑗 =
(︀
−∞, 𝑠(7)

]︀
∪

{︀
𝑠(6), 𝑠(5)

}︀
∪

[︀
𝑟(4), 𝑠(4)

]︀
∪

{︀
𝑠(3), 𝑠(2), 𝑠(1)

}︀
.

The mechanism that leads to the occurrence of 𝑟(𝑛) = 𝑠(𝑛) for 𝑛 ∈ {1, 2, 3} is the non-uniqueness of a minimizer
of 𝑦ℓ with respect to ℓ ∈ 𝒥 . In contrast, the occurrence for 𝑛 ∈ {5, 6} is attributable to functions (5.20), besides
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having the default properties 𝑌𝜈 < 𝑣 in (𝑎𝜈 , 𝑏𝜈) and 𝑌𝜈 = 𝑣 at 𝑏𝜈 , being such that 𝑣 is differentiable and 𝑌 ′
𝜈 = 𝑣′

at 𝑏𝜈 .
An isolated element 𝑠(𝑛) for a supplier (𝑛) with a positive set-up cost has implications for the dynamic

situation in which, as advocated by the policy, a manager with a greater initial inventory level is not intervening.
When the level reaches 𝑠(𝑛), the manager has the option of ordering up to the level 𝑆(𝑛) or not intervening.
However, this freedom of choice is momentary. Should the moment be missed, the optimal strategy returns to
that of allowing the backlog to grow. Related considerations apply to the inventory level 𝑠(1) in Example 10.7.
As supplier (1) incurs no set-up cost, at the inventory level 𝑠(1), a manager momentarily has the choice of not
intervening or maintaining the inventory at the level 𝑠(1) = 𝑆(1). Failing the latter, the strategy reverts to not
intervening.

Supplementary to Example 10.7, consider the following.

Example 10.8. Let 𝑓 be given by (2.6) with 𝑝 = 𝑞 = 9, 𝛼 = 1, 𝐽 = 8, 𝑐ℓ = ℓ for ℓ ∈ {1, 2, 5, 6, 7, 8}, 𝑘1 = 26,
𝑘2 = 23, 𝑘5 = 10 and 𝑘8 = 0. Next, let 𝑠5 and 𝑠8 be the respective solutions of (5.6). Note that 𝑠8 = 0, whereupon
(5.5) gives 𝑆8 = 0. Define 𝑆8,ℓ for ℓ ∈ {1, 5, 6, 7} by (5.11), 𝐵8 by (10.7), 𝐵1 by (10.8) with 𝑆𝑗,ℓ = 𝑆8,1, and 𝐵5

by (10.8) with 𝑆𝑗,ℓ = 𝑆8,5. Subsequently define 𝐵ℓ = 𝐵8 − (𝐵8 −𝐵5)(𝑐8 − 𝑐ℓ)/(𝑐8 − 𝑐5), and 𝑘ℓ via (10.8) with
𝑆𝑗,ℓ = 𝑆8,ℓ for ℓ ∈ {6, 7}. This yields 𝑘6 ≈ 6.601 and 𝑘7 ≈ 3.269. Next, define 𝑎1 by (10.9) with ℓ = 1, and 𝑌1

by (10.4) with ℓ = 1. It can be ascertained that the equation 𝑌1(𝑥) = 𝐵5 − 𝑐5𝑥 has a unique solution, 𝑏1 say,
in (𝑎1, 𝑠5). Thereafter, set 𝑐3 = {𝑐5 − 2𝑦′1(𝑏1)}/3 and 𝑐4 = {2𝑐5 − 𝑦′1(𝑏1)}/3. Then for ℓ ∈ {3, 4}, take 𝑆8,ℓ from
(5.11), 𝐵ℓ = 𝑌1(𝑏1) + 𝑐ℓ𝑏1, and 𝑘ℓ from (10.8). This yields 𝑐3 ≈ 4.166, 𝑐4 ≈ 4.583, 𝑘3 ≈ 13.098 and 𝑘4 ≈ 11.543.
Herewith we have completed (2.4) and (2.5). Computation using (5.6) and (10.6) verifies that Υℓ > Υ8 for
ℓ ∈ {1, 2, . . . , 7}. Thus in Algorithm 10.1, Λ = {8} and 𝑗 = 8. Step 6 then delivers 𝜅(1) = 8, 𝜅(2) = 5, 𝑇2 > 0,
𝜅(3) = 3, 𝑇3 > 0, 𝜅(4) = 1, 𝑇4 < 0, and N = 4. Thereafter, Step 7 leads to 𝜇(1) = 4, 𝑎1 and 𝑏1 as stated, and
𝐿 = 1. Finally, Algorithm 10.3 delivers 𝑁 = 3 and n + 𝐿 = 2. The output is a hyper-generalized (𝑠, 𝑆) policy
involving three suppliers for which (8.1) holds. Suppliers (1)–(3) are respectively 8, 5, and 1 according to the
original ranking. With regard to (1.2) and (1.3), 𝑠(3) < 𝑟(2) < 𝑠(2) = 𝑟(1) < 𝑠(1).

The extraordinary aspect of Example 10.8 is the options entertained for the levels 𝑠(2) and 𝑟(2). Referring
back to Lemma 5.10, 𝑠(2) = 𝜎2 lies in the interior of the interval [𝑏1, 𝜎1] throughout which 𝑢 = 𝑣. On the other
hand, 𝑟(2) = 𝑏1 separates an interval (𝑎1, 𝑏1) in which 𝑢 < 𝑣 from a proper interval [𝑏1, 𝜎2] in which 𝑢 = 𝑣.
By the way in which (2.4) and (2.5) have been rigged, 𝑢 = 𝑣5 = 𝑣6 = 𝑣7 = 𝑣8 at 𝜎2, and, 𝑢 = 𝑣3 = 𝑣4 = 𝑣5

at 𝑏1. This means that at the inventory level 𝑠(2) = 𝑟(1), an inventory manager not only has the option of
ordering from supplier (1) – originally 8 – to the level 𝑆(1) = 𝑆8 or from supplier (2) – originally 5 – to the
level 𝑆(2) = 𝑆8,5, but also to the level 𝑆8,ℓ from supplier ℓ for ℓ ∈ {6, 7}, albeit that suppliers 6 and 7 are
otherwise excluded from the policy. Likewise, at the inventory level 𝑟(2), an inventory manager not only has
the option of ordering from supplier (2) to the level 𝑆(2) or not intervening, but also that of ordering to the
level 𝑆8,ℓ from supplier ℓ for ℓ ∈ {3, 4}, albeit that suppliers 3 and 4 are otherwise excluded from the policy.
The aforesaid notwithstanding, there is no way in which an order would be placed with supplier 2, inasmuch
𝑢 ≤ 𝑣 = min{𝑣1, 𝑣3, 𝑣5, 𝑣8} = min{𝑣1, 𝑣3, 𝑣4, . . . , 𝑣8} < 𝑣2 in (−∞, 𝑠(1)]. The cost function given by Example 10.8
is shown in Figure 2.

Incidentally, Examples 10.7 and 10.8 show that the sets {𝜎𝑚 : 𝑚 ∈ ℳ} and {𝑏𝜈 : 1 ≤ 𝜈 ≤ 𝐿}, introduced
in Section 5, can contain a common element. Reverted to the convention throughout Section 6 that 𝑗 is the
greatest minimizer of 𝑦ℓ with respect to ℓ ∈ 𝒥 , Example 10.7 has 𝑗 = 8, N = maxℳ = 7, 𝐿 = 6 and 𝑏6 = 𝜎1.
In agreement with Corollary 6.8, 𝑢 and 𝑣 are differentiable and 𝑢′ = 𝑣′ at 𝑏6 = 𝜎1. In Example 10.8, N = 4,
𝐿 = 1, and 𝑏1 = 𝜎3. There holds 𝐷−𝑢 > 𝐷−𝑣 > 𝐷+𝑣 = 𝐷+𝑢 at 𝑏1 = 𝜎3, likewise agreeing with Corollary 6.8.

11. Relation to antecedent results

As mentioned in the introduction, the corresponding problem with a stochastic demand and two suppliers,
one of which incurs a negligible set-up cost, has been investigated heretofore by Fox et al. [11]. Related problems
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have been studied more recently by Benjaafar et al. [4] and Helal et al. [15]. This section explores the connection
between the conclusions of [4, 11,15] and Theorems 6.6 and 9.1.

Apart from the demand being deterministic and not stochastic, the most striking difference between the
present investigation and its predecessors [4, 11, 15] is the formulation of the problem as a QVI. The approach
in each of the earlier papers is more pragmatic, and can be embedded in the deterministic continuous-time
continuous-state setting as follows.

Ansatz 11.1. The function sought is a continuous real function 𝑢 such that 𝑢 ≤ 𝑀𝑢 in R. The set Ω of 𝑥 ∈ R
for which (3.1) holds is an interval with a finite least upper bound 𝑠. Furthermore, 𝑢 is differentiable and 𝐴𝑢 = 𝑓
in [𝑠,∞). Finally, given any function 𝜐 with these properties, 𝑢 ≤ 𝜐 in R.

The merit of Ansatz 11.1 is reflected in the next theorem.

Theorem 11.2. Suppose that 𝐽 ≥ 2, hypotheses (2.4) and (2.5) hold, and 𝑓ℓ satisfies Hypothesis 4.2 for every
ℓ ∈ 𝒥 . Then there is a unique function satisfying Ansatz 11.1, which corresponds to an (𝑠, 𝑆) policy involving
only supplier 1, or to a generalized (𝑠, 𝑆) policy involving 𝑁 ≥ 2 suppliers with levels (8.2) whereby supplier
(𝑁) is supplier 1. When 𝑘𝐽 = 0 and 𝑁 = 𝐽 , property (8.2) narrows to (8.1).

Proof. The proof of Theorem 4.1 is independent of the inequality 𝐴𝑢 ≤ 𝑓 in (2.10). So it carries through.
Barring that of Lemma 5.11, so too does the proof of every lemma in Section 5. As a result, it can be concluded
that a function 𝜐 satisfies Ansatz 11.1 only if 𝜐 = 𝑦𝑗 in [𝑠𝑗 ,∞) and 𝜐 = 𝑣 in (−∞, 𝑠𝑗), where 𝑗 is a minimizer of
{𝑦ℓ : ℓ ∈ 𝒥 }, and 𝑣 is defined by (5.8), (5.12) and (5.13). Furthermore, if 𝑘𝐽 = 0, 𝐽 is a minimizer of {𝑦ℓ : ℓ ∈ 𝒥 },
and there is at least one other such minimizer, then 𝑗 is the second greatest minimizer of {𝑦ℓ : ℓ ∈ 𝒥 }. Otherwise,
it is the greatest. Appealing to the arguments used to prove Theorem 6.6, it can be verified that 𝜐 meets the
requirements of Ansatz 11.1 with 𝑠 = 𝑠𝑗 . The considerations leading from Theorem 6.6 to Theorem 8.1, lead to
the deductions regarding 𝜐 representing an (𝑠, 𝑆) or a generalized (𝑠, 𝑆) policy. �

Theorem 11.2 corroborates the conclusions reached for the model with a stochastic demand by Fox et al. [11].
When 𝐽 = 2 and 𝑘2 = 0, a function satisfying Ansatz 11.1 corresponds to an (𝑠, 𝑆) policy involving only supplier
1, or a mixed-ordering policy involving both suppliers with levels 𝑠(2) < 𝑠(1) = 𝑆(1) < 𝑆(2), whereby supplier
(1) is the supplier with no set-up cost and supplier (2) is the supplier with a positive set-up cost. This should
come as no surprise to those supporting the view that stochastic models are a generalization of deterministic
ones, or, alternatively, that deterministic models are special or limiting cases of stochastic ones.

