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PRICING GAMES OF DUOPOLY SERVICE-INVENTORY SYSTEMS WITH
LOST SALES

Doo Ho LEe'® aAnND DArE-EuN Lim?*

Abstract. This study considers a duopoly market in which two competitors operate their own service-
inventory systems. Both competitors determine their prices to maximize their profit while considering
the inventory holding cost, ordering cost, and cost incurred by lost sales. Customers are price sensitive,
and customer attractiveness is expressed by arrival rates. We use a game theory approach to formulate
and analyze three types of pricing games: (i) a parallel pricing game, (ii) a sequential pricing game, and
(iii) a unified pricing game. The uniqueness of equilibrium prices is analytically proven, after which, a
solution procedure for obtaining equilibrium prices is outlined.
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1. INTRODUCTION

Over the past few decades, there has been considerable research examining integrated service-inventory
systems. These systems originated from the well-known assembly-like queues, wherein several types of parts
are simultaneously served to manufacture a finished product [4]. Service-inventory systems assume positive
handling times, including preparing, retrieving, packing, and loading, while classical inventory models neglect
handling times [10]. For example, replacing auto parts requires not only new parts but also time at an auto
repair shop. Queueing models are applied to service-inventory systems to devise an efficient operation method.
However, even for simple cases, there have not been many related studies due to the complexity caused by the
intrinsic dependency in queue-considered service-inventory systems. That is, the volatilities of demand, service
processes, and lead time make it difficult to develop an optimal inventory policy, which is a major research topic
in service-inventory models.

In addition to these operational issues, marketing issues — including the pricing of items — are found in
service-inventory models [9]. Whitin [15] studied the newsvendor problem with price-dependent demand. Since
this study, numerous models considering pricing strategies have been developed. In recent years, integrated
service-inventory systems, in which a service process is frequently connected with inventory management, have
been extensively studied. A service-inventory model is also referred to as a system with positive service time,
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and the rich body of literature on this topic was well summarized by Krishnamoorthy and Narayanan [6] and
Krishnamoorthy et al. [7]. Marand et al. [9] summarized and classified inventory models in terms of the arrival
processes of demand, the distributions of services and lead time, stock-out policy, and system capacity.

Many studies have investigated pricing issues in service-inventory systems. However, no study has considered
the pricing of two competitors with queue-considered service-inventory systems. This paper therefore presents
game-theory-based pricing games of two competitors with inventory queues, each with a service-inventory sys-
tem, under a duopolistic situation. We consider three types of pricing games: (i) a parallel pricing game, (ii) a
sequential pricing game, and (iii) a unified pricing game. Duopoly markets consisting of two competitors can be
found in various applications including supply chains [8,16], peak-load pricing [5], and two-tier service systems.
An example of two-tier service is public healthcare service, which comprises free and paid service providers [17].
Healthcare service is a type of service-inventory application because service for customers requires both resources
and time. Careful pricing is required to maximize the revenue of a toll service provider — which is typically a
private service provider — because customers are sensitive to price; if the price is too high, customers may select
a free service even if the waiting time is long. In a two-tier service system, only one service provider considers
pricing. However, this study considers the more general situation wherein two service providers consider pricing.

Berman and Kim [2] discussed a service-inventory system in which demand arrives at a system according
to a Poisson process and service times are exponentially distributed. They assumed that the capacity is finite
or infinite and then characterized the optimal order policy for a service facility. In a later study, Berman and
Sapna [3] generalized this model to an M/G/1 queue, in which the reorder point was zero, and they proposed
the closed-form expressions of a stationary distribution and performance measures. Schwarz et al. [12] derived
the stationary distributions of joint queue length and inventory processes in an explicit product form for various
M/M/1 systems. They considered the inventory under continuous review, different inventory management
policies, and lost sales. Baek et al. [1] studied a continuous (s, Q) inventory control model with an attached
M/M/1 queue and lost sales. They assumed that each customer leaves a system with a random number of items
at the time of service completion. More recently, Marand et al. [9] integrated inventory control and pricing
decisions. They assumed price-dependent customer arrival rates, and they continuously reviewed inventory level
under the (r, Q) policy. They formulated an M /M /1 service-inventory system with lost sales while considering
the inventory and pricing policies, then proposed algorithms for obtaining optimal solutions. Note that none
of the extant studies have considered the pricing strategies of two competitors in a service-inventory system.
Although the pricing strategies of service providers have been addressed in a two-tier service system, inventory
policies have yet to be considered.

