
RAIRO-Oper. Res. 56 (2022) 1283–1291 RAIRO Operations Research
https://doi.org/10.1051/ro/2022044 www.rairo-ro.org

AN IMPROVED HEURISTIC ALGORITHM FOR THE MAXIMUM BENEFIT
CHINESE POSTMAN PROBLEM

Shiori Matsuura and Kenjiro Takazawa*

Abstract. The maximum benefit Chinese postman problem (MBCPP) is a practical generalization
of the Chinese postman problem. A distinctive feature of MBCPP is that the postman can traverse
each edge arbitrary times and obtains a benefit for each traversal of an edge, which depends on the
number of times that the edge has been traversed. (Pearn and Wang, Omega 31 (2003) 269–273)
discussed MBCPP under the assumption that the benefits of each edge is a non-increasing function of
the number of traversals. They showed that MBCPP under this assumption is NP-hard, and proposed a
heuristic algorithm which applies the minimum spanning tree and the minimal-cost 𝑇 -join algorithms.
(Corberán, Plana, Rodŕıguez-Ch́ıa and Sanchis, Math. Program. 141 (2013) 21–48) presented an integer
programming formulation and a branch-and-cut algorithm for MBCPP without the assumption on the
benefits. This is based on the idea of integrating the benefits of each edge into two benefits, each
representing that the edge is traversed an odd or even number of times. In this paper, by applying the
idea of Corberán et al., we improve the heuristic algorithm of Pearn and Wang. Our algorithm applies
to the general case with no assumption on the benefits, and can perform better even if the benefits are
non-increasing. We then analyze the efficiency of our heuristic algorithm in theory and in practice, and
prove that it finds the optimal solution when the benefits satisfy a certain property.

Mathematics Subject Classification. 90C59, 90C27, 05C85.

Received March 15, 2021. Accepted March 18, 2022.

1. Introduction

The Chinese postman problem [6, 9] is a problem well known to be solved in polynomial time, and many
generalizations are proposed. One of such generalizations is the maximum benefit Chinese postman problem
(MBCPP), which was proposed by Malandraki and Daskin [13] in directed graphs. In this paper, we deal with
MBCPP in undirected graphs, which was first studied by Pearn and Wang [14].

1.1. Problem definition

An intuitive description of MBCPP in undirected graphs is as follows. A postman traverses edges while
offering service to the edges. Each edge is endowed with a set of benefits that are obtained at each traversal
with service, as well as a service cost for a traversal with service and a deadhead cost for a traversal without

Keywords. Combinatorial optimization, maximum benefit Chinese postman problem, heuristic algorithm, spanning tree, 𝑇 -join.

Department of Industrial and Systems Engineering, Faculty of Science and Engineering, Hosei University, Koganei-
shi, Tokyo, Japan.
*Corresponding author: takazawa@hosei.ac.jp

c○ The authors. Published by EDP Sciences, ROADEF, SMAI 2022

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1051/ro/2022044
https://www.rairo-ro.org
https://orcid.org/0000-0002-7662-7374
mailto:takazawa@hosei.ac.jp
https://creativecommons.org/licenses/by/4.0

1284 S. MATSUURA AND K. TAKAZAWA

service. Namely, the postman obtains a net benefit, which is the benefit minus the service cost at a traversal with
service, or the negative of the deadhead cost at a traversal without service. The objective of MBCPP is to find
a postman tour starting from a depot vertex and returning to the depot that maximizes the total net benefit.
A distinctive feature of MBCPP is that there is no limit to the number of times each edge can be traversed. In
other words, an edge may be traversed multiple times, or not at all. Furthermore, the benefit obtained at each
traversal of an edge depends on the number of services that have been offered to the edge. The MBCPP finds
its applications in the design of street cleaning, snow-plowing, snow-salting, and so on.

Formally, MBCPP is defined in the following way. Let 𝐺 = (𝑉,𝐸) be a connected undirected graph with
vertex set 𝑉 and edge set 𝐸, and let 𝑣0 ∈ 𝑉 be a specified vertex, representing the depot. Each edge 𝑒 ∈ 𝐸
is associated with an integer 𝑘𝑒 ∈ Z+ representing the number of services offered to 𝑒. Services are offered for
the first 𝑘𝑒 traversals, and no service is offered afterwards. Thus, for the 𝑡th traversal on 𝑒, we obtain a benefit
𝑏𝑒(𝑡) ≥ 0 for 𝑡 = 1, 2, . . . , 𝑘𝑒, and no benefit for 𝑡 ≥ 𝑘𝑒 + 1.

Costs are also associated with each traversal of an edge: service cost associated with a traversal with service;
and deadhead cost associated with a traversal without service. The service cost of an edge 𝑒 varies with the
number of traversals with service on 𝑒. For 𝑡 = 1, 2, . . . , 𝑘𝑒, let 𝑠𝑒(𝑡) denote the cost of the 𝑡th traversal of 𝑒.
The deadhead cost of 𝑒 does not depend on the number of traversals and is denoted by 𝑑𝑒. We assume that
𝑠𝑒(𝑡) ≥ 0 (𝑡 = 1, 2, . . . , 𝑘𝑒) and 𝑑𝑒 ≥ 0.