The above naturally raises the question of the equivalence of the function given by Theorem 11.2 and that
given by Theorem 6.6. The next theorem provides the answer.

Theorem 11.3. Under the conditions of Theorem 11.2, let 𝑢 be the solution of (2.10) satisfying Ansatz 3.3,
and 𝜐 be the function satisfying Ansatz 11.1. Furthermore, if 𝑘𝐽 = 0, 𝐽 is a minimizer of 𝑦ℓ with respect to
ℓ ∈ 𝒥 , and there is at least one other such minimizer, let 𝑗 be the second greatest minimizer. Otherwise, let 𝑗
be the greatest. Denote the number subsequently given by Lemma 5.10 by 𝐿. Then

𝑢 = 𝜐 if 𝐿 = 0, 𝑎𝑛𝑑 𝑢 ≺ 𝜐 if 𝐿 ≥ 1,

where 𝑢 ≺ 𝜐 means that 𝑢 ≤ 𝜐 everywhere in R and 𝑢 < 𝜐 in a nonempty open subset of R.

Proof. In proving Theorem 11.2 it has been established that 𝜐 = 𝑦𝑗 in [𝑠𝑗 ,∞) and 𝜐 = 𝑣 in (−∞, 𝑠𝑗), where 𝑣
is defined by (5.8), (5.12) and (5.13). By Lemmas 5.10 and 5.11, 𝑢 = 𝑦𝑗 in [𝑠𝑗 ,∞) and 𝑢 ≤ 𝑣 in (−∞, 𝑠𝑗) with
equality throughout if and only if 𝐿 = 0. �

The phenomenon that the function 𝜐 found in Theorem 11.2 need not be the solution 𝑢 of (2.10) provided
by Theorem 6.6 has two sides. Notwithstanding that the number 𝑠 in Ansätze 3.3 and 11.1 fulfils a common
role, one side is that 𝜐 does not satisfy the inequality 𝐴𝜐 ≤ 𝑓 throughout (−∞, 𝑠]. The reverse is that 𝑢 is
not such that 𝑢 = 𝑣, where 𝑣 is defined by (5.8), (5.12) and (5.13), throughout (−∞, 𝑠]. What is clear though,
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whether one prefers the QVI or the more perfunctory approach, is that when 𝑢 and 𝜐 do not coincide, 𝑢 ≺ 𝜐
and 𝑢 corresponds to a hyper-generalized (𝑠, 𝑆) policy that is not a generalized (𝑠, 𝑆) policy. So, under this
circumstance, the intuitional generalized (𝑠, 𝑆) policy is not the optimal inventory control policy, and, a hyper-
generalized (𝑠, 𝑆) policy that is not a generalized (𝑠, 𝑆) policy is. We speculate that the same is true for the
stochastic model.

For the problem with a stochastic demand, several suppliers, one of which may incur a negligible set-up cost,
periodic review, and a finite planning horizon, Benjaafar et al. [4] concluded that for each period, except for
a bounded interval of inventory levels, a generalized (𝑠, 𝑠) policy is optimal. A hyper-generalized (𝑠, 𝑆) policy
would account for the exceptional interval of inventory levels.

The results of Helal et al. [15] for the discrete-time problem with a stochastic demand, two available suppliers,
one of which may incur a negligible set-up cost, and an infinite planning horizon have a similar character to those
of [4]. They affirm conditions under which an (𝑠, 𝑆) policy involving only the supplier with the greater set-up cost
is optimal, and, when the demand distribution is exponential, antithetical conditions under which a generalized
(𝑠, 𝑆) policy involving both suppliers is optimal. Beyond technicalities of proof, an explanation of why these
two sets of conditions are not complementary is that there are circumstances under which the optimal policy
is a hyper-generalized (𝑠, 𝑆) policy. Noteworthy is that the conditions under which an (𝑠, 𝑆) policy involving
only the supplier with the greater set-up cost is shown to be optimal include the relative closeness of 𝑘1 and 𝑘2,
which is a defining feature of Theorem 9.1.

A subsidiary result of Benjaafar et al. [4] is that if 𝑘𝐽 is large enough then a generalized (𝑠, 𝑆) policy is
optimal. However, this result relies on a rather strong convexity assumption that does not apply to the model
considered in the present paper. Indeed, Theorem 9.1 precludes the analogous result for the problem dealt with
in the present paper.

In [4], it is further reported that extensive numerical experiments with normal, log-normal, gamma, and
Poisson distributions, and thirty thousand experiments with randomly generated distributions all found that
a generalized (𝑠, 𝑆) policy is optimal. Moreover, even for the examples demonstrating that a generalized (𝑠, 𝑆)
policy is not optimal for a bounded interval of inventory levels, a generalized (𝑠, 𝑆) policy becomes optimal
when the planning horizon is large enough. This has accordingly suggested that a generalized (𝑠, 𝑆) policy is
optimal for the problem with an infinite planning horizon. A rerun with an infinite planning horizon of all the
previously reported experiments has found exclusively that a generalized (𝑠, 𝑠) policy is optimal. We conjecture,
as with the analysis of Fox et al., that this comes about because this is what is sought. Theorems 6.6, 11.2
and 11.3 are indicative. Under those circumstances where there is a hyper-generalized (𝑠, 𝑆) policy that is not
a generalized (𝑠, 𝑆) policy, this policy will turn out to be optimal.

12. Conclusion

The present paper continues the study of a deterministic continuous-time continuous-state inventory model
with several suppliers in [5, 6]. In [5], the decision problem was formulated as a QVI, and a solution was
postulated in the form of an ansatz corresponding to a generalized (𝑠, 𝑆) policy. Under the premise that
every supplier incurs a significant set-up cost, it was shown that there is at most one solution satisfy-
ing the ansatz, and the necessary and sufficient conditions for the existence of such a solution were estab-
lished. In [6] the scope of the ansatz was widened to admit correspondence with a refinement of a gener-
alized (𝑠, 𝑆) policy, labelled a hyper-generalized (𝑠, 𝑆) policy. Retaining the premise that every supplier has
a positive set-up cost, this led to the successful proof of the unconditional existence and uniqueness of a
solution of the QVI. In the present paper, a further adaptation of the ansatz has led to the extension to
the situation that a supplier may incur a negligible set-up cost. Moreover, it has been shown that the solu-
tion is stable and depends monotonically on the number of potential suppliers and the costs of each suppli-
ers. The case of two suppliers has been scrutinized in some detail, and intuitive ideas, touched upon in the
antecedent papers, about the way in which the solution is influenced by the costs of the suppliers have been
substantiated.
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A stochastic demand is arguably more realistic than a deterministic one. Nevertheless, some similarity between
the optimal inventory control policy for the studied problem with a deterministic demand and related problems
with a stochastic demand is to be expected. The stochastic problem with two suppliers has been investigated
previously by Fox et al. [11], who concluded that the optimal policy is of one of two types. The analogous
approach to the deterministic problem leads to the same conclusion. However, approaching the problem through
the QVI and admitting the possibility of a hyper-generalized (𝑠, 𝑆) policy, it transpires that in those situations
where the latter occurs, this supersedes the surrogate policy. Comparable models with several suppliers, one of
which may incur a negligible set-up cost, have been more recently studied by Benjaafar et al. [4] and Helal et al.
[15]. The conclusion of the former that, except for a bounded interval of inventory levels, a generalized (𝑠, 𝑠)
policy is optimal, and of the latter that under some conditions an (𝑠, 𝑠) policy is optimal and under others which
are not complementary a generalized (𝑠, 𝑠) policy is optimal, indicates that a hyper-generalized (𝑠, 𝑆) policy is
appropriate in these situations too. The inference is that a hyper-generalized (𝑠, 𝑆) policy has a role to play in
both of these problems with a stochastic demand and other more elaborate models with a more sophisticated
demand.

Avenues for future research include the adaptation of the model to account for lost sales when demand is
not met, the extension to suppliers having a limit to the quantity of stock that they can deliver, the extension
to set-up costs being an increasing piecewise-constant function of the quantity supplied, and taking supplier-
dependent lead-times into consideration. Moving to comparable stochastic continuous-time continuous-state
inventory models with several suppliers, that with an exponential demand distribution holds promise, as do
models with a diffusion demand [16,32,37], and their counterparts with a jump-diffusion demand [7,21]. Further
possibilities are provided by the corresponding discrete-time models and discrete-demand models with an infinite
planning horizon and with a finite planning horizon, complementing the analysis in [4, 15].

Appendix A. Notation

Roman capitals

𝐴 Differential operator
𝐵ℓ Base value of the affine function 𝑣ℓ

𝒞 Constant
𝐷+ Right derivative of the function that follows
𝐷− Left derivative of the function that follows
𝐹ℓ Function mapping 𝑠ℓ to 𝑘ℓ

𝐺 Function governing rate of change of inventory level with inventory level as input
𝐻 Arbitrary real number
𝐼𝑚 Interval demarcated by partition with index 𝑚
𝐽 Number of available suppliers
𝒥 Set of available suppliers
𝐾* Minimum set-up cost for which the optimal policy is of generalized (𝑠, 𝑆) type
𝐾† Maximum set-up cost for which the optimal policy is of (𝑠, 𝑆) type
𝒦 Subset of 𝒥 used temporarily in computational algorithm
𝐿 Number of disjoint intervals constituting the set 𝒮
𝑀 Minimization operator
𝑀𝑗 Minimization operator when supplier 𝑗 is the sole supplier
ℳ Set of indices of elements of partition
𝑁 Number of suppliers involved in optimal policy
𝒩 Set of indices of intervals used temporarily in computational algorithm
N Number of elements in partition
𝑂 Asymptotic order
R Set of real numbers
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𝑆 Stock level to which inventory should be replenished
𝑆𝑗 Stock level 𝑆 when supplier 𝑗 is the sole supplier
𝑆𝑗,ℓ Argument at which the derivative of 𝑦𝑗 takes the value −𝑐ℓ

𝑆(𝑛) Stock level in optimal policy to which inventory is replenished using supplier (𝑛)
𝒮 Set of extraordinary inventory levels from which inventory is not replenished
𝒮𝑗 Set 𝒮 when supplier 𝑗 is the key supplier
𝑇𝑚 Test real number for the interval 𝐼𝑚

𝑈 Necessary form of the unknown function 𝑢
𝑈𝑗 Function 𝑈 when supplier 𝑗 is the key supplier
𝑉 Upper bound for the difference of two functions
𝑋 Absolute minimum
𝑌𝜈 Solution of differential equation in subinterval 𝜈 of the set 𝒮

Lower case Roman alphabet

𝑎 Left endpoint of interval
𝑎𝜈 Left endpoint of subinterval of the set 𝒮 with index 𝜈
𝑏 Right endpoint of interval
𝑏𝜈 Right endpoint of subinterval of the set 𝒮 with index 𝜈
𝑐𝑗 Cost per item incurred using supplier 𝑗
d Differential with respect to the variable that follows
e Base of the natural logarithms
𝑓 Function defining running cost with inventory level as input
𝑓ℓ Auxiliary function related to 𝑓 associated with supplier ℓ
𝑔0, 𝑔1, 𝑔𝛽 Parameters in expression for the function 𝐺
𝑖 Dummy index
𝑗 Sections 2–4 and Appendix D: index for available suppliers

Section 5 and Appendix E: candidate key supplier in optimal policy
Sections 6–11 and Appendix F: key supplier in optimal policy

