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PERFORMANCE ANALYSIS OF DISCRETE-TIME 𝐺𝑒𝑜𝑋/𝐺/1 RETRIAL QUEUE
WITH VARIOUS VACATION POLICIES AND IMPATIENT CUSTOMERS

Rajasudha R.1,* , Arumuganathan R.1 and Dharmaraja S.2

Abstract. This paper studies the behavior of a batch arrival single server retrial queueing model under
three different vacation policies. Three types of vacation policies, single vacation, multiple vacations, and
atmost 𝐽-vacations with impatient customers in general retrial times are considered. The probability
generating function and marginal generating function of orbit size are obtained in a steady state.
The stability condition for each vacation model is derived. Performance measures such as mean orbit
size, mean system size, mean waiting time of a customer, and the probabilities of the server being
in different states have also been determined. Based on performance characteristics, a comparative
analysis is performed among the three vacations. Numerical illustrations are displayed to establish the
consistency of the theory developed.
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1. Introduction

Waiting in queues is inevitable in human lives. Classical queues and retrial queues are becoming essential tools
in manufacturing systems, communication systems, and computer networks. Modern communication systems
work digitally rather than through analogue mode. In computer communication systems, telephone switching
systems, the machine cycle time of a processor, and the bit or byte duration of signals on a transmission line
are allowed to occur only at regularly spaced time points. The production system of factories operates on a
discrete-time basis, where the events can occur only at regularly spaced epochs. Alfa [3] discussed applications
of discrete-time queues and modeled single node telecommunication systems using the discrete-time queueing
model in [4]. Anupam et al. [5] obtained optimal power consumption of DRX mechanism in LTE-A network which
is studied in continuous-time but discrete-time queueing model is more appropriate than the continuous-time.
Queueing models pay attention mainly to two groups of people; namely the customers (users) of the systems and
the servers (service providers). In classical queues, customers must stand before the queue and servers are always
ready to serve round the clock which is not practically possible. In many situations, customers who do not wait
in front of the service centre, may book their slot and wait in a virtual queue. It is also not possible for the
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server to be present in the service station always. Further, the server may not be available for a certain duration
due to many reasons. The service provider wishes that the customers are reasonably satisfied. To address this
issue, discrete-time retrial queuing model with vacations would be an appropriate solution. Single, multiple,
and atmost 𝐽-vacations are the most common vacation policies. In designing queueing models, the selection of
suitable vacation and analyzing its performance characteristics would be the biggest challenges to the designer.
Literature shows that most contributions are either based on any one of the vacation models or queueing models
designed for one particular application. In multiple working or production environments, assigning the server
with a suitable vacation based on the demand is one of the most important tasks. The goal of the proposed
model is to provide a simple tool for allocating a server with appropriate vacation time.

1.1. Motivation

A single vacation policy can be seen in the flexible manufacturing system such that the machine (server)
takes up maintenance activity (single vacation) after completing service, and when no items remain in the
queue waiting for being processed. In the same flexible manufacturing system, consider a machine that is
mainly used for producing customized products. If there is no arrival of customer’s orders, the facility may be
used to produce the items in stock. The machine will not back to process until the system receives the orders. In
this model, “producing the customized products” is a service process and “producing the items in stock” (the
secondary job of server) can be modeled as servers multiple vacations. In the production system, the machine
(server) is kept in an idle state (vacation) after completing the service and no items are in the queue to get
processed. The machine cannot remain in an idle state and as one of the measure of preventive maintenance,
the machine should be brought to the service mode after completing maximum vacations (𝐽-vacations).

Primary Health Care (PHC) is a vital component of the health-care system in which a doctor is available and
the patient will be given consultation. Sometimes, the doctors may be availing the physical break but diagnoze
the patients in online mode (working vacation) or the doctors may be working in some other patients (multiple
vacations). Some of the patients (impatient customers) who are unable to wait due to many reasons will leave
the PHC. This motivated the authors to study the different vacation policy queueing models and impatient
customers.

The objective of the proposed model is to develop a simple tool for the allocation of servers with suitable
vacation. As far as the author’s knowledge is concerned, the literature reveals reported work on a discrete-time
bulk arrival retrial queue with different vacation policies and comparative analysis of them. This paper will help
the designers to select the appropriate model suitable for their work and determine performances of the system,
particularly the mean orbit size. This motivated the authors to research 𝐺𝑒𝑜𝑋/𝐺/1 retrial queue with various
vacation policies.

The paper is structured as follows. Model description and preliminary notations used are given in Section 2.
In Sections 3–5, the probability generating function for orbit size under three types of vacations with impatient
customers are analyzed. In steady-state, performance characteristics such as mean orbit size, mean waiting
time, and orbit size probabilities are obtained. In Section 6, a comparative analysis among vacations is done.
In Section 7, numerical illustrations have been presented for the consistency of the theory developed. The
conclusion of the research work with future direction is given in Section 8.

1.2. Related literature study

In the recent years, discrete-time retrial queues have grown rapidly due to their potential applications in
digital communication systems. Performances of queueing models with the various patterns of arrivals, different
kinds of services along with vacation policies have been explored by many researchers. Falin and Templeton
[13] contributed a classical retrial queue and Yang and Li [30] emerged with the first work in discrete-time
retrial queue. A detailed discussion on retrial can be viewed in Artalejo [6], Atencia and Morena [8], Gomez-
Corral [15], Rein Nobel [22], and Ioannis Dimitriou [11]. The type of arrival is an important behavior in both
classical and retrial queueing models. Queueing models differ based on different types of arriving customers
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such as balking, preemptive, feedback, positive, negative, recurrent, etc.. In many applications, customers arrive
in bulk, for instance, a random size of packets is transmitted in digital communication systems. Takahashi
et al. [28] considered a 𝐺𝑒𝑜𝑋/𝐺/1 retrial queue with non-preemptive priority. Artalejo et al. [7] investigated a
batch arrival 𝐺𝑒𝑜𝑋/𝐺/1 retrial queue with control of admission using the maximum entropy method. Aboul
Hassan et al. [1, 2] focus on the effect of balking customers and batch arrivals in 𝐺𝑒𝑜/𝐺/1 retrial queueing
model. Choudhury et al. [10] derived the distribution of orbit size of a batch arrival retrial queueing system
with two phases of service and server interruption. Non-persistent customers will occur due to the long waiting
time in the queue or orbit. Queues with non-persistent behavior tend to arise in many situations, particularly
in the telecommunication industry where impatient customers tend to hang up their calls even before getting a
response from a service station. Liu and Song [20] derived the recursive formulae for a steady-state distribution of
𝐺𝑒𝑜/𝐺𝑒𝑜/1 retrial queueing model with vacation interruption and non-persistent retrial customers. Tao Jiang
[19] investigated the polling system by modeling a bulk service retrial queue with impatient customers and
obtained the joint probability distribution using a matrix geometric approach.

The interest in studying the queueing model with vacations has increased inorder to the utilize the idle time
of the server and to optimize the total average cost. In a queuing system, when the queue length or orbit size is
empty, the server will switch over to some other job – this period is referred to as the vacation period. In the
last few decades, performances of queueing models with various vacation policies have been explored. Queues
with various types of vacations were developed by Hunter [17], Doshi [12] and Takagi [27]. Servi and Finn [24]
initiated a 𝑀/𝑀/1 queue with a single working vacation in which the server gives a smaller service rate in the
vacation period. 𝑀/𝐺/1 queueing system with multiple working vacations was analyzed by Wu and Takagi [26].
After the completion of the service period, the server avails a vacation if no customer is waiting in the orbit
and returns to the idle state – such a model is known as a single vacation policy. Zhang et al. [33] studied a
discrete-time 𝐺𝑒𝑜/𝐺/1 retrial queue with single vacation and starting failure. Shweta Upadhyaya and Geetika
Malik [21] obtained the expected orbit size for a single-vacation retrial queueing model with preferred and
impatient customers. In the 𝐽-vacations model, the server avails the first vacation if no customer is in the orbit
after the service is completed. The server continues the vacation until it finds a customer for service or completes
𝐽-vacations following which the server returns to an idle state. Chang and Ke [9] discussed the characteristics of
the batch arrival retrial queue with 𝐽-vacations in continuous time. Performance analysis of retrial model with
𝐽-vacations in discrete-time contributed by Yue and Zhang [31]. Randomized 𝐽-vacations in the discrete-time
𝐺𝑒𝑜/𝐺/1 queue was modeled by Wang et al. [29] and the authors also obtained the waiting time and optimum
cost analysis. In multiple vacations policy, if there is no customer waiting in the orbit at the time of server’s
vacation completion epoch, the server avails of another vacation and this state of vacation continues until the
server finds another customer or a new customer to start the service.

