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PRICING GAMES OF DUOPOLY SERVICE-INVENTORY SYSTEMS WITH
LOST SALES

Doo Ho Lee1 and Dae-Eun Lim2,*

Abstract. This study considers a duopoly market in which two competitors operate their own service-
inventory systems. Both competitors determine their prices to maximize their profit while considering
the inventory holding cost, ordering cost, and cost incurred by lost sales. Customers are price sensitive,
and customer attractiveness is expressed by arrival rates. We use a game theory approach to formulate
and analyze three types of pricing games: (i) a parallel pricing game, (ii) a sequential pricing game, and
(iii) a unified pricing game. The uniqueness of equilibrium prices is analytically proven, after which, a
solution procedure for obtaining equilibrium prices is outlined.
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1. Introduction

Over the past few decades, there has been considerable research examining integrated service-inventory
systems. These systems originated from the well-known assembly-like queues, wherein several types of parts
are simultaneously served to manufacture a finished product [4]. Service-inventory systems assume positive
handling times, including preparing, retrieving, packing, and loading, while classical inventory models neglect
handling times [10]. For example, replacing auto parts requires not only new parts but also time at an auto
repair shop. Queueing models are applied to service-inventory systems to devise an efficient operation method.
However, even for simple cases, there have not been many related studies due to the complexity caused by the
intrinsic dependency in queue-considered service-inventory systems. That is, the volatilities of demand, service
processes, and lead time make it difficult to develop an optimal inventory policy, which is a major research topic
in service-inventory models.

In addition to these operational issues, marketing issues – including the pricing of items – are found in
service-inventory models [9]. Whitin [15] studied the newsvendor problem with price-dependent demand. Since
this study, numerous models considering pricing strategies have been developed. In recent years, integrated
service-inventory systems, in which a service process is frequently connected with inventory management, have
been extensively studied. A service-inventory model is also referred to as a system with positive service time,

Keywords. Service-inventory system, lost sales, parallel pricing game, sequential pricing game, unified pricing game.

1 Department of Artificial Intelligence and Software, Kangwon National University, 346 Joongang-ro, Samcheok-si, Gangwon-do
29513, Republic of Korea.
2 Department of Industrial Engineering, Kangwon National University, 1 Gangwondaehakgil, Chuncheon-si, Gangwon-do
24341, Republic of Korea.
*Corresponding author: del@kangwon.ac.kr

c○ The authors. Published by EDP Sciences, ROADEF, SMAI 2022

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1051/ro/2022051
https://www.rairo-ro.org
https://orcid.org/0000-0002-9223-4060
https://orcid.org/0000-0002-1813-3114
mailto:del@kangwon.ac.kr
https://creativecommons.org/licenses/by/4.0


1412 D.H. LEE AND D.-E. LIM

and the rich body of literature on this topic was well summarized by Krishnamoorthy and Narayanan [6] and
Krishnamoorthy et al. [7]. Marand et al. [9] summarized and classified inventory models in terms of the arrival
processes of demand, the distributions of services and lead time, stock-out policy, and system capacity.

Many studies have investigated pricing issues in service-inventory systems. However, no study has considered
the pricing of two competitors with queue-considered service-inventory systems. This paper therefore presents
game-theory-based pricing games of two competitors with inventory queues, each with a service-inventory sys-
tem, under a duopolistic situation. We consider three types of pricing games: (i) a parallel pricing game, (ii) a
sequential pricing game, and (iii) a unified pricing game. Duopoly markets consisting of two competitors can be
found in various applications including supply chains [8,16], peak-load pricing [5], and two-tier service systems.
An example of two-tier service is public healthcare service, which comprises free and paid service providers [17].
Healthcare service is a type of service-inventory application because service for customers requires both resources
and time. Careful pricing is required to maximize the revenue of a toll service provider – which is typically a
private service provider – because customers are sensitive to price; if the price is too high, customers may select
a free service even if the waiting time is long. In a two-tier service system, only one service provider considers
pricing. However, this study considers the more general situation wherein two service providers consider pricing.

Berman and Kim [2] discussed a service-inventory system in which demand arrives at a system according
to a Poisson process and service times are exponentially distributed. They assumed that the capacity is finite
or infinite and then characterized the optimal order policy for a service facility. In a later study, Berman and
Sapna [3] generalized this model to an 𝑀/𝐺/1 queue, in which the reorder point was zero, and they proposed
the closed-form expressions of a stationary distribution and performance measures. Schwarz et al. [12] derived
the stationary distributions of joint queue length and inventory processes in an explicit product form for various
𝑀/𝑀/1 systems. They considered the inventory under continuous review, different inventory management
policies, and lost sales. Baek et al. [1] studied a continuous (𝑠, 𝑄) inventory control model with an attached
𝑀/𝑀/1 queue and lost sales. They assumed that each customer leaves a system with a random number of items
at the time of service completion. More recently, Marand et al. [9] integrated inventory control and pricing
decisions. They assumed price-dependent customer arrival rates, and they continuously reviewed inventory level
under the (𝑟, 𝑄) policy. They formulated an 𝑀/𝑀/1 service-inventory system with lost sales while considering
the inventory and pricing policies, then proposed algorithms for obtaining optimal solutions. Note that none
of the extant studies have considered the pricing strategies of two competitors in a service-inventory system.
Although the pricing strategies of service providers have been addressed in a two-tier service system, inventory
policies have yet to be considered.