𝑘𝑗 Set-up cost incurred using supplier 𝑗
𝑘*, 𝑘† Critical set-up costs
ℓ Index of available supplier
𝑚 Index of element of partition
𝑛 Index of supplier involved in optimal policy
n Counter used temporarily in computational algorithm
n Number of minimizers
𝑝, 𝑞 Parameters in expression for the function 𝑓
𝑟(𝑛) Least stock level in optimal policy from which inventory is replenished using supplier (𝑛)
𝑠 Stock level from which inventory should be replenished
𝑠𝑗 Stock level 𝑠 when supplier 𝑗 is the sole supplier
𝑠(𝑛) Greatest stock level in optimal policy from which inventory is replenished using supplier (𝑛)
𝑡 Time
𝑢 Section 2: future cost over infinite time horizon

Sections 3–5 and Appendices B–D: unknown in QVI
Sections 6–11 and Appendices E–G: solution of QVI

𝑢ℓ Auxiliary function related to 𝑢 associated with supplier ℓ
𝑣 Piecewise-linear function coinciding with 𝑢 in the set Ω
𝑣ℓ Affine function associated with supplier ℓ leading to the construction of 𝑣
𝑤 Dummy left endpoint of interval
𝑥 Inventory level
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𝑦 Solution of ordinary differential equation
𝑦𝑗 Solution 𝑦 when supplier 𝑗 is the sole supplier
𝑧 Dummy right endpoint of interval

Greek capitals

Λ Set of minimizers
Ξ Set of inventory levels at which solution of QVI is not differentiable
Σ Sum
Υℓ Real number identifying 𝑦ℓ

Ω Set of inventory levels from which inventory is replenished
Ω𝑗 Set of inventory levels related to Ω when supplier 𝑗 is the key supplier

Lower case Greek alphabet

𝛼 Discount rate
𝛽 Exponent in expression for the function 𝐺
𝛾ℓ Idiosyncratic argument of the function 𝑓ℓ

𝜀 Error estimate
𝜁 Reference inventory level
𝜂 Dummy variable
𝜃 Section 5: alternative candidate key supplier in optimal policy

Section 6: least alternative key supplier in optimal policy
𝜄 Imaginary supplier
𝜅 Function mapping index 𝑚 to index ℓ via the criterion 𝑣 = 𝑣ℓ in 𝐼𝑚

𝜆 Ordering of minimizers
𝜇 Function mapping index 𝜈 to index 𝑚 via the criterion 𝑎𝜈 ∈ 𝐼𝑚

𝜈 Index of open intervals constituting the set 𝒮
𝜉 Dummy variable
𝜌 Maximum of subset of Ω
𝜌ℓ Maximum of subset of Ω with index ℓ
𝜎𝑚 Element of partition with index 𝑚
𝜐 Alternative to solution 𝑢 when the optimization problem is not formulated as a QVI
𝜙ℓ Function mapping 𝑠ℓ to 𝑆ℓ

𝜔𝑗 Subset of Ω with index 𝑗

Superscripts

′ Derivative with respect to variable other than time
(𝑖) Member of a sequence with index 𝑖
* Replica
± Comparable entities
· Derivative with respect to time
∼ Transformed

Appendix B. Proof of Theorem 3.2

The proof of Theorem 3.2 is facilitated by the lemma below.

Lemma B.1. Let ℓ ∈ 𝒥 and 𝑢 be any real function such that 𝑀ℓ𝑢 is well defined and 𝑢 ≤ 𝑀ℓ𝑢 in R. Set

𝑢ℓ(𝑥) = 𝑢(𝑥) + 𝑐ℓ𝑥 for 𝑥 ∈ R. (B.1)

Then 𝑢ℓ is nondecreasing in R when 𝑘ℓ = 0.
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Proof. By the hypotheses of the lemma, and (2.8),

𝑢ℓ(𝑥) ≤
(︀
𝑀ℓ𝑢

)︀
(𝑥) + 𝑐ℓ𝑥 = 𝑘ℓ + min{𝑢ℓ(𝜂) : 𝜂 ≥ 𝑥} (B.2)

for all 𝑥 ∈ R. This inequality immediately provides the result. �

Suppose now that 𝑘𝐽 = 0 and 𝑢 is a real function with the property that 𝑀𝑢 is well defined in R. If 𝑢 ≤ 𝑀𝑢
in R, then (2.9) and Lemma B.1 imply that 𝑢𝐽 is nondecreasing on R. Consequently, inequality (B.2) for ℓ = 𝐽
reduces to

(︀
𝑀𝐽𝑢

)︀
(𝑥) + 𝑐𝐽𝑥 = 𝑢𝐽(𝑥). So, 𝑢 ≤ 𝑀𝑢 ≤ 𝑀𝐽𝑢 = 𝑢 in R. This proves the ‘only if’ component of

Theorem 3.2. The ‘if’ component is a tautology.

Appendix C. Proof of Theorem 3.4

The following three lemmas aid the proof of the theorem.

Lemma C.1. Let ℓ ∈ 𝒥 be such that 𝑘ℓ > 0, 𝑢 be any real function such that 𝑀ℓ𝑢 is well defined and 𝑢 ≤ 𝑀ℓ𝑢
in R, and 𝑥 ∈ R be arbitrary. Then 𝑢(𝑥) =

(︀
𝑀ℓ𝑢

)︀
(𝑥) if and only if

𝑢(𝑥) = 𝑘ℓ + 𝑢(𝑥 + 𝜉) + 𝑐ℓ𝜉 for some 𝜉 > 0. (C.1)

Proof. Suppose first that 𝑢(𝑥) =
(︀
𝑀ℓ𝑢

)︀
(𝑥). Then, by (2.8), 𝑢(𝑥) = 𝑘ℓ+𝑢(𝑥+𝜉)+𝑐ℓ𝜉 for some 𝜉 ≥ 0. However, as

𝑘ℓ > 0, said 𝜉 must be positive. Thus, property (C.1) holds. Suppose, on the other hand, that 𝑢(𝑥) <
(︀
𝑀ℓ𝑢

)︀
(𝑥).

Then, by (2.8), 𝑢(𝑥) < 𝑘ℓ + 𝑢(𝑥 + 𝜉) + 𝑐ℓ𝜉 for all 𝜉 ≥ 0. This implies that 𝑢(𝑥) < 𝑘ℓ + 𝑢(𝑥 + 𝜉) + 𝑐ℓ𝜉 for all
𝜉 > 0. Therewith, property (C.1) is negated. �

Lemma C.2. Suppose that 𝑘𝐽 > 0. Let 𝑢 be any real function such that 𝑀𝑢 is well defined and 𝑢 ≤ 𝑀𝑢 in R,
and 𝑥 ∈ R be arbitrary. Then (3.1) holds if and only if 𝑢(𝑥) =

(︀
𝑀𝑢

)︀
(𝑥).

Proof. Combine Lemma C.1 with (2.9). �

Lemma C.3. Suppose that 𝑢 is a continuous real function such that 𝑀𝑢 is well defined in R. Then for every
ℓ ∈ 𝒥 the set of 𝑥 ∈ R for which 𝑢(𝑥) =

(︀
𝑀ℓ𝑢

)︀
(𝑥) is closed. Moreover, the set of 𝑥 ∈ R for which 𝑢(𝑥) =(︀

𝑀𝑢
)︀
(𝑥) is closed.

Proof. Suffice to note that the continuity of 𝑢 in R implies that of 𝑀ℓ𝑢 for every ℓ ∈ 𝒥 . �

To complete the proof of Theorem 3.4, suppose first that 𝑢 is a solution of (2.10) satisfying Ansatz 3.1, and
𝑘𝐽 > 0. Under these conditions, Lemma C.2 implies that the set Ω in Ansatz 3.3 is equal to (−∞, 𝑠] ∖ 𝒮. Since
(−∞, 𝑠] is unbounded and closed, while 𝒮 is the finite union of bounded open intervals, Ω is not empty and
𝑠 ∈ Ω. Consequently, inasmuch 𝑠 ∈ Ω and Ω ⊆ (−∞, 𝑠], 𝑠 must be the least upper bound of Ω. Ansatz 3.1 states
furthermore that 𝑢 is differentiable and 𝐴𝑢 = 𝑓 in 𝒮 ∪ (𝑠,∞). By Lemma 4.7 of [6], 𝑢 is differentiable at any
point not in 𝒮 ∪ (𝑠,∞) that is the left endpoint of an open subinterval of 𝒮 ∪ (𝑠,∞). The continuity of 𝑢 and 𝑓
subsequently implies that 𝐴𝑢 = 𝑓 at such a point. Thus, 𝑢 is differentiable and 𝐴𝑢 = 𝑓 at the left endpoint of
any subinterval of 𝒮 ∪ [𝑠,∞). Herewith, 𝑢 satisfies Ansatz 3.3.

Suppose conversely that 𝑢 is a solution of (2.10) satisfying Ansatz 3.3, and 𝑘𝐽 > 0. In this event, Lemma C.2
implies that 𝑢 = 𝑀𝑢 in Ω ⊆ (−∞, 𝑠]∖𝒮, and 𝑢 < 𝑀𝑢 in R∖Ω ⊆ 𝒮 ∪ [𝑠,∞). By Lemma C.3, Ω is closed. Hence,
𝑠 ∈ Ω. Therefore, 𝑢 = 𝑀𝑢 in (−∞, 𝑠]∖𝒮, and 𝑢 < 𝑀𝑢 in 𝒮∪(𝑠,∞). Finally, since 𝑢 is differentiable and 𝐴𝑢 = 𝑓
at the left endpoint of any subinterval of 𝒮 ∪ (𝑠,∞), and 𝒮 ∪ (𝑠,∞) is open, necessarily 𝑢 is differentiable and
𝐴𝑢 = 𝑓 in 𝒮 ∪ (𝑠,∞). Hence, 𝑢 satisfies Ansatz 3.1.



OPTIMAL POLICIES FOR AN INVENTORY MODEL WITH SEVERAL SUPPLIERS 1481

Appendix D. Proof of Theorem 4.1

The proof is divided into a sequence of lemmas, in which, without further mention, 𝑢 is a given solution of
(2.10) satisfying Ansatz 3.3.

Lemma D.1. Let 𝑥 ∈ R and ℓ ∈ 𝒥 be such that (C.1) holds. Then 𝑢ℓ defined by (B.1) has an absolute minimum
in [𝑥,∞) at an 𝑋 > 𝑥 for which

𝑢ℓ(𝑥) = 𝑢ℓ(𝑋) + 𝑘ℓ. (D.1)

Furthermore, 𝑢ℓ ≤ 𝑢ℓ(𝑥) in (−∞, 𝑋].

Proof. If 𝑘ℓ > 0 the result is given by Lemma 4.3 of [5] and Lemma C.1 above. On the other hand, if 𝑘ℓ = 0
then (C.1) is equivalent to 𝑢ℓ(𝑥) = 𝑢ℓ(𝑋) for some 𝑋 > 𝑥. On top of this, Lemma B.1 says that 𝑢ℓ ≤ 𝑢ℓ(𝑋) in
(−∞, 𝑋]. �

Lemma D.2. Let ℓ ∈ 𝒥 and 𝑎 < 𝑏. Suppose that (C.1) holds for all 𝑥 ∈ (𝑎, 𝑏). Then (C.1) holds for 𝑥 = 𝑎.
Furthermore, 𝑢ℓ is constant in [𝑎, 𝑏].