In summary, the net benefit 𝑏𝑒(𝑡) of the 𝑡th traversal of an edge 𝑒 is described as

𝑏𝑒(𝑡) =

{︃
𝑏𝑒(𝑡)− 𝑠𝑒(𝑡) (𝑡 = 1, 2, . . . , 𝑘𝑒),
−𝑑𝑒 (𝑡 ≥ 𝑘𝑒 + 1).

(1.1)

The objective of MBCPP is to find a spanning Eulerian multi-subgraph (𝑈, 𝐹) of 𝐺 with depot 𝑣0 ∈ 𝑈 maxi-
mizing the total net benefit ∑︁

𝑒∈𝐸

𝑚𝐹 (𝑒)∑︁
𝑡=1

𝑏𝑒(𝑡),

where 𝑚𝐹 (𝑒) ∈ Z+ is the multiplicity of an edge 𝑒 in the multiset 𝐹 .

1.2. Related work

The two studies most related to this paper are due to Pearn and Wang [14] and Corberán, Plana, Rodŕıguez-
Ch́ıa, and Sanchis [4].

Pearn and Wang [14] proved that MBCPP is NP-hard even when the benefit 𝑏𝑒(𝑡) is a monotone non-increasing
function of the number 𝑡 of traversals and 𝑠𝑒(𝑡) is constant for each 𝑒 ∈ 𝐸, by reducing the rural postman problem,
which had been proved to be NP-hard [12]. Pearn and Wang [14] further proposed a heuristic algorithm for
MBCPP with the above benefits, while its complexity is not analyzed and only a small computational example
is provided.

This heuristic algorithm uses a minimum spanning tree and a minimum-weight 𝑇 -join algorithms (see, e.g.,
[10, 16]), and has some similarity to the algorithm for the Chinese postman problem [7] and Christofides’
approximation algorithm for the traveling salesman problem [3]. In a graph 𝐺 = (𝑉,𝐸) and its vertex subset
𝑇 ⊆ 𝑉 , an edge subset 𝐽 ⊆ 𝐸 is a T-join if the set of vertices of odd degree in the subgraph (𝑉, 𝐽) is 𝑇 . Note
that, if 𝑇 is equal to the set of vertices of odd degree in the original graph 𝐺, then adding a 𝑇 -join 𝐽 to 𝐺
results in a Eulerian (multi)graph.

Corberán et al. [4] presented an integer programming formulation and a branch-and-cut algorithm for MBCPP
without any assumption on the benefits. A key idea is to integrate the net benefits of each edge into only two
benefits, each representing that the edge is traversed in an odd or even number of times.

Theorem 1.1 (Corberán et al. [4]). Solving an arbitrary instance 𝐼 of MBCPP is equivalent to solving an
instance 𝐼 ′, where each edge 𝑒 has only two net benefits 𝑏odd𝑒 and 𝑏even𝑒 for the first and the second traversals of

AN IMPROVED HEURISTIC ALGORITHM FOR THE MAXIMUM BENEFIT CHINESE POSTMAN PROBLEM 1285

each edge 𝑒, respectively, where

– If 𝑘𝑒 ≥ 1,

𝑏odd𝑒 = max

{︃
ℓ∑︁

𝑡=1

𝑏𝑒(𝑡) : ℓ ≤ 𝑘𝑒 + 1, ℓ is odd

}︃
,

𝑏even𝑒 = max

{︃
ℓ∑︁

𝑡=1

𝑏𝑒(𝑡) : ℓ ≤ 𝑘𝑒 + 1, ℓ is even

}︃
− 𝑏odd𝑒 ,

– If 𝑘𝑒 = 0, 𝑏odd𝑒 = 𝑏even𝑒 = −𝑑𝑒.

Theorem 1.1 implies that, by integrating the net benefits on each edge, any instance of MBCPP can be trans-
formed into an instance with only zero, one or two traversals on each edge. Namely, we do not need to define
the net benefit of the 𝑡th traversal with 𝑡 ≥ 3.

While this integer programming approach does not have an effective bound on the complexity, Corberán
et al. [4] empirically demonstrated its practical efficiency, by showing that it can solve instances with up to
1,000 vertices and 3,000 edges within one hour.

Other related work includes the following. As mentioned before, Malandraki and Daskin [13] dealt with
MBCPP in directed graphs. They modeled it as a minimum-cost flow problem with subtour elimination con-
straints, and proposed a branch-and-bound procedure. Pearn and Chiu [15] also proposed a heuristic algorithm
for MBCPP in directed graphs. The prize-collecting arc routing problem [1,2] is a special case of MBCPP, where
𝑘𝑒 = 1 for each edge 𝑒 in some edge subset 𝐷 ⊆ 𝐸 and 𝑘𝑒 = 0 for each 𝑒 ∈ 𝐸 ∖𝐷. Shafahi and Haghani [18]
proposed a common generalization of MBCPP and the vehicle routing problem, and presented a mixed integer
programming formulation.

1.3. Our contribution

In this paper, by applying the idea of Corberán et al. [4] (Thm. 1.1), we extend the heuristic algorithm of
Pearn and Wang [14] to the general case where the net benefit 𝑏𝑒(𝑡) is not necessarily a monotone non-increasing
function of the number 𝑡 of traversals. We show that, even when 𝑏𝑒(𝑡) is monotone non-increasing, in some cases
our algorithm performs better than the previous algorithm; see Section 3.1.2.