The rest of this paper is organized as follows: In Section 2, we describe the queueing model of a service-
inventory system and derive the key performance measures. In Section 3, we describe the aforementioned
three pricing games in a duopoly service-inventory market and propose a solution procedure for the games. In
Section 4, we describe the comparative analysis of the three pricing games and show that unified pricing is the
most advantageous in terms of maximizing profit. Finally, we conclude the paper in Section 5.

2. Model description and preliminary analysis

In the service-inventory market, the power of retailers with their own service-inventory systems has increased
considerably in recent years with the emergence of large supermarkets and chain stores in recent years. These
retailers provide a variety of services and products with their brands. For customers, similar products of different
brands sold by different retailers are substitutable items. Therefore, these retailers must compete on price, which
is a key determinant of market share. From this perspective, our study analyzes three types of pricing games in
a duopoly service-inventory market: (i) a parallel pricing game, (ii) a sequential pricing game, and (iii) a unified
pricing game. In this section, we present a mathematical model and the solution procedure for obtaining the
equilibrium prices of retailers.

We consider the following duopoly market conditions: Two competing retailers that operate their own service-
inventory systems. The two retailers sell similar products of different brands. We equivalently index the retailers
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Figure 1. Transition diagram for the service-inventory system of a retailer.

and their products by 𝑖, 𝑗 = 1, 2. We regard the service-inventory system of retailer 𝑖 as an 𝑀/𝑀/1 queue,
wherein customers arrive according to a Poisson process at a rate of 𝜆𝑖. The two retailers compete on price.
We assume that each retailer uses a uniform pricing strategy to attract customers. Thus, the arrival rate to the
service-inventory system is price dependent, and it is assumed to be a decreasing linear function of price. The
arrival rate for retailer 𝑖 is given by

𝜆𝑖 = 𝛼𝑖 − 𝛽𝑖𝑝𝑖 + 𝛾𝑝𝑗 ; 𝑖 = 1, 2, and 𝑗 = 3− 𝑖. (2.1)

In equation (2.1), 𝛼𝑖, 𝛽𝑖, and 𝑝𝑖 indicate the potential market scale, degree of price sensitivity, and prod-
uct/service price of retailer 𝑖, respectively. 𝛾 represents cross-price sensitivity, which reflects the degree of
cannibalization between the two retailers. We also assume 𝛾 ≤ 𝛽𝑖.

A single server serves all customers on a first-come-first-served basis, and one customer is served at a time.
Service times follow an exponential distribution with a rate of 𝜇𝑖. The inequality 𝜆𝑖 < 𝜇𝑖 must hold for the
service-inventory system to be stable. Upon the completion of a service, each customer takes one item from
the inventory, if any. In this context, we can regard the service time as the duration of delivering an item from
the inventory. Subsequently, the customer completes the service and immediately leaves the system. When the
on-hand inventory reaches zero, a replenishment order is instantly triggered. The size of the replenishment order
is fixed as 𝑄𝑖 < ∞ units. The replenishment lead time is exponentially distributed with parameter 𝜈𝑖. While
the inventory level remains zero, any arriving customers are lost.

Let 𝑁𝑖(𝑡) and 𝐾𝑖(𝑡) be the number of customers and the inventory level, respectively, at time 𝑡 in the
service-inventory system of retailer 𝑖. Then, the queueing inventory process {(𝑁𝑖(𝑡), 𝐾𝑖(𝑡)), 𝑡 ≥ 0} becomes a
two-dimensional continuous time Markov chain with the state space expressed as Ω𝑖 = {(𝑛, 𝑘) : 𝑛 ≥ 0, 𝑘 =
0, 1, · · · , 𝑄𝑖}. The corresponding transition diagram is shown in Figure 1.

Let 𝜋𝑖(𝑛, 𝑘) be the stationary joint distribution of the number of customers and the inventory level in the
service-inventory system of retailer 𝑖. According to Wang and Zhang [14] and Schwarz et al. [12], 𝜋𝑖(𝑛, 𝑘) has
the product form of 𝜋𝑖(𝑛, 𝑘) = 𝜑𝑖(𝑛)𝜙𝑖(𝑘). Concretely, 𝜑𝑖(𝑛) denotes the probability distribution of the number
of customers, and it is presented by

𝜑𝑖(𝑛) = (1− 𝜆𝑖/𝜇𝑖)(𝜆𝑖/𝜇𝑖)𝑛, 𝑛 ≥ 0.