Proof. When 𝑘ℓ = 0, the continuity of 𝑢 and the monotonicity of 𝑢ℓ given by Lemma B.1 deliver the conclusion.
When 𝑘ℓ > 0, Lemma C.1 says that 𝑢 = 𝑀ℓ𝑢 in (𝑎, 𝑏). Whereupon, Lemma C.3 implies that 𝑢 = 𝑀ℓ𝑢 in [𝑎, 𝑏].
So, by Lemma C.1, property (C.1) holds for 𝑥 = 𝑎. With regard to the remaining assertion of the lemma, let 𝑥 be
the greatest number in [𝑎, 𝑏] with the property that 𝑢ℓ is constant in [𝑎, 𝑥]. If 𝑥 < 𝑏, then by Lemma D.1, there is
an 𝑋 > 𝑥 such that 𝑢ℓ has an absolute minimum in [𝑥,∞) at 𝑋. Furthermore, property (D.1) holds. Hence, for
all 𝑧 ∈ [𝑥, 𝑋]∩[𝑥, 𝑏], one has 𝑢ℓ(𝑧) = 𝑢(𝑧)+𝑐ℓ𝑧 =

(︀
𝑀ℓ𝑢

)︀
(𝑧)+𝑐ℓ𝑧 = 𝑘ℓ+min{𝑢ℓ(𝜂) : 𝜂 ≥ 𝑧} = 𝑘ℓ+𝑢ℓ(𝑋) = 𝑢ℓ(𝑥).

Herewith, one arrives at a contradiction of the definition of 𝑥. Thus, 𝑥 = 𝑏. �

Lemma D.3. For 𝑗 ∈ 𝒥 define

𝜔𝑗 =
{︀
𝑥 ∈ Ω : (C.1) holds for some ℓ ∈ {1, 2, . . . , 𝑗}

}︀
.

Suppose that 𝑗 ∈ 𝒥 ∖ {1}, and [𝑎, 𝑏) ⊂ 𝜔𝑗 for some 𝑎 < 𝑏. Then either [𝑎, 𝑏] ⊂ 𝜔𝑗−1, there is a 𝜌 ∈ [𝑎, 𝑏) such
that [𝑎, 𝑏) ∩ 𝜔𝑗−1 = [𝑎, 𝜌], or [𝑎, 𝑏) ∩ 𝜔𝑗−1 = ∅.

Proof. Whether 𝑘𝑗 > 0 or not, 𝑘𝑗−1 > 0. So, by Lemmas C.1 and C.3, 𝜔𝑗−1 is closed. Therefore, (𝑎, 𝑏) ∖ 𝜔𝑗−1

is open. Consequently, either (𝑎, 𝑏) ⊂ 𝜔𝑗−1, or, (𝑎, 𝑏) ∖ 𝜔𝑗−1 contains a nonempty open interval (𝑤, 𝑧) with the
property that (C.1) with ℓ = 𝑗 holds for all 𝑥 ∈ (𝑤, 𝑧). In the latter event, by Lemma D.2, 𝑢𝑗 is constant
in [𝑤, 𝑧]. Suppose now that 𝑧 ∈ 𝜔𝑗−1. This means that there is an ℓ ∈ {1, 2, . . . , 𝑗 − 1} such that (C.1) with
𝑥 = 𝑧 holds. Hence, by Lemma C.1,

(︀
𝑀ℓ𝑢

)︀
(𝑧) = 𝑢(𝑧). Meanwhile, from the constancy of 𝑢𝑗 it follows that

𝑢′ℓ = 𝑐ℓ − 𝑐𝑗 < 0 in (𝑤, 𝑧). Therefore,(︀
𝑀ℓ𝑢

)︀
(𝑤) = 𝑘ℓ − 𝑐ℓ𝑤 + min{𝑢ℓ(𝜂) : 𝜂 ≥ 𝑤} = 𝑘ℓ − 𝑐ℓ𝑤 + min{𝑢ℓ(𝜂) : 𝜂 ≥ 𝑧}

=
(︀
𝑀ℓ𝑢

)︀
(𝑧) + 𝑐ℓ(𝑧 − 𝑤) = 𝑢(𝑧) + 𝑐ℓ(𝑧 − 𝑤).

Thus, evoking the constancy of 𝑢𝑗 ,(︀
𝑀ℓ𝑢

)︀
(𝑤) = 𝑢(𝑤)− (𝑐𝑗 − 𝑐ℓ)(𝑧 − 𝑤) < 𝑢(𝑤).

This contradicts the second component of (2.10). We are therefore forced to conclude that either (𝑎, 𝑏) ⊂ 𝜔𝑗−1,
(𝑎, 𝑏) ∩ 𝜔𝑗−1 = (𝑎, 𝜌] for some 𝜌 ∈ (𝑎, 𝑏), or, (𝑎, 𝑏) ∩ 𝜔𝑗−1 = ∅. Recalling the closure of 𝜔𝑗−1 leads to the
alternatives stated. �

Lemma D.4. Let 𝑎 < 𝑏 be such that [𝑎, 𝑏) ⊂ Ω. Then 𝑢 is piecewise linear and concave in [𝑎, 𝑏]. Furthermore,
denoting the right and left derivative of 𝑢 by 𝐷+𝑢 and 𝐷−𝑢 respectively, for all 𝑥 ∈ [𝑎, 𝑏) there holds

(︀
𝐷+𝑢

)︀
(𝑥) =

−𝑐ℓ where ℓ is the greatest number in 𝒥 for which (C.1) holds, and, for all 𝑥 ∈ (𝑎, 𝑏) there holds
(︀
𝐷−𝑢

)︀
(𝑥) = −𝑐ℓ

where ℓ is the least number in 𝒥 for which (C.1) holds.
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Proof. According to Lemmas D.2 and D.3, there is a sequence 𝜌0 = 𝑎 ≤ 𝜌1 ≤ 𝜌2 ≤ · · · ≤ 𝜌𝐽 = 𝑏 such that (C.1)
holds for 𝑥 ∈ [𝑎, 𝑏) and ℓ ∈ 𝒥 if 𝜌ℓ−1 ≤ 𝑥 < 𝜌ℓ and only if 𝜌ℓ−1 ≤ 𝑥 ≤ 𝜌ℓ. Hence, if 𝑥 ∈ [𝜌ℓ−1, 𝜌ℓ) for some
ℓ ∈ 𝒥 , then ℓ is the largest number in 𝒥 for which (C.1) holds, and Lemma D.2 implies that

(︀
𝐷+𝑢

)︀
(𝑥) = −𝑐ℓ.

Similarly, if 𝑥 ∈ (𝜌ℓ−1, 𝜌ℓ]∩(𝑎, 𝑏) then ℓ is the smallest number in 𝒥 for which (C.1) holds, and
(︀
𝐷−𝑢

)︀
(𝑥) = −𝑐ℓ.

The piecewise linearity and concavity of 𝑢 in [𝑎, 𝑏] are a consequence. �

Lemma D.5. Suppose that 𝑥 ∈ Ω and (𝑥, 𝑧) ⊂ 𝒮 ∪ (𝑠,∞) for some 𝑧 > 𝑥. Then 𝑢 is the restriction to [𝑥, 𝑧) of
a solution 𝑦 of (4.1) satisfying 𝑦′(𝑥) = −𝑐ℓ and 𝑦(𝑥) =

(︀
𝑀ℓ𝑢

)︀
(𝑥) for some ℓ ∈ 𝒥 .

Proof. Because 𝑢 satisfies 𝐴𝑢 = 𝑓 in (𝑥, 𝑧), it is a solution of (4.1) there. Furthermore, as 𝑓 is continuous in R,
this solution can be extended to one, 𝑦 say, in R. The continuity of 𝑢 and 𝑦 in R gives 𝑢 = 𝑦 in [𝑥, 𝑧]. Moreover,
as Ansatz 3.3 states that 𝑢 is differentiable in [𝑥, 𝑧), 𝑢′(𝑥) = 𝑦′(𝑥). To proceed, we distinguish between the
cases 𝑥 ∈ Ω ∖ Ω and 𝑥 ∈ Ω. Given that 𝒮 is the finite union of open intervals, 𝑥 ∈ Ω ∖ Ω is realized only if
[𝑤, 𝑥) ⊂ Ω for some 𝑤 < 𝑥. However, by Lemmas C.1, C.3 and D.4, such necessitates 𝑢′(𝑥) = −𝑐𝐽 and 𝑘𝐽 = 0.
Theorem 3.2 gives 𝑢(𝑥) =

(︀
𝑀𝐽𝑢

)︀
(𝑥). Turning to the case 𝑥 ∈ Ω, let ℓ ∈ 𝒥 be such that (C.1) holds. Then, by

Lemma D.1, there is an 𝑋 > 𝑥 such that 𝑥 is a maximum of 𝑢ℓ in (−∞, 𝑋]. Therefore, by the Fermat Theorem,
𝑢′ℓ(𝑥) = 0. In other words, 𝑢′(𝑥) = −𝑐ℓ. Theorem 3.2 and Lemma C.1 give 𝑢(𝑥) =

(︀
𝑀ℓ𝑢

)︀
(𝑥) for 𝑘ℓ = 0 and

𝑘ℓ > 0 respectively. �

We are now in a position to prove Theorem 4.1 adapting the proof of Theorem 4.2 of [6]. By Lemma D.5,
equation (4.1) has a solution 𝑦 such that 𝑢 = 𝑦 in [𝑠,∞) and 𝑦′(𝑠) = −𝑐𝑗 for some 𝑗 ∈ 𝒥 . Supplementarily,
Lemma D.5 tells us that (4.4) holds. Recalling (B.2) and Lemma C.1, property (4.4) testifies that 𝑢𝑗 has a
minimum in [𝑠,∞), at 𝑆 say, for which 𝑢𝑗(𝑠) = 𝑢𝑗(𝑆)+𝑘𝑗 . Now, if 𝑆 = 𝑠, necessarily 𝑘𝑗 = 0, and (4.2) and (4.3)
become tautologies. Alternatively, if 𝑆 > 𝑠, then, inasmuch 𝑢𝑗 is differentiable at 𝑆, the Fermat Theorem implies
𝑢′𝑗(𝑆) = 0. Hence, conditions (4.2) and (4.3) hold in this case too. Irrespectively, Ansatz 3.3 and Lemma D.4
imply that the only points in (−∞, 𝑠) where 𝑢 might not be differentiable are the right endpoints of the connected
components of 𝒮 and those points in the interior of Ω that are the endpoint of an interval in which 𝑢 is affine.
Moreover, there are finitely many such points. Subsequently, retracing the proof of Lemma 4.9 of [5], it can be
shown that 𝑦 ≤ 𝑢 in (−∞, 𝑠]. It remains to verify that 𝑢 ≤ 𝑣 in (−∞, 𝑠), and 𝑢 < 𝑣 in 𝒮. To this end, let 𝑥 < 𝑠
and ℓ ∈ 𝒥 . Then

𝑢(𝑥) ≤
(︀
𝑀ℓ𝑢

)︀
(𝑥) = 𝑘ℓ − 𝑐ℓ𝑥 + min{𝑢ℓ(𝜂) : 𝜂 ≥ 𝑥} ≤ 𝑘ℓ − 𝑐ℓ𝑥 + min{𝑢ℓ(𝜂) : 𝜂 ≥ 𝑠}

=
(︀
𝑀ℓ𝑢

)︀
(𝑠) + 𝑐ℓ(𝑠− 𝑥). (D.2)

Hence, 𝑢(𝑥) ≤ 𝑣(𝑥). Suppose additionally that 𝑥 ∈ 𝒮. Then, by Lemma C.1, the first inequality in (D.2) is
strict if 𝑘ℓ > 0. Thus, 𝑢(𝑥) = 𝑣(𝑥) only if 𝑘𝐽 = 0 and 𝑢(𝑥) =

(︀
𝑀𝐽𝑢

)︀
(𝑠) + 𝑐𝐽(𝑠− 𝑥). By Theorem 3.2, this is

equivalent to 𝑢(𝑥) = 𝑢(𝑠) + 𝑐𝐽(𝑠− 𝑥), which gives (3.1) with ℓ = 𝐽 and 𝜉 = 𝑠 − 𝑥. Therefore, we have arrived
at a contradiction of 𝑥 ∈ 𝒮. We can only conclude that when 𝑥 ∈ 𝒮 necessarily 𝑢(𝑥) < 𝑣(𝑥).

