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AN OPTIMAL ORDERING POLICY FOR A VISITOR-BASED PURCHASING
SYSTEM WITH STOCHASTIC DELIVERY TIME AND PARTIAL

PREPAYMENT FOR PROFIT MAXIMIZATION

Ata Allah Taleizadeh1, Hamidreza Zarei1 and Bhaba R. Sarker2,*

Abstract. The classical inventory control policies assume that orders are paid for at the time of their
receipts, but in practice, suppliers may require retailers to pay a fraction of the purchasing cost in
advance, and sometimes allow them to pay this cost in several prepayments during a predetermined
period. Planning inventory replenishments and prepayments become challenging when decisions must
be made under uncertainty, especially when delivery time is stochastic, and shortages may occur. This
paper develops an inventory control model in a purchasing system in which a visitor sells the product
of a manufacturer, and a buyer receives call from the visitor to make an order and items arrives at
stochastic time. Both partial prepayments and partial backordering are assumed in the model. The
main aim of the paper is to determine the optimal level of inventory of the buyer such that his total
profit is maximized. A mathematical model with a general probability distribution for lead time is
developed and globally optimal solutions are derived for the model. The applicability of the model is
discussed through two special cases for uniform and exponential probability distributions. The results
are supportive of the proposed ideas and they reflect an efficient approach.
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1. Introduction

In competitive markets, usually wholesaler requires some prepayments when orders from buyers are placed.
This request may be used to avoid cancelations from the buyers. So, there are situations in which wholesaler
suggests prepayment, and buyers must pay the fraction of the purchasing cost. Under prepaying a fraction of
purchasing cost to the retailer, the buyer sacrifices the interest on the fraction of purchasing cost prepaid to
the wholesaler. Thus this payment scheme is a real life phenomenon and the decision regarding the prepayment
and inventory policies have a crucial impact on the total cost and decision variables of inventory systems used
by the buyers.

Classic inventory control models assume that the order is delivered to the customer in a deterministic (and
often negligible) lead time, and that purchasing costs must be paid at the time of the delivery. In reality,
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suppliers often require that the retailers pay a fraction of the purchasing cost in advance. The supplier may give
the customer the opportunity to make the prepayment in a single or multiple installment. In addition, period
length and delivery lead times are often uncertain especially in visitor – based selling system and have to be
accounted in inventory control policies. This paper therefore develops an inventory control model that considers
both prepayments and stochastic period length because of uncertain arrival time of visitor or delivery time to
the buyer’s store.

Advanced payments (or prepayments) have frequently been discussed in the literature. If the supplier requests
an advanced payment, then the buyer is required to pay a fraction of the purchasing cost before the receipt of
the order. One of the first works in this is the one of Goyal [8], who developed an economic order quantity (EOQ)
model with permissible delay in payment. Taleizadeh [28] developed an EOQ model for evaporating products
with shortages and partial backlogging and assumed that the supplier requests a partial advanced payment from
the buyer. Taleizadeh et al. [32] studied a fuzzy EOQ model for deteriorating products. The authors considered
a situation where the supplier grants quantity discounts, but in turn charges an advanced payment from the
buyer. Taleizadeh et al. [33] presented an EOQ model with multiple prepayments and considered three possible
states for shortages. Guria et al. [11] presented an inventory control model for a product under inflation and
price-dependent demand. They assumed that the planning horizon can either be deterministic or stochastic
and that shortages occur in case of uncertainty. Thangam [38] developed an EOQ model for a three-echelon
supply chain with perishable products. The authors considered prepayments and aimed on minimizing the
retailer’s inventory carrying cost. Zhang et al. [41] studied the effect of determination of price and inventory
replenishment on the system when demands are from different market segments. Maihami and Nakhai [18]
developed an inventory control model for deteriorating items. The authors assumed that shortages may occur,
and that partial backordering is possible. In addition, they assumed that demand is price- and time-dependent
and determined the optimal selling price in addition to the inventory control policy. Sarker et al. [26] determined
an optimal payment time under permissible delay in payment for products with deterioration. Liang and Zhou
[17] considered a two-warehouse inventory model with delay in payments for deteriorating products to discover
the optimal replenishment policy to minimize the aggregate inventory costs. Zhang et al. [42] analyzed the
buyer’s inventory policy when advance and delay in payment simultaneously occur and as partial. Gupta et al.
[9] solved the mixed integer inventory problem with constant lead time, uniform demand rate and discount for
prepaying a fraction of purchasing cost. They used real coded genetic algorithm to solve this problem. Ouyang
et al. [21] developed an inventory model for deteriorating products with delay in payments. Taleizadeh [29]
developed an EOQ model for a deteriorating product with multiple advance payment in the system. Taleizadeh
et al. [30] developed an EOQ model to purchase expensive raw materials with advance payment and without
shortages. Further, Wu et al. [40] studied an inventory model for materials with expiration date when the seller
asks for advanced payments.

On the other hand, the first work on stochastic length on this subject was performed by Ertogral and Rahim
[6]. In this work they analyzed an inventory problem with periodic replenishment when the supplier visit intervals
are taken to be independent identically distributed random variables. Chiang [3] considered it is possible that the
review periods has a variable length. He assumed that replenishment intervals are independently and identically
distributed. In another study, Chiang [4] extended his model with considering backordering and lost sales for
shortages when there is a fixed cost of ordering. Further, Tang and Musa [37] worked on distinguishing risk
issues and research advancements in supply chain risk management which has demonstrated attention on this
subject is increasing in the world. Sarkar et al. [25] presented a model in which they assumed lead time is not
fixed and goods can be defected with permissible delay in payments. They considered order quantity and lead
time as decision variables although lead time is stochastic. Ben-Daya and Abdul [1] developed inventory model
with stochastic demand and considered lead time as one of the decision variables in model. Wu [39] presented an
inventory model with variable lead time and uncertain quantity of goods which was received. Taleizadeh et al.
[31] developed an inventory problem in which they assumed the demand is stochastic and follows a uniform
distribution with partial backordering shortages and considering the lead time is sensitive to the lot size. Karimi
Nasab and Konstantaras [14] developed an inventory model when the time between two replenishments is
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stochastic with the supplier offers special sale. Taleizadeh et al. [34] studied optimal replenishment policy when
replenishment intervals are probabilistic, and the seller increases the price of materials in a close future. Later,
Taleizadeh et al. [35] developed a model when the buyer can pay for purchased materials with delay and the
replenishment intervals are probabilistic. Hayya et al. [12] presented a solution to obtain the value of reorder
point and order quantity when the demand and the lead time are i.i.d. Rahim [24] considered the demand in
lead time as a probabilistic variable but lead time can be either deterministic or probabilistic, and he obtained
the optimal order quantity. Maiti et al. [19] developed inventory model with considering probabilistic lead time
and shortages and price discount when the demand depended to the price in a finite time horizon with assuming
prepayment in model. In stochastic environment, for example, Das et al. [5] developed an inventory model with
assuming delay in payment can occur and the demand vary with advertisement and selling price and Gupta
et al. [10] presented an inventory model for deterioration products when delay in payments can occur and the
demand is dependent to the stock. Also Sridevi [27] developed an inventory model in which the production rate
is probabilistic and follows a Weibull distribution and the demand is sensitive to selling price. Jana et al. [13]
developed a model for deteriorating products in which partial backordering is considered. Also they assumed
that the demand rate may be random or fuzzy random variables. Ben-Daya and Hariga [2] developed a model
for production system with stochastic demand and changing lead time with the amount of lot size. Panda et al.
[23] developed a model for a single period production system with multi-product while producing imperfect
products and demand are stochastic with limited budget and shortages. Eynan and Kropp [7] developed a
periodic review inventory when the demand is stochastic and permissible shortage with different shortage cost.
Taleizadeh et al. [7] considered an inventory model when there is uncertainty about the occurrence of special
sales and non-zero initial inventory level.