Rosenberg and Yechiali [23] studied both single and multiple vacations. Jinting and Gao [14] focused on-
orbit size distribution and sojourn time for a discrete-time bulk arrival retrial model with a working vacation
policy. Arumuganathan et al. [16,18] derived queue size probability generating function for batch arrival retrial
queue and bulk state-dependent arrival 𝑀𝑋/𝐺/1 retrial queue with multiple vacations using the supplementary
variable technique. Zhang and Zhu [32] contributed a steady-state analysis of a queueing model with two different
types of vacations out which one is a regular vacation and the other, a non-exhaustive urgent vacation. Sudhesh
et al. [25] obtained time-dependent system size for queue under single and multiple working vacations with
impatient customers.

2. Model description

The proposed model consists of batch arrival, single server retrial queue with impatient customers, and three
types of vacations. Primary customers arrive in batches at the service station according to a geometric process
with the parameter 𝛼, where 𝛼 is the probability that a bulk of customers will arrive in the slot (𝑚, 𝑚+). An
arrival of batch of 𝐿 customers find the server to be free, one of the customers from the arrival batch gets
its service immediately, while the remaining 𝐿 − 1 customers join the orbit with probability 𝛽. On the other
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Figure 1. Schematic diagram – Model.

hand, if the server is not available at the time of batch arrival, the batch decides whether to join the orbit
with probability 𝛽 or to abandon the system with the probability 1 − 𝛽 = 𝛽. The customers who leave the
system never return later. It is assumed that customers in the orbit are usually persistent. At the time of
service completion, the server avails of a vacation if the orbit size is zero. This paper aims to investigate batch
arrival with impatient customers single server retrial queue with three policies namely single vacation, multiple
vacations, and 𝐽-vacations policy.

Case (i). In a single vacation policy, the server avails of a single vacation when the orbit size is zero. After
completing the vacation, if there is no arrival at the service station, the server returns to an idle state.
Otherwise, the server starts a service when the server finds at least one arrival in the system.

Case (ii). The server avails of the first vacation when there are no customers in the orbit. Once the server is
completed vacation, the server avails another vacation and continues to be on vacation untill there is a new
arrival to the service station at each vacation completion time. The server returns to the service state only
when the server finds at least one arrival to the system. This is called multiple vacations.

Case (iii). Under the 𝐽-vacations policy, the server avails the first vacation if the orbit size is zero at the time
of service completion. The server either returns to the service state when the server finds at least one arrival
to the system or the server is permitted to avail at most 𝐽 number of vacations if there is no arrival of the
customer at the end of each vacation completion period.

The batch size 𝐿 is identically distributed random variable with the probability mass function 𝑏𝑖 = 𝑃 (𝐿 =
𝑖), 𝑖 ≥ 1, with probability generating function 𝐵(𝑋) =

∑︀∞
ℎ=1 𝑏ℎ𝑥ℎ. It is assumed that inter-arrival times, service

times, retrial times, and vacation times follow the general distribution and are independent of one another.
Let 𝑆(𝑥) =

∑︀∞
ℎ=1 𝑠ℎ𝑥ℎ, and 𝑉 (𝑥) =

∑︀∞
ℎ=1 𝑣ℎ𝑥ℎ be the probability generating function of regular service

time and vacation time, respectively. Let 𝐵𝑖, 𝑆𝑖 and 𝑉𝑖 are 𝑖th order factorial moment of batch size, service
time and vacation time, respectively. The inter-retrial time is considered to be general with the probability
distribution function 𝑅(𝑥) =

∑︀∞
ℎ=1 𝑟ℎ𝑥ℎ. The schematic diagram of the model and vacation types are shown in

Figures 1 and 2, respectively.
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Figure 2. Schematic diagram – Different types of vacations.

3. Single vacation model (SVM)

In this section, a 𝐺𝑒𝑜𝑋/𝐺/1 retrial queue with impatient customers and a single vacation is studied. A
geometric arrival of bulk customers with rate 𝛼 is considered. An arriving batch of 𝐿 customers, if find the
server free, one of the customers from the batch gets its service immediately and the remaining 𝐿−1 customers
join the orbit with probability 𝛽. On the other hand, if the server is not free, the decision is made by the batch,
with probability 𝛽 joins the orbit or with probability, 𝛽 the entire batch of 𝐿 customers abandon from the
system and never returns later. It is assumed that customers in the orbit are persistent. If the orbit is empty
at the service completion epoch, the server avails a single vacation and resumes to an idle state immediately.
The schematic diagram of the single vacation is shown in Figure 2. It is considered that service time, vacation
time, and the inter-arrival time follow the general distribution and it is assumed that all are independent of one
another.

At the time 𝑚+, the state of the server is denoted as follows:

𝑆(1)
𝑚 =

⎧⎨⎩0 if the server is idle;
1 if the server is busy;
2 if the server is on vacation.

Let 𝑁
(1)
𝑜 denote the number of customers in the orbit, 𝑅

(1)
0,𝑚 denote the remaining time for retrial, 𝑅

(1)
1,𝑚 denote

the remaining service time of the customer, 𝑅
(1)
2,𝑚 denote the remaining vacation time of the server. The system

is modeled by the stochastic process Γ(1)
𝑚 =

(︁
𝑆

(1)
𝑚 , 𝑅

(1)
𝑘,𝑚, 𝑁

(1)
𝑜

)︁
. Γ(1)

𝑚 is a Markov chain and state space is

𝜁(1)
𝑚 = {(0, 0) ∪ (0, 𝑖, 𝑘) ∪ (1, 𝑖, 𝑘) ∪ (2, 𝑖, 𝑘); 𝑖 ≥ 1, 𝑘 ≥ 0}.

To find the stationary distribution, the system steady-state probabilities are defined as follows

Π(1)
0,0 = lim

𝑚→∞
𝑃
{︁

𝑆(1)
𝑚 = 0, 𝑁 (1)

𝑜 = 0
}︁

;
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Π(1)
0,𝑖,𝑘 = lim

𝑚→∞
𝑃
{︁

𝑆(1)
𝑚 = 0, 𝑅

(1)
0,𝑚 = 𝑖, 𝑁 (1)

𝑜 = 𝑘
}︁

; 𝑖 ≥ 1, 𝑘 ≥ 1,

Π(1)
1,𝑖,𝑘 = lim

𝑚→∞
𝑃
{︁

𝑆(1)
𝑚 = 1, 𝑅

(1)
1,𝑚 = 𝑖, 𝑁 (1)

𝑜 = 𝑘
}︁

; 𝑖 ≥ 1, 𝑘 ≥ 0,

Π(1)
2,𝑖,𝑘 = lim

𝑚→∞
𝑃
{︁

𝑆(1)
𝑚 = 2, 𝑅

(1)
2,𝑚 = 𝑖, 𝑁 (1)

𝑜 = 𝑘
}︁

; 𝑖 ≥ 1, 𝑘 ≥ 0.

The forward Kolmogorov equations are as follows:

Π(1)
0,0 = 𝛼̄Π(1)

0,0 + 𝛼̄Π(1)
2,1,0, (3.1)

Π(1)
0,𝑖,𝑘 = 𝛼̄Π(1)

0,𝑖+1,𝑘 + 𝛼̄𝑟𝑖Π
(1)
1,1,𝑘 + 𝛼̄𝑟𝑖Π

(1)
2,1,𝑘; 𝑖 ≥ 1, 𝑘 ≥ 1, (3.2)

Π(1)
1,𝑖,𝑘 = 𝛿0,𝑘𝛼𝛽𝑏𝑘+1𝑠𝑖Π

(1)
0,0 + (1− 𝛿0,𝑘)𝛼𝛽𝑠𝑖

𝑘∑︁
𝑙=1

𝑏𝑙

∞∑︁
𝑗=1

Π(1)
0,𝑗,𝑘−𝑙+1 + 𝛼̄𝑠𝑖Π

(1)
0,1,𝑘+1

+ 𝛼𝛽

∞∑︁
𝑙=1

𝑏𝑙Π
(1)
1,𝑖+1,𝑘 + 𝛼̄Π(1)

1,𝑖+1,𝑘 + (1− 𝛿0,𝑘)𝛼𝛽

𝑘∑︁
𝑙=1

𝑏𝑙Π
(1)
1,𝑖+1,𝑘−𝑙

+ 𝛼𝛽𝑠𝑖

𝑘∑︁
𝑙=1

𝑏𝑙Π
(1)
1,1,𝑘−𝑙+1 + 𝛼̄𝑟0𝑠𝑖Π

(1)
1,1,𝑘+1

+ 𝛼̄𝑟0𝑠𝑖Π
(1)
2,1,𝑘+1 + (1− 𝛿0,𝑘)𝛼𝛽𝑠𝑖

𝑘∑︁
𝑙=1

𝑏𝑙Π
(1)
2,1,𝑘−𝑙+1; 𝑖 ≥ 1, 𝑘 ≥ 0, (3.3)