The rest of this paper is organized as follows: In Section 2, we describe the queueing model of a service-
inventory system and derive the key performance measures. In Section 3, we describe the aforementioned
three pricing games in a duopoly service-inventory market and propose a solution procedure for the games. In
Section 4, we describe the comparative analysis of the three pricing games and show that unified pricing is the
most advantageous in terms of maximizing profit. Finally, we conclude the paper in Section 5.

2. MODEL DESCRIPTION AND PRELIMINARY ANALYSIS

In the service-inventory market, the power of retailers with their own service-inventory systems has increased
considerably in recent years with the emergence of large supermarkets and chain stores in recent years. These
retailers provide a variety of services and products with their brands. For customers, similar products of different
brands sold by different retailers are substitutable items. Therefore, these retailers must compete on price, which
is a key determinant of market share. From this perspective, our study analyzes three types of pricing games in
a duopoly service-inventory market: (i) a parallel pricing game, (ii) a sequential pricing game, and (iii) a unified
pricing game. In this section, we present a mathematical model and the solution procedure for obtaining the
equilibrium prices of retailers.

We consider the following duopoly market conditions: Two competing retailers that operate their own service-
inventory systems. The two retailers sell similar products of different brands. We equivalently index the retailers
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FIGURE 1. Transition diagram for the service-inventory system of a retailer.

and their products by i,7 = 1,2. We regard the service-inventory system of retailer ¢ as an M/M/1 queue,
wherein customers arrive according to a Poisson process at a rate of \;. The two retailers compete on price.
We assume that each retailer uses a uniform pricing strategy to attract customers. Thus, the arrival rate to the
service-inventory system is price dependent, and it is assumed to be a decreasing linear function of price. The
arrival rate for retailer ¢ is given by

Ai = — Bipi +pj;i=1,2, and j =3 —i. (2.1)

In equation (2.1), a;, B, and p; indicate the potential market scale, degree of price sensitivity, and prod-
uct/service price of retailer i, respectively. 7 represents cross-price sensitivity, which reflects the degree of
cannibalization between the two retailers. We also assume v < ;.

A single server serves all customers on a first-come-first-served basis, and one customer is served at a time.
Service times follow an exponential distribution with a rate of p;. The inequality A; < p; must hold for the
service-inventory system to be stable. Upon the completion of a service, each customer takes one item from
the inventory, if any. In this context, we can regard the service time as the duration of delivering an item from
the inventory. Subsequently, the customer completes the service and immediately leaves the system. When the
on-hand inventory reaches zero, a replenishment order is instantly triggered. The size of the replenishment order
is fixed as ); < oo units. The replenishment lead time is exponentially distributed with parameter v;. While
the inventory level remains zero, any arriving customers are lost.

Let N;(t) and K;(t) be the number of customers and the inventory level, respectively, at time t in the
service-inventory system of retailer i. Then, the queueing inventory process {(N;(t), K;(t)),t > 0} becomes a
two-dimensional continuous time Markov chain with the state space expressed as Q; = {(n,k) : n > 0,k =
0,1,---,Q;}. The corresponding transition diagram is shown in Figure 1.