While there already exists a computational method [4], our heuristic algorithm is of interest in a sense that it
builds upon fundamental concepts in combinatorial optimization such as minimum spanning trees and minimum-
weight 𝑇 -joins. This fact provides the ease of implementation and estimation of the efficiency in theory and in
practice: given the integrated benefits 𝑏odd

𝑒 and 𝑏even
𝑒 of each edge 𝑒, our algorithm runs in 𝑂(𝑛3) time, where 𝑛

is the number of vertices. This is the first algorithm for MBCPP with effective complexity bound.
Furthermore, we prove that the extended heuristic algorithm finds the optimal solution when the integrated

net benefit for the first traversal is larger than or equal to that for the second traversal, and the sum of these
two integrated net benefits is non-negative (Assumption 3.3 in Sect. 3.3). This property is satisfied, for instance,
when 𝑏𝑒(𝑡) is monotone non-increasing for each edge 𝑒.

We summarize the aforementioned features of the algorithms in Table 1.

Table 1. Summary of the algorithms for MBCPP.

Solution Assumption Complexity Method

Pearn and Wang [14] Heuristic 𝑏̄𝑒(𝑡): non-increasing Not Analyzed Combinatorial
Corberán et al. [4] Exact None Not Analyzed Branch-and-Cut
This paper Heuristic None 𝑂(𝑛3) Combinatorial

1286 S. MATSUURA AND K. TAKAZAWA

1.4. Organization of the paper

The organization of this paper is as follows. We describe our extended heuristic algorithm in Section 2.
Section 3 provides the detail of its improvements: improvements in the heuristics in Section 3.1; theoretical
and practical efficiency in Section 3.2; and the optimality when the benefits obey the above assumption in
Section 3.3. Section 4 concludes this paper by a summary and future work.

2. Improved heuristic algorithm

In this section, we describe our heuristic algorithm, which extends the algorithm by Pearn and Wang [14],
by using the idea of the integration of the net benefits by Corberán et al. [4] (Thm. 1.1). We begin with a brief
sketch to provide an intuition of the algorithm in Section 2.1, followed by its detailed description in Section 2.2.

2.1. Algorithm sketch

For each edge 𝑒 ∈ 𝐸, make two copies 𝑒′ and 𝑒′′, and associate the benefits 𝑏𝑒′ and 𝑏𝑒′′ by 𝑏𝑒′ = 𝑏odd
𝑒 and

𝑏𝑒′′ = 𝑏even
𝑒 defined in Theorem 1.1, each representing the first and second traversal of 𝑒. Denote 𝐸′ = {𝑒′ | 𝑒 ∈ 𝐸}

and 𝐸′′ = {𝑒′′ | 𝑒 ∈ 𝐸}.
Now the objective is to find a subset 𝐹 ⊆ 𝐸′ ∪ 𝐸′′ which forms a connected Eulerian subgraph including 𝑣0

and maximizes the total benefit
∑︀

𝑓∈𝐹 𝑏𝑓 . A remarkable feature is that 𝐹 must satisfy

𝑒′′ ∈ 𝐹 =⇒ 𝑒′ ∈ 𝐹 (2.1)

for every 𝑒 ∈ 𝐸.
We initialize 𝐹 to be the set of the edges 𝑓 ∈ 𝐸′ ∪𝐸′′ with non-negative benefit 𝑏𝑓 , except for edges 𝑒′′ with

𝑏𝑒′ < 0. That is,

𝐹 = {𝑒′ ∈ 𝐸′ | 𝑏𝑒′ ≥ 0} ∪ {𝑒′′ ∈ 𝐸′′ | 𝑏𝑒′′ ≥ 0, 𝑏𝑒′ ≥ 0}.

Next we modify the edge set 𝐹 so that it induces a connected and Eulerian subgraph. If the subgraph induced
by 𝐹 is not connected, we connect the components by adding some edges with negative benefit, with the aid of
a minimum spanning tree algorithm. We then add a minimum-weight 𝑇 -join to 𝐹 , where 𝑇 is the set of vertices
of odd degree in (𝑉, 𝐹), to obtain an Eulerian graph. We remark that, the weights of the edges in finding the
minimum spanning tree and the 𝑇 -join are carefully defined, based on 𝑏odd

𝑒 and 𝑏even
𝑒 .

Finally, we remove cycles of negative benefit from 𝐹 as many as possible, while maintaining the condition (2.1)
and the connectivity of 𝐹 .

2.2. Algorithm description

We exhibit a pseudocode of our algorithm in Algorithm 1, followed by its detailed description.
Line 1 (Collecting non-negative benefits). For each edge 𝑒 ∈ 𝐸, define 𝑏odd

𝑒 , 𝑏even
𝑒 ∈ R in the same way as

Theorem 1.1. According to the values of 𝑏odd
𝑒 and 𝑏even

𝑒 , partition the edge set 𝐸 into four sets 𝐸1, 𝐸2, 𝐸3, and
𝐸4 by

𝐸1 = {𝑒 ∈ 𝐸 | 𝑏odd
𝑒 ≥ 0, 𝑏even

𝑒 ≥ 0},
𝐸2 = {𝑒 ∈ 𝐸 | 𝑏odd

𝑒 ≥ 0 > 𝑏even
𝑒 },

𝐸3 = {𝑒 ∈ 𝐸 | 𝑏odd
𝑒 < 0 ≤ 𝑏even

𝑒 },
𝐸4 = {𝑒 ∈ 𝐸 | 𝑏odd

𝑒 < 0, 𝑏even
𝑒 < 0}.