Π(1)
2,𝑖,𝑘 = 𝛼̄𝑣𝑖Π

(1)
1,1,0 + 𝛼𝛽

∞∑︁
𝑙=1

𝑏𝑙𝑣𝑖Π
(1)
1,1,0 + 𝛼̄Π(1)

2,𝑖+1,𝑘

+ (1− 𝛿0,𝑘)𝛼𝛽

𝑘∑︁
𝑙=1

𝑏𝑙Π
(1)
2,𝑖+1,𝑘−𝑙 + 𝛼𝛽

∞∑︁
𝑙=1

𝑏𝑙Π
(1)
2,𝑖+1,𝑘; 𝑖 ≥ 1, 𝑘 ≥ 0, (3.4)

where 𝛼̄ = 1− 𝛼, 𝛽 = 1− 𝛽 and 𝛿𝑖,𝑗 denotes the Kronecker delta and the condition is

Π(1)
0,0 +

∞∑︁
𝑗=1

∞∑︁
𝑘=1

Π(1)
0,𝑗,𝑘 +

∞∑︁
𝑗=1

∞∑︁
𝑘=0

Π(1)
1,𝑗,𝑘 +

∞∑︁
𝑗=1

∞∑︁
𝑘=0

Π(1)
2,𝑗,𝑘 = 1. (3.5)

3.1. Steady-state orbit size probabilities

To determine the performance characteristics of the underlying model, the auxiliary generating functions and
probability generating functions are considered as follows:

Φ(1)
0,𝑖 (𝑢) =

∞∑︁
𝑘=1

Π(1)
0,𝑖,𝑘𝑢𝑘; 𝑖 ≥ 1,

Φ(1)
ℎ,𝑖(𝑢) =

∞∑︁
𝑘=0

Π(1)
ℎ,𝑖,𝑘𝑢𝑘; where ℎ = 1, 2, and,

Φ(1)
ℎ (𝑥, 𝑢) =

∞∑︁
𝑖=1

Φ(1)
ℎ,𝑖(𝑢)𝑥𝑖; where ℎ = 0, 1, 2.

This part describes how steady-state orbit size probability generating functions (PGF) are derived. The following
theorem provides the result to find the PGF of the number of customers in the buffer under the single vacation
model.
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Theorem 3.1. The steady-state probability distribution of the Markov chain Γ(1)
𝑚 = (𝑆(1)

𝑚 , 𝑅
(1)
𝑘,𝑚, 𝑁

(1)
𝑜 ) at an

arbitrary slot has the following probability generating functions:

Φ(1)
0 (𝑥, 𝑢) =

𝑅(𝑥)−𝑅(𝛼̄)
𝑥− 𝛼̄

𝛼𝑥[(𝑢𝜈(𝑢)− 𝛼̄𝛽𝐵(𝑢)𝑆(𝜈(𝑢))𝑉 (𝜏) + 𝑢(𝜈(𝑢)− 𝜏𝑉 (𝜈(𝑢)))]
𝑉 (𝜏)Ω(𝑢)

Π(1)
0,0, (3.6)

Φ(1)
1 (𝑥, 𝑢) =

𝑆(𝑥)− 𝑆(𝜈(𝑢))
𝑥− 𝜈(𝑢)

𝛼𝑥[𝜈(𝑢)(𝛼̄(1− 𝛽𝐵(𝑢))𝑅(𝛼̄) + 𝛼𝛽𝐵(𝑢))𝑉 (𝜏)
+(𝜈(𝑢)− 𝜏𝑉 (𝜈(𝑢)))(𝛼̄(1− 𝛽𝐵(𝑢))𝑅(𝛼̄) + 𝛽𝐵(𝑢))]

𝛼̄𝑉 (𝜏)Ω(𝑢)
Π(1)

0,0, (3.7)

Φ(1)
2 (𝑥, 𝑢) =

𝑉 (𝑥)− 𝑉 (𝜈(𝑢))
𝑥− 𝜈(𝑢)

𝛼𝑥𝜏

𝛼̄𝑉 (𝜏)
Π(1)

0,0, (3.8)

where

Π(1)
0,0 =

𝛼̄𝛽(1− 𝛼̄𝑅(𝛼̄))𝑉 (𝜏)
(1 + 𝑉 (𝜏))𝑇1 − 𝑇2 + 𝑇3𝑉 (𝜏)

, (3.9)

𝜏 = 1− 𝛼𝛽, (3.10)
𝜈(𝑢) = 𝛼̄ + 𝛼𝛽 + 𝛼𝛽𝐵(𝑢), (3.11)
Ω(𝑢) = 𝛼̄𝑆(𝜈(𝑢))(1− 𝛽𝐵(𝑢))𝑅(𝛼̄) + 𝛽𝐵(𝑢)𝑆(𝜈(𝑢))− 𝑢𝜈(𝑢), (3.12)

𝑇1 = 𝛽
[︀
𝛼̄(1−𝑅(𝛼̄) + 𝛼2𝛽𝐵1𝑆1

]︀
, (3.13)

𝑇2 = 𝛼𝛽𝛽(1− 𝛼̄𝑅(𝛼̄))𝐵1(𝛼𝛽𝑆1 + 𝜏𝑉1)), (3.14)
𝑇3 = 𝛼̄𝛽𝛽(1− 𝛼𝛽𝐵1𝑆1), (3.15)
𝑇4 = 𝛽𝛽[𝛼̄𝑅(𝛼̄)(1− 𝛼𝛽𝐵1𝜏(𝑆1 − 𝑉1))− 𝛼𝛽𝐵1(𝛼𝛽𝐵1(𝛼𝛽𝑆1 + 𝜏𝑉1))]. (3.16)

Proof of the Theorem 3.1. From the Kolmogorov equation (3.1), the condition Π(1)
2,1,0 = 𝛼

𝛼̄Π(1)
0,0 is obtained.

Multiplying equations (3.2)–(3.4) by 𝑢𝑘, and summing up 𝑘, the set of equations in terms of auxiliary generating
functions has been determined as

Φ(1)
0,𝑖 (𝑢) = 𝛼̄Φ(1)

0,𝑖+1(𝑢) + 𝛼̄𝑟𝑖

[︁
Φ(1)

1,1(𝑢)−Π(1)
1,1,0

]︁
+ 𝛼̄𝑟𝑖

[︁
Φ(1)

2,1(𝑢)−Π(1)
2,1,0

]︁
; 𝑖 ≥ 1, (3.17)

Φ(1)
1,𝑖 (𝑢) = 𝛼𝛽

𝐵(𝑢)
𝑢

𝑠𝑖Π
(1)
0,0 + 𝛼𝛽

𝐵(𝑢)
𝑢

𝑠𝑖Φ
(1)
0 (1, 𝑢) + 𝛼̄𝑠𝑖

Φ(1)
0,1(𝑢)
𝑢

+ 𝜈(𝑢)Φ(1)
1,𝑖+1(𝑢)

+
(︂

𝛼𝛽𝐵(𝑢) + 𝛼̄𝑟0

𝑢

)︂
𝑠𝑖

[︁
Φ(1)

1,1(𝑢) + Φ(1)
2,1(𝑢)

]︁
−
(︂

𝛼𝛽𝐵(𝑢) + 𝛼̄𝑟0

𝑢

)︂
𝑠𝑖

(︁
Π(1)

1,1,0 + Π(1)
2,1,0

)︁
; 𝑖 ≥ 1, (3.18)

Φ(1)
2,𝑖 (𝑢) = 𝜏𝑣𝑖Π

(1)
1,1,0) + 𝜈(𝑢)Φ(1)

2,𝑖+1(𝑢); 𝑖 ≥ 1, (3.19)

where 𝜏 = 𝛼̄ + 𝛼𝛽 = 1− 𝛼𝛽, 𝜈(𝑢) = 𝛼̄ + 𝛼𝛽 + 𝛼𝛽𝐵(𝑢). Multiplying equation (3.19) by 𝑥𝑖, summing over 𝑖,

(𝑥− 𝜈(𝑢))Φ(1)
2 (𝑥, 𝑢)

𝑥
= 𝜏𝑉 (𝑥)Π(1)

1,1,0 − 𝜈(𝑢)Φ(1)
2,1(𝑢). (3.20)

Substituting 𝑥 = 𝜈(𝑢) in (3.20)

Φ(1)
2,1(𝑢) =

(𝜏)𝑉 (𝜈(𝑢))
𝜈(𝑢)

Π(1)
1,1,0. (3.21)

Substituting (3.21) in (3.20)

Φ(1)
2 (𝑥, 𝑢) =

(︀
𝑉 (𝑥)− 𝑉 (𝜈(𝑢))

)︀
𝑥− 𝜈(𝑢)

𝑥𝜏Π(1)
1,1,0. (3.22)
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Differentiating (3.22) w.r.t 𝑥 and taking 𝑥 = 𝑢 = 0, we get Π(1)
2,1,0 = 𝑉 (𝜏)Π(1)

1,1,0. �

Inserting the condition Π(1)
2,1,0 = 𝛼

𝛼̄Π(1)
0,0, it is obtained Π(1)

1,1,0 = 𝛼
𝛼̄𝑉 (𝜏)Π(1)

0,0, and equation (3.21) reduced as

Φ(1)
2,1(𝑢) = 𝛼

𝛼̄
𝜏

𝑉 (𝜏)
𝑉 (𝜈(𝑢))

𝜈(𝑢) Π(1)
0,0.