Similarly, 𝜙𝑖(𝑘) denotes the probability distribution of the inventory level when the number of customer is 𝑖,
and it is presented as follows:

𝜙𝑖(𝑘) = (𝜆𝑖1{𝑘=0} + 𝜈𝑖1{𝑘 ̸=0})/(𝜆𝑖 + 𝜈𝑖𝑄𝑖), 𝑘 = 0, 1, · · · , 𝑄𝑖,
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where 1{} is an indicator function. In the sequence, we next use 𝜑𝑖(𝑛) and 𝜙𝑖(𝑘) to obtain the effective arrival
rate 𝜆eff

𝑖 , (customer) loss rate 𝜆loss
𝑖 , expected number of customers 𝐸[𝑁𝑖], and expected inventory level 𝐸[𝐾𝑖]

as follows:

𝜆eff
𝑖 = 𝜆𝑖(1− 𝜙𝑖(0)) =

𝜆𝑖𝜈𝑖𝑄𝑖

𝜆𝑖 + 𝜈𝑖𝑄𝑖
,

𝜆loss
𝑖 = 𝜆𝑖 − 𝜆eff

𝑖 =
𝜆2

𝑖

𝜆𝑖 + 𝜈𝑖𝑄𝑖
,

𝐸[𝑁𝑖] =
∞∑︁

𝑛=0

𝑛𝜑𝑖(𝑛) =
𝜆𝑖

𝜇𝑖 − 𝜆𝑖
,

𝐸[𝐾𝑖] =
𝑄𝑖∑︁

𝑘=0

𝑘𝜙𝑖(𝑘) =
𝜈𝑖𝑄𝑖(𝑄𝑖 + 1)
2(𝜆𝑖 + 𝜈𝑖𝑄𝑖)

·

Let 𝑇𝑖 be the replenishment cycle length of product 𝑖. Then, 𝑇𝑖 is expressed as the sum of the time required
for all 𝑄𝑖 products to run out and the replenishment lead time. Therefore, we have 𝐸[𝑇𝑖] = 𝑄𝑖/𝜆𝑖 + 1/𝜈𝑖. The
reorder rate, 𝑜𝑖, can be obtained using 𝑜𝑖 = 1/𝐸[𝑇𝑖] = 𝜆𝑖𝜈𝑖/(𝜆𝑖 + 𝜈𝑖𝑄𝑖).

3. Pricing games

This section describes the results of several pricing strategies intending to maximize the profits of retailers.
First, we separately formulate the revenue and cost terms. Then, we add them to obtain an integrated objective
function, which is the average profit per time unit.

– Marginal revenue: the average marginal revenue per time unit for retailer 𝑖 (MR𝑖) is given by

MR𝑖 = 𝑝𝑖𝜆
eff
𝑖 =

𝑝𝑖𝜆𝑖𝜈𝑖𝑄𝑖

𝜆𝑖 + 𝜈𝑖𝑄𝑖
·

– Inventory holding cost : let ℎ𝑖 be the holding cost for product 𝑖 per time unit. The average inventory holding
cost per time unit for retailer 𝑖 (IC𝑖) can then be expressed as

IC𝑖 = ℎ𝑖𝐸[𝐾𝑖] =
ℎ𝑖𝜈𝑖𝑄𝑖(𝑄𝑖 + 1)

2(𝜆𝑖 + 𝜈𝑖𝑄𝑖)
·

– Ordering cost : the system incurs a fixed cost 𝑐𝑖 each time it creates a replenishment order. One replenishment
order is created during each cycle. Thus, the ordering cost per time unit for retailer 𝑖 (OC𝑖) is given by

OC𝑖 = 𝑐𝑖𝑜𝑖 =
𝑐𝑖𝜆𝑖𝜈𝑖

𝜆𝑖 + 𝜈𝑖𝑄𝑖
·

– Loss of goodwill cost : we assume that lost sales negatively affect the image of the retailer in the long term.
Hence, we consider the loss of the goodwill cost per unit 𝑙𝑖 for lost sales. The average loss of the goodwill
cost per time unit for retailer 𝑖 (LC𝑖) is given by

LC𝑖 = 𝑙𝑖𝜆
loss
𝑖 =

𝑙𝑖𝜆
2
𝑖

𝜆𝑖 + 𝜈𝑖𝑄𝑖
·

– Objective function: the long-term average profit function for retailer 𝑖 is expressed as a function of product
prices. Using equation (2.1), we have

Π𝑖(𝑝𝑖, 𝑝𝑗) = MR𝑖 − IC𝑖 −OC𝑖 − LC𝑖 =
Π𝐶

𝑖 (𝑝𝑖, 𝑝𝑗)
𝐸[𝑇𝑖]