Let 𝐸′ and 𝐸′′ be two copies of 𝐸. Denote the copy of 𝑒 ∈ 𝐸 in 𝐸′ by 𝑒′, and its benefit 𝑏𝑒′ = 𝑏odd
𝑒 . Similarly,

let 𝑒′′ be the copy of 𝑒 ∈ 𝐸 in 𝐸′′ and let 𝑏𝑒′′ = 𝑏even
𝑒 . Then, define 𝐹 ⊆ 𝐸′ ∪ 𝐸′′ by

𝐹 =
⋃︁

𝑒∈𝐸1

{𝑒′, 𝑒′′} ∪
⋃︁

𝑒∈𝐸2

{𝑒′}.

AN IMPROVED HEURISTIC ALGORITHM FOR THE MAXIMUM BENEFIT CHINESE POSTMAN PROBLEM 1287

Algorithm 1 Extended heuristic algorithm.
1: 𝐹 ←

⋃︀
𝑒∈𝐸1
{𝑒′, 𝑒′′} ∪

⋃︀
𝑒∈𝐸2
{𝑒′}

2: if (𝑉, 𝐹) is not connected then
3: 𝑆 ← Minimum spanning tree in 𝐺̃ w.r.t. length −𝑐
4: 𝐹 ← 𝐹 ∪ 𝑆′ ∪ 𝑆′′

5: if (𝑉, 𝐹) is not Eulerian then
6: 𝑇 ← Set of the vertices of odd degree in (𝑉, 𝐹)
7: 𝐽 ← Maximum-weight 𝑇 -join w.r.t. weight 𝑤
8: Update 𝐹 by (2.5)
9: 𝒞 ← Maximal family of edge-disjoint cycles in (𝑉, 𝐹) with negative benefit

10: for 𝐶 ∈ 𝒞 do
11: if (𝑉, 𝐹 ∖ 𝐶) is connected and 𝑒′′ ∈ 𝐹 ∖ 𝐶 implies 𝑒′ ∈ 𝐹 ∖ 𝐶 then
12: 𝐹 ← 𝐹 ∖ 𝐶

13: Output 𝐹

Lines 2–4 (Connecting the components). Suppose that (𝑉, 𝐹) is not connected. Let 𝒦 denote the set of connected
components in (𝑉, 𝐹), and let 𝐺̃ = (𝒦, 𝐸̃) be a graph with vertex set 𝒦, whose edge set 𝐸̃ and edge-length
function 𝑐 are defined as follows. The edge set 𝐸̃ is defined by

𝐸̃ = {(𝐾1, 𝐾2) | 𝐾1, 𝐾2 ∈ 𝒦, 𝐺 has an edge 𝑒 ∈ 𝐸3 ∪ 𝐸4 connecting 𝐾1 and 𝐾2}.

For every edge 𝑒 ∈ 𝐸 connecting two components in 𝒦, define its weight 𝑐𝑒 ∈ R by

𝑐𝑒 =

{︃
𝑏odd
𝑒 + 𝑏even

𝑒 (𝑒 ∈ 𝐸3),
𝑏odd
𝑒 (𝑒 ∈ 𝐸4),

(2.2)

representing that 𝑒 ∈ 𝐸3 is traversed twice, while 𝑒 ∈ 𝐸4 once. Now the edge-length function 𝑐 on 𝐸̃ is defined
by

𝑐(𝐾1, 𝐾2) = max{𝑐𝑒 : 𝑒 ∈ 𝐸 is an edge between 𝐾1, 𝐾2 ∈ 𝒦}. (2.3)

for each (𝐾1, 𝐾2) ∈ 𝐸̃.
Then, find a minimum spanning tree 𝑆 in 𝐺̃ with respect to−𝑐, and let 𝑆 ⊆ 𝐸 be the set of edges corresponding

to 𝑆. Finally, define 𝑆′ ⊆ 𝐸′ and 𝑆′′ ⊆ 𝐸′′ by

𝑆′ = {𝑒′ | 𝑒 ∈ 𝑆 ∩ (𝐸3 ∪ 𝐸4)}, 𝑆′′ = {𝑒′′ | 𝑒 ∈ 𝑆 ∩ 𝐸3},

and update 𝐹 by 𝐹 := 𝐹 ∪ 𝑆′ ∪ 𝑆′′.