Pal [22] optimized a production system with quality sensitive market demand, partial backlogging and per-
missible delay in payment. Later, Khan et al. [15] proposed a model for a two-warehouse inventory system
for deteriorating items with partial backlogging, and advance scheme. Recently, Khara et al. [16] developed an
imperfect production model with advance payment and credit period in a two-echelon supply chain management
and Mashud et al. [20] studied joint pricing deteriorating inventory model that considered product life cycle
and advance payment with a discount facility.

Based on comparison performed in Table 1 there is no work in which both stochastic length and advanced
payments are considered. So in this paper an optimal control model with stochastic length and advance payment
is developed to elucidate a realistic situation where the lead time is manifested by the visitor’s arrival time.

The Problem

This paper considers a situation in which a manufacturer sells a product to a buyer, but receiving orders on
phone and delivering the products are both performed by a visitor from the manufacturer-side. The visitor when
goes to receive the orders asks the buyer to prepay 𝛼 percent of the purchasing cost at a specific time before
delivering the items to avoid cancelation from the buyer. Since the delivery time will be stochastic, so the buyer
makes an expected order quantity and pays 𝛼 percent of the purchasing cost as prepayment. Then the cost of
remaining amount of the purchasing cost should be paid at the time of delivery of products. On the other hand,
the manufacturer’s lead time is a stochastic variable, and two possible cases may occur: (a) the time-period
between replenishments is less than the amount of time required for the inventory level to reach zero, so at the
time of delivery of last order the inventory level is positive, and (b) the time-period between replenishments is
greater the amount of time required for the inventory level to reach zero, so at the time of delivery of last order
the inventory level is negative. Assume that the prepayment is made in multiple installments at equal intervals
and the maximum number of prepayments, 𝑛 is a parameter suggested to the buyer by the manufacturer. In
this situation, because of the buyer has already paid 𝛼 percent of the capital cost and didn’t get the goods, the
capital cost of buyer increases. Further, it is also assumed that the shortage is permitted and a fraction of them
will be backordered which gives more latitude to the decision maker. Therefore, the main aim of this paper is
to determine the order quantity of the buyer such that its profit is maximized.
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Table 1. A skeletal examination of the related literature.
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Ben-Daya and Hariga [2] Y Y Y
Ertogral and Rahim [6] Y Y Y Y
Rahim [35] Y Y Y Y Y Y Y
Ouyang et al. [21] Y Y Y Y
Eynan and Kropp [7] Y Y Y Y
Panda et al. [23] Y Y Y Y
Taleizadeh et al. [30] Y
Hayya et al. [12] Y Y Y Y
Taleizadeh et al. [39] Y Y Y Y Y
Liang and Zhou [17] Y Y Y
Thangam [38] Y Y Y Y
Maihami and Nakhai [18] Y Y Y Y Y
Sarker et al. [26] Y Y Y Y Y Y
Taleizadeh et al. [31] Y Y Y Y Y
Karimi-Nasab and Konstantaras
[14]

Y Y Y Y Y Y

Taleizadeh et al. [32] Y Y Y Y Y
Chiang [4] Y Y Y Y Y Y
Guria et al. [11] Y Y Y Y
Jana et al. [13] Y Y Y Y Y Y Y
Taleizadeh et al. [33] Y Y Y Y Y Y Y Y
Taleizadeh [28] Y Y Y Y Y Y Y
Taleizadeh [29] Y Y Y Y Y Y Y
Sarkar et al. [25] Y Y Y Y Y Y
Zhang et al. [42] Y Y Y Y
Pal [23] Y Y Y Y Y
Khan et al. [15] Y Y Y Y Y Y
Khara et al. [16] Y Y Y Y
Mashud et al. [20] Y Y Y
Current paper Y Y Y Y Y Y Y

Notes. Y: Yes.

2. The problem formulation

According to the problem description, all components of the profit function need to be modeled are revenue,
purchasing cost, holding cost, shortage cost both lost sale and backordering, and finally the capital cost occurs
because of prepayments. The following notations are used to model the problem.

(a) Parameters

𝐷 Demand rate (units/period)
𝛾 The fraction of shortages that will backordered (Percent)
𝛼 The fraction of purchasing cost that paid as multiple prepayment (Percent)
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𝑃 Unit selling price ($/unit)
𝐶 Unit purchasing price ($/unit)
𝑛 The number of equally spaced prepayments to be made before receiving the order
𝑡 The length of time during which the buyer will make the prepayments (time)
𝜋 Backordered cost per unit per time period ($/unit-time)
𝜋′ Lost sale cost per unit ($/unit)
ℎ Inventory holding cost per unit per time period ($/unit-time)
𝐿max Upper limit of delivery time in uniform distribution (time)
𝐿min Lower limit of delivery time in uniform distribution (time)
𝐼𝑐 Capital cost rate per unit time ($/time)
𝑓(𝑙) Probability distribution function (PDF) of 𝐿
𝐹 (𝑙) Cumulative distribution function of 𝐿, 𝐹 (𝑙) = 1− 𝐹 (𝑙)
𝜆 Arrival rate in exponential PDF

(b) Independent Decision variables

𝑅 The replenish-up-to level (unit)

(c) Other variables

𝐵 Expected backordered quantity per cycle (unit)
𝐿 Expected lost sale quantity per cycle (unit)
𝐼 Expected inventory per cycle (unit)
𝑄 Expected number of units replenished per cycle (unit)
𝑙𝑅 Amount of time that the inventory equals zero, 𝑙𝑅 = 𝑅/𝐷 (time)
ECP Expected cyclic profit ($)
ER Expected revenue per cycle ($)
EHC Expected cyclic holding cost ($)
EPC Expected cyclic purchasing cost ($)
EBC Expected cyclic backordering cost ($)
ELC Expected cyclic lost sale cost ($)
CCC Cyclic capital cost ($)
(*) Indicate the optimal value

2.1. Profit function

To determine the decision variable of the buyer and calculate the expected profit in each cycle, ECP, all the
terms in the profit function need to be modeled. The expected revenue, the expected purchasing cost per cycle,
the expected holding cost per cycle, the expected shortage cost both lost sale and backordering and finally
expected capital cost from the prepayment are the components of profit function should be derived separately.
The profit function is given as follows.