The PGF of orbit size when the server is in vacation is derived as

Φ(1)
2 (𝑥, 𝑢) =

𝑉 (𝑥)− 𝑉 (𝜈(𝑢))
𝑥− 𝜈(𝑢)

𝛼𝑥𝜏

𝛼̄𝑉 (𝜏)
Π(1)

0,0. (3.23)

To complete the theorem, multiplying the equation (3.17) by 𝑥𝑖, summing over 𝑖 from 1 to ∞ and applying the
results of Π(1)

1,1,0 and Π(1)
2,1,0(︂

𝑥− 𝛼̄

𝑥

)︂
Φ(1)

0 (𝑥, 𝑢) = 𝛼̄(𝑅(𝑥)− 𝑟0)
[︁
Φ(1)

1,1(𝑢) + Φ(1)
2,1(𝑢)

]︁
− 𝛼̄Φ(1)

0,1(𝑢)

−𝛼(𝑅(𝑥)− 𝑎0)
1 + 𝑉 (𝜏)

𝑉 (𝜏)
Π(1)

0,0. (3.24)

Multiplying equation (3.18) by 𝑥𝑖, summing up 𝑖 from 1 to ∞ and using all boundary conditions. Φ(1)
0 (1, 𝑢) can

be obtained as follows from (3.24), by substituting 𝑥 = 1,(︂
𝑥− 𝜈(𝑢)

𝑥

)︂
Φ(1)

1 (𝑥, 𝑢) =
(︂

1
𝑢
− 𝛽𝐵(𝑢)

𝑢

)︂
𝛼̄𝑆(𝑥)Φ(1)

0,1(𝑢)

+
[︂(︂

𝛽(1− 𝛼̄𝑎0)𝐵(𝑢)
𝑢

+
𝛼̄𝑟0

𝑢

)︂
𝑆(𝑥)− 𝜈(𝑢)

]︂
Φ(1)

1,1(𝑢)

+
[︂(︂

𝛽(1− 𝛼̄𝑎0)𝐵(𝑢)
𝑢

+
𝛼̄𝑟0

𝑢

)︂
𝑆(𝑥)

]︂
Φ(1)

2,1(𝑢)

−
[︂(︂

𝛼𝛽(1− 𝑎0)𝐵(𝑢)
𝑢

+
𝛼𝛽𝐵(𝑢) + (1− 𝛼̄𝑎0)

𝑢

)︂
1 + 𝑉 (𝜏)

𝑉 (𝜏)
−
(︂

𝛼𝛽𝐵(𝑢)
𝑢

)︂]︂
𝑆(𝑥)Π(1)

0,0.

(3.25)

Taking 𝑥 = 𝛼̄, 𝑥 = 𝜈(𝑢) in (3.24) and (3.25) respectively, Φ(1)
0,1(𝑢) and Φ(1)

1,1(𝑢) has been obtained as follows

Φ(1)
0,1(𝑢) =

(𝑅(𝛼̄− 𝑟0)𝛼[(𝑢𝜈(𝑢)− 𝛼̄𝛽𝐵(𝑢)𝑆(𝜈(𝑢))𝑉 (𝜏) + 𝑢(𝜈(𝑢)− 𝜏𝑉 (𝜈(𝑢)))]
𝑉 (𝜏)Ω(𝑢)

Π(1)
0,0, (3.26)

Φ(1)
1,1(𝑢) =

[𝜈(𝑢)(𝛼̄(1− 𝛽𝐵(𝑢))𝑅(𝛼̄) + 𝛼𝛽𝐵(𝑢))𝑉 (𝜏)
+(𝜈(𝑢)− 𝜏𝑉 (𝜈(𝑢)))(𝛼̄(1− 𝛽𝐵(𝑢))𝑅(𝛼̄) + 𝛽𝐵(𝑢))]

𝛼̄𝑉 (𝜏)Ω(𝑢)
Π(1)

0,0, (3.27)

where Ω(𝑢) = 𝛼̄𝑆(𝜈(𝑢))(1− 𝛽𝐵(𝑢))𝑅(𝛼̄) + 𝛽𝐵(𝑢)𝑆(𝜈(𝑢))− 𝑢𝜈(𝑢).
Substituting the above results in (3.24) and (3.25), the PGFs of number of customers in the orbit are concluded
as

Φ(1)
0 (𝑥, 𝑢) =

𝑅(𝑥)−𝑅(𝛼̄)
𝑥− 𝛼̄

𝛼𝑥[(𝑢𝜈(𝑢)− 𝛼̄𝛽𝐵(𝑢)𝑆(𝜈(𝑢))𝑉 (𝜏) + 𝑢(𝜈(𝑢)− 𝜏𝑉 (𝜈(𝑢)))]
𝑉 (𝜏)Ω(𝑢)

Π(1)
0,0, (3.28)

Φ(1)
1 (𝑥, 𝑢) =

𝑆(𝑥)− 𝑆(𝜈(𝑢))
𝑥− 𝜈(𝑢)

𝛼𝑥[𝜈(𝑢)(𝛼̄(1− 𝛽𝐵(𝑢))𝑅(𝛼̄) + 𝛼𝛽𝐵(𝑢))𝑉 (𝜏)
+(𝜈(𝑢)− 𝜏𝑉 (𝜈(𝑢)))(𝛼̄(1− 𝛽𝐵(𝑢))𝑅(𝛼̄) + 𝛽𝐵(𝑢))]

𝛼̄𝑉 (𝜏)Ω(𝑢)
Π(1)

0,0. (3.29)
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The unknown constant Π(1)
0,0 can be obtained from the steady-state condition (3.5). The equation (3.5) is given

in terms of PGFs as

Π(1)
0,0 + Φ(1)

0 (1, 1) + Φ(1)
1 (1, 1) + Φ(1)

2 (1, 1) = 1. (3.30)

Φ(1)
0 (1, 1), Φ(1)

1 (1, 1), and Φ(1)
2 (1, 1) are obtained from (3.28), (3.29), and (3.23) taking 𝑥 = 𝑢 = 1, it gives

Π(1)
0,0 =

𝛼̄𝛽(1− 𝛼̄𝑅(𝛼̄))𝑉 (𝜏)
(1 + 𝑉 (𝜏))𝑇1 − 𝑇2 + 𝑇3𝑉 (𝜏)

· (3.31)

The values of 𝑇𝑖, 𝑖 = 1, 2, 3, and 4 are as follows

𝑇1 = 𝛽
[︀
𝛼̄(1−𝑅(𝛼̄) + 𝛼2𝛽𝐵1𝑆1

]︀
,

𝑇2 = 𝛼𝛽𝛽(1− 𝛼̄𝑅(𝛼̄))𝐵1(𝛼𝛽𝑆1 + 𝜏𝑉1),
𝑇3 = 𝛼̄𝛽𝛽(1− 𝛼𝛽𝐵1𝑆1),
𝑇4 = 𝛽𝛽[𝛼̄𝑅(𝛼̄)(1− 𝛼𝛽𝐵1𝜏(𝑆1 − 𝑉1))− 𝛼𝛽𝐵1(𝛼𝛽𝐵1(𝛼𝛽𝑆1 + 𝜏𝑉1))].

3.2. Stability condition

Equation (3.5) holds if the value of the constant Π(1)
0,0 in (3.9) is greater than zero. Π(1)

0,0 =
𝛼̄𝛽(1−𝛼̄𝑅(𝛼̄))𝑉 (𝜏)

(1+𝑉 (𝜏))𝑇1−𝑇2+𝑇3𝑉 (𝜏) > 0, which implies 𝛼̄𝛽(1 − 𝛼̄𝑅(𝛼̄))𝑉 (𝜏) > 0. Since 𝑉 (𝜏) and 𝑅(𝛼̄)) are probabilities

which are always greater than 0. The stability condition of the Markov chain Γ(1)
𝑚 is 𝛼̄𝑅(𝛼̄) < 1. It can be

observed from the condition that the system is stable for any set of parameters.