Lines 5–8 (Correcting the parity). Suppose that the graph (𝑉, 𝐹) is not Eulerian. Let 𝑇 ⊆ 𝑉 be the set of
vertices with odd degree in (𝑉, 𝐹). For each 𝑒 ∈ 𝐸, define a new weight 𝑤𝑒 ∈ R by

𝑤𝑒 =

⎧⎪⎨⎪⎩
−𝑏even

𝑒 (𝑒′, 𝑒′′ ∈ 𝐹),
𝑏even
𝑒 (𝑒′ ∈ 𝐹, 𝑒′′ /∈ 𝐹),

𝑏odd
𝑒 (𝑒′, 𝑒′′ /∈ 𝐹).

(2.4)

Then, find a maximum-weight 𝑇 -join 𝐽 ⊆ 𝐸 with respect to 𝑤, and update 𝐹 by

𝐹 :=

⎛⎝𝐹 ∖
⋃︁

𝑒∈𝐽 : 𝑒′,𝑒′′∈𝐹

{𝑒′′}

⎞⎠ ∪
⎛⎝ ⋃︁

𝑒∈𝐽 : 𝑒′∈𝐹,𝑒′′ ̸∈𝐹

{𝑒′′}

⎞⎠ ∪
⎛⎝ ⋃︁

𝑒∈𝐽 : 𝑒′,𝑒′′ ̸∈𝐹

{𝑒′}

⎞⎠ . (2.5)

1288 S. MATSUURA AND K. TAKAZAWA

Lines 9–12 (Removing negative cycles). Find a maximal family 𝒞 of edge-disjoint cycles in 𝐹 with negative
benefit, i.e.,

∑︀
𝑓∈𝐶 𝑏𝑓 < 0 for each 𝐶 ∈ 𝒞. Then, delete as many cycles in 𝒞 as possible, provided that the

remaining graph (𝑉, 𝐹) is connected and each edge 𝑒 ∈ 𝐸 with 𝑒′′ ∈ 𝐹 satisfies 𝑒′ ∈ 𝐹 .

3. Detail of improvements

In this section, we describe specific features of Algorithm 1. Section 3.1 explains the improvements upon the
algorithm by Pearn and Wang [14]. In Section 3.2, we analyze its efficiency in theory and in practice, by giving
the details of implementation. Finally, in Section 3.3, we prove that Algorithm 1 finds an optimal solution under
a certain assumption described by the integrated net benefits 𝑏odd

𝑒 and 𝑏even
𝑒 (Assumption 3.3 below).

3.1. Improvements in the heuristics

3.1.1. Non-monotone benefits

The most remarkable improvement upon the algorithm by Pearn and Wang [14] is that we have removed the
assumption that the net benefit 𝑏𝑒(𝑡) is a monotone non-increasing function of the number 𝑡 of traversals. This
assumption is indeed necessary in their algorithm for the following two reasons.

The first reason lies in the initialization of 𝐹 . Their algorithm makes a copy of 𝑒 for each traversal of 𝑒, and
collects the edges with non-negative net benefit 𝑏𝑒(𝑡). The MBCPP demands that, if an edge representing the
𝑡th traversal is collected, then the edges representing the 𝑡′th traversal for every 𝑡′ ≤ 𝑡 must also be collected.
This is why their algorithm requires the net benefit 𝑏𝑒(𝑡) to be monotone non-increasing.

The second reason comes from the spanning tree, whose counterpart in Algorithm 1 appears in Line 3. In
the algorithm of Pearn and Wang [14], for every edge 𝑒 in 𝒦 its weight is defined as 𝑏̄𝑒(1), which is negative.
Thus, if we apply the algorithm of Pearn and Wang for the case where the net benefits 𝑏𝑒(𝑡) is not monotone,
we cannot collect the non-negative benefits of the later traversals. In other words, the algorithm of Pearn and
Wang cannot reasonably take the edges of type 𝐸3 into account: indeed, 𝐸3 = ∅ in the monotone case.

We have resolved these two issues by applying the idea of Corberán et al. [4]. For the first issue, Algorithm 1
just makes two copies 𝑒′ and 𝑒′′ of each edge 𝑒 ∈ 𝐸 and associates the two integrated net benefits 𝑏odd

𝑒 and
𝑏even
𝑒 , respectively, as in Theorem 1.1. Then, the algorithm collects the edges with non-negative benefit except

for the edges 𝑒′′ of 𝑒 ∈ 𝐸3, obeying that 𝑒′ must be collected if 𝑒′′ is collected. This means that we can initialize
𝐹 with the best multiplicities of each edge, regardless of whether 𝑏̄𝑒(𝑡) is monotone or not.

The integrated benefits also resolved the second issue. In Lines 2–4 of Algorithm 1, the weights of the edges
in 𝐸3 ∪ 𝐸4 are defined by (2.2). This definition again means that we are choosing the best multiplicity for the
edges which have not been used in the initialization of 𝐹 .

3.1.2. Edge deletion in correcting the parity

The second improvement appears in Lines 5–8. Here Algorithm 1 updates the solution 𝐹 to be Eulerian
by a 𝑇 -join 𝐽 according to (2.5). This update (2.5) means that, in order to attain the desired parity, we can
either add or delete an edge, and choose the better one. In contrast, in the algorithm of Pearn and Wang [14],
𝐽 consists of edges corresponding to the next traversal. This means we can only add edges but cannot delete
them.

Again, this idea of [14] is reasonable only when the net benefit function 𝑏𝑒(𝑡) is monotone. Furthermore, even
if 𝑏𝑒(𝑡) is monotone, in some cases Algorithm 1 performs better, as shown in the next example.