ECP = ER− EPC− EHC− EBC− ELC− CCC

= 𝑃𝑄− 𝐶𝑄− ℎ𝐼 − 𝜋𝐵 − 𝜋′𝐿− CCC. (2.1)

Since the manufacturer’s lead time is a stochastic variable, two possible cases may occur. In the first case, the
time between replenishments is less than the time required for the inventory level to reach zero, so at the time
of delivery of last order the inventory level is positive as shown in Figure 1. In the second case, the time-period
between replenishments is greater than the amount of time required for the inventory level to reach zero and
the inventory diagram of this case is shown in Figure 2. In both figures 𝑛 equal installments, represent the
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Figure 1. Invested capital for inventory under prepayments and stochastic periodic length
with no shortages.

Figure 2. Invested capital for inventory under prepayments and stochastic periodic length,
when there are partial backordering shortages.
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prepayments which should be paid during 𝑡, before receiving the goods. In this problem, the cyclic capital cost,
CCC, will be:

CCC =
(︂

𝐼𝑐
𝛼𝐶𝑄

𝑛
× 𝑛× 𝑡

𝑛

)︂
+

(︂
𝐼𝑐

𝛼𝐶𝑄

𝑛
× (𝑛− 1)× 𝑡

𝑛

)︂
+ . . . +

(︂
𝐼𝑐

𝛼𝐶𝑄

𝑛
× [𝑛− (𝑛− 2)]× 𝑡

𝑛

)︂
+

(︂
𝐼𝑐

𝛼𝐶𝑄

𝑛
× [𝑛− (𝑛− 1)]× 𝑡

𝑛

)︂
=

(︂
𝐼𝑐

𝛼𝐶𝑄

𝑛
× 𝑡

𝑛

)︂
[𝑛 + (𝑛− 1) + . . . + 2 + 1] = 𝛼𝐼𝑐𝐶𝑡

(𝑛 + 1)
2𝑛

𝑄. (2.2)

This cost term is the same as what Taleizadeh et al. [33] derived for an EOQ based model.
Also in the profit function, the expected number of units replenished per cycle, 𝑄, is:

𝑄 =
∫︁ 𝑙𝑅

𝐿min

𝐷𝐿𝑓𝐿(𝑙) d𝑙 +
∫︁ 𝐿max

𝑙𝑅

(𝑅 + 𝛾(𝐷𝐿−𝑅))𝑓𝐿(𝑙) d𝑙. (2.3)

Because if the visitor arrives within [𝐿min, 𝑙𝑅] the order quantity is 𝐷𝐿 and if arrives within [𝑙𝑅, 𝐿max] the
order quantity will be 𝑅 + 𝛾(𝐷𝐿−𝑅). Since the lead-time is random variable, the expected value of the order
quantity is what presented in equation (2.3). Also, the average on hand inventory for the first and second cases
are 𝑅𝐿− 𝐷𝐿2

2 and 𝑅2

2𝐷 , respectively. So the expected inventory per cycle is:

𝐼 =
∫︁ 𝑙𝑅

𝐿min

(︂
𝑅𝐿− 𝐷𝐿2

2

)︂
𝑓𝐿(𝑙) d𝑙 +

∫︁ 𝐿max

𝑙𝑅

𝑅2

2𝐷
𝑓𝐿(𝑙) d𝑙. (2.4)

Surely the shortage occurs only when the visitor arrives within [𝑙𝑅, 𝐿max] and in this situation the shortage
quantity is (𝐷𝐿−𝑅) and 𝛾 percent of the shortage is backordered. Moreover, the expected backordered, 𝐵 and
the lost sale quantities per cycle, 𝐿 are derived as below, respectively (also, see Fig. 2).

𝐵 = 𝛾

∫︁ 𝐿max

𝑙𝑅

(𝐷𝐿−𝑅)𝑓𝐿(𝑙) d𝑙 (2.5)

and

𝐿 = (1− 𝛾)
∫︁ 𝐿max

𝑙𝑅

(𝐷𝐿−𝑅)𝑓𝐿(𝑙) d𝑙. (2.6)

Finally the expected profit function, ECP, is given by

ECP =
(︂

𝑃 − 𝐶 − 𝐼𝑐𝐶𝑡𝛼(𝑛 + 1)
2𝑛

)︂[︃∫︁ 𝑙𝑅

𝐿min

𝐷𝐿𝑓𝐿(𝑙) d𝑙 +
∫︁ 𝐿max

𝑙𝑅

(𝑅 + 𝛾(𝐷𝐿−𝑅))𝑓𝐿(𝑙) d𝑙

]︃

− ℎ

[︃∫︁ 𝑙𝑅

𝐿min

(︂
𝑅𝐿− 𝐷𝐿2

2

)︂
𝑓𝐿(𝑙) d𝑙 +

∫︁ 𝐿max

𝑙𝑅

𝑅2

2𝐷
𝑓𝐿(𝑙) d𝑙

]︃

− 𝜋

[︃
𝛾

∫︁ 𝐿max

𝑙𝑅

(𝐷𝐿−𝑅)𝑓𝐿(𝑙) d𝑙

]︃
− 𝜋′

[︃
(1− 𝛾)

∫︁ 𝐿max

𝑙𝑅

(𝐷𝐿−𝑅)𝑓𝐿(𝑙) d𝑙

]︃
. (2.7)

Since the profit function shown in equation (2.7) includes only one variable, which is the maximum inventory
level, 𝑅, and optimal value needs to be determined such that the profit function is maximized, it is needed to
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show that the profit function is concave with respect to 𝑅. To prove the concavity of the profit function with
respect to 𝑅, the first and the second derivatives of profit function need to be developed as

d ECP
d 𝑅

=
(︂

𝑃 − 𝐶 − 𝐼𝑐𝐶𝑡𝛼(𝑛 + 1)
2𝑛

)︂
(1− 𝛾)𝐹 (𝑙𝑅*) +

[︂
𝛾𝜋 + (1− 𝛾)𝜋′ − ℎ

𝑅*

𝐷

]︂
𝐹 (𝑙𝑅*)− ℎ𝐸(𝐿|𝐿 ≤ 𝑙𝑅*) (2.8)

d2ECP
d 𝑅2

= − 1
𝐷

{︂[︂
2
(︂

𝑃 − 𝐶 − 𝐼𝑐𝐶𝑡𝛼(𝑛 + 1)
2𝑛

)︂
(1− 𝛾) + 𝛾𝑃

]︂
(1− 𝛾)𝑓(𝑙𝑅) +

ℎ

𝐷
𝐹 (𝑙𝑅*)