, 𝑖 = 1, 2, and 𝑗 = 3− 𝑖, (3.1)
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where 𝐸[𝑇𝑖] = 𝑄𝑖/(𝛼𝑖 − 𝛽𝑖𝑝𝑖 + 𝛾𝑝𝑗) + 1/𝜈𝑖 and

Π𝐶
𝑖 (𝑝𝑖, 𝑝𝑗) = 𝑝𝑖𝑄𝑖 − 𝑐𝑖 −

ℎ𝑖𝑄𝑖(𝑄𝑖 + 1)
2(𝛼𝑖 − 𝛽𝑖𝑝𝑖 + 𝛾𝑝𝑗)

− 𝑙𝑖(𝛼𝑖 − 𝛽𝑖𝑝𝑖 + 𝛾𝑝𝑗)
𝜈𝑖

· (3.2)

Π𝐶
𝑖 (𝑝𝑖, 𝑝𝑗) in equation (3.2) indicates the expected profit during each replenishment cycle. The objective

function in equation (3.1) is used to solve the pricing games. The following assumptions are made for the
convenience of the analysis:

Assumption 3.1. As it is irrelevant to study pricing decisions with no positive profit in practice, there is
at least one feasible point that satisfies Π𝑖(𝑝𝑖, 𝑝𝑗) > 0, where 𝑖 = 1, 2 and 𝑗 = 3− 𝑖.

Assumption 3.2. For the pricing problem of retailer 𝑖, it should be ensured that 𝑝𝑖 > 0 and 𝜆𝑖 > 0. Thus,
𝑝𝑖 is defined in the interval Θ𝑖 = [0, 𝑝𝑖], where 𝑝𝑖 = (𝛼𝑖 + 𝛾𝑝𝑗)/𝛽𝑖, 𝑖 = 1, 2, and 𝑗 = 3− 𝑖.

3.1. Parallel pricing game

In the parallel pricing game, two competing retailers establish retail prices at the same time. We adapt a
concept from game theory to obtain equilibrium prices. The retailers are the players of this strategic game, and
they have complete information. The outcome of the game is referred to as the Nash equilibrium (NE), in which
none of the players can benefit by changing only his/her strategy. Hence, the strategy of each player is optimal
against that of the other. In other words, each retailer maximizes its profit given the price of the competitor.
For notational simplicity, we denote Π𝑖(𝑝𝑖, 𝑝𝑗) and Π𝐶

𝑖 (𝑝𝑖, 𝑝𝑗) as Π𝑖 and Π𝐶
𝑖 , respectively.

Proposition 3.3. In the parallel pricing mechanism, there exists a unique NE under the price of retailer 1,
𝑝NE
1 , and under the price of retailer 2, 𝑝NE

2 . Further, the Karush–Kuhn–Tucker (KKT) conditions are necessary
and sufficient for finding the unique NE price.

Proof. Consider the pricing problem of retailer 1 as an example. Given the price of retailer 2, we have

𝜕2𝐸[𝑇1]
𝜕𝑝2

1

=
2𝛽2

1𝑄1

(𝛼1 − 𝛽1𝑝1 + 𝛾𝑝2)3
> 0,

which implies that 𝐸[𝑇1] is strictly convex with respect to 𝑝1. Based on Assumption 3.1 and the strict positivity
of 𝐸[𝑇1], there is an area within which Π𝐶

1 > 0. From

𝜕2Π𝐶
1

𝜕𝑝2
1

= − ℎ1𝛽
2
1𝑄1(𝑄1 + 1)

(𝛼1 − 𝛽1𝑝1 + 𝛾𝑝2)3
< 0,

we can observe that Π𝐶
1 is strictly concave with respect to 𝑝1. Thus, there must be at most two roots – i.e.,

𝑝𝐿
1 and 𝑝𝑈

1 – for which it is the case that Π𝐶
1 > 0 for 𝑝1 > 𝑝𝐿

1 , 𝑝1 < 𝑝𝑈
1 , or 𝑝𝐿

1 < 𝑝1 < 𝑝𝑈
1 . Let us define a

new feasible region for 𝑝1 for our problem: max
(︀
0, 𝑝𝐿

1

)︀
= 𝑝new

1
≤ 𝑝1 ≤ 𝑝new

1 = min
(︀
𝑝1, 𝑝

𝑈
1

)︀
. It is clear that any

𝑝1 ∈ Θnew
1 = [𝑝new

1
, 𝑝new

1 ] satisfies 𝑝1 ∈ Θ1. Because of the strict concavity and positivity of Π𝐶
1 on Θnew

1 and
the strict convexity and positivity of 𝐸[𝑇1], condition 𝐾 in Schaible and Ibaraki [11] is met, and the profit
maximization problem of retailer 1,

𝑝NE
1 = argmax

𝑝1∈Θ1

Π1 = argmax
𝑝1∈Θnew

1

Π𝐶
1

𝐸[𝑇1]
,

given 𝑝2, is a concave fractional programming problem in Θnew
1 . According to Proposition 2 in Schaible and

Ibaraki [11], Π1 is strictly pseudo concave, which implies that Π1 is unimodal. Further, based on Proposition 3
in Schaible and Ibaraki [11] and Assumption 3.1, a point that satisfies the KKT conditions and yields the
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best objective value is the unique optimal 𝑝NE
1 . The same argument holds for the pricing problem of retailer 2.