Example 3.1. Let 𝑏𝑒1(1) = 5, 𝑏𝑒1(2) = 4, 𝑏𝑒1(3) = 1, and 𝑏𝑒1(4) = −3 for an edge 𝑒1 ∈ 𝐸. We have that
𝑏odd
𝑒1

= 10 and 𝑏even
𝑒1

= −1, meaning that 𝑒1 shall be traversed three times or twice. Suppose that 𝑒′1 ∈ 𝐹 and
𝑒′′1 ̸∈ 𝐹 in Line 5, which means that at this point 𝑒1 is traversed three times. Suppose further that 𝑒1 ∈ 𝐽 . Then,
Algorithm 1 adds 𝑒′′1 to 𝐹 in Line 8, which means that we come to traverse 𝑒1 twice by canceling the third
traversal of 𝑒1, to obtain total benefit 9 from 𝑒1. In contrast, the algorithm of Pearn and Wang [14] adds the
fourth traversal, resulting to the total net benefit 7 from 𝑒1.

Consider another edge 𝑒2 ∈ 𝐸 with 𝑏𝑒2(1) = 4, 𝑏𝑒2(2) = 3, 𝑏𝑒2(3) = 2, 𝑏𝑒2(4) = 1, and 𝑏𝑒2(5) = −3. We
have that 𝑏odd

𝑒2
= 9 and 𝑏even

𝑒2
= 1, meaning that 𝑒2 shall be traversed three times or four times. Suppose that

AN IMPROVED HEURISTIC ALGORITHM FOR THE MAXIMUM BENEFIT CHINESE POSTMAN PROBLEM 1289

𝑒′2, 𝑒
′′
2 ∈ 𝐹 in Line 5, which means that at this point 𝑒2 is traversed four times. Suppose further that 𝑒2 ∈ 𝐽 .

Then Algorithm 1 cancels the fourth traversal to obtain total net benefit 9 from 𝑒2, while the algorithm in [14]
adds the fifth traversal, resulting in total net benefit 7.

Let us mention one more difference. In the algorithm of Pearn and Wang [14], the addition of the last traversal
may create a negative cycle consisting of two parallel edges. Indeed, in Example 3.1, the third and fourth traversals
of 𝑒1 and the fourth and fifth traversals of 𝑒2 result in negative cycles of two edges. Such negative cycles may be
removed in the next step if it is detected, or may not if some other negative cycle including one of these two edges
is detected. In other words, Algorithm 1 removes such negative cycles of two edges in advance.

3.2. Theoretical and practical efficiency

This section provides how to implement Algorithm 1 by combining basic graph algorithms. This enables us
to give a theoretical bound on the time complexity, and discuss practical efficiency compared to the integer
programming approach by Corberán et al. [4].

Recall that the number of the vertices in the original graph 𝐺 = (𝑉,𝐸) is denoted by 𝑛. Algorithm 1 mainly
consists of the following three procedures:

Lines 2–4 finding a minimum spanning tree;
Lines 5–8 finding a maximum-weight 𝑇 -join; and
Lines 9–12 finding negative cycles.

As is well known, all of these three procedures can be performed in polynomial time. First, a standard
implementation of Prim’s minimum spanning tree algorithm runs in 𝑂(𝑛2) time, and many algorithms with
better theoretical complexity bound are in the literature; see [10,16,17].

To find a maximum-weight 𝑇 -join, it suffices to have implementations of an all-pairs shortest paths algorithm
with nonnegative length and a maximum-weight matching algorithm [10,16]. For the former, the Warshall-Floyd
method is standard and runs in in 𝑂(𝑛3) time [10, 16, 17]. For the latter, an 𝑂(𝑛3)-time implementation [8, 11]
of Edmonds’ algorithm [5] is famous.

Finally, a family of negative cycles can also be found by one execution of a minimum-weight 𝑇 -join algorithm
in the following way. For two sets 𝑋 and 𝑌 , denote their symmetric difference (𝑋 ∖ 𝑌)∪ (𝑌 ∖𝑋) by 𝑋△𝑌 . Let
𝐹− ⊆ 𝐹 be a set of the edges in 𝐹 with negative benefit, i.e., 𝐹− = {𝑓 ∈ 𝐹 | 𝑏𝑓 < 0}. Let 𝑇− ⊆ 𝑉 be the set
of vertices of odd degree in the subgraph (𝑉, 𝐹−). Then, find a minimum-weight 𝑇−-join 𝐽− with respect to
weights |𝑏𝑓 |. It is straightforward to see that 𝐹−△𝐽− is a collection 𝒞 of cycles with minimum total benefit.

Therefore, we conclude that Algorithm 1 can be implemented to run in 𝑂(𝑛3) time.

Theorem 3.2. Algorithm 1 runs in 𝑂(𝑛3) time.

For the details of the implementations and the practical performance of the above algorithms, we refer the
readers to, e.g., [10, 17]. We remark that the above complexity bounds do not involve large hidden constants
and are often pessimistic: the algorithms are much faster for practical instances. For example, for instances on
dense graphs with 1,000 vertices, all of the procedures can be done within one minute.