}︂
. (2.9)

In equation (2.9), when 𝑙𝑅 < 𝐿min, 𝑓𝑙(𝑙𝑅) is zero and 𝐹 𝑙(𝑙𝑅) is positive, so d2ECP/d 𝑅2 is negative. Moreover
when 𝐿min ≤ 𝑙𝑅 ≤ 𝐿max, both 𝑓𝑙(𝑙𝑅) and 𝐹 𝑙(𝑙𝑅) are positive and the second derivative is positive too; but
when 𝐿max < 𝑙𝑅, both 𝑓𝑙(𝑙𝑅) and 𝐹 𝑙(𝑙𝑅) are zero and d2ECP/d 𝑅2 approaches to zero too. Therefore, the
profit function over (−∞, 𝐿max] is convex which means 𝑙𝑅 = 𝑅/𝐷 should be less than 𝐿max and an upper
bound is obtained for the maximum level of inventory level as 𝑅 ≤ 𝐷𝐿max. Then, because of the concavity of
profit function, setting the first derivative of the profit function with respect to 𝑅 equal to zero, the optimal
replenish-up-to level will be

𝐹 (𝑙𝑅*) =
ℎ𝐸(𝐿|𝐿 ≤ 𝑙𝑅*)[︁(︁

𝑃 − 𝐶 − 𝐼𝑐𝐶𝑡𝛼(𝑛+1)
2𝑛

)︁
(1− 𝛾) + 𝛾𝜋 + (1− 𝛾)𝜋′

]︁
− ℎ𝑅*

𝐷

· (2.10)

In the next subsection the profit function and optimal solution for two special cases, when lead time follows
uniform and exponential probability distribution, are derived.

2.2. Special cases

Two specific probability distribution functions are used for the random variable. First, a continuous uniform
distribution function is used followed by an exponential probability distribution function in the subsequent part.

2.2.1. Uniformly distributed lead time

If the lead-time follows a uniform probability distribution, then the expected profit function can be rewritten
as below.

ECP(𝑅) =

(︁
𝑃 − 𝐶 − 𝐼𝑐𝐶𝑡𝛼(𝑛+1)

2𝑛

)︁
2(𝐿max − 𝐿min)

[︂
(𝛾 − 1)

𝑅2

𝐷
−𝐷𝐿2

min + (2(1− 𝛾)− 2𝛾)𝐿max𝑅 + 𝛾𝐷𝐿2
max

]︂
− (𝜋′(1− 𝛾) + 𝜋𝛾)

(𝐿max − 𝐿min)
×

[︂
𝐷𝐿2

max

2
+

𝑅2

2𝐷
−𝑅𝐿max

]︂
− ℎ

(𝐿max − 𝐿min)

[︂
− 𝑅3

6𝐷2
− 𝑅𝐿2

min

2
+

𝐷𝐿3
min

6
+

𝐿max𝑅
2

2𝐷

]︂
· (2.11)

In this case, when lead-time follows uniform probability distribution,

𝐹 (𝑙𝑅*) =
𝐷𝐿max −𝑅*

𝐷(𝐿max − 𝐿min)
(2.12)

𝐸(𝐿|𝐿 ≤ 𝑙𝑅*) =
1
2

𝑅*2 − 𝐿2
min𝐷2

𝐷2(𝐿max − 𝐿min)
· (2.13)

Then replacing 𝐸(𝐿|𝐿 ≤ 𝑙𝑅*) and 𝐹 (𝑙𝑅*) shown in equations (2.12) and (2.13), in equation (2.10) two possible
solutions for 𝑅 is derived as shown in equation (2.14).
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𝑅*1,2 =
𝐷

ℎ

⎡⎢⎢⎣ℎ𝐿max +
(︁
𝑃 − 𝐶 − 𝐼𝑐𝐶𝑡𝛼(𝑛+1)

2𝑛

)︁
(1− 𝛾) + 𝛾𝜋 + (1− 𝛾)𝜋′

±
√︂

ℎ2(𝐿2
max − 𝐿2

min) +
(︁(︁

𝑃 − 𝐶 − 𝐼𝑐𝐶𝑡𝛼(𝑛+1)
2𝑛

)︁
(1− 𝛾) + 𝛾𝜋 + (1− 𝛾)𝜋′

)︁2

⎤⎥⎥⎦. (2.14)

Since 𝐷
ℎ

[︃
ℎ𝐿max + (𝑃 − 𝐶 − (𝐼𝑐𝐶𝑡𝛼(𝑛 + 1)/2𝑛))(1− 𝛾) + 𝛾𝜋 + (1− 𝛾)𝜋′

+
√︁

ℎ2(𝐿2
max − 𝐿2

min) + ((𝑃 − 𝐶 − (𝐼𝑐𝐶𝑡𝛼(𝑛 + 1)/2𝑛))(1− 𝛾) + 𝛾𝜋 + (1− 𝛾)𝜋′)2

]︃
does not sat-

isfy constraint 𝑅 ≤ 𝐷𝐿max, so the optimal solution is;

𝑅* =
𝐷

ℎ

⎡⎣ℎ𝐿max + (𝑃 − 𝐶 − (𝐼𝑐𝐶𝑡𝛼(𝑛 + 1)/2𝑛))(1− 𝛾) + 𝛾𝜋 + (1− 𝛾)𝜋′

−
√︁

ℎ2(𝐿2
max − 𝐿2

min) + ((𝑃 − 𝐶 − 𝐼𝑐𝐶𝑡𝛼(𝑛 + 1)/2𝑛))(1− 𝛾) + 𝛾𝜋 + (1− 𝛾)𝜋′)2

⎤⎦ (2.15)

and

𝑄 =
1

(𝐿max − 𝐿min)

[︃
𝐷

(︀
𝛼𝐿2

max − 𝐿2
min

)︀
2

+ (1− 𝛼)𝑅𝐿max −
(1− 𝛼)𝑅2

2𝐷

]︃
· (2.16)

2.2.2. Exponentially distributed lead time

If the lead time follows an exponential distribution, then the expected profit function can be rewritten as

ECP(𝑅) =
(2𝑛(𝑃 − 𝐶)− 𝐼𝑐𝐶 𝑡𝛼(𝑛 + 1))

2𝑛𝜆2

[︀(︀
1− 𝑒−𝜆𝑙𝑅(𝜆𝑙𝑅 + 1)