3.3. Marginal generating functions

Taking limit 𝑥 → 1, from (3.6) to (3.8) in Theorem 3.1, under the stability condition, the marginal generating
functions of the orbit size when the server in different states have been obtained as follows:

(1) The marginal generating function of the orbit size when the server is in idle state is given by

Π(1)
0,0 + Φ(1)

0 (1, 𝑢) =

[((𝛼̄𝑆(𝜈(𝑢))− 𝑢𝜈(𝑢))𝑅(𝛼̄) + 𝛼𝛽𝐵(𝑢)𝑆(𝜈(𝑢)))𝑉 (𝜏)
+𝑢(1−𝑅(𝛼̄)(𝜈(𝑢)− 𝜏𝑉 (𝜈(𝑢))))]

𝑉 (𝜏)Ω(𝑢)
Π(1)

0,0.

(2) The following result gives the marginal generating function of the orbit size when the server is in busy
state with regular service is obtained as

Φ(1)
1 (1, 𝑢) =

1− 𝑆(𝜈(𝑢))
1− 𝜈(𝑢)

𝛼[𝜈(𝑢)(𝛼̄(1− 𝛽𝐵(𝑢))𝑅(𝛼̄) + 𝛼𝛽𝐵(𝑢))𝑉 (𝜏)
+(𝜈(𝑢)− 𝜏𝑉 (𝜈(𝑢)))(𝛼̄(1− 𝛽𝐵(𝑢))𝑅(𝛼̄) + 𝛽𝐵(𝑢))]

𝛼̄𝑉 (𝜏)Ω(𝑢)
Π(1)

0,0.

(3) When the server is under vacation, the marginal generating function of the orbit size is given by

Φ(1)
2 (1, 𝑢) =

1− 𝑉 (𝜈(𝑢))
1− 𝜈(𝑢)

𝛼𝜏

𝛼̄𝑉 (𝜏)
Π(1)

0,0.

(4) The probability generating function of the mean orbit size is derived by

Ψ(1)(𝑢) = Φ(1)
0 (1, 𝑢) + Φ(1)

1 (1, 𝑢) + Φ(1)
2 (1, 𝑢) (3.32)

=
𝑁1(𝑢)− 𝜉1(𝑢)

𝐷1(𝑢)
Π(1)

0,0. (3.33)
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where the values of 𝑁1(𝑢), 𝜉1(𝑢) and 𝐷1(𝑢) are

𝑁1(𝑢) = 𝐴1𝑢(𝐵(𝑢))2 −𝐴2𝑢𝐵(𝑢)𝑉 (𝜈(𝑢)) + 𝐴3𝑢𝐵(𝑢) + 𝐴4𝑢(1− 𝑉 (𝜈(𝑢))) + 𝛼𝐴5(𝐵(𝑢))2𝑆(𝜈(𝑢))
+ 𝐴6(𝐵(𝑢))2 + 𝐴7𝐵(𝑢)𝑆(𝜈(𝑢)) + 𝐴8𝐵(𝑢)𝑉 (𝜈(𝑢))−𝐴9𝐵(𝑢) + 𝐴11(1− 𝑉 (𝜈(𝑢))),

𝜉1(𝑢) = 𝛼̄𝛼2𝛽2𝑅(𝛼̄)𝑉 (𝜏)𝑢(𝐵(𝑢))2 + 𝛼𝛼̄𝛽(1− 2𝛼𝛽)𝑅(𝛼̄)𝑉 (𝜏)𝑢𝐵(𝑢) + 𝛼𝛼̄𝛽(𝜏)𝑅(𝛼̄)𝑉 (𝜏))𝑢
+ 𝛼2𝛽2(1− 𝛼̄𝑅(𝛼̄))(𝐵(𝑢))2𝑆(𝜈(𝑢)) + 𝛼2𝛽(𝛼− 𝛼̄𝑅(𝛼̄)𝑉 (𝜏))(𝐵(𝑢))2

+ 𝛼2𝛽(1− 𝛽(1− 𝛼̄𝑅(𝛼̄)))(𝐵(𝑢))𝑆(𝜈(𝑢)) + 𝛼𝛽(𝛼2 + 𝛼𝛽(1 + 𝛽))𝑅(𝛼̄)𝑉 (𝜏)− 𝛼𝛼̄𝛽)𝐵(𝑢)
+ 𝐴10𝑆(𝜈(𝑢)) + 𝛼𝛼̄(1− 𝛼𝛽)𝑅(𝛼̄)𝑉 (𝜏),

𝐷1(𝑢) = 𝛼̄(1− 𝜈(𝑢))𝑉 (𝜏)Ω(𝑢),

𝐴1 = 𝛼2𝛽2(1 − 𝛼̄𝑅(𝛼̄)); 𝐴2 = 𝛼𝛽(1 − 𝛼𝛽)(1 − 𝛼̄𝑅(𝛼̄)); 𝐴3 = 𝛼𝛽((1 − 𝛼̄) − 𝛼𝛽(𝛼 − 2𝛼̄𝑅(𝛼̄)); 𝐴4 = 𝛼(1 −
𝛼𝛽)(𝛽+𝛼̄𝛽𝑅(𝛼̄)); 𝐴5 = 𝛼2𝛽2(1−𝛼̄𝑅(𝛼̄)); 𝐴6 = 𝛼2𝛽2(𝛼(1−𝑉 (𝜏))−(1−𝛼̄𝑅(𝛼̄))); 𝐴7 = 𝛼2𝛽(1−𝛼̄𝑅(𝛼̄)(𝛽(1−
𝑉 (𝜏) − 1) + 𝑉 (𝜏)); 𝐴8 = 𝛼𝛽(1 − 𝛼𝛽)(1 − 𝛼̄𝑅(𝛼̄)); 𝐴9 = 𝛼𝛽(𝛼𝛽(𝛼̄(1 − (𝑅(𝛼̄)) + 𝛼𝑉 (𝜏) + 𝛼2𝑅(𝛼̄) + (1 −
2𝑅(𝛼̄)− 𝑉 (𝜏))𝛼 + 𝑅(𝛼̄)− 1))); 𝐴10 = 𝛼𝛼̄𝛽(1−𝑅(𝛼̄))𝑉 (𝜏)); 𝐴11 = 𝛼(1− 𝛼𝛽)𝛼̄𝑅(𝛼̄).

(5) The probability generating function of the mean system size is obtained by

Φ(1)(𝑢) = Π(1)
0,0 + Φ(1)

0 (1, 𝑢) + 𝑢Φ(1)
1 (1, 𝑢) + Φ(1)

2 (1, 𝑢).

3.4. Performance characteristics

Using the steady solution derived in Theorem 3.1, performance measures such as system state probabilities,
mean orbit size, mean system size, and waiting time in the orbit are obtained as follows:

(1) Probability that the server is in idle state is given by

Π(1)
0,0 + Φ(1)

0 (1, 1) =
𝛼((𝑅(𝛼̄)− 𝛽)𝑉 (𝜏)− 𝛽(1−𝑅(𝛼̄)))

Ω(1)𝑉 (𝜏)
Π(1)

0,0. (3.34)

(2) Probability that the server is in busy state is given by

Φ(1)
1 (1, 1) =

[︀(︀
𝛼̄𝛽𝑅(𝛼̄) + 𝛼𝛽

)︀
𝑉 (𝜏) +

(︀
𝛼̄𝛽𝑅(𝛼̄) + 𝛽

)︀
𝛼𝛽
]︀
𝛼2𝛽𝐵1𝑆1

𝛼̄Ω(1)𝑉 (𝜏)
Π(1)

0,0. (3.35)

(3) Probability that the server is under vacation is given by

Φ(1)
2 (1, 1) =

𝛼2𝛽𝜏𝐵1𝑉1

𝛼̄𝑉 (𝜏)
Π(1)

0,0. (3.36)

(4) The rate of arrival of customers to the orbit is given by

𝑃orbit = 𝛼𝛽Φ(1)
1 (1, 1), (3.37)

𝑃orbit = 𝛼𝛽
𝛼𝑆1

[︀
(𝛼̄𝛽𝑅(𝛼̄) + 𝛼𝛽)𝑉 (𝜏) + (𝛼̄𝛽𝑅(𝛼̄) + 𝛽)𝛼𝛽

]︀
𝛼̄Ω(1)𝑉 (𝜏)

Π(1)
0,0. (3.38)

(5) The mean number of customers in the orbit is given by 𝐸(𝑁) = Ψ′(1).
(6) Mean waiting time of a customer in the orbit is given by Little’s formula

𝑊orbit =
𝐸(𝑁)
𝑃orbit

· (3.39)
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3.5. Particular cases

Assume that single arrival pattern, all the customers will join the orbit if server is busy, and no vacation.
When 𝐵(𝑢) = 𝑢, 𝛽 = 1, and 𝑉 (𝜈(𝑢)) = 1, the proposed model is become 𝐺𝑒𝑜/𝐺/1 with general retrial times.
The equations (3.6) and (3.7) imply the following PGFs which coincide to Atencia and Moreno [8].