According to the KKT conditions, we have

𝜕Π1

𝜕𝑝1
= 0 ⇔ 𝑝1(𝑝2) =

𝛼1 + 𝛾𝑝2 + 𝜈1𝑄1

𝛽1
−𝑀1(𝑝2),

𝜕Π2

𝜕𝑝2
= 0 ⇔ 𝑝2(𝑝1) =

𝛼2 + 𝛾𝑝1 + 𝜈2𝑄2

𝛽2
−𝑀2(𝑝1), (3.3)

where

𝑀𝑖(𝑝𝑗) =

√︃
𝜈𝑖𝑄𝑖[𝛽𝑖ℎ𝑖(𝑄𝑖 + 1) + 2𝜈𝑖{𝑄𝑖(𝛼𝑖 + 𝛾𝑝𝑗 + 𝜈𝑖𝑄𝑖)− 𝛽𝑖𝑐𝑖}]

2𝛽2
𝑖 (𝛽𝑖𝑙𝑖 + 𝜈𝑖𝑄𝑖)

, 𝑖 = 1, 2 and 𝑗 = 3− 𝑖.

The equation system in equation (3.3) can easily be solved by employing numerical methods using mathematics
software. �

Remark 3.4. The effect of retail prices on the optimal replenishment cycle can be determined through the
following relationships:

𝐸[𝑇𝑖] =
𝑄𝑖

𝜆𝑖
+

1
𝜈𝑖

=
𝑄𝑖

𝛼𝑖 − 𝛽𝑖𝑝𝑖 + 𝛾𝑝𝑗
+

1
𝜈𝑖

,

𝜕𝐸[𝑇𝑖]
𝜕𝑝𝑖

=
𝛽𝑖𝑄𝑖

(𝛼𝑖 − 𝛽𝑖𝑝𝑖 + 𝛾𝑝𝑗)2
> 0,

𝜕𝐸[𝑇𝑖]
𝜕𝑝𝑗

= − 𝛾𝑄𝑖

(𝛼𝑖 − 𝛽𝑖𝑝𝑖 + 𝛾𝑝𝑗)2
< 0.

Therefore, the optimal replenishment cycle of a retailer increases with the price of that retailer; however, the
optimal replenishment cycle of a retailer decreases as the retail price of a competitor increases. These results
can be intuitively explained as follows: An increase in the price of a retailer decreases the arrival rate to his/her
service-inventory system, and the replenishment cycle becomes longer as the arrival rate decreases. Conversely,
the arrival rate to the service-inventory system of a retailer increases with the price of a competitor; the
replenishment cycle becomes shorter as the arrival rate increases.

3.2. Sequential pricing game

In the sequential pricing game, two competing retailers have different levels of power in pricing. This type
of pricing game is generally modeled as a duopoly Stackelberg game, where one retailer is a pricing leader and
the other is a pricing follower. For convenience, we regard retailers 1 and 2 as the pricing leader and the pricing
follower, respectively. Therefore, retailer 2 maximizes his/her profit based on the price of retailer 1, and retailer
1 maximizes his/her profit based on the best response function of retailer 2.

Proposition 3.5. In the sequential pricing mechanism, the price of retailer 1, 𝑝ST
1 , and the price of retailer 2,

𝑝ST
2 , form a unique equilibrium solution for the Stackelberg pricing game. In addition, 𝑝ST

1 and 𝑝ST
2 are obtained

through Algorithm 1.

Proof. From Proposition 3.3, the profit function of retailer 2 is strictly pseudo concave and unimodal in 𝑝2.
Thus, given 𝑝1, the optimal price of retailer 2, 𝑝ST

2 (𝑝1), can be obtained by solving the first-order condition,
𝜕Π2/𝜕𝑝2 = 0. First, we substitute 𝑝ST

2 (𝑝1) into the profit function of retailer 1. The strict pseudo concavity
and unimodality of Π1 ensures the existence of a unique equilibrium for this Stackelberg pricing game. The
first-order condition, 𝜕Π1/𝜕𝑝1 = 0, is solved to find 𝑝ST

1 . After calculating 𝑝ST
1 , 𝑝ST

2 is calculated from equation
(3.3). This solution procedure is summarized in Algorithm 1. �
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Algorithm 1. Calculation of 𝑝ST
1 and 𝑝ST

2 .
1: Set 𝑝2 = (𝛼2 + 𝛾𝑝1 + 𝜈2𝑄2)𝛽

−1
2 −𝑀2(𝑝1) using equation (3.3);