)︀
𝜆𝐷 + (𝛾𝐷 + 𝜆𝑅)𝑒−𝜆𝑙𝑅

]︀
− ℎ

𝜆

[︂
𝑅−𝑅𝑒−𝜆𝑙𝑅(𝜆𝑙𝑅 + 1)− 𝐷

2𝜆

(︀
2− 𝑒−𝜆𝑙𝑅

(︀
𝜆2𝑙2𝑅 + 2𝜆𝑙𝑅 + 2

)︀)︀]︂
+

ℎ𝑅2

2𝐷
𝑒−𝜆𝑙𝑅 − 1

𝜆2
(𝛾𝜋 + (1− 𝛾)𝜋′)

(︀
2𝐷𝑒−𝜆𝑙𝑅

)︀
. (2.17)

In this case, when lead-time follows an exponential probability distribution, we have

𝐹 (𝑙𝑅*) = 𝑒−𝑙*𝜆
𝑅 (2.18)

𝐸(𝐿|𝐿 ≤ 𝑙𝑅*) =
−𝑒−𝑙𝑅*𝜆(𝑅*𝜆 + 𝐷) + 𝐷

𝐷𝜆
· (2.19)

Then replacing 𝐸(𝐿|𝐿 ≤ 𝑙𝑅*) and 𝐹 (𝑙𝑅*) in equation (2.10) with the expressions in equations (2.18) and
(2.19), the optimal solution for 𝑅 is derived as shown below.

𝑅* =

[︁
ln

(︁[︁(︁
𝑃 − 𝐶 − 𝐼𝑐𝐶𝑡𝛼(𝑛+1)

2𝑛

)︁
(1− 𝛾) + 𝛾𝜋 + (1− 𝛾)𝜋′

]︁
𝜆 + ℎ

)︁
− ln(ℎ)

]︁
𝐷

𝜆
(2.20)

and
𝑄* =

𝐷

𝜆

[︀
1− (1− 𝛼)𝑒−𝜆𝑙𝑅

]︀
. (2.21)

3. Numerical examples and sensitivity analysis

Consider a situation in which the visitor calls the customer with a phone to receive the order from him. The
lead time is stochastic and follows a uniform or exponential distribution. Also, visitor wants customer to pay 𝛼
percent of purchasing cost in advance during several payments because he wants to be sure that customer needs
the goods, and he will not cancel the order. When the customer ordered, with stochastic lead time, the visitor
comes with the goods to deliver them to customer or to check the quantity of goods that he must deliver the
customer. In this situation customer wants to know how much he should purchase to maximize his profit. This
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Table 2. Parametric values and the optimal solutions for uniformly distributed lead time.

Specific parameters Results
𝛼 𝛾 𝑛 𝐷 𝑃 [𝐿min, 𝐿max] 𝑄* 𝑅* ECP(𝑅*)

0.3 0.4 3 100 70 [0.05, 0.1] 7.4988 9.8573 61.94
0.3 0.8 3 120 70 [0.05, 0.1] 8.9994 11.8075 74.34
0.3 0.4 5 140 80 [0.05, 0.1] 10.4992 13.8635 193.21
0.5 0.8 5 160 80 [0.05, 0.1] 11.9988 15.6866 210.47
0.5 0.4 7 180 90 [0.05, 0.1] 13.4994 17.8637 373.13
0.5 0.8 7 200 90 [0.05, 0.1] 14.9990 19.6765 414.62
0.7 0.4 9 220 100 [0.2, 0.3] 54.9888 65.0933 1998.90
0.7 0.8 9 240 100 [0.2, 0.3] 59.9793 69.7717 2181.40
0.7 0.4 11 260 120 [0.2, 0.3] 64.9932 77.2327 3665.50
0.9 0.8 11 280 120 [0.2, 0.3] 69.9854 81.9782 3893.20
0.9 0.4 13 300 140 [0.2, 0.3] 74.9952 89.3044 5673.70
0.9 0.8 13 320 140 [0.2, 0.3] 79.9890 94.1235 6052.70

Table 3. Parametric values and the optimal solutions for exponential lead time.

Specific parameters Results
𝛼 𝛾 𝑛 𝐷 𝑃 𝜆 𝑄* 𝑅* ECP(𝑅*)

0.3 0.4 3 100 70 5 19.1511 52.9745 105.40
0.3 0.8 3 120 70 5 23.4715 51.9528 120.38
0.3 0.4 5 140 80 5 27.1692 84.1901 388.10
0.5 0.8 5 160 80 5 31.3944 75.4506 386.70
0.5 0.4 7 180 90 5 35.1617 116.9656 796.46
0.5 0.8 7 200 90 10 19.8346 63.7082 452.26
0.7 0.4 9 220 100 10 21.7859 90.6688 724.35
0.7 0.8 9 240 100 10 23.8278 79.8698 742.79
0.7 0.4 11 260 120 10 25.8180 115.7225 1359.80
0.9 0.8 11 280 120 10 27.8426 100.0148 1365.00

problem is common in drugstores when they want to make an order for medicines or for stores that want to
purchase dairy products. With these assumptions, several problems are created to show how much the customer
should purchase to maximize his profit. To show the applicability of the proposed model a real problem as
reflected from experiences is defined and several examples for both cases (PDFs) are solved and the results are
shown in Tables 2 and 3 for the first and second cases, respectively. For the example of both cases, a drugstore
wants to make an order and purchase a valuable medicine, the general data for the drugstore in this problem
are 𝐶 = 60 $/unit, ℎ = 5 $/unit/year, 𝜋 = 5 $/unit/year, 𝜋′ = 10 $/unit, 𝐼𝑐 = 20 %, 𝑡 = 0.6 year. Specific data
are shown in Tables 2 and 3 for both cases of uniform and exponential distributions, respectively.

3.1. Example 1: Uniformly distributed lead time

An example is framed by considering uniform distribution for the visitor’s arrival time. The specific data for
this case and the related results are presented in Table 2. The effect of specific parameters are reflected on the
results of 𝑄*, 𝑅* and ECP(𝑅*) corresponding to the system parameters 𝛼, 𝛾, 𝑛, 𝐷, 𝑃 and the distribution
range.



CONTROLLING PURCHASING SYSTEM WITH STOCHASTIC DELIVERY TIME AND PARTIAL PREPAYMENT 1727

Table 4. The sensitivity analysis in Example 1 (Uniform PDF).