Lemmas D.1–D.4 supersede Lemmas 4.3–4.6 of [5].

Appendix E. Proof of Theorem 7.1

The proof proceeds in stages, each represented by a lemma. Unless otherwise stated, the notation is taken
from Sections 4 and 5.

Lemma E.1. Let 𝑢± be solutions of (2.10) satisfying Ansatz 3.3. Taking a generic solution 𝑢 where 𝑗 is a
minimizer 𝑗 of {𝑦ℓ : ℓ ∈ 𝒥 } as reference, denote by 𝑆± and 𝑣± counterparts to 𝑆𝑗 and 𝑣. Suppose that 𝑆+ ≥ 𝑆−

and
𝑣+(𝑥) ≥ 𝑣−(𝑥) for all 𝑥 ≤ 𝑆−. (E.1)

Then
𝑢+(𝑥) ≥ 𝑢−(𝑥) for all 𝑥 ≤ 𝑆−. (E.2)

Moreover, if (E.1) is strict, so too is (E.2).
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Proof. If 𝑢+ = 𝑣+ at 𝑥 ≤ 𝑆−, inequality (E.1) states that 𝑢+(𝑥) ≥ 𝑣−(𝑥). Whereupon, as 𝑣− ≥ 𝑢− in (−∞, 𝑆−]
by Theorem 4.1 and Lemma 5.8, inequality (E.2) follows. On the other hand if 𝑢+ < 𝑣+ at such an 𝑥, there
is an 𝑎 < 𝑥 such that 𝑢+(𝑎) = 𝑣+(𝑎) and 𝑢+ < 𝑣+ in (𝑎, 𝑥]. Furthermore, by the theory of Sections 5 and
6, d

{︀
e𝛼𝜂

(︀
𝑢+ − 𝑢−

)︀
(𝜂)

}︀
/ d𝜂 = e𝛼𝜂

(︀
𝐴𝑢+ − 𝐴𝑢−

)︀
(𝜂) = e𝛼𝜂

(︀
𝑓 − 𝐴𝑢−

)︀
(𝜂) ≥ 0 at any 𝜂 ∈ (𝑎, 𝑥) at which 𝑢− is

differentiable. Hence, integrating piecewise from 𝑎 to 𝑥, e𝛼𝑥
(︀
𝑢+−𝑢−

)︀
(𝑥) ≥ e𝛼𝑎

(︀
𝑢+−𝑢−

)︀
(𝑎) = e𝛼𝑎

(︀
𝑣+−𝑢−

)︀
(𝑎) ≥

e𝛼𝑎
(︀
𝑣+ − 𝑣−

)︀
(𝑎) ≥ 0. Thus (E.2) holds in this case too. Retracing the proof for each case, it can be verified

that strictness in (E.1) gives strictness in (E.2). �

Lemma E.2. Let 𝑢±, 𝑆± and 𝑣± be as in Lemma E.1. If 𝑆+ ≥ 𝑆− and there is a number 𝑉 ≥ 0 such that(︀
𝑣+ − 𝑣−

)︀
(𝑥) ≤ 𝑉 for all 𝑥 ≤ 𝑆−, (E.3)

then (︀
𝑢+ − 𝑢−

)︀
(𝑥) ≤ 𝑉 for all 𝑥 ≤ 𝑆−. (E.4)

Proof. The proof is analogous to that of Lemma E.1. If 𝑢− = 𝑣− at 𝑥 ≤ 𝑆−, inequality (E.3) says that(︀
𝑣+ − 𝑢−

)︀
(𝑥) ≤ 𝑉 . Whereupon, because 𝑢+ ≤ 𝑣+ in (−∞, 𝑆+], inequality (E.4) holds. On the other hand,

if 𝑢− < 𝑣− at 𝑥 ≤ 𝑆−, there is an 𝑎 < 𝑥 such that 𝑢−(𝑎) = 𝑣−(𝑎) and 𝑢− < 𝑣− in (𝑎, 𝑥]. Furthermore,
d
{︀

e𝛼𝜂
(︀
𝑢+ − 𝑢−

)︀
(𝜂)

}︀
/ d𝜂 = e𝛼𝜂

(︀
𝐴𝑢+ − 𝐴𝑢−

)︀
(𝜂) = e𝛼𝜂

(︀
𝐴𝑢+ − 𝑓

)︀
(𝜂) ≤ 0 at any 𝜂 ∈ (𝑎, 𝑥) at which 𝑢+

is differentiable. Hence, integrating piecewise, e𝛼𝑥
(︀
𝑢+ − 𝑢−

)︀
(𝑥) ≤ e𝛼𝑎

(︀
𝑢+ − 𝑢−

)︀
(𝑎) = e𝛼𝑎

(︀
𝑢+ − 𝑣−

)︀
(𝑎) ≤

e𝛼𝑎
(︀
𝑣+ − 𝑣−

)︀
(𝑎) ≤ e𝛼𝑎𝑉 . Inasmuch 𝛼 > 0, 𝑎 < 𝑥 and 𝑉 ≥ 0, inequality (E.4) follows in this case too. �

Lemma E.3. Let 𝑗 be a minimizer of {𝑦ℓ : ℓ ∈ 𝒥 }. Suppose that (2.5) holds with 𝑘𝑗 replaced by 𝑘−𝑗 < 𝑘𝑗.
Denote the corresponding solution of (2.10) satisfying Ansatz 3.3 by 𝑢−, and that of (4.1) satisfying (4.2) and
(4.3) with 𝑘𝑗 replaced by 𝑘−𝑗 for some 𝑆 ≥ 𝑠 by 𝑦. Then

0 < 𝑢− 𝑢− ≤ 𝑘𝑗 − 𝑘−𝑗 +
(︀
𝑦𝑗 − 𝑦

)︀
(𝛾𝑗) 𝑖𝑛 R. (E.5)

Proof. Let 𝑠−𝑗 and 𝑆−𝑗 be the values of 𝑠 and 𝑆 ≥ 𝑠 for which 𝑦 satisfies (4.2) and (4.3) with 𝑘𝑗 replaced by 𝑘−𝑗 .
By Lemmas 5.1 and 5.3,

𝑠𝑗 < 𝑠−𝑗 ≤ 𝛾𝑗 ≤ 𝑆−𝑗 < 𝑆𝑗 , 𝑦 < 𝑦𝑗 and 𝑦′ > 𝑦′𝑗 (E.6)

in R. Hence, 𝑗 is a minimizer of {𝑦ℓ : ℓ ∈ 𝒥 } with 𝑦𝑗 replaced by 𝑦. Consequently, by the theory developed in
Sections 4 and 5, 𝑢 = 𝑦𝑗 in [𝑠𝑗 ,∞), and 𝑢− = 𝑦 in [𝑠−𝑗 ,∞). Thus, 0 < 𝑢 − 𝑢− = 𝑦𝑗 − 𝑦 in [𝑠−𝑗 ,∞). Inasmuch
(E.6) tells us that 𝑦𝑗 − 𝑦 is strictly decreasing in R, statement (E.5) in [𝛾𝑗 ,∞) follows. To confirm (E.5) in
(−∞, 𝛾𝑗), let 𝑆−𝑗,ℓ denote the number defined by (5.8) with 𝑦 and 𝑠−𝑗 in lieu of 𝑦𝑗 and 𝑠𝑗 for 1 ≤ ℓ ≤ 𝑗, 𝑣−ℓ the
corresponding function (5.13) with 𝑘−𝑗 in lieu of 𝑘𝑗 when ℓ = 𝑗, and 𝑣− the ensuing function (5.12). For ℓ < 𝑗,
formula (5.13) gives

𝑣ℓ − 𝑣−ℓ = 𝑦𝑗(𝑆𝑗,ℓ)− 𝑦(𝑆−𝑗,ℓ) + 𝑐ℓ

(︁
𝑆𝑗,ℓ − 𝑆−𝑗,ℓ

)︁
(E.7)

in R. However, by (5.8), 𝑦′𝑗 ≥ −𝑐ℓ in [𝑆𝑗,ℓ,∞). Consequently, by (E.6), 𝑦′ > −𝑐ℓ in [𝑆𝑗,ℓ,∞). Hence, by (5.8),
𝑆−𝑗,ℓ < 𝑆𝑗,ℓ and 𝑦′𝑗 < −𝑐ℓ < 𝑦′ in (𝑆−𝑗,ℓ, 𝑆𝑗,ℓ). So,

𝑦𝑗(𝑆𝑗,ℓ)− 𝑦𝑗(𝑆−𝑗,ℓ) < −𝑐ℓ

(︁
𝑆𝑗,ℓ − 𝑆−𝑗,ℓ

)︁
< 𝑦(𝑆𝑗,ℓ)− 𝑦(𝑆−𝑗,ℓ). (E.8)

Substituting (E.8) in (E.7) yields
(︀
𝑦𝑗 − 𝑦

)︀
(𝑆𝑗,ℓ) < 𝑣ℓ− 𝑣−ℓ <

(︀
𝑦𝑗 − 𝑦

)︀
(𝑆−𝑗,ℓ). Recalling that 𝑦𝑗 − 𝑦 is positive and

strictly decreasing in R, this leads to

0 < 𝑣ℓ − 𝑣−ℓ <
(︀
𝑦𝑗 − 𝑦

)︀
(𝛾𝑗) for every 1 ≤ ℓ < 𝑗. (E.9)
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By the same argument,
0 < 𝑣𝑗 − 𝑣−𝑗 < 𝑘𝑗 − 𝑘−𝑗 +

(︀
𝑦𝑗 − 𝑦

)︀
(𝛾𝑗). (E.10)

Combining (E.9) and (E.10) delivers 0 < 𝑣−𝑣− < 𝑘𝑗−𝑘−𝑗 +
(︀
𝑦𝑗−𝑦

)︀
(𝛾𝑗) in R. Therefore, by Lemmas E.1 and E.2,

statement (E.5) holds in (−∞, 𝛾𝑗 ]. �

Lemma E.4. Let 𝑗 be a minimizer of {𝑦ℓ : ℓ ∈ 𝒥 }. Suppose that (2.5) holds with 𝑘ℓ replaced by 𝑘+
ℓ > 𝑘ℓ for

some ℓ ∈ 𝒥 ∖ {𝑗}. Denote the corresponding solution of (2.10) satisfying Ansatz 3.3 by 𝑢+. Then

0 ≤ 𝑢+ − 𝑢 ≤ 𝑘+
ℓ − 𝑘ℓ 𝑖𝑛 R. (E.11)

Proof. Let 𝑦+
ℓ be the solution of (4.1) satisfying (4.2) and (4.3) with 𝑐𝑗 = 𝑐ℓ and 𝑘𝑗 = 𝑘+