2: Set Π1 = Π1(𝑝1, 𝑝2) using equation (3.1);
3: Solve 𝜕Π1/𝜕𝑝1 = 0 with respect to 𝑝1; and then

Set 𝑝ST
1 = {𝑝1 : 𝜕Π1/𝜕𝑝1 = 0, 𝑝1 ∈ Θ1};

4: Calculate 𝑝ST
2 =

(︀
𝛼2 + 𝛾𝑝ST

1 + 𝜈2𝑄2

)︀
𝛽−1

2 −𝑀2

(︀
𝑝ST
1

)︀

3.3. Unified pricing game

In the unified pricing game, it is assumed that both substitutable products are sold by a monopolist, and
that 𝑝1 and 𝑝2 are jointly determined to maximize profit. This is similar to a case where two retailers cooperate
and set their prices to maximize their total profit and then share the added benefit according to an agreed
mechanism. This unified pricing game is expressed as follows:(︀

𝑝UN
1 , 𝑝UN

2

)︀
= argmax

(𝑝1,𝑝2)∈Θ1×Θ2

Π1 + Π2 (3.4)

The objective function in equation (3.4) may not be unimodal, because there is no guarantee that the sum
of two strictly pseudo concave functions is also strictly pseudo concave. However, Shen and Yu [13] recently
introduced an iterative approach for solving a concave-convex fractional programming (CCFP) problem such
as that in equation (3.4). The CCFP defined by Shen and Yu [13] has the standard form of

𝑥* = argmax
𝑥

𝑀∑︁
𝑚=1

𝐴𝑚(𝑥)
𝐵𝑚(𝑥)

, (3.5)

where the following conditions are satisfied: (i) all 𝐴𝑚(𝑥) are concave, (ii) all 𝐵𝑚(𝑥) are convex, and (iii)
constraint set 𝑥 is a nonempty convex set in the standard form expressed by a finite number of inequality
constraints. Then, the CCFP problem in equation (3.5) is equivalent to

(𝑥*, 𝑦*) = argmax
𝑥,𝑦

𝑀∑︁
𝑚=1

(︁
2𝑦𝑚

√︀
𝐴𝑚(𝑥)− 𝑦2

𝑚𝐵𝑚(𝑥)
)︁
, (3.6)

where 𝑦 denotes a collection of auxiliary variables {𝑦1, · · · , 𝑦𝑀}. Briefly, the iterative approach for solving equa-
tion (3.6) is as follows: When 𝑥 is fixed, the optimal 𝑦𝑚 can be found in the closed form as 𝑦𝑚 =

√︀
𝐴𝑚(𝑥)/𝐵𝑚(𝑥),

∀𝑚 = 1, · · · , 𝑀 . When 𝑦𝑚 is fixed, owing to the concavity of each 𝐴𝑚(𝑥), the convexity of each 𝐵𝑚(𝑥), and the
fact that the square-root function is concave and increasing, the quadratic transform, 2𝑦𝑚

√︀
𝐴𝑚(𝑥)− 𝑦2

𝑚𝐵𝑚(𝑥),
is concave in 𝑥. Therefore, the problem in equation (3.6) becomes a concave maximization problem over 𝑥. As
a result, the optimal 𝑥 can be efficiently obtained through a numerical convex optimization process such as
the Newton–Raphson method. More details on the CCFP problem can be found in Shen and Yu [13] and the
references therein. Based on all of the above results, we introduce the final proposition.

Proposition 3.6. In the unified pricing mechanism, the price of retailer 1, 𝑝UN
1 , and the price of retailer 2,

𝑝UN
2 , form the concave maximization problem in equation (3.7). In addition, 𝑝UN

1 and 𝑝UN
2 are obtained through

Algorithm 2.

Proof. The objective function in equation (3.4) is rewritten as Π1 + Π2 = Π𝐶
1 /𝐸[𝑇1] + Π𝐶

2 /𝐸[𝑇2] using equation
(3.1). From Proposition 3.3, Π𝐶

𝑖 and 𝐸[𝑇𝑖] are strictly concave and convex, respectively. The constraint set,
Θ1 ×Θ2, is a nonempty convex set. Therefore, the maximization problem in equation (3.4) is converted to the
following quadratic transformed CCFP problem:

max
2∑︁

𝑖=1

(︂
2𝑦𝑖

√︁
Π𝐶

𝑖 − 𝑦2
𝑖 𝐸[𝑇𝑖]

)︂
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subject to 𝑝𝑖 ∈ Θ𝑖, 1, 2,

𝑦𝑖 ∈ R, 𝑖 = 1, 2. (3.7)

The solution algorithm for equation (3.7) is provided in Algorithm 2. The convergence of equation (3.7) to a
stationary point has been proven in Theorem 3 in Shen and Yu [13]; therefore, it is omitted here. �

Algorithm 2. Calculation 𝑝UN
1 and 𝑝UN

2 .
1: Initialize

(︀
𝑝0
1, 𝑝

0
2

)︀
∈ Θ1 ×Θ2;

2: Set 𝑡 = 0; //𝑡 is an iteration index
3: Repeat

Update 𝑦𝑡+1
𝑖 =

√︁
Π𝐶

𝑖

(︀
𝑝𝑡

𝑖, 𝑝
𝑡
𝑗

)︀
/𝐸[𝑇𝑖], 𝑖 = 1, 2;

Update 𝑝𝑡+1
𝑖 by solving problem in equation (3.7);

Set 𝑡 = 𝑡 + 1;
4: until convergence;
5: Set

(︀
𝑝UN
1 , 𝑝UN

2

)︀
=
(︀
𝑝𝑡
1, 𝑝

𝑡
2

)︀
;

4. Numerical experiments

We investigate the effect of changes in various parameters on each retailer’s pricing game through various
numerical examples. The main experimental parameters are classified into three types. First, 𝛼𝑖, 𝛽𝑖 and 𝛾𝑖 are
used to determine the arrival rates 𝜆𝑖 where 𝑖 = 1, 2. Second, 𝑄𝑖 and 𝜈𝑖 (𝑖 = 1, 2) are related to the operation
strategies of the two retailers. Finally, the operating costs are calculated using ℎ𝑖, 𝑙𝑖 and 𝑐𝑖(𝑖 = 1, 2). The
parameters vary according to their respective values as listed in Table 1.

First, we investigate the effects of the potential market scales denoted by 𝛼1 and 𝛼2. The other parameters
are fixed as follows: 𝛽1 = 𝛽2 = 1, 𝜈1 = 𝜈2 = 10, 𝑄1 = 𝑄2 = 400, ℎ1 = ℎ2 = 5, 𝑙1 = 𝑙2 = 10, and 𝑐1 = 𝑐2 = 50.
We obtain the following figures by choosing values between 500 and 600 for 𝛼1 and 𝛼2, and values between 0.5
and 0.8 for 𝛾. Figure 2 shows the results of parallel games. P1 and P2 respectively corresponds to retailer 1 and
retailer 2. The horizontal axis denotes the combinations of 𝛼1 and 𝛼2, while the bar charts and the line graphs
respectively denote the average profit (ΠNE

1 , ΠNE
2 ) and prices of two retailers (𝑝1, 𝑝2), respectively. Further, the

results of the sequential and unified games are presented in Figures 3 and 4, respectively.
In general, the figures are showing that as the market scale increases, retailers can obtain higher profits

by raising prices. A retailer of a larger market scale is more profitable. When the market scale is the same,
the equilibrium price of retailer 2 is determined to be lower than that of retailer 1, and it thus attracts more

Table 1. Values of parameters.

Parameter Values

𝛼1, 𝛼2 300, 400, 500, 600
𝛽1, 𝛽2 0.8, 1.0, 1.2, 1.4
𝛾 0.2, 0.5, 0.7, 0.8
𝜈1, 𝜈2 5, 10
𝑄1, 𝑄2 300, 400, 500
ℎ1, ℎ2 5
𝑙1, 𝑙2 5, 10, 15
𝑐1, 𝑐2 30, 50, 60
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Figure 2. Results of parallel games when 𝛼1, 𝛼2 ∈ {500, 600}. (A) 𝛾 = 0.5 case. (B) 𝛾 = 0.8 case.

customers (i.e., 𝜆1 < 𝜆2). This is because, even though the values of 𝑄1 and 𝑄2 are the same, 𝐸[𝑇𝑖] decrease
as 𝜆𝑖 increases, the profit per unit time can increase. It is also observed that the relation ΠNE

𝑖 < ΠST
𝑖 < ΠUN

𝑖 ,
where 𝑖 = 1, 2, holds. If the value of 𝛾 is large, then the degree of influence from the price of the other retailer
increases, so the price is determined to be higher than it is when the value is low. This results in increased
profit.
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Figure 3. Results of sequential games when 𝛼1, 𝛼2 ∈ {500, 600}. (A) 𝛾 = 0.5 case. (B) 𝛾 = 0.8 case.
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Figure 4. Results of unified games when 𝛼1, 𝛼2 ∈ {500, 600}. (A) 𝛾 = 0.5 case. (B) 𝛾 = 0.8 case.
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Figure 5. Arrival rates and expected replenishment cycle when 𝛼1, 𝛼2 ∈ {500, 600}. (A) Arrival
rates (𝛾 = 0.5). (B) Expected replenishment cycle 𝐸[𝑇𝑖]𝛾 = 0.5.
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Figure 6. Arrival rates on various combinations of 𝛽1 and 𝛽2.