Parameter

Percentage of
change in

Value Percentage of change in value

parameters 𝑄* 𝑅* ECP(𝑅*) 𝑄* 𝑅* ECP(𝑅*)

𝐷

+75 26.2470 34.58 1002.90 +75 +75 +75
+50 22.4974 29.64 859.65 +50 +50 +50
+25 18.7478 24.70 716.38 +25 +25 +25
0 14.9983 19.76 573.10 0 0 0
−25 11.2487 14.82 429.83 −25 −25 −25
−50 7.4991 9.88 286.55 −50 −50 −50
−75 3.7496 4.94 143.28 −75 −75 −75

𝑃

+75 14.9997 19.90 1698.10 +0.01 0.709 +196.30
+50 14.9996 19.88 1323.10 +0.01 0.607 +130.87
+25 14.9992 19.84 948.010 +0.01 0.405 +65.41
0 14.9983 19.76 573.10 0 0 0
−25 14.9937 19.54 198.19 −0.03 −1.11 −65.42
−50 14.1636 14.72 −174.94 −5.57 −25.50 −130.52
−75 Infeasible Infeasible Infeasible Infeasible Infeasible Infeasible

𝛼

+75 14.9991 19.76 559.72 +0.01 0 −2.33
+50 14.9988 19.76 564.22 0 0 −1.55
+25 14.9986 19.76 571.57 0 0 −0.27
0 14.9983 19.76 573.10 0 0 0
−25 14.9980 19.76 577.57 0 0 +0.78
−50 14.9977 19.76 582.07 0 0 +1.57
−75 14.9974 19.76 586.42 −0.01 0 +2.32

𝑁

+75 14.9983 19.76 573.82 0 0 +0.13
+50 14.9983 19.76 573.67 0 0 +0.1
+25 14.9983 19.76 573.37 0 0 +0.05
0 14.9983 19.76 573.10 0 0 0
−25 14.9983 19.76 572.62 0 0 −0.08
−50 14.9983 19.76 571.27 0 0 −0.32
−75 14.9983 19.76 568.42 0 0 −0.82

𝜋

+75 14.9984 19.77 573.10 0 0 0
+50 14.9984 19.77 573.10 0 0 0
+25 14.9983 19.76 573.10 0 0 0
0 14.9983 19.76 573.10 0 0 0
−25 14.9983 19.76 573.10 0 0 0
−50 14.9981 19.75 573.10 0 0 0
−75 14.9981 19.75 573.10 0 0 0

3.2. Example 2: Exponentially distributed lead time

We propose another example by considering exponential distribution for the visitor’s arrival time which is
basically the lead time. The specific data for this case and the related results are presented in Table 3.

To show the effect of changing the value of some parameters 𝐷,𝛼, 𝑛, 𝑃 and 𝜋 on the amount of replenish-up-to
level and expected cyclic profit, some problems are solved and the results of Example 1 (Uniform PDF) are
shown in Table 4 and those of Example 2 (Exponential PDF) are shown in Table 5.

The general data for this problem are 𝐶 = 60 $/unit, ℎ = 5 $/unit/year, 𝜋′ = 10 $/unit, 𝐼𝑐 = 20%, and 𝑡 =
0.6 year. The default amount of data to analyze their effect in this part are 𝑃 = 100 $/unit, 𝐷 = 100 unit/year,
𝛼 = 0.3, 𝑛 = 10, 𝜋 = 5 $/unit/year, 𝛾 = 0.4 and in Example 1, the lead time is between [0.1, 0.2] year and in
Example 2, 𝜆 = 10 arrivals/year.
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Table 5. The sensitivity analysis in Example 2 (Exponential PDF).

Parameter

Percentage of
change in

Value Percentage of change in value

parameters 𝑄* 𝑅* ECP(𝑅*) 𝑄* 𝑅* ECP(𝑅*)

𝐷

+75 17.3348 72.66 603.24 +75 +75 +75
+50 14.8584 62.28 517.06 +50 +50 +50
+25 12.3820 51.90 430.88 +25 +25 +25
0 9.9056 41.52 344.71 0 0 0
−25 7.4292 31.14 258.53 −25 −25 −25
−50 4.9526 20.76 172.35 −50 −50 −50
−75 2.4764 10.38 86.18 −75 −75 −75

𝑃

+75 9.9609 50.34 1077.90 +0.56 +21.24 +212.7
+50 9.9515 48.17 831.75 +0.46 +16.01 +141.29
+25 9.9359 45.39 586.91 +0.31 +9.32 +70.26
0 9.9056 41.52 344.71 0 0 0
−25 9.8213 35.14 109.81 −0.85 −15.37 −68.14
−50 8.3217 12.74 −50.93 −15.99 −69.32 −114.78
−75 Infeasible Infeasible Infeasible Infeasible Infeasible Infeasible

𝛼

+75 9.9520 41.35 336.15 +0.47 −0.41 −2.48
+50 9.9364 41.41 339.03 +0.31 −0.27 −1.65
+25 9.9212 41.50 343.73 +0.16 −0.05 −0.28
0 9.9056 41.52 344.71 0 0 0
−25 9.8905 41.58 347.57 −0.15 +0.15 +0.83
−50 9.8755 41.63 350.44 −0.3 +0.27 +1.66
−75 9.8608 41.69 353.24 −0.45 +0.41 +2.48

𝑛

+75 9.9057 41.53 345.17 0 +0.02 +0.13
+50 9.9057 41.53 345.08 0 +0.02 +0.11
+25 9.9057 41.53 344.87 0 +0.02 +0.05
0 9.9056 41.52 344.71 0 0 0
−25 9.9056 41.52 344.41 0 0 −0.09
−50 9.9054 41.50 343.63 0 −0.05 −0.31
−75 9.9050 41.46 341.71 0 −0.15 −0.87

𝜋

+75 9.9098 41.98 345.46 +0.04 +1.11 +0.22
+50 9.9085 41.83 345.22 +0.03 +0.75 +0.15
+25 9.9071 41.68 344.97 +0.02 +0.39 +0.08
0 9.9056 41.52 344.71 0 0 0
−25 9.9041 41.36 344.43 −0.02 −0.39 −0.08
−50 9.9025 41.20 344.16 −0.03 −0.77 −0.16
−75 9.9010 41.04 343.88 −0.05 −1.16 −0.24

According to Tables 4 and 5, when the demand for goods or services increases, the replenish-up-to level and
the expected cyclic profit increase too, and the percentage of changes is the same in 𝐷, 𝑅* and ECP(𝑅*). When
the selling price increases, it can increase both 𝑅* and ECP(𝑅*) when it decreases to less than purchasing price,
profit is not gained because the selling price is less than the purchasing price and the maximum inventory level
and order quantity both becomes negative which can be interpreted as an infeasible solution.

The effect of the fraction of purchase cost that paid as multiple prepayments is not as much as 𝐷 and 𝑃
and as 𝛼 increases, 𝑅* and ECP(𝑅*) decrease but it is very little on the 𝑅* in Example 1. As the number
of prepayments to be made before receiving the order increases, 𝑅* and ECP(𝑅*) increase, but it has a little
effect on them and in Example 1 its effect on 𝑅* is near zero. As Backordered cost per unit per time period
increases, in Example 1 it almost has no effect on 𝑅* and ECP(𝑅*), but in Example 2 it increases the value
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Figure 3. Effect of Demand on Replenishment-up-to level.