3.3. The case where the optimal solution is found

We now prove that Algorithm 1 finds an optimal solution if the integrated benefits obey the following
assumption.

Assumption 3.3. For all edges 𝑒 ∈ 𝐸, it holds that

𝑏odd𝑒 ≥ 𝑏even𝑒 , (3.1)
𝑏odd𝑒 + 𝑏even𝑒 ≥ 0. (3.2)

Observe that Assumption 3.3 is satisfied if 𝑏̄𝑒(𝑡) is monotone non-increasing for each 𝑒 ∈ 𝐸, as stated in
Section 1.3.

1290 S. MATSUURA AND K. TAKAZAWA

Theorem 3.4. Under Assumption 3.3, Algorithm 1 finds an optimal solution, i.e., an Eulerian edge set 𝐹 ⊆
𝐸′ ∪ 𝐸′′ maximizing the benefit

∑︀
𝑓∈𝐹 𝑏𝑓 .

Proof. We first show that, under Assumption 3.3, there exists an optimal solution containing at least one of 𝑒′ or
𝑒′′ for each 𝑒 ∈ 𝐸. Suppose to the contrary that an optimal solution 𝐹 * ⊆ 𝐸′ ∪𝐸′′ neither contains 𝑒′ nor 𝑒′′ for
an edge 𝑒 ∈ 𝐸. Then, for all of such an edge 𝑒, add both 𝑒′ and 𝑒′′ to 𝐹 *. It follows from (3.2) in Assumption 3.3
that this transformation does not decrease the objective function value

∑︀
𝑓∈𝐹* 𝑏𝑓 , while maintaining feasibility.

Therefore, the transformed 𝐹 * is also an optimal solution.
Without loss of generality, we can assume that this 𝐹 * contains 𝑒′ for every edge 𝑒 ∈ 𝐸. If not, it follows that

𝑒′ ̸∈ 𝐹 * and 𝑒′′ ∈ 𝐹 * for some edge 𝑒 ∈ 𝐸, and then we can just remove 𝑒′′ from 𝐹 * and add 𝑒′ to 𝐹 *. From
(3.1) in Assumption 3.3, this operation does not decrease the objective function value, and thus 𝐹 * is still an
optimal solution.

We now complete the proof by showing that Algorithm 1 finds an Eulerian edge set 𝐹 ⊆ 𝐸′∪𝐸′′ maximizing
the benefit

∑︀
𝑓∈𝐹 𝑏𝑓 among those edge sets containing 𝑒′ for every edge 𝑒 ∈ 𝐸.

For edge sets 𝐹 ⊆ 𝐸′ ∪ 𝐸′′ and 𝐽0 ⊆ 𝐸, let 𝐹 ⊕ 𝐽0 denote the subset of 𝐸′ ∪ 𝐸′′ obtained from 𝐹 and 𝐽0

by (2.5), where 𝐽 is replaced by 𝐽0. For 𝐹 ⊆ 𝐸′ ∪ 𝐸′′, let 𝑏(𝐹) denote
∑︀

𝑓∈𝐹 𝑏𝑓 . Similarly, for 𝐽0 ⊆ 𝐸, let
𝑤(𝐽0) =

∑︀
𝑒∈𝐽0

𝑤𝑒.
Denote the intermediate solution in Line 5 by 𝐹 (5) ⊆ 𝐸′ ∪ 𝐸′′. Let 𝐽 ⊆ 𝐸 an edge subset satisfying that

𝐹 (5) ⊕ 𝐽 = 𝐹 *,

or explicitly,

𝐽 =
{︁

𝑒 ∈ 𝐸 | 𝑒′′ ∈ 𝐹 (5)△𝐹 *
}︁

.

Recall that 𝑇 ⊆ 𝑉 is the set of vertices with odd degree in (𝑉, 𝐹 (5)) and 𝐹 * is an Eulerian edge set. It then
follows that 𝐽 is a 𝑇 -join. Since 𝐽 is a maximum-weight 𝑇 -join with respect to 𝑤, it holds that

𝑤(𝐽) ≤ 𝑤(𝐽). (3.3)

Also, since 𝐹 * is an Eulerian edge subset of 𝐸′ ∪ 𝐸′′ maximizing the total net benefit, it follows that

𝑏(𝐹 *) = 𝑏(𝐹 (5) ⊕ 𝐽) ≥ 𝑏(𝐹 (5) ⊕ 𝐽). (3.4)

Here, it is derived from the definition (2.4) of 𝑤 that

𝑏(𝐹 (5) ⊕ 𝐽) = 𝑏(𝐹 (5)) + 𝑤(𝐽), 𝑏(𝐹 (5) ⊕ 𝐽) = 𝑏(𝐹 (5)) + 𝑤(𝐽),

and hence

𝑏(𝐹 (5) ⊕ 𝐽) ≤ 𝑏(𝐹 (5) ⊕ 𝐽) (3.5)

by (3.3). Therefore, we conclude from (3.4) and (3.5) that

𝑏(𝐹 (5) ⊕ 𝐽) = 𝑏(𝐹 (5) ⊕ 𝐽) = 𝑏(𝐹 *),

and thus the output 𝐹 (5) ⊕ 𝐽 of Algorithm 1 is an optimal solution. �

4. Conclusion

We have presented an improved heuristic algorithm for MBCPP (Algorithm 1), putting emphasis on the
improvements upon the previous heuristic algorithm [14] and the theoretical and practical efficiency compared
to the exact branch-and-cut method [4]. We have also proved that our heuristic algorithm finds an optimal
solution under a certain assumption (Assumption 3.3).