Let m;(n, k) be the stationary joint distribution of the number of customers and the inventory level in the
service-inventory system of retailer i. According to Wang and Zhang [14] and Schwarz et al. [12], m;(n, k) has
the product form of m;(n, k) = ¢;(n)p;(k). Concretely, ¢;(n) denotes the probability distribution of the number
of customers, and it is presented by

¢i(n) = (1= Xi/pi)(Ni/pi)",m > 0.

Similarly, ¢;(k) denotes the probability distribution of the inventory level when the number of customer is i,
and it is presented as follows:

pi(k) = (Nilip=oy + vilirzoy)/(Ni +iQi), k=0,1,---,Q;,
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where 1y} is an indicator function. In the sequence, we next use ¢;(n) and ¢;(k) to obtain the effective arrival
rate S, (customer) loss rate Al°%%, expected number of customers E[N;], and expected inventory level F[K;]

as follows:
Aiv; Q;
eff — (1= o, = il
N = (L= 0) = T
/\2
loss __ _yeff
A B )\ A )\ +I/ZQ1
ENZ = n¢z n)= )
[V Z (=2
Zk o VzQz(Qz + 1)
)\ +V2Qz)

Let T; be the replenishment cycle length of product i. Then, T; is expressed as the sum of the time required
for all @; products to run out and the replenishment lead time. Therefore, we have E[T;] = Q;/A; + 1/v;. The
reorder rate, o;, can be obtained using o; = 1/E[T;] = \iv; /(N + v:Q;).

3. PRICING GAMES

This section describes the results of several pricing strategies intending to maximize the profits of retailers.

First, we separately formulate the revenue and cost terms. Then, we add them to obtain an integrated objective
function, which is the average profit per time unit.

Marginal revenue: the average marginal revenue per time unit for retailer ¢ (MR;) is given by

DiXiVi Qi )
Ai + Q4

Inventory holding cost: let h; be the holding cost for product i per time unit. The average inventory holding
cost per time unit for retailer ¢ (IC;) can then be expressed as

hiviQi(Qi +1)
2\ + viQy)

Ordering cost: the system incurs a fixed cost ¢; each time it creates a replenishment order. One replenishment
order is created during each cycle. Thus, the ordering cost per time unit for retailer i (OC;) is given by

MR Acff

IC; = h;E[K;] =

Ci)\iVi
Ai + viQi
Loss of goodwill cost: we assume that lost sales negatively affect the image of the retailer in the long term.

Hence, we consider the loss of the goodwill cost per unit /; for lost sales. The average loss of the goodwill
cost per time unit for retailer ¢ (LC;) is given by

OCZ = C;0; =

1:\2
i + 1iQ;
Objective function: the long-term average profit function for retailer ¢ is expressed as a function of product
prices. Using equation (2.1), we have

LC; = LA™ =

IL(v:. p:) = MR: —IC: — OCs — LC, =
z(pzapj) R; C; — 0G; Ci E[Tl]

i=1,2, and j =3 —1, (3.1)
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where E[T;] = Q;/(a; — Bipi +vp;) + 1/v; and

cooon o hiQi(@i+1) (i — Bipi +p;)
Hi (pzapj) —szz & 2(0[2' — ﬂipi +"ij) Vi ! (32)

¢ (p;, p;) in equation (3.2) indicates the expected profit during each replenishment cycle. The objective
function in equation (3.1) is used to solve the pricing games. The following assumptions are made for the
convenience of the analysis:

Assumption 3.1. As it is irrelevant to study pricing decisions with no positive profit in practice, there is
at least one feasible point that satisfies I1;(p;, p;) > 0, where i =1,2 and j =3 — 1.

Assumption 3.2. For the pricing problem of retailer i, it should be ensured that p; > 0 and A\; > 0. Thus,
p; is defined in the interval ©; = [0, p;], where p; = (o; +7vp;)/Bi, i =1,2, and j =3 —i.