Φ(1)
0 (𝑥, 𝑢) =

[𝑅(𝑥)−𝑅(𝛼̄)]𝛼𝑥𝑢[𝜈(𝑢)− 𝑆(𝜈(𝑢))]Π(1)
0,0

[𝑥− 𝛼̄][(𝛼̄𝑅(𝛼̄))(1− 𝑢)𝑆(𝜈(𝑢))− 𝑢(𝜈(𝑢)− 𝑆(𝜈(𝑢)))]
, (3.40)

Φ(1)
1 (𝑥, 𝑢) =

[𝑆(𝑥)− 𝑆(𝜈(𝑢))]𝛼𝑥𝑅(𝛼̄))(1− 𝑢)
(︁
𝜈(𝑢)Π(1)

0,0

)︁
[𝑥− 𝜈(𝑢)][(𝛼̄𝑅(𝛼̄))(1− 𝑢)𝑆(𝜈(𝑢))− 𝑢(𝜈(𝑢)− 𝑆(𝜈(𝑢))]

, (3.41)

where Π(1)
0,0 = 𝛼+𝛼̄𝑅(𝛼̄)−𝛼𝑆1

𝑅(𝛼̄) and 𝜈(𝑢) = 𝛼̄ + 𝛼𝑢.

4. Multiple vacations model (MVM)

This section considers a 𝐺𝑒𝑜𝑋/𝐺/1 retrial queue with impatient customers and multiple vacations. A geo-
metric arrival of bulk customers with rate 𝛼 is considered. If an arriving batch of 𝐿 customers find the server
free, one of the customers from the arrival batch gets its service immediately and the remaining 𝐿−1 customers
join the orbit with probability 𝛽. If the server is not available at the time of batch arrival, the decision is made
by the batch whether to join the orbit with probability 𝛽 or to abandon from the system with the probability
1 − 𝛽 = 𝛽. The customers who leave the system never return later. However, it is assumed that customers
in the orbit are persistent. If the orbit size is zero at the service completion epoch, the server avails the first
vacation. The server takes another vacation if there is no customer in the system at the end of the vacation
completion period and continues for remain in vacation mode. The server returns to its regular service state
when the server finds at least one arrival to the system. The schematic diagram of multiple vacations is shown
in Figure 2. Service time, vacation time, retrial time, and inter-arrival times are considered to follow general
probability distribution and is assumed to be independent of one another.

At the time 𝑚+, the state of the server is denoted by,

𝑆(2)
𝑚 =

⎧⎨⎩0 if the server is idle;
1 if the server is busy;
2 if the server is on vacation.

Let 𝑁
(2)
𝑜 denote the number of customers in the orbit, 𝑁

(2)
𝑣 , the number of vacations, 𝑅

(2)
0,𝑚, the remaining time

for retrial, 𝑅
(2)
1,𝑚, the remaining service time of the customer, and 𝑅

(2)
2,𝑚, the remaining vacation time of the

server. The system has been modeled by the stochastic process Γ(2)
𝑚 =

(︁
𝑆

(2)
𝑚 , 𝑅

(2)
𝑘,𝑚, 𝑁

(2)
𝑜

)︁
.

Γ(2)
𝑚 is a Markov chain and its state space is

𝜁(2)
𝑚 = {(0, 0) ∪ (0, 𝑖, 𝑘) ∪ (1, 𝑖, 𝑘) ∪ (2, 𝑖, 𝑘); 𝑖 ≥ 1, 𝑘 ≥ 0}.

To find the stationary distribution, the steady-state probabilities are defined as follows

Π(2)
0,𝑖,𝑘 = lim

𝑚→∞
𝑃
{︁

𝑆(2)
𝑚 = 0, 𝑅

(2)
0,𝑚 = 𝑖, 𝑁 (2)

𝑜 = 𝑘
}︁

; 𝑖 ≥ 1, 𝑘 ≥ 1,

Π(2)
1,𝑖,𝑘 = lim

𝑚→∞
𝑃
{︁

𝑆(2)
𝑚 = 1, 𝑅

(2)
1,𝑚 = 𝑖, 𝑁 (2)

𝑜 = 𝑘
}︁

; 𝑖 ≥ 1, 𝑘 ≥ 0,

𝑤
(1)
𝑛,𝑖,𝑘 = lim

𝑚→∞
𝑃
{︁

𝑆(2)
𝑚 = 2, 𝑁 (2)

𝑣 = 𝑛, 𝑅
(2)
2,𝑚 = 𝑖, 𝑁 (2)

𝑜 = 𝑘
}︁

; 𝑖 ≥ 1, 𝑘 ≥ 0.
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The balance equations of the underlying system are obtained as follows:

Π(2)
0,𝑖,𝑘 = 𝛼̄Π(2)

0,𝑖+1,𝑘 + 𝛼̄𝑟𝑖Π
(2)
1,1,𝑘 + 𝛼̄𝑟𝑖

∞∑︁
𝑛=1

𝑤
(1)
𝑛,1,𝑘; 𝑖 ≥ 1, 𝑘 ≥ 1, (4.1)

Π(2)
1,𝑖,𝑘 = (1− 𝛿0,𝑘)𝛼𝛽𝑠𝑖

𝑘∑︁
𝑙=1

𝑏𝑙

∞∑︁
𝑗=1

Π(2)
0,𝑗,𝑘−𝑙+1 + 𝛼̄𝑠𝑖Π

(2)
0,1,𝑘+1 + 𝛼𝛽𝑏𝑘+1𝑠𝑖Π

(2)
1,1,0

+ 𝛼̄Π(2)
1,𝑖+1,𝑘 + 𝛼𝛽

∞∑︁
𝑙=1

𝑏𝑙Π
(2)
1,𝑖+1,𝑘 + (1− 𝛿0,𝑘)𝛼𝛽

𝑘∑︁
𝑙=1

𝑏𝑙Π
(2)
1,𝑖+1,𝑘−𝑙

+ 𝛼̄𝑟0𝑠𝑖Π
(2)
1,1,𝑘+1 + 𝛼𝛽

𝑘∑︁
𝑙=1

𝑏𝑙𝑠𝑖Π
(2)
1,1,𝑘−𝑙+1

+ 𝛼̄𝑟0𝑠𝑖

∞∑︁
𝑛=1

𝑤
(1)
𝑛,1,𝑘+1 + 𝛼𝛽𝑠𝑖

𝑘∑︁
𝑙=1

𝑏𝑙

∞∑︁
𝑛=1

𝑤
(1)
𝑛,1,𝑘−𝑙+1; 𝑖 ≥ 1, 𝑘 ≥ 0, (4.2)

𝑤
(1)
1,𝑖,𝑘 = 𝛿0,𝑘𝛼̄𝑣𝑖Π

(2)
1,1,𝑘 + 𝛿0,𝑘𝛼𝛽

∞∑︁
𝑙=1

𝑏𝑙𝑣𝑖Π
(2)
1,1,𝑘 + 𝛼̄𝑤

(1)
1,𝑖+1,𝑘 + 𝛼𝛽

∞∑︁
𝑙=1

𝑏𝑙𝑤
(1)
𝑛,𝑖+1,𝑘

+ (1− 𝛿0,𝑘)𝛼𝛽

𝑘∑︁
𝑙=1

𝑏𝑙𝑤
(1)
1,𝑖+1,𝑘−𝑙; 𝑖 ≥ 1, 𝑘 ≥ 0, (4.3)

𝑤
(1)
𝑛,𝑖,𝑘 = 𝛿0,𝑘𝛼̄𝑣𝑖𝑤

(1)
𝑛−1,1,𝑘 + 𝛿0,𝑘𝛼𝛽

∞∑︁
𝑙=1

𝑏𝑙𝑣𝑖𝑤
(1)
𝑛−1,1,𝑘 + 𝛼̄𝑤

(1)
𝑛,𝑖+1,𝑘 + 𝛼𝛽

∞∑︁
𝑙=1

𝑏𝑙𝑤
(1)
𝑛,𝑖+1,𝑘

+ (1− 𝛿0,𝑘)𝛼𝛽

𝑘∑︁
𝑙=1

𝑏𝑙𝑤
(1)
𝑛,𝑖+1,𝑘−𝑙; 𝑛 ≥ 2, 𝑖 ≥ 1, 𝑘 ≥ 0, (4.4)

where 𝛼̄ = 1− 𝛼, 𝛽 = 1− 𝛽, and 𝛿𝑖,𝑗 denotes the Kronecker delta and the condition is
∞∑︁

𝑖=1

∞∑︁
𝑘=1

Π(2)
0,𝑖,𝑘 +

∞∑︁
𝑖=1

∞∑︁
𝑘=0

Π(2)
1,𝑖,𝑘 +

∞∑︁
𝑛=1

∞∑︁
𝑖=1

∞∑︁
𝑘=0

𝑤
(1)
𝑛,𝑖,𝑘 = 1. (4.5)

4.1. Steady-state orbit size probabilities

The probability generating functions are introduced as following to determine the performance characteristics
of the underlying model