Figure 5a shows that the arrival rates increase as the values of 𝛼𝑖(𝑖 = 1, 2) increase. The arrival rate of
retailer 1 has the smallest change when the game is of the unified type. Figure 5b presents the decrease in
𝐸[𝑇𝑖](𝑖 = 1, 2) as the arrival rates increase. “PAR”, “SEQ” and “UNI” are used to respectively denote the
parallel game, sequential game, and unified game.

In the results of the unified game, it is found that 𝜆1 (or 𝜆2) is insensitive to the values of 𝛽1 and 𝛽2, given
that the other parameters are fixed. Figure 6 shows an example of an almost constant arrival rates, while the
values of 𝛽1 and 𝛽2 vary. Although each retailer has almost the same arrival rate, their profit and price are
determined by the value of 𝛽1 (or 𝛽2).

The influence of 𝛽1 and 𝛽2 are also investigated. We present Figure 7 by fixing 𝛽1 and varying 𝛽2, and vice
versa. The profit of each retailer is shown in the vertical axis. The equilibrium prices of both retailers decrease
as 𝛽1 increases. This result can be intuitively justified as follows: As 𝛽1 increases, a higher price of retailer 1
has a stronger effect on decreasing the demand of retailer 1. Thus, retailer 1 reduces his/her price to minimize
this effect. In addition, retailer 2 observes the reduction in the price of retailer 1 and decreases his/her price
to compete. Furthermore, an increase in 𝛽1 increases the replenishment cycles and decreases the profit of both
retailers. Figure 7 also shows that the relation ΠNE

𝑖 < ΠST
𝑖 < ΠUN

𝑖 holds.

Figure 8 shows the profits of the retailers when the value of 𝛾 is low: we set 𝛾 to 0.2. We observe that the
profits of the retailers are almost the same regardless of the game types. When the value of 𝛾 decreases, the
profit of each retailer also decreases. Table 2 compares the profits in the cases of 𝛾 = 0.2 and 𝛾 = 0.8. For
example, for the parallel game when 𝛽1 = 1.4 and 𝛾 = 0.2, the profit decreases by 51.8% compared to when
𝛾 = 0.8.
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Figure 7. Profits of two retailers for the combination of the values of 𝛽1 and 𝛽2. (A) Profits
when 𝛽2 is fixed. (B) Profits when 𝛽1 is fixed.
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Figure 8. Profits of two retailers with low 𝛾 value. (A) Profits when 𝛾 = 0.2 and 𝛽2 is fixed.
(B) Profits when 𝛾 = 0.2 and 𝛽1 is fixed.



1426 D.H. LEE AND D.-E. LIM

Table 2. Results of pricing games for the values of 𝛾 = 0.2, 0.8 and 𝛽2 = 1.

𝑝1 𝑝2 Π1 + Π2

Game type 𝛽1 𝛾 = 0.2 𝛾 = 0.8 𝛾 = 0.2 𝛾 = 0.8 𝛾 = 0.2 𝛾 = 0.8

Parallel pricing

0.8 368.81 638.99 348.09 584.39 198 537.6 536 885.9
1 294.39 481.05 340.19 515.38 174 675.3 405 256.0
1.2 245.02 386.01 334.95 474.14 158 946.9 331 992.3
1.4 209.86 322.46 331.22 446.69 147 799.6 285 538.3

Sequential pricing

0.8 374.12 872.75 353.35 692.06 199 163.5 655 789.8
1 297.86 600.87 345.25 572.21 175 113.9 457 913.5
1.2 247.48 459.21 339.91 510.45 159 278.4 361 339.6
1.4 211.72 371.95 336.12 472.66 148 062.8 304 190.6

Unified pricing

0.8 420.81 3153.39 392.83 2828.45 201 575.1 1 497 591.2
1 333.31 1402.21 375.37 1428.58 176 749.1 711 377.2
1.2 275.99 901.76 363.93 1028.68 160 483.9 486 745.6
1.4 235.52 664.69 355.85 839.28 149 002.6 380 341.4

5. Conclusion

We evaluate three pricing games of two competitors in a duopoly market. The inventory holding cost, ordering
cost, and loss of the goodwill cost are considered to maximize the revenue of the competitors. The service-
inventory system of each competitor is modeled as an 𝑀/𝑀/1 queue with variable arrival rates, which are
price dependent. A decreasing linear function of price is assumed to attract customers. Three types of games
are analyzed. The uniqueness of the equilibrium prices is proven, and the solution procedure for obtaining
equilibrium prices is outlined. Finally, Table 2 lists the performance measures and characteristics of each game.
The results of the pricing games for the values of 𝛾 = 0.2, 0.8 and 𝛽2 = 1 are presented. We provide managerial
implications for each pricing game and show that the unified pricing strategy is the most advantageous for both
competitors.

In the future, the pricing games of two competitors, each with a service-inventory system, can be analyzed
by considering other distributions for the service time and replenishment lead time. The backorder assumption
can be applied instead of lost sales. As this assumption appears to make the problem difficult to solve, other
computer-based experiments can be applied to investigate the pricing games.
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