3.1. Parallel pricing game

In the parallel pricing game, two competing retailers establish retail prices at the same time. We adapt a
concept from game theory to obtain equilibrium prices. The retailers are the players of this strategic game, and
they have complete information. The outcome of the game is referred to as the Nash equilibrium (NE), in which
none of the players can benefit by changing only his/her strategy. Hence, the strategy of each player is optimal
against that of the other. In other words, each retailer maximizes its profit given the price of the competitor.
For notational simplicity, we denote II;(p;, p;) and II¢ (p;, p;) as II; and II¢, respectively.

Proposition 3.3. In the parallel pricing mechanism, there exists a unique NE under the price of retailer 1,
pNE, and under the price of retailer 2, pY¥. Further, the Karush—Kuhn—Tucker (KKT) conditions are necessary
and sufficient for finding the unique NE price.

Proof. Consider the pricing problem of retailer 1 as an example. Given the price of retailer 2, we have

O*E|T] _ 267 Q1
o3 (a1 — Bip1 + Yp2)?

>0,

which implies that F[T}] is strictly convex with respect to p;. Based on Assumption 3.1 and the strict positivity
of E[T}], there is an area within which II{' > 0. From

OPNY  hfiQi(Q:+1) <0
op? (1 = Bipr +yp2)® 7

we can observe that II{ is strictly concave with respect to p;. Thus, there must be at most two roots — i.e.,
pY and pY — for which it is the case that II{ > 0 for p; > pF, p1 < pY, or p¥ < p1 < p¥. Let us define a

new feasible region for p; for our problem: max (0, pf) = P < pr < PRV = min (pr,p¥'). It is clear that any

p1 € O = [BTEW’ PieV] satisfies p; € ©;. Because of the strict concavity and positivity of II{ on ©}°% and
the strict convexity and positivity of E[T}], condition K in Schaible and Ibaraki [11] is met, and the profit
maximization problem of retailer 1,

HC

pll\IE = argmaxII; = argmax ———

P1€O1 p1EOTY E[Tl] ’

given po, is a concave fractional programming problem in ©7°V. According to Proposition 2 in Schaible and
Ibaraki [11], IT; is strictly pseudo concave, which implies that IT; is unimodal. Further, based on Proposition 3
in Schaible and Ibaraki [11] and Assumption 3.1, a point that satisfies the KKT conditions and yields the
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best objective value is the unique optimal pI'*. The same argument holds for the pricing problem of retailer 2.
According to the KKT conditions, we have

?9711;[11 =05 pi(ps) = +7pﬂ21+ nl Mi(p2),
o =0 = palpr) = LR gy (33)
where
Mi(p;) = \/ViQi[ﬁihi(Qi +1) ;éy(lﬁ{ﬁzia;lgj)p] +13;Q;) — Bici}] i—12andj=3_1i
The equation system in equation (3.3) can easily be solved by employing numerical methods using mathematics
software. O

Remark 3.4. The effect of retail prices on the optimal replenishment cycle can be determined through the
following relationships:

Qi 1 Qi 1
ElL] = i * v o — Bipi + vp; * v’
OET;] BiQi
Opi (o= Bipi +p;)? "
0BT Qi <0
Ipj (ai = Bipi +9p;)*

Therefore, the optimal replenishment cycle of a retailer increases with the price of that retailer; however, the
optimal replenishment cycle of a retailer decreases as the retail price of a competitor increases. These results
can be intuitively explained as follows: An increase in the price of a retailer decreases the arrival rate to his/her
service-inventory system, and the replenishment cycle becomes longer as the arrival rate decreases. Conversely,
the arrival rate to the service-inventory system of a retailer increases with the price of a competitor; the
replenishment cycle becomes shorter as the arrival rate increases.

3.2. Sequential pricing game

In the sequential pricing game, two competing retailers have different levels of power in pricing. This type
of pricing game is generally modeled as a duopoly Stackelberg game, where one retailer is a pricing leader and
the other is a pricing follower. For convenience, we regard retailers 1 and 2 as the pricing leader and the pricing
follower, respectively. Therefore, retailer 2 maximizes his/her profit based on the price of retailer 1, and retailer
1 maximizes his/her profit based on the best response function of retailer 2.