Φ(2)
0,𝑖 (𝑢) =

∞∑︁
𝑘=1

Π(2)
0,𝑖,𝑘𝑢𝑘; 𝑖 ≥ 1, Φ(2)

1,𝑖 (𝑢) =
∞∑︁

𝑘=0

Π(2)
1,𝑖,𝑘𝑢𝑘; 𝑖 ≥ 1,

𝑤
(1)
1,𝑖 (𝑢) =

∞∑︁
𝑘=0

𝑤
(1)
1,𝑖,𝑘𝑢𝑘; 𝑖 ≥ 1, 𝑤

(1)
𝑛,𝑖(𝑢) =

∞∑︁
𝑘=0

𝑤
(1)
𝑛,𝑖,𝑘𝑢𝑘; 𝑖 ≥ 1,

Φ(2)
ℎ (𝑥, 𝑢) =

∞∑︁
𝑖=1

Φ(2)
ℎ,𝑖(𝑢)𝑥𝑖, where ℎ = 0, 1;

𝑤
(1)
ℎ (𝑥, 𝑢) =

∞∑︁
𝑖=1

𝑤
(1)
ℎ,𝑖(𝑢)𝑥𝑖, where ℎ = 1, 𝑛; and

Φ(2)
2 (𝑥, 𝑢) =

∞∑︁
𝑛=1

𝑤(1)
𝑛 (𝑥, 𝑢).
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The performance measures such as orbit size and waiting time in the orbit are obtained from the probability
generating function of the number of customers in the orbit. The following theorem provides the results for
probability generating function of orbit size of the underlying queueing model with multiple vacations.

Theorem 4.1. The steady-state probability distribution of the Markov chain

Γ(2)
𝑚 =

(︁
𝑆(2)

𝑚 , 𝑅
(2)
𝑘,𝑚, 𝑁 (2)

𝑜

)︁
at an arbitrary slot has the following probability generating functions:

Φ(2)
0 (𝑥, 𝑢) =

𝑅(𝑥)−𝑅(𝛼̄)
𝑥− 𝛼̄

𝛼̄𝑥[𝑢(𝜈(𝑢)− (𝜏)𝑉 (𝜈(𝑢)))− 𝛼𝛽𝐵(𝑢)𝑆(𝜈(𝑢))(1− 𝑉 (𝜏))]
(1− 𝑉 (𝜏))Ω(𝑢)

Π(2)
1,1,0, (4.6)

Φ(2)
1 (𝑥, 𝑢) =

𝑆(𝑥)− 𝑆(𝜈(𝑢))
𝑥− 𝜈(𝑢)

𝑥[𝛼𝛽𝜈(𝑢)𝐵(𝑢)𝑉 (𝜏) + 𝛼̄(1− 𝛽𝐵(𝑢))(𝜈(𝑢)
−(𝜏)𝑉 (𝜈(𝑢)))𝑅(𝛼̄) + 𝛽𝐵(𝑢)(𝛼̄𝜈(𝑢)− (𝜏)𝑉 (𝜈(𝑢)))]

(1− 𝑉 (𝜏))Ω(𝑢)
Π(2)

1,1,0, (4.7)

Φ(2)
2 (𝑥, 𝑢) =

𝑉 (𝑥)− 𝑉 (𝜈(𝑢))
𝑥− 𝜈(𝑢)

𝑥𝜏

(1− 𝑉 (𝜏))
Π(2)

1,1,0, (4.8)

where the unknown constant

Π(2)
1,1,0 =

(1− 𝛼̄𝑅(𝛼̄))(1− 𝑉 (𝜏))
𝑉 (𝜏)𝑇1 − 𝑇2

· (4.9)

Proof of the Theorem 4.1. Multiplying the equations (4.1)–(4.4) by 𝑢𝑘, summing over 𝑘, 𝑘 = 0, 1, . . . and the
following set of equations are obtained

Φ(2)
0,𝑖 (𝑢) = 𝛼̄Φ(2)

0,𝑖+1(𝑢) + 𝛼̄𝑟𝑖

[︁
Φ(2)

1,1(𝑢)−Π(2)
1,1,0

]︁
+ 𝛼̄𝑟𝑖

[︃ ∞∑︁
𝑛=1

𝑤
(1)
𝑛,1(𝑢)−

∞∑︁
𝑛=1

𝑤
(1)
𝑛,1,0

]︃
; 𝑖 ≥ 1, (4.10)

Φ(2)
1,𝑖 (𝑢) = 𝛼𝛽

𝐵(𝑢)
𝑢

𝑠𝑖Φ
(2)
0 (1, 𝑢) + 𝛼̄𝑠𝑖

Φ(2)
0,1(𝑢)
𝑢

+ 𝛼𝛽
𝐵(𝑢)

𝑢
𝑠𝑖Π

(2)
1,1,0 + 𝜈(𝑢)Φ(2)

1,𝑖+1(𝑢)

+
(︂

𝛼𝛽𝐵(𝑢) + 𝛼̄𝑟0

𝑢

)︂
𝑠𝑖

[︃
Φ(2)

1,1(𝑢) +
∞∑︁

𝑛=1

𝑤
(1)
𝑛,1(𝑢)

]︃

−
(︂

𝛼𝛽𝐵(𝑢) + 𝛼̄𝑟0

𝑢

)︂
𝑠𝑖

(︃
Π(2)

1,1,0 +
∞∑︁

𝑛=1

𝑤
(1)
𝑛,1,0

)︃
; 𝑖 ≥ 1, (4.11)

𝑤
(1)
1,𝑖 (𝑢) = 𝜏𝑣𝑖

(︁
Π(2)

1,1,0

)︁
+ 𝜈(𝑢)𝑤(1)

1,𝑖+1(𝑢); 𝑖 ≥ 1, (4.12)

𝑤
(1)
𝑛,𝑖(𝑢) = 𝜏𝑣𝑖

(︁
𝑤

(1)
𝑛,1,0

)︁
+ 𝜈(𝑢)𝑤(1)

𝑛,𝑖+1(𝑢); 𝑖 ≥ 1, 𝑛 ≥ 2. (4.13)

To find Π(2)
1,1,0 and 𝑤

(1)
𝑛,1,0, multiplying the equations (4.12) by 𝑥𝑖, summing over 𝑖 from 𝑖 = 1, 2, . . .

(𝑥− 𝜈(𝑢))𝑤(1)
1 (𝑥, 𝑢)

𝑥
= 𝜏𝑉 (𝑥)Π(2)

1,1,0 − 𝜈(𝑢)𝑤(1)
1,1(𝑢). (4.14)

Substituting 𝑥 = 𝜈(𝑢) in (4.14),

𝑤
(1)
1,1(𝑢) =

(𝜏)𝑉 (𝜈(𝑢))
𝜈(𝑢)

Π(2)
1,1,0. (4.15)
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Substituting (4.15) in (4.14),

𝑤
(1)
1 (𝑥, 𝑢) =

(𝑉 (𝑥)− 𝑉 (𝜈(𝑢)))
𝑥− 𝜈(𝑢)

𝑥𝜏Π(2)
1,1,0. (4.16)

Differentiating (4.16) w.r.t 𝑥 and taking 𝑥 = 𝑢 = 0, we get 𝑤
(1)
1,1,0 = 𝑉 (𝜏)Π(2)

1,1,0. �

Similarly multiplying the equation (4.13) by 𝑥𝑖, summing over 𝑖 from 𝑖 = 1, 2, . . ., the reduced PGF is obtained
as follows

𝑤(1)
𝑛 (𝑥, 𝑢) =

(︀
𝑉 (𝑥)− 𝑉 (𝜈(𝑢))

)︀
𝑥− 𝜈(𝑢)

𝑥𝜏𝑤
(1)
𝑛−1,1,0; 𝑛 ≥ 2. (4.17)

Differentiating (4.17) w.r.t 𝑥 and taking 𝑥 = 𝑢 = 0, the conditions obtained 𝑤
(1)
𝑛,1,0 = 𝑉 (𝜏)𝑤(1)

𝑛−1,1,0 =

𝑉 (𝜏)2𝑤(1)
𝑛−2,1,0 = . . . = 𝑉 (𝜏)𝑛−1𝑤

(1)
1,1,0 = 𝑉 (𝜏)𝑛Π(2)

1,1,0. Equation (4.17) becomes

𝑤(1)
𝑛 (𝑥, 𝑢) =

(︀
𝑉 (𝑥)− 𝑉 (𝜈(𝑢))

)︀
𝑥− 𝜈(𝑢)

𝑥𝑉 (𝜏)𝑛−1Π(2)
1,1,0; 𝑛 ≥ 2. (4.18)

The probability generating function of the orbit size when the server is in vacation is derived by summing the
equation (4.18) over 𝑛 from 𝑛 = 2, 3, . . . and adding with (4.16)