ℓ for some 𝑆 ≥ 𝑠.
By Lemma 5.1, 𝑦+

ℓ > 𝑦ℓ. Hence, 𝑗 is a minimizer of {𝑦𝑖 : 𝑖 ∈ 𝒥 } with 𝑦ℓ replaced by 𝑦+
ℓ . Consequently,

according to the theory of Sections 4 and 5, 𝑢+ = 𝑢 in R when ℓ > 𝑗. This gives (E.11) immediately. Otherwise,
𝑢+ = 𝑢 = 𝑦𝑗 in [𝑠𝑗 ,∞), and the function 𝑣+, fulfilling the role for 𝑢+ that 𝑣 does for 𝑢, differs from 𝑣 solely in
that 𝑣ℓ is replaced by 𝑣ℓ + 𝑘+

ℓ − 𝑘ℓ. Thus, 𝑢+ = 𝑢 in [𝑠𝑗 ,∞) and 0 ≤ 𝑣+ − 𝑣 ≤ 𝑘+
ℓ − 𝑘ℓ in R. Application of

Lemmas E.1 and E.2 results in (E.11). �

Lemma E.5. Suppose that (2.5) holds with 𝑘ℓ replaced by 𝑘±ℓ for some ℓ ∈ 𝒥 . Denote the corresponding
solutions of (2.10) given by Theorem 6.6 by 𝑢±, and the solution of (4.1) satisfying (4.2) and (4.3) with 𝑐𝑗 = 𝑐ℓ

and 𝑘𝑗 = 𝑘±ℓ for some 𝑆 ≥ 𝑠 by 𝑦±ℓ . If 𝑘+
ℓ > 𝑘−ℓ then

0 ≤ 𝑢+ − 𝑢− ≤ 𝑘+
ℓ − 𝑘−ℓ +

(︀
𝑦+

ℓ − 𝑦−ℓ
)︀
(𝛾ℓ) 𝑖𝑛 R. (E.12)

Proof. Let 𝑗 be a minimizer of 𝑦𝑖 with respect to 𝑖 ∈ 𝒥 ∖ {ℓ}. By Lemma 5.1, 𝑦+
ℓ > 𝑦−ℓ . Hence, if 𝑦+

ℓ ≤ 𝑦𝑗 , ℓ
is a minimizer of {𝑦𝑖 : 𝑖 ∈ 𝒥 } with 𝑦ℓ replaced by 𝑦±ℓ . Consequently, by Lemma E.3, statement (E.12) holds.
Conversely, if 𝑦−ℓ ≥ 𝑦𝑗 , 𝑗 is a minimizer of {𝑦𝑖 : 𝑖 ∈ 𝒥 } with 𝑦ℓ replaced by 𝑦±ℓ . Hence, by Lemma E.4, statement
(E.12) holds in this case too. Finally, if 𝑦− < 𝑦𝑗 < 𝑦+ then, by Lemma 5.1, there is a 𝑘ℓ ∈ (𝑘−ℓ , 𝑘+

ℓ ) such that
𝑦ℓ = 𝑦𝑗 . Let 𝑢 be the corresponding solution of (2.10) satisfying Ansatz 3.3. By contrivance, ℓ is a minimizer of
{𝑦𝑖 : 𝑖 ∈ 𝒥 }, and of {𝑦𝑖 : 𝑖 ∈ 𝒥 } with 𝑦ℓ replaced by 𝑦−ℓ , while 𝑗 is a minimizer of {𝑦𝑖 : 𝑖 ∈ 𝒥 }, and of {𝑦𝑖 : 𝑖 ∈ 𝒥 }
with 𝑦ℓ replaced by 𝑦+

ℓ . Thus, by Lemma E.3, statement (E.5) with 𝑗 = ℓ holds, and, by Lemma E.4, statement
(E.11) holds. Adding these statements yields (E.12) with 𝑦ℓ in lieu of 𝑦+

ℓ . Because 𝑦ℓ < 𝑦+
ℓ , this gives (E.12)

as stated. �

Lemma E.6. Building on Lemma E.5, suppose that (2.5) holds with 𝑘ℓ replaced by 𝑘±ℓ for every ℓ ∈ 𝒥 , and
𝑘+

ℓ ≥ 𝑘−ℓ for every ℓ ∈ 𝒥 . Then

0 ≤ 𝑢+ − 𝑢− ≤
∑︁
ℓ∈𝒥

{︀
𝑘+

ℓ − 𝑘−ℓ +
(︀
𝑦+

ℓ − 𝑦−ℓ
)︀
(𝛾ℓ)

}︀
𝑖𝑛 R.

Proof. Starting with (𝑘−1 , 𝑘−2 , . . . , 𝑘−𝐽 ) and replacing 𝑘−ℓ with 𝑘+
ℓ when 𝑘+

ℓ > 𝑘+
ℓ in order of increasing ℓ cre-

ates a sequence of 𝐽-tuples preserving the inequalities in (2.5) and ending with (𝑘+
1 , 𝑘+

2 , . . . , 𝑘+
𝐽 ). Synchronous

successive application of Lemma E.5 yields the result. �

Lemma E.7. Under the introductory assumptions of Theorem 7.1,

|𝑢(𝑖) − 𝑢| ≤ 𝜀(𝑖) =
∑︁
ℓ∈𝒥

⃒⃒
𝑘(𝑖)

ℓ − 𝑘ℓ +
(︀
𝑦(𝑖)

ℓ − 𝑦ℓ

)︀
(𝛾ℓ)

⃒⃒
𝑖𝑛 R.

Proof. Define 𝑘+
ℓ = max

{︀
𝑘ℓ, 𝑘

(𝑖)

ℓ

}︀
and 𝑘−ℓ = min

{︀
𝑘ℓ, 𝑘

(𝑖)

ℓ

}︀
for ℓ ∈ 𝒥 , apply Lemma E.6, and note that 𝑦±ℓ = 𝑦ℓ

when 𝑘±ℓ = 𝑘ℓ, while 𝑦±ℓ = 𝑦(𝑖)

ℓ when 𝑘±ℓ = 𝑘(𝑖)

ℓ . This gives 𝑢+ − 𝑢− ≤ 𝜀(𝑖). However, Lemma E.6 further implies
that 𝑢− ≤ 𝑢 ≤ 𝑢+ and 𝑢− ≤ 𝑢(𝑖) ≤ 𝑢+. So |𝑢(𝑖) − 𝑢| ≤ 𝑢+ − 𝑢−. �

Theorem 7.1 follows from Lemmas 5.1 and E.7.
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Appendix F. Proof of Theorem 7.2

The proof of Theorem 7.2 is facilitated by the next result comparing solutions of (4.1)–(4.3) assuming (2.4)
and not (2.5).

Lemma F.1. Suppose that ℓ ≥ 2. Let 𝑦ℓ−1 be the solution of (4.1) satisfying (4.2) and (4.3) with 𝑐𝑗 = 𝑐ℓ−1

and 𝑘𝑗 = 𝑘ℓ−1 for some 𝑆 ≥ 𝑠, and 𝑦 the corresponding solution with 𝑐𝑗 = 𝑐ℓ and 𝑘𝑗 = 𝑘ℓ−1. Then 𝑦 > 𝑦ℓ−1.

Proof. Let 𝜙ℓ and 𝐹ℓ be the functions appearing in the proof of Lemma 5.1, and 𝑠* the unique solution of
𝐹ℓ(𝑠*) = 𝑘ℓ−1 in (−∞, 𝛾ℓ]. By (5.1), ∫︁ 𝜙ℓ(𝑠)

𝑠

e𝛼𝜂 d𝑓ℓ(𝜂) = 0

and

𝐹ℓ(𝑠) =
𝑓ℓ(𝑠)− 𝑓ℓ(𝜙ℓ(𝑠))

𝛼
=

∫︁ 𝜙ℓ(𝑠)

𝑠

e𝛼(𝜂−𝐻) − 1
𝛼

d𝑓ℓ(𝜂)

for all 𝑠 ≤ 𝛾ℓ and 𝐻. It follows that∫︁ 𝜙ℓ−1(𝑠)

𝜙ℓ(𝑠)

e𝛼𝜂 d𝑓ℓ(𝜂) =
∫︁ 𝜙ℓ−1(𝑠)

𝑠

e𝛼𝜂 d
(︀
𝑓ℓ − 𝑓ℓ−1

)︀
(𝜂) (F.1)

and

𝐹ℓ(𝑠)− 𝐹ℓ−1(𝑠) = −
∫︁ 𝜙ℓ(𝑠)

𝑠

1− e𝛼(𝜂−𝐻)

𝛼
d
(︀
𝑓ℓ − 𝑓ℓ−1

)︀
(𝜂)−

∫︁ 𝜙ℓ−1(𝑠)

𝜙ℓ(𝑠)

e𝛼(𝜂−𝐻) − 1
𝛼

d𝑓ℓ−1(𝜂) (F.2)

for all such 𝑠 and 𝐻. Since 𝑓ℓ satisfies Hypothesis 4.2, while 𝜙ℓ(𝑠) ≥ 𝛾ℓ and 𝜙ℓ−1(𝑠) ≥ 𝛾ℓ−1 ≥ 𝛾ℓ for 𝑠 ≤ 𝛾ℓ,
formula (F.1) gives 𝜙ℓ ≤ 𝜙ℓ−1 in (−∞, 𝛾ℓ]. Whereupon, inasmuch 𝑓ℓ−1 also satisfies Hypothesis 4.2, taking
𝐻 = 𝜙ℓ(𝑠) in (F.2) we deduce that 𝐹ℓ(𝑠) ≤ 𝐹ℓ−1(𝑠) for all 𝑠 ≤ 𝛾ℓ for which 𝜙ℓ(𝑠) < 𝛾ℓ−1, and taking 𝐻 = 𝛾ℓ−1

that 𝐹ℓ(𝑠) ≤ 𝐹ℓ−1(𝑠) for all 𝑠 ≤ 𝛾ℓ for which 𝜙ℓ(𝑠) ≥ 𝛾ℓ−1. So, 𝐹ℓ ≤ 𝐹ℓ−1 in (−∞, 𝛾ℓ] unconditionally. In
particular, this implies that 𝐹ℓ−1(𝑠ℓ−1) = 𝑘ℓ−1 = 𝐹ℓ(𝑠*) ≤ 𝐹ℓ−1(𝑠*). In view of the strict monotonicity of 𝐹ℓ−1,
this necessitates 𝑠* ≤ 𝑠ℓ−1. Subsequently, by (5.3),

𝛼e𝛼𝑥
(︀
𝑦 − 𝑦ℓ−1

)︀
(𝑥) = (𝑐ℓ − 𝑐ℓ−1)e𝛼𝑠* −

∫︁ 𝑠ℓ−1

𝑠*
e𝛼𝜂 d𝑓ℓ−1(𝜂) (F.3)

for all 𝑥 ∈ R. Because 𝑐ℓ > 𝑐ℓ−1 and 𝑠* ≤ 𝑠ℓ−1 ≤ 𝛾ℓ−1, formula (F.3) yields 𝑦 > 𝑦ℓ−1 in R. �

With the above behind us, we may pick up the thread from Sections 5 and 6.

Lemma F.2. Suppose that 𝐽 ≥ 2. Then 𝑦1 > 𝑦2 when 𝑘1 is sufficiently large compared to 𝑘2.