Proposition 3.5. In the sequential pricing mechanism, the price of retailer 1, piT, and the price of retailer 2,
p3T, form a unique equilibrium solution for the Stackelberg pricing game. In addition, p3* and p5* are obtained
through Algorithm 1.

Proof. From Proposition 3.3, the profit function of retailer 2 is strictly pseudo concave and unimodal in ps.
Thus, given p;, the optimal price of retailer 2, p5T(p;), can be obtained by solving the first-order condition,
Olly/dpy = 0. First, we substitute p3T(p;) into the profit function of retailer 1. The strict pseudo concavity
and unimodality of II; ensures the existence of a unique equilibrium for this Stackelberg pricing game. The
first-order condition, 9TI; /dp; = 0, is solved to find piT. After calculating p$T, p3T is calculated from equation
(3.3). This solution procedure is summarized in Algorithm 1. O
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Algorithm 1. Calculation of p$T and p5T.

1: Set pa = (a2 4+ Yp1 + 12Q2)B; * — Ma(p1) using equation (3.3);
2: Set II; = II1 (p1, p2) using equation (3.1);
3: Solve OI1, /dp1 = 0 with respect to p1; and then
Set p%T = {pl : 6H1/8p1 =0,p1 € @1};
4: Calculate p3T = (ag + 3T + Vng)Bgl — My (p?T)

3.3. Unified pricing game

In the unified pricing game, it is assumed that both substitutable products are sold by a monopolist, and
that p; and p, are jointly determined to maximize profit. This is similar to a case where two retailers cooperate
and set their prices to maximize their total profit and then share the added benefit according to an agreed
mechanism. This unified pricing game is expressed as follows:

(pYN,pSN) =  argmax IIj +1I, (3.4)
(P1,p2)€O1 xO2
The objective function in equation (3.4) may not be unimodal, because there is no guarantee that the sum
of two strictly pseudo concave functions is also strictly pseudo concave. However, Shen and Yu [13] recently
introduced an iterative approach for solving a concave-convex fractional programming (CCFP) problem such
as that in equation (3.4). The CCFP defined by Shen and Yu [13] has the standard form of

$ Anlo)
x* = argmax Ui (3.5)
T m=1 Bm(l:)

where the following conditions are satisfied: (i) all A,,(x) are concave, (ii) all B,,(z) are convex, and (iii)
constraint set = is a nonempty convex set in the standard form expressed by a finite number of inequality
constraints. Then, the CCFP problem in equation (3.5) is equivalent to

M
(z*, ") = arg;rylax Z (Qym\/Am(x) — yanm(a:)), (3.6)

where y denotes a collection of auxiliary variables {y1, -+ ,yas}. Briefly, the iterative approach for solving equa-
tion (3.6) is as follows: When z is fixed, the optimal y,,, can be found in the closed form as y,, = v/ Am(x)/Bm (),
Ym=1,---, M. When y,, is fixed, owing to the concavity of each A,,(x), the convexity of each B,,(x), and the
fact that the square-root function is concave and increasing, the quadratic transform, 2y,,v/Am () — y2, By (),
is concave in x. Therefore, the problem in equation (3.6) becomes a concave maximization problem over x. As
a result, the optimal z can be efficiently obtained through a numerical convex optimization process such as
the Newton-Raphson method. More details on the CCFP problem can be found in Shen and Yu [13] and the
references therein. Based on all of the above results, we introduce the final proposition.

Proposition 3.6. In the unified pricing mechanism, the price of retailer 1, pYN, and the price of retailer 2,
pYN. form the concave mazimization problem in equation (3.7). In addition, pY~ and pSN are obtained through
Algorithm 2.