Figure 4. Effect of Demand on ECP.

of 𝑅* and ECP(𝑅*). Also the changes of variables with respect to the parameter’s changes are shown in
Figures 3–10.

We can consider from Figure 3 that when the demand for the goods increases, the replenishment-up-to level
increase too in both examples, and the incremental rise in replenishment-up-to level also increases proportion-
ately with the demand value.

In Figure 4, when the demand increases and it causes the replenish-up-to level to increase, the ECP increase
too in both examples and their diversion increases with demand as well.

When the selling price increases, the replenish-up-to level increases too as can be seen it in Figure 5. As it
is expected, the selling price should be more than purchasing price, but when it is lower than the purchasing
price, the profit function is not concave anymore and it has an unexpected effect on replenishment-up-to level
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Figure 5. Effect of Selling Price on Replenishment-up-to level.

Figure 6. Effect of Selling Price on ECP.
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Figure 7. Effect of 𝛼 on Replenishment-up-to level.

Figure 8. Effect of 𝛼 on ECP.

for some quantities in both examples yielding negative values for 𝑅 and 𝑄 (see drops in Fig. 5). When the
selling price increases, it increases the expected cyclic profit too, and as it is explained for Figure 5, when the
replenishment-up-to level behaves strange, ECP behaves strange too because of their relationship.
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Figure 9. Effect of 𝑛 on replenishment-up-to level.

Figure 10. Effect of 𝑛 on ECP.

When the percentage of purchasing cost that must be prepaid in multiple prepayments increases, it has a little
negative effect of replenishment-up-to level in both examples. As it is clear in Figure 8, when the percentage of
purchasing cost that must be paid in advance increases, the expected cyclic profit decreases in both examples.

In Figure 9, when 𝑛 increases the replenishment-up-to level in uniform case remains fixed but in exponential
case the replenishment-up-to level a little increase. In Figure 10, when 𝑛 increases, the expected cyclic profit
increases in both examples. When the backordered cost per unit increases, it increases the replenishment-up-to
level too, but this effect is more in exponential case than uniform case as it is clear in Figure 9. In Fig-
ures 11 and 12, when 𝜋 increase, it increases the amount of replenishment-up-to level, and it causes the ECP
to increase. This effect is little in this example and in exponential case is more than uniform case level, and it
causes the ECP to increase. This effect is little in this example and more in the exponential case than in the
uniform case
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Figure 11. Effect of 𝜋 on replenishment-up-to level.

Figure 12. Effect of 𝜋 on ECP.

4. Conclusion

In this paper, an optimal control model is developed for a purchasing system with stochastic delivery time,
partial prepayment and partial backordering. It is considered that the buyer must pay a fraction of the purchasing
cost as prepayment during several payments. A mathematical model under general probability distribution
function is developed and the concavity of profit function is proved, and global optimal value of replenishment
level is derived. Two special cases with uniform and exponential PDFs are exemplified to show the applicability
of the proposed model. To analyze the effects of several parameters like demand, selling price, and percentage of
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purchasing cost that must be paid in advance or backordered were observed on the replenishment-up-to level and
the expected cyclic profit, and it was realized that the demand and selling price have a more significant effect
on problem decision especially on replenishment-up-to-level and expected cyclic profit than other parameters.
Both customers and suppliers can benefit from these results to gain more profit and invest to prove some
parameters that have more effect on their business. Future works may be directed toward developing the
model for deteriorating products or considering delayed payment policy in transaction process to trade off the
conflicting situation between sellers and buyers.

References

[1] M. Ben-Daya and R. Abdul, Inventory models involving lead time as decision variable. J. Oper. Res. Soc. 45 (1994) 579–582.

[2] M. Ben-Daya and M. Hariga, Integrated single vendor single buyer model with stochastic demand and variable lead time. Int.
J. Prod. Econ. 92 (2004) 75–80.

[3] C. Chiang, Periodic review inventory models with stochastic supplier’s visit intervals. Int. J. Prod. Econ. 115 (2008) 433–438.

[4] C. Chiang, A note on periodic review inventory models with stochastic supplier’s intervals and fixed ordering. Int. J. Prod.
Econ. 146 (2013) 662–666.

[5] B.C. Das, B. Das and S.K. Mondal, An integrated inventory model with delay in payment for deteriorating item under weibull
distribution and advertisement cum price-dependent demand. Int. J. Oper. Res. 20 (2014) 341–368.

[6] K. Ertogral and M.A. Rahim, Replenish-up-to inventory control policy with random replenishment intervals. Int. J. Prod.
Econ. 93, 94 (2005) 399–405.

[7] A. Eynan and D.H. Kropp, Effective and simple EOQ-like solution for stochastic demand periodic review systems. Eur. J.
Oper. Res. 180 (2007) 1135–1143.

[8] S.K. Goyal, Economic order quantity under conditions of permissible delay in payments. J. Oper. Res. Soc. 36 (1985) 335–338.

[9] R.K. Gupta, A.K. Bhunia and S.K. Goyal, An application of Genetic Algorithm in solving an inventory model with advance
payment and interval valued inventory costs. Math. Comput. Model. 49 (2009) 893–905.

[10] O.K. Gupta, N.H. Shah and A.R. Patel, An integrated deteriorating inventory model with permissible delay in payments and
price-sensitive stock-dependent demand. Int. J. Oper. Res. 11 (2011) 425–442.

[11] A. Guria, B. Das, S. Mondal and M. Maiti, Inventory policy for an item with inflation induced purchasing price, selling price
and demand with immediate part prepayment. Appl. Math. Model. 37 (2013) 240–257.

[12] J.C. Hayya, T.P. Harrison and D.C. Chatfield, A solution for the intractable inventory model when both demand and lead
time are stochastic. Int. J. Prod. Econ. 122 (2009) 595–605.

[13] D.K. Jana, B. Das and T.K. Roy, A partial backlogging inventory model for deteriorating item under fuzzy inflation and
discounting over random planning horizon: a fuzzy genetic algorithm approach. Adv. Oper. Res. 2013 (2013) 973125.

[14] M. Karimi-Nasab and I. Konstantataras, An inventory control model with stochastic review interval and special sale offer.
Eur. J. Oper. Res. 227 (2013) 81–87.

[15] M.A. Khan, A.K. Shaikh, G.C. Panda and I. Konstantaras, Two-warehouse inventory model for deteriorating items with partial
backlogging and advance scheme. RAIRO-Oper. Res. 53 (2019) 1691–1708.

[16] B. Khara, S.K. Mondal and J.K. Dey, An imperfect production model with advance payment and credit period in a two-echelon
supply chain management. RAIRO-Oper. Res. 55 (2021) 189–211.