Proof. By (5.3) and in analogy to (F.3),

𝛼e𝛼𝑥
(︀
𝑦1 − 𝑦2

)︀
(𝑥) = (𝑐1 − 𝑐2)e𝛼𝑠1 −

∫︁ 𝑠2

𝑠1

e𝛼𝜂 d𝑓2(𝜂) (F.4)

for all 𝑥 ∈ R. By Lemma 5.1, 𝑠2 ≤ 𝛾2 and 𝑠1 → −∞ as 𝑘1 → ∞. By Hypothesis 4.2, 𝑓2 is strictly decreasing
in (−∞, 𝛾2]. Thus in the limit 𝑘1 → ∞, the right-hand side of (F.4), which does not depend on 𝑥, is either a
positive real number or +∞. �

Lemma F.3. Under the assumptions of Theorem 7.2, 𝑢 ≤ 𝑢* when ℓ = 1 and 𝑘1 is large.
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Proof. Let 𝑗 be the greatest minimizer of 𝑦𝑖 with respect to 𝑖 ∈ 𝒥 * = 𝒥 ∖ {1}, and 𝑣* the counterpart of 𝑣 for
𝑢*. By Lemma F.2, 𝑗 is the greatest minimizer of {𝑦𝑖 : 𝑖 ∈ 𝒥 } for large 𝑘1. Hence, for such 𝑘1, 𝑢 = 𝑢* = 𝑦𝑗 in
[𝑠𝑗 ,∞). Consequently, 𝑣 = min{𝑣𝑖 : 𝑖 ∈ 𝒥 } ≤ min{𝑣𝑖 : 𝑖 ∈ 𝒥 *} = 𝑣* in R. Whence, by Lemma E.1, 𝑢 ≤ 𝑢* in
(−∞, 𝑆𝑗 ]. Thus, 𝑢 ≤ 𝑢* everywhere. �

Lemma F.4. Under the assumptions of Theorem 7.2, 𝑢 = 𝑢* when ℓ ≥ 2 and 𝑘ℓ is close to 𝑘ℓ−1.

Proof. By Lemmas 5.1 and F.1, 𝑦ℓ > 𝑦ℓ−1 when 𝑘ℓ > 𝑘ℓ+1 is sufficiently close to 𝑘ℓ−1 for ℓ < 𝐽 , and when
𝑘ℓ ≥ 0 is sufficiently close to 𝑘ℓ−1 for ℓ = 𝐽 . For such 𝑘ℓ it follows that the greatest minimizer 𝑗 of {𝑦𝑖 : 𝑖 ∈ 𝒥 }
is the greatest minimizer of {𝑦𝑖 : 𝑖 ∈ 𝒥 *} where 𝒥 * = 𝒥 ∖ {ℓ}. According to the theory in Section 5, this
necessitates 𝑢 = 𝑢* throughout R when 𝑗 < ℓ, and, 𝑢 = 𝑢* = 𝑦𝑗 in [𝑠𝑗 ,∞) when 𝑗 > ℓ. In the latter event, since
(5.8) implies that 𝑦′𝑗 < −𝑐ℓ−1 in (𝑆𝑗,ℓ, 𝑆𝑗,ℓ−1),

𝑦𝑗(𝑆𝑗,ℓ−1)− 𝑦𝑗(𝑆𝑗,ℓ) < −𝑐ℓ−1(𝑆𝑗,ℓ−1 − 𝑆𝑗,ℓ).

Subsequently, by (5.13),

𝑣ℓ(𝑥)− 𝑣ℓ−1(𝑥) > 𝑘ℓ − 𝑘ℓ−1 + (𝑐ℓ − 𝑐ℓ−1)(𝑆𝑗,ℓ − 𝑥).

Consequently, if 𝑘ℓ > 𝑘ℓ−1 − (𝑐ℓ − 𝑐ℓ−1)(𝑆𝑗,ℓ − 𝑠𝑗) in addition to the afore-mentioned closeness of 𝑘ℓ to 𝑘ℓ−1,
we have 𝑣ℓ > 𝑣ℓ−1 in (−∞, 𝑠𝑗 ]. Thus, denoting by 𝑣* the function for 𝑢* fulfilling the role that 𝑣 does for 𝑢,
necessarily 𝑣 = 𝑣* in (−∞, 𝑠𝑗 ] for such 𝑘ℓ. Therefore, by Lemmas 5.10 and 5.11, 𝑢 = 𝑢* in (−∞, 𝑠𝑗). Whence,
𝑢 = 𝑢* everywhere. �

To complete the proof of Theorem 7.2, we note that Lemma E.5 tells us that 𝑢 does not increase as 𝑘ℓ

decreases. Hence, if the theorem is true for suitably large 𝑘ℓ, then it is true for all 𝑘ℓ preserving the inequalities
in (2.5). Lemmas F.3 and F.4 confirm that the former is indeed so.

Appendix G. Proof of Theorem 7.3

Let us first consider a select case.

Lemma G.1. Let 𝑢 be the solution of (2.10) given by Theorem 6.6 and 𝑢+ the corresponding solution with 𝑐ℓ

replaced by 𝑐+
ℓ for some ℓ ∈ 𝒥 . If 𝑐+

ℓ > 𝑐ℓ then 𝑢+ ≥ 𝑢 in R.

Proof. Suppose to begin with that 𝑘ℓ > 0. Denote by 𝑢(1) the solution of (2.10) given by Theorem 6.6 when 𝑐+
ℓ

is inserted in the sequence (2.4), 𝑘+
ℓ is inserted in the corresponding position in (2.5), and the structure of (2.4)

and (2.5) is otherwise preserved. Denote by 𝑢(2) the corresponding solution when 𝑐ℓ and 𝑘ℓ are subsequently
removed from the just-constructed sequences (2.4) and (2.5). By Lemma F.4, 𝑢(1) = 𝑢 if 𝑘+

ℓ is sufficiently
close to 𝑘ℓ. By Theorem 7.2, 𝑢(2) ≥ 𝑢(1). Hence, 𝑢(2) ≥ 𝑢. Passage to the limit 𝑘+

ℓ → 𝑘ℓ, which is justified by
Theorem 7.1, yields 𝑢+ ≥ 𝑢. If 𝑘ℓ = 0, a further passage to the limit, likewise justified by Theorem 7.1, delivers
the result for this case. �

In the light of Lemma E.6, it is enough to prove Theorem 7.3 assuming that 𝑘+
ℓ = 𝑘−ℓ for every ℓ ∈ 𝒥 . Starting

with
(︀
𝑐−1 , 𝑐−2 , . . . , 𝑐−𝐽

)︀
and changing 𝑐−ℓ to 𝑐+

ℓ if 𝑐+
ℓ > 𝑐−ℓ in decreasing order of ℓ ∈ 𝒥 leads to a sequence of

𝐽-tuples preserving the ordering of (2.4). Simultaneous application of Lemma G.1 shows that the corresponding
sequence of solutions of (2.10) is nondecreasing. As the first of these is 𝑢− and the last is 𝑢+, this provides the
theorem.
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Appendix H. Proof of Theorem 9.1

Let 𝐹1 and 𝐹2 be the functions from the proof of Lemma 5.1 associated with 𝑓1 and 𝑓2 respectively. By
Lemmas F.1 and F.2, the solution 𝑦 of equation (4.1) satisfying (4.2) and (4.3) with 𝑐𝑗 = 𝑐1 and 𝑘𝑗 = 𝑘 for some
𝑆 ≥ 𝑠 is such that 𝑦 < 𝑦2 when 𝑘 = 𝑘2, and 𝑦 > 𝑦2 when 𝑘 is large. Concurrently, by Lemma 5.1, 𝑦 depends
continuously and strictly monotonically on 𝑘 ≥ 0. Therefore, there is a number 𝑘† > 𝑘2 for which 𝑦 < 𝑦2 when
𝑘 < 𝑘†, 𝑦 = 𝑦2 when 𝑘 = 𝑘†, and 𝑦 > 𝑦2 when 𝑘 > 𝑘†. It follows that 1 is the unique minimizer of {𝑦1, 𝑦2} when
𝑘1 < 𝑘†, that 2 is the unique minimizer when 𝑘1 > 𝑘†, and that 1 and 2 are both minimizers when 𝑘1 = 𝑘†.
This gives rise to the function 𝐾†. By the proof of Lemma 5.1 and (F.3), it can be expressed

𝐾†(𝑘2) = 𝐹1(𝑠1), (H.1)

where 𝑠1 is the solution of

−
∫︁ 𝑠2

𝑠1

e𝛼𝜂 d𝑓1(𝜂) = (𝑐2 − 𝑐1)e𝛼𝑠2 (H.2)

in (−∞, 𝑠2), and 𝑠2 is the solution of
𝐹2(𝑠2) = 𝑘2 (H.3)

in (−∞, 𝛾2]. The continuous and monotonic dependence of 𝐾† on 𝑘2 are a consequence of (H.1)–(H.3).
For 𝑘1 ≥ 𝐾†(𝑘2), whether {𝑦1, 𝑦2} has one or two minimizers, 2 is the greatest. Therefore, tracing the

procedure pinpointing the solution of (2.10) satisfying Ansatz 3.3 in Section 5,

𝜎2 = {𝑦2(𝑆2) + 𝑘2 + 𝑐2𝑆2 − 𝑦2(𝑆2,1)− 𝑘1 − 𝑐1𝑆2,1}/(𝑐2 − 𝑐1) (H.4)

and
𝑇2 = 𝑓(𝜎2) + 𝑐1 − 𝛼𝑣1(𝜎2) = 𝑓(𝜎2) + 𝑐1 − 𝛼{𝑦2(𝑆2,1) + 𝑘1 + 𝑐1(𝑆2,1 − 𝜎2)}. (H.5)

Taking (H.4), using (4.3) to eliminate 𝑘2, equation (4.1) to eliminate 𝑦2 in favour of 𝑦′2, condition (4.2) to
eliminate 𝑦′2(𝑠2), and substituting 𝑦′2(𝑆2,1) = −𝑐1 yields

𝜎2 = {𝑓2(𝑠2)− 𝑓1(𝑆2,1)− 𝑐1 + 𝑐2 − 𝛼𝑘1}/{𝛼(𝑐2 − 𝑐1)}. (H.6)

Similarly, taking (H.5), using (4.1) to eliminate 𝑦2 in favour of 𝑦′2, substituting 𝑦′2(𝑆2,1) = −𝑐1, and using (H.6)
to eliminate 𝑘1 yields

𝑇2 = 𝑓2(𝜎2)− 𝑓2(𝑠2) + 𝑐1 − 𝑐2. (H.7)

By (H.6), 𝜎2 is a strictly decreasing continuous function of 𝑘1 ≥ 𝐾†(𝑘2) such that 𝜎2 → −∞ as 𝑘1 → ∞.
By (H.7) and Hypothesis 4.2, 𝑇2 is a strictly decreasing continuous function of 𝜎2 ≤ 𝑠2 such that 𝑇2 → ∞ as
𝜎2 → −∞. Therefore, as a composite function, 𝑇2 is continuous and strictly increasing for 𝑘1 ≥ 𝐾†(𝑘2), and
such that 𝑇2 → ∞ as 𝑘1 → ∞. However, because 𝑦1 = 𝑦2 when 𝑘1 = 𝐾†(𝑘2), Lemma 5.13 implies that 𝑇2 < 0
when 𝑘1 takes this value. Hence, there is a 𝑘* > 𝐾†(𝑘2) with the property that 𝑇2 < 0 when 𝑘 < 𝑘* and 𝑇2 ≥ 0
when 𝑘 ≥ 𝑘*. This leads to the function 𝐾*, which in the light of (H.6) and (H.7) can be expressed

𝐾*(𝑘2) = {𝑓1(𝜎2)− 𝑓1(𝑆2,1)}/𝛼, (H.8)

where 𝜎2 is the solution of
𝑓2(𝜎2) = 𝑓2(𝑠2)− 𝑐1 + 𝑐2 (H.9)

in (−∞, 𝑠2). By (H.3), 𝑠2 is a continuous strictly decreasing function of 𝑘2 ≥ 0. We assert that 𝑓1(𝜎2)−𝑓1(𝑆2,1)
is a strictly decreasing continuous function of 𝑠2 ≤ 𝛾2. Given that this assertion is true, formula (H.8) implies
that 𝐾* is continuous and strictly increasing as claimed. Confirmation of the assertion is assigned to the lemma
below.