Proof. The objective function in equation (3.4) is rewritten as Iy + s = I /E[T1] + 11§ / E[T3] using equation
(3.1). From Proposition 3.3, Hic and E[T;] are strictly concave and convex, respectively. The constraint set,
©O1 X O, is a nonempty convex set. Therefore, the maximization problem in equation (3.4) is converted to the
following quadratic transformed CCFP problem:

2

wox > (/07 I )

=1
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subject to p; € ©;,1,2,
yi€eRi=1,2 (3.7)

The solution algorithm for equation (3.7) is provided in Algorithm 2. The convergence of equation (3.7) to a
stationary point has been proven in Theorem 3 in Shen and Yu [13]; therefore, it is omitted here. (I

Algorithm 2. Calculation pYN and p§N.

1: Initialize (p?,pg) € 01 X O9;

2: Set t = 0; //t is an iteration index

3: Repeat
Update yf“ =,/I¢ (pg,pg.)/E[Ti],i =1,2;
Update p!*' by solving problem in equation (3.7);
Set t=1t+1;

4: until convergence;

5: Set (py™,ps") = (pi,ph);

4. NUMERICAL EXPERIMENTS

We investigate the effect of changes in various parameters on each retailer’s pricing game through various
numerical examples. The main experimental parameters are classified into three types. First, «;, 3; and ~; are
used to determine the arrival rates A; where i = 1,2. Second, Q; and v; (i = 1,2) are related to the operation
strategies of the two retailers. Finally, the operating costs are calculated using h;,l; and ¢;(i = 1,2). The
parameters vary according to their respective values as listed in Table 1.

First, we investigate the effects of the potential market scales denoted by «; and as. The other parameters
are fixed as follows: 01 = B2 = 1,v1 = v = 10,Q1 = Q2 = 400,h1 = hy = 5,11 =I5 = 10, and ¢; = ¢ = 50.
We obtain the following figures by choosing values between 500 and 600 for o1 and aq, and values between 0.5
and 0.8 for «y. Figure 2 shows the results of parallel games. P1 and P2 respectively corresponds to retailer 1 and
retailer 2. The horizontal axis denotes the combinations of oy and g, while the bar charts and the line graphs
respectively denote the average profit (IIYF, II*) and prices of two retailers (p1, p2), respectively. Further, the
results of the sequential and unified games are presented in Figures 3 and 4, respectively.

In general, the figures are showing that as the market scale increases, retailers can obtain higher profits
by raising prices. A retailer of a larger market scale is more profitable. When the market scale is the same,
the equilibrium price of retailer 2 is determined to be lower than that of retailer 1, and it thus attracts more

TABLE 1. Values of parameters.

Parameter Values

a1, a2 300, 400, 500, 600
B1, P2 0.8,1.0,1.2,1.4
Y 0.2, 0.5, 0.7, 0.8
V1, V2 5, 10

Q1,Q2 300, 400, 500

h1, ha 5

l1,12 5,10, 15

c1,C2 30, 50, 60
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FIGURE 2. Results

of parallel games when a1, as € {500,600}. (A) v = 0.5 case. (B) v = 0.8 case.
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1419

customers (i.e., Ay < Ag). This is because, even though the values of @1 and Q2 are the same, E[T;] decrease

as )\; increases, the profit per unit time can increase. It is also observed that the relation IINF < HiST

< IIPN

where 7 = 1,2, holds. If the value of «y is large, then the degree of influence from the price of the other retailer
increases, so the price is determined to be higher than it is when the value is low. This results in increased

profit.
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FIGURE 3. Results of sequential games when a1, as € {500,600}. (A) v = 0.5 case. (B) v = 0.8 case.
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FIGURE 4. Results of unified games when a1, as € {500,600}. (A) v = 0.5 case. (B) v = 0.8 case.
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FIGURE 6. Arrival rates on various combinations of 31 and (5.