AN IMPROVED HEURISTIC ALGORITHM FOR THE MAXIMUM BENEFIT CHINESE POSTMAN PROBLEM 1291

Directions of future research would include designing approximation algorithms with guaranteed approxima-
tion ratio for MBCPP, and extending our approach to MBCPP in digraphs [15] and the common generalization
of MBCPP and the vehicle routing problem [18].

Acknowledgements. The authors are thankful to Yutaro Yamaguchi for insightful comments. They are also indebted to
anonymous referees for helpful comments. The second author is partially supported by JSPS KAKENHI Grant Numbers
JP16K16012, JP20K11699, Japan.

References

[1] J. Aráoz, E. Fernández and C. Zoltan, Privatized rural postman problems. Comput. Oper. Res. 33 (2006) 3432–3449.

[2] J. Aráoz, E. Fernández and O. Meza, Solving the prize-collecting rural postman problem. Eur. J. Oper. Res. 196 (2009)
886–896.

[3] N. Christofides, Worst-case analysis of a new heuristic for the travelling salesman problem, Management Sciences Research
Report 388, Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh, PA (1976).

[4] A. Corberán, I. Plana, A.M. Rodŕıguez-Ch́ıa and J.M. Sanchis, A branch-and-cut algorithm for the maximum benefit Chinese
postman problem. Math. Program. 141 (2013) 21–48.

[5] J. Edmonds, Maximum matching and a polyhedron with 0,1-vertices. J. Res. Natl. Bur. Stand. Sect. B 69 (1965) 125–130.

[6] J. Edmonds, The Chinese postman’s problem. Bull. Oper. Res. Soc. Am. 13 (1965) 73.

[7] J. Edmonds and E.L. Johnson, Matching, Euler tours and the Chinese postman. Math. Program. 5 (1973) 88–124.

[8] H.N. Gabow, Implementation of algorithms for maximum matching on nonbipartite graphs. Ph.D. thesis, Department of
Computer Science, Stanford University, Stanford, California (1973).

[9] M.-g. Guan, Graphic programming using odd or even points. Acta Math. Sin. 10 (1960) 263–266.

[10] B. Korte and J. Vygen, Combinatorial Optimization–Theory and Algorithms, 6th ed. Springer, Heidelberg (2018).

[11] E.L. Lawler, Combinatorial Optimization: Networks and Matroids, edited by Holt, Rinehart and Winston. New York (1976).

[12] J.K. Lenstra and A.H.G. Rinnooy Kan, On general routing problems. Networks 6 (1976) 593–597.

[13] C. Malandraki and M.S. Daskin, The maximum benefit Chinese postman problem and the maximum benefit traveling salesman
problem. Eur. J. Oper. Res. 65 (1993) 218–234.

[14] W.L. Pearn and K.L. Wang, On the maximum benefit Chinese postman problem. Omega 31 (2003) 269–273.

[15] W.L. Pearn and W.C. Chiu, Approximate solutions for the maximum benefit Chinese postman problem. Int. J. Syst. Sci. 36
(2005) 815–822.

[16] A. Schrijver, Combinatorial Optimization–Polyhedra and Efficiency. Springer, Heidelberg (2003).

[17] R. Sedgewick, Algorithms in C, Part 5: Graph Algorithms, 3rd ed. Addison-Wesley (2002).

[18] A. Shafahi and A. Haghani, Generalized maximum benefit multiple Chinese postman problem. Transp. Res. Part C Emerg.
Technol. 55 (2015) 261–272.

This journal is currently published in open access under a Subscribe-to-Open model (S2O). S2O is a transformative
model that aims to move subscription journals to open access. Open access is the free, immediate, online availability of
research articles combined with the rights to use these articles fully in the digital environment. We are thankful to our
subscribers and sponsors for making it possible to publish this journal in open access, free of charge for authors.

Please help to maintain this journal in open access!

Check that your library subscribes to the journal, or make a personal donation to the S2O programme, by contacting
subscribers@edpsciences.org

More information, including a list of sponsors and a financial transparency report, available at: https://www.
edpsciences.org/en/maths-s2o-programme

mailto:subscribers@edpsciences.org
https://www.edpsciences.org/en/maths-s2o-programme
https://www.edpsciences.org/en/maths-s2o-programme

	Introduction
	Problem definition
	Related work
	Our contribution
	Organization of the paper

	Improved heuristic algorithm
	Algorithm sketch
	Algorithm description
	Line 1 (Collecting non-negative benefits).
	Lines 2–4 (Connecting the components).
	Lines 5–8 (Correcting the parity).
	Lines 9–12 (Removing negative cycles).

	Detail of improvements
	Improvements in the heuristics
	Non-monotone benefits
	Edge deletion in correcting the parity

	Theoretical and practical efficiency
	The case where the optimal solution is found

	Conclusion
	References