Lemma H.1. The function 𝑠2 ↦→ 𝑓1(𝜎2)− 𝑓1(𝑆2,1) is continuous and strictly decreasing in (−∞, 𝛾2].
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Proof. By (H.9) and Hypothesis 4.2, 𝜎2 is a strictly increasing continuous function of 𝑠2 ≤ 𝛾2. Noting that
𝑓1(𝜎2) = 𝑓2(𝜎2) − 𝛼(𝑐2 − 𝑐1)𝜎2, it subsequently suffices to show that 𝑓2(𝜎2) − 𝑓1(𝑆2,1) is a strictly decreasing
continuous function of 𝑠2 ≤ 𝛾2. With this in mind, formula (5.9) can be rewritten∫︁ 𝑆2,1

𝛾1

e𝛼𝜂 d𝑓1(𝜂) = (𝑐2 − 𝑐1)e𝛼𝛾2 −
∫︁ 𝛾1

𝛾2

e𝛼𝜂 d𝑓1(𝜂)−
∫︁ 𝛾2

𝑠2

e𝛼𝜂 d𝑓2(𝜂). (H.10)

This is most easily verified by working from (H.10) back to (5.9), to be specific by eliminating 𝑠2 with the aid
of the left-hand component of (5.1), substituting 𝑓2(𝜂) = 𝑓1(𝜂) + 𝛼(𝑐2 − 𝑐1)𝜂, and simplifying. By the Implicit
Function Theorem applied to (H.10), 𝑓1(𝑆2,1) is continuously differentiable in terms of 𝑓2(𝑠2) for 𝑠2 < 𝛾2, with

d𝑓1(𝑆2,1)
d𝑓2(𝑠2)

= e−𝛼(𝑆2,1−𝑠2).

Hence, employing (H.9),

d{𝑓2(𝜎2)− 𝑓1(𝑆2,1)}
d𝑓2(𝑠2)

= 1− e−𝛼(𝑆2,1−𝑠2) > 0 for 𝑠2 < 𝛾2.

As 𝑠2 ↦→ 𝑓2(𝑠2) is continuous and strictly decreasing in (−∞, 𝛾2], this leads to the desired result. �

Appendix I. Proof of Theorem 9.2

Set 𝑘1 = 𝐾−
† (𝑘2) and let 𝑦±1 be the solution of (4.1) satisfying (4.2) and (4.3) with 𝑐𝑗 = 𝑐±1 and 𝑘𝑗 = 𝑘1 for

some 𝑆 ≥ 𝑠. By Lemma F.1, 𝑦+
1 > 𝑦−1 . However, since 𝑘1 = 𝐾−

† (𝑘2), 𝑦−1 = 𝑦2. This means that 2 is the unique
minimizer of {𝑦+

1 , 𝑦2}. Thus, 𝑘1 > 𝐾+
† (𝑘2). This confirms that part of the theorem regarding 𝐾†.

To confirm the part concerning 𝐾*, denote the respective numbers induced by (5.8) with 𝑗 = 2 and 𝑐ℓ = 𝑐±1
by 𝑆±2,1, and the solutions of (H.9) in (−∞, 𝑠2) by 𝜎±2 . By Lemma 5.6, 𝑆+

2,1 < 𝑆−2,1, while (H.9) implies that
𝜎+

2 > 𝜎−2 . Furthermore, by (H.8) and (H.9),

𝐾±
* (𝑘2) =

{︀
𝑓2(𝑠2)− 𝑐±1 + 𝑐2 − 𝑓

(︀
𝑆±2,1

)︀}︀
/𝛼− 𝑐±1

(︀
𝑆±2,1 − 𝜎±2

)︀
− 𝑐2𝜎

±
2 .

Substituting 𝑓
(︀
𝑆±2,1

)︀
=

(︀
𝐴𝑦2

)︀(︀
𝑆±2,1

)︀
= −𝑐±1 + 𝛼𝑦2

(︀
𝑆±2,1

)︀
in the above gives

𝐾±
* (𝑘2) = {𝑓2(𝑠2) + 𝑐2}/𝛼− 𝑦2

(︀
𝑆±2,1

)︀
− 𝑐±1

(︀
𝑆±2,1 − 𝜎±2

)︀
− 𝑐2𝜎

±
2 .

Hence, (︀
𝐾+
* −𝐾−

*
)︀
(𝑘2) = 𝑦2

(︀
𝑆−2,1

)︀
− 𝑦2

(︀
𝑆+

2,1

)︀
− 𝑐2

(︀
𝜎+

2 − 𝜎−2
)︀
− 𝑐+

1

(︀
𝑆+

2,1 − 𝜎+
2

)︀
+ 𝑐−1

(︀
𝑆−2,1 − 𝜎−2

)︀
< 𝑦2

(︀
𝑆−2,1

)︀
− 𝑦2

(︀
𝑆+

2,1

)︀
+ 𝑐−1

(︀
𝑆−2,1 − 𝑆+

2,1

)︀
. (I.1)

However, statement (5.8) implies that 𝑦′2 < −𝑐−1 in
(︀
𝑆+

2,1, 𝑆
−
2,1

)︀
. So,

𝑦2

(︀
𝑆−2,1

)︀
− 𝑦2

(︀
𝑆+

2,1

)︀
< −𝑐−1

(︀
𝑆−2,1 − 𝑆+

2,1

)︀
. (I.2)

Combining (I.1) and (I.2) yields
(︀
𝐾+
* −𝐾−

*
)︀
(𝑘2) < 0.
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Appendix J. Proof of Theorem 9.3

Let 𝛾±2 be the respective number for which 𝑓±2 satisfies Hypothesis 4.2, and 𝑦±2 , 𝑠±2 and 𝑆±2 the solution
of (4.1)–(4.3) with 𝑐𝑗 = 𝑐±2 and 𝑘𝑗 = 𝑘2. Note that 𝐾±

† (𝑘2) is the number 𝑘1 ∈ (𝑘2,∞) for which 𝑦1 = 𝑦±2 .
By Lemma F.1, 𝑦+

2 > 𝑦−2 . Hence, by Lemma 5.1, 𝐾+
† (𝑘2) > 𝐾−

† (𝑘2). This gives the theorem as far as 𝐾† is
concerned.

To obtain the conclusion concerning 𝐾*, further to the notation introduced in the preceding paragraph, let
𝑘1 = 𝐾+

* (𝑘2). Since 𝐾−
† (𝑘2) < 𝐾+

† (𝑘2), 𝐾−
† (𝐾+

† (𝑘2)) > 𝐾+
† (𝑘2) by (9.1), and 𝐾−

† is continuous and strictly
increasing in [0,∞), there is a 𝑘𝜄 ∈ (𝑘2, 𝐾

+
† (𝑘2)) for which 𝐾−

† (𝑘𝜄) = 𝐾+
† (𝑘2). Subsequently, by Lemma 5.1,

equation (4.1) has a solution 𝑦𝜄 satisfying (4.2) and (4.3) with 𝑐𝑗 = 𝑐−2 and 𝑘𝑗 = 𝑘𝜄 for a unique pair of values
𝑆 ≥ 𝑠. Moreover, these values, 𝑆𝜄 and 𝑠𝜄 say, are such that 𝑠𝜄 < 𝛾−2 < 𝑆𝜄. Because 𝐾−

† (𝑘𝜄) = 𝐾+
† (𝑘2), 𝑦𝜄 ≡ 𝑦+

2 .
Hence, by Lemma 5.12, 𝑠𝜄 < 𝑠+

2 < 𝑆+
2 < 𝑆𝜄. Invoking Lemma 5.6, let 𝑆2,2 = 𝑆+

2 , 𝑆2,𝜄 = 𝑆𝜄, and 𝑆2,1 > 𝑆2,𝜄 be
the unique solution of

(︀
𝑦+
2

)︀′(𝑆2,1) = −𝑐1 in (𝑠𝜄,∞). Define 𝑣1 by (5.13) with 𝑦𝑗 = 𝑦+
2 and 𝑗 = 2, 𝑣𝜄 by (5.13)

with 𝑦𝑗 = 𝑦+
2 , 𝑗 = 2 and 𝑐ℓ = 𝑐−2 , and 𝑣2 by (5.13) with 𝑦𝑗 = 𝑦+

2 , 𝑗 = 2 and 𝑐ℓ = 𝑐+
2 . Let 𝜎(1)

2 , 𝜎(2)
2 and 𝜎(3)

2 be
the unique solutions of

𝑣1

(︀
𝜎(1)

2

)︀
= 𝑣𝜄

(︀
𝜎(1)

2

)︀
, 𝑣1

(︀
𝜎(2)

2

)︀
= 𝑣2

(︀
𝜎(2)

2

)︀
and 𝑣𝜄

(︀
𝜎(3)

2

)︀
= 𝑣2

(︀
𝜎(3)

2

)︀
.

Inasmuch (5.8) holds for 𝑗 = 2 and ℓ = 1, 𝜎(2)
2 < 𝑠+

2 ≤ 𝛾+
2 . Similarly, 𝜎(3)

2 < 𝑠+
2 ≤ 𝛾+

2 and 𝜎(1)
2 < 𝑠𝜄 < 𝛾−2 . Set

𝑇 (1)
2 =

(︀
𝑓 −𝐴𝑣1

)︀(︀
𝜎(1)

2

)︀
, 𝑇 (2)

2 =
(︀
𝑓 −𝐴𝑣1

)︀(︀
𝜎(2)

2

)︀
and 𝑇 (3)

2 =
(︀
𝑓 −𝐴𝑣𝜄

)︀(︀
𝜎(3)

2

)︀
.

By Lemma 5.13, 𝑇 (3)
2 < 0. Hence,(︀

𝑓 −𝐴𝑣2

)︀(︀
𝜎(3)

2

)︀
= 𝑇 (3)

2 + 𝑐+
2 − 𝑐−2 < 𝑐+

2 − 𝑐−2 . (J.1)

On the other hand, since 𝑘1 = 𝐾+
* (𝑘2), 𝑇 (2)

2 = 0. So,(︀
𝑓 −𝐴𝑣2

)︀(︀
𝜎(2)

2

)︀
= 𝑇 (2)

2 + 𝑐+
2 − 𝑐1 = 𝑐+

2 − 𝑐1 > 𝑐+
2 − 𝑐−2 . (J.2)

From (J.1), (J.2) and Lemma 5.9, we deduce that 𝜎(2)
2 < 𝜎(3)

2 . Since 𝑣′2 = −𝑐+
2 < 𝑣′𝜄 = −𝑐−2 < 𝑣′1 = −𝑐1, it

follows that 𝜎(1)
2 < 𝜎(2)

2 . Consequently, by Lemma 5.9, 𝑇 (1)
2 =

(︀
𝑓 − 𝐴𝑣1

)︀(︀
𝜎(1)

2

)︀
>

(︀
𝑓 − 𝐴𝑣1

)︀(︀
𝜎(2)

2

)︀
= 𝑇 (2)

2 = 0 .
This implies that 𝑘1 = 𝐾+

* (𝑘2) > 𝐾−
* (𝑘𝜄). However, recalling that 𝑘𝜄 > 𝑘2 and that 𝐾−

* is strictly increasing in
[0,∞), necessarily 𝐾−

* (𝑘𝜄) > 𝐾−
* (𝑘2). Thus 𝐾+

* (𝑘2) > 𝐾−
* (𝑘2).
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