Figure 5a shows that the arrival rates increase as the values of a;(i = 1,2) increase. The arrival rate of
retailer 1 has the smallest change when the game is of the unified type. Figure 5b presents the decrease in
E[T;](i = 1,2) as the arrival rates increase. “PAR”, “SEQ” and “UNI” are used to respectively denote the
parallel game, sequential game, and unified game.

In the results of the unified game, it is found that Ay (or A2) is insensitive to the values of 5; and (s, given
that the other parameters are fixed. Figure 6 shows an example of an almost constant arrival rates, while the
values of 81 and (35 vary. Although each retailer has almost the same arrival rate, their profit and price are
determined by the value of 3; (or f33).

The influence of B; and (o are also investigated. We present Figure 7 by fixing 31 and varying (o, and vice
versa. The profit of each retailer is shown in the vertical axis. The equilibrium prices of both retailers decrease
as (p increases. This result can be intuitively justified as follows: As (31 increases, a higher price of retailer 1
has a stronger effect on decreasing the demand of retailer 1. Thus, retailer 1 reduces his/her price to minimize
this effect. In addition, retailer 2 observes the reduction in the price of retailer 1 and decreases his/her price
to compete. Furthermore, an increase in (3; increases the replenishment cycles and decreases the profit of both
retailers. Figure 7 also shows that the relation TINE < TI$T < TIVN holds.

Figure 8 shows the profits of the retailers when the value of v is low: we set v to 0.2. We observe that the
profits of the retailers are almost the same regardless of the game types. When the value of v decreases, the
profit of each retailer also decreases. Table 2 compares the profits in the cases of v = 0.2 and v = 0.8. For
example, for the parallel game when 31 = 1.4 and v = 0.2, the profit decreases by 51.8% compared to when
v =0.8.
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TABLE 2. Results of pricing games for the values of v = 0.2,0.8 and (G, = 1.

p1 P2 11, + 11z
Game type f1 v=02 =08 ~=02 ~=08 ~=02 v=0.8

0.8  368.81 638.99  348.09 584.39  198537.6 536 885.9
1 294.39 481.05  340.19 515.38  174675.3 405 256.0
1.2 245.02 386.01 334.95 474.14  158946.9 331992.3
1.4 209.86 32246  331.22 446.69  147799.6 285538.3
0.8  374.12 872.75  353.35 692.06 199163.5 655 789.8
1 297.86 600.87  345.25 572.21 175113.9 457913.5
1.2 247.48 459.21 339.91 510.45 159278.4 361 339.6
1.4 211.72 371.95  336.12 472.66 148062.8 304190.6
0.8  420.81 3153.39  392.83 2828.45 201575.1 1497591.2
1 333.31  1402.21 375.37  1428.58 176749.1 711377.2
1.2 275.99 901.76  363.93 1028.68 160483.9 486 745.6
1.4 235.52 664.69  355.85 839.28  149002.6 380341.4

Parallel pricing

Sequential pricing

Unified pricing

5. CONCLUSION

We evaluate three pricing games of two competitors in a duopoly market. The inventory holding cost, ordering
cost, and loss of the goodwill cost are considered to maximize the revenue of the competitors. The service-
inventory system of each competitor is modeled as an M/M/1 queue with variable arrival rates, which are
price dependent. A decreasing linear function of price is assumed to attract customers. Three types of games
are analyzed. The uniqueness of the equilibrium prices is proven, and the solution procedure for obtaining
equilibrium prices is outlined. Finally, Table 2 lists the performance measures and characteristics of each game.
The results of the pricing games for the values of v = 0.2,0.8 and 35 = 1 are presented. We provide managerial
implications for each pricing game and show that the unified pricing strategy is the most advantageous for both
competitors.

In the future, the pricing games of two competitors, each with a service-inventory system, can be analyzed
by considering other distributions for the service time and replenishment lead time. The backorder assumption
can be applied instead of lost sales. As this assumption appears to make the problem difficult to solve, other
computer-based experiments can be applied to investigate the pricing games.
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