[17] Y. Liang and F. Zhou, A two-warehouse inventory model for deteriorating items under conditionally permissible delay in
payment. Appl. Math. Model. 35 (2011) 2221–2231.

[18] R. Maihami and I. Nakhai Kamalabadi, Joint pricing control for non-instantaneous deteriorating items with partial backlogging
and time and price dependent demand. Int. J. Prod. Econ. 136 (2012) 116–122.

[19] A.K. Maiti, M.K. Maiti and M. Maiti, Inventory model with stochastic lead-time and price dependent demand incorporating
advance payment. Appl. Math. Model. 33 (2009) 2433–2443.

[20] A.H.M. Mashud, D. Roy, Y. Daranto and H.-W. Wee, Joint pricing deteriorating inventory model considering product life
cycle and advance payment with a discount facility. RAIRO-Oper. Res. 55 (2021) S1069–S1088. Special Issue.

[21] L.-Y. Ouyang, K.-S. Wu and C.-T. Yang, A study on an inventory model for non-instantaneous deteriorating items with
permissible delay in payments. Comput. Ind. Eng. 51 (2006) 637–651.

[22] B. Pal, Optimal production models with quality sensitive market demand, partial backlogging and permissible delay in payment,
RAIRO-Oper. Res. 52 (2018) 499–512.

[23] D. Panda, S. Kar, K. Maity and M. Maiti, A single period inventory with imperfect production and stochastic demand under
chance and imprecise constraints. Int. J. Oper. Res. 188 (2008) 121–139.

[24] M.A. Rahim, Inventory systems with random arrival of shipments. Int. J. Adv. Manuf. Technol. 29 (2006) 197–201.

[25] B. Sarkar, H. Gupta, K. Chaudhuri and S.K. Goyal, An integrated inventory model with variable lead time, defective unit and
delay in payments. Appl. Math. Comput. 237 (2014) 650–658.

[26] B.R. Sarker, A.M.M. Jamal and S. Wang, Optimal payment time under permissible delay in payment for products with
deterioration. Prod. Planning Control 11 (2000) 380–390.

[27] G. Sridevi, K. Nirupama Devi and K. Srinivasa Rao, Inventory model for deteriorating items with Weibull rate of replenishment
and selling price dependent demand. Int. J. Oper. Res. 9 (2010) 329–349.



CONTROLLING PURCHASING SYSTEM WITH STOCHASTIC DELIVERY TIME AND PARTIAL PREPAYMENT 1735

[28] A.A. Taleizadeh, An EOQ model with partial backordering and advance payments for an evaporating item. Int. J. Prod.
Econom. 155 (2014) 185–193.

[29] A.A. Taleizadeh, An economic order quantity model for a deteriorating item in a purchasing system with multiple prepayments.
Appl. Math. Model. 38 (2014) 5367–5366.

[30] A.A. Taleizadeh, H. Moghadasi, S.T.A. Niaki and A. Eftekhari, An economic order quantity under joint replenishment policy
to supply expensive imported raw materials with payment in advance. J. Appl. Sci. 8 (2008) 4263–4273.

[31] A.A. Taleizadeh, S.T.A. Niaki, N. Shafii, R.G. Meibodi and A. Jabbarzadeh, A particle swarm approach for constraint joint
single buyer-single vendor inventory problem with changeable lead time and (𝑟, 𝑄) policy in supply chain. Int. J. Adv. Manuf.
Technol. 51 (2010) 1209–1223.

[32] A.A. Taleizadeh, H.M. Wee and F. Jolai, Revisiting a fuzzy rough economic order quantity model for deteriorating items
considering quantity discount and prepayment. Math. Comput. Model. 57 (2013) 1466–1479.

[33] A.A. Taleizadeh, D.W. Pentico, M.S. Jabalameli and M. Aryanezhad, An economic order quantity model with multiple partial
prepayments and partial backordering. Math. Comput. Model. 57 (2013) 311–323.

[34] A.A. Taleizadeh, H.R. Zarei and B.R. Sarker, An optimal control of inventory under probablistic replenishment intervals and
known price increase. Eur. J. Oper. Res. 257 (2017) 777–791.

[35] A.A. Taleizadeh, H.R. Zarei and B.R. Sarker, An optimal ordering and replenishment policy for a vendor-buyer system under
varying replenishment intervals and delayed payment. Eur. J. Ind. Eng. 13 (2019) 264–298.

[36] A.A. Taleizadeh, H.R. Zarei and S.S. Sana, Optimal control of an inventory system under whole sale price changes. RAIRO-
Recherche Opér. 55 (2021) 289.

[37] O. Tang and S. Nurmaya Musa, Identifying risk issues and research advancements in supply chain risk management. Int. J.
Prod. Econ. 133 (2011) 25–34.

[38] A. Thangam, Optimal price discounting and lot-sizing policies for perishable items in a supply chain under advance payment
scheme and two-echelon trade credits. Int. J. Prod. Econ. 139 (2012) 459–472.

[39] K.S. Wu, (𝑄, 𝑟) inventory model with variable lead time when the amount received is uncertain. Int. J. Inf. Manage. Sci. 11
(2000) 81–94.

[40] J. Wu, J.T. Teng and Y.L. Chan, Inventory policies for perishable products with expiration dates and advance-cash-credit
payment schemes. Int. J. Syst. Sci. Oper. Logistics 5 (2018) 310–326.

[41] M. Zhang, P.C. Bell, G. Cai and X. Chen, Optimal fences and joint price and inventory decisions in distinct markets with
demand leakage. Eur. J. Oper. Res. 204 (2010) 589–596.

[42] Q. Zhang, Y. Tsao and T. Chen, Economic order quantity under advance payment. Appl. Math. Model. 38 (2014) 5910–5921.

This journal is currently published in open access under a Subscribe-to-Open model (S2O). S2O is a transformative
model that aims to move subscription journals to open access. Open access is the free, immediate, online availability of
research articles combined with the rights to use these articles fully in the digital environment. We are thankful to our
subscribers and sponsors for making it possible to publish this journal in open access, free of charge for authors.

Please help to maintain this journal in open access!

Check that your library subscribes to the journal, or make a personal donation to the S2O programme, by contacting
subscribers@edpsciences.org

More information, including a list of sponsors and a financial transparency report, available at: https://www.
edpsciences.org/en/maths-s2o-programme

mailto:subscribers@edpsciences.org
https://www.edpsciences.org/en/maths-s2o-programme
https://www.edpsciences.org/en/maths-s2o-programme

	Introduction
	The Problem

	The problem formulation
	(a) Parameters
	(b) Independent Decision variables
	(c) Other variables

	Profit function
	Special cases
	Uniformly distributed lead time
	Exponentially distributed lead time


	Numerical examples and sensitivity analysis
	Example 1: Uniformly distributed lead time
	Example 2: Exponentially distributed lead time

	Conclusion
	References