Φ(2)
2 (𝑥, 𝑢) =

𝑉 (𝑥)− 𝑉 (𝜈(𝑢))
𝑥− 𝜈(𝑢)

𝑥𝜏

(1− 𝑉 (𝜏))
Π(2)

1,1,0. (4.19)

To complete the theorem, equation (4.11) is multiplied by 𝑥𝑖, summing over 𝑖 from 1 to ∞ and applying the
results of 𝑤

(1)
𝑛,1,0 (︂

𝑥− 𝛼̄

𝑥

)︂
Φ(2)

0 (𝑥, 𝑢) = 𝛼̄(𝑅(𝑥)− 𝑟0)

[︃
Φ(1)

1,1(𝑢) +
∞∑︁

𝑛=1

𝑤
(1)
𝑛,1(𝑢)

]︃
− 𝛼̄Φ(2)

0,1(𝑢)

− 𝛼̄(𝑅(𝑥)− 𝑟0)
1

1− 𝑉 (𝜏)
Π(2)

1,1,0. (4.20)

Φ(1)
0 (1, 𝑢) can be obtained from (4.20) by substituting 𝑥 = 1. Multiplying the equation (4.11) by 𝑥𝑖, summing

over 𝑖 from 1 to ∞(︂
𝑥− 𝜈(𝑢)

𝑥

)︂
Φ(2)

1 (𝑥, 𝑢) =
(︂

1
𝑢
− 𝛽𝐵(𝑢)

𝑢

)︂
𝛼̄𝑆(𝑥)Φ(2)

0,1(𝑢)

+
[︂(︂

𝛽(1− 𝛼̄𝑟0)𝐵(𝑢)
𝑢

+
𝛼̄𝑟0

𝑢

)︂
𝑆(𝑥)− 𝜈(𝑢)

]︂
Φ(2)

1,1(𝑢)

+
[︂(︂

𝛽(1− 𝛼̄𝑟0)𝐵(𝑢)
𝑢

+
𝛼̄𝑟0

𝑢

)︂
𝑆(𝑥)

]︂ ∞∑︁
𝑛=1

𝑤
(1)
𝑛,1(𝑢)

−
[︂(︂

𝛽(1− 𝛼̄𝑟0)𝐵(𝑢)
𝑢

+
𝛼̄𝑟0

𝑢

)︂
1

1− 𝑉 (𝜏)
−
(︂

𝛼𝛽𝐵(𝑢)
𝑢

)︂]︂
𝑆(𝑥)Π(2)

1,1,0. (4.21)

Substitute the result 𝑤
(1)
𝑛,1(𝑢) in (4.20) and (4.21). Solving the system for Φ(2)

0,1(𝑢) and Φ(2)
1,1(𝑢) by taking 𝑥 =

𝛼̄, 𝑥 = 𝜈(𝑢) in (4.20) and (4.21) respectively.

Φ(2)
0,1(𝑢) =

𝑅(𝛼̄− 𝑟0)𝛼[𝑢(𝜈(𝑢)− (𝜏)𝑉 (𝜈(𝑢)))− 𝛼𝛽𝐵(𝑢)𝑆(𝜈(𝑢))(1− 𝑉 (𝜏))]
(1− 𝑉 (𝜏))Ω(𝑢)

Π(2)
1,1,0, (4.22)
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Φ(2)
1,1(𝑢) =

𝑥[𝛼𝛽𝜈(𝑢)𝐵(𝑢)𝑉 (𝜏) + 𝛼̄(1− 𝛽𝐵(𝑢))(𝜈(𝑢)
−(𝜏)𝑉 (𝜈(𝑢)))𝑅(𝛼̄) + 𝛽𝐵(𝑢)(𝛼̄𝜈(𝑢)− (𝜏)𝑉 (𝜈(𝑢)))]

(1− 𝑉 (𝜏))Ω(𝑢)
Π(2)

1,1,0. (4.23)

Substituting these results in (4.20) and (4.21), the PGFs of the number of customers in the orbit are concluded
as

Φ(2)
0 (𝑥, 𝑢) =

𝑅(𝑥)−𝑅(𝛼̄)
𝑥− 𝛼̄

𝛼̄𝑥[𝑢(𝜈(𝑢)− (𝜏)𝑉 (𝜈(𝑢)))− 𝛼𝛽𝐵(𝑢)𝑆(𝜈(𝑢))(1− 𝑉 (𝜏))]
(1− 𝑉 (𝜏))Ω(𝑢)

Π(2)
1,1,0, (4.24)

Φ(2)
1 (𝑥, 𝑢) =

𝑆(𝑥)− 𝑆(𝜈(𝑢))
𝑥− 𝜈(𝑢)

𝑥[𝛼𝛽𝜈(𝑢)𝐵(𝑢)𝑉 (𝜏) + 𝛼̄(1− 𝛽𝐵(𝑢))(𝜈(𝑢)
−(𝜏)𝑉 (𝜈(𝑢)))𝑅(𝛼̄) + 𝛽𝐵(𝑢)(𝛼̄𝜈(𝑢)− (𝜏)𝑉 (𝜈(𝑢)))]

(1− 𝑉 (𝜏))Ω(𝑢)
Π(2)

1,1,0. (4.25)

The proof has completed after the determination of the unknown constant Π(1)
0,0 from the steady-state condition

(4.5). The equation (4.5) is given in terms of probability generating functions as

Φ(2)
0 (1, 1) + Φ(2)

1 (1, 1) + Φ(2)
2 (1, 1) = 1. (4.26)

Φ(2)
0 (1, 1), Φ(2)

1 (1, 1), and Φ(2)
2 (1, 1) are obtained from (4.24), (4.25), and (4.19) taking 𝑥 = 𝑢 = 1

Π(2)
1,1,0 =

(1− 𝛼̄𝑅(𝛼̄))(1− 𝑉 (𝜏))
(𝑉 (𝜏)𝑇1 − 𝑇2

· (4.27)

4.2. Stability condition

The value of the constant Π(2)
1,1,0 in (4.27) must be greater than zero to satisfy equation (4.5). Π(2)

1,1,0 =
(1−𝛼̄𝑅(𝛼̄))(1−𝑉 (𝜏))

(𝑉 (𝜏)𝑇1−𝑇2
> 0 implies the result that (1− 𝛼̄𝑅(𝛼̄))(1−𝑉 (𝜏)) > 0. It can be reduced as 𝛼̄𝑅(𝛼̄) < 1, which

indicates that the system is stable for any set of parameters. This is called the ergodicity, of the Markov chain
Γ(2)

𝑚 .

4.3. Marginal generating functions

Taking limit 𝑥 → 1, from (4.6) to (4.8) in Theorem 4.1, under the stability condition, the marginal generating
function of the orbit size when the server in different state is obtained.

(1) The marginal generating function of the orbit size when the server is in idle is given as

Φ(2)
0 (1, 𝑢) =

1−𝑅(𝛼̄)
1− 𝛼̄

𝛼̄𝑥[𝑢(𝜈(𝑢)− (𝜏)𝑉 (𝜈(𝑢)))− 𝛼𝛽𝐵(𝑢)𝑆(𝜈(𝑢))(1− 𝑉 (𝜏))]
(1− 𝑉 (𝜏))Ω(𝑢)

Π(2)
1,1,0. (4.28)

(2) The marginal generating function of the orbit size when the server is in busy state with regular service is
obtained as follows

Φ(2)
1 (1, 𝑢) =

1− 𝑆(𝜈(𝑢))
1− 𝜈(𝑢)

[𝛼𝛽𝜈(𝑢)𝐵(𝑢)𝑉 (𝜏) + 𝛼̄(1− 𝛽𝐵(𝑢))(𝜈(𝑢)
−(𝜏)𝑉 (𝜈(𝑢)))𝑅(𝛼̄) + 𝛽𝐵(𝑢)(𝛼̄𝜈(𝑢)− (𝜏)𝑉 (𝜈(𝑢)))]

(1− 𝑉 (𝜏))Ω(𝑢)
Π(2)

1,1,0. (4.29)

(3) When the server is under vacation, the marginal generating function of the orbit size is given below

Φ(2)
2 (1, 𝑢) =

1− 𝑉 (𝜈(𝑢))
1− 𝜈(𝑢)

𝜏

(1− 𝑉 (𝜏))
Π(2)

1,1,0. (4.30)
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(4) The probability generating function of the orbit size is derived as

Ψ(2)(𝑢) = Φ(2)
0 (1, 𝑢) + Φ1(1, 𝑢) + Φ(2)

2 (1, 𝑢), (4.31)

=
𝑁1(𝑢)
𝐷2(𝑢)

Π(2)
1,1,0, (4.32)

where 𝐷2(𝑢) = 𝛼(1− 𝜈(𝑢))(1− 𝑉 (𝜏))Ω(𝑢).
(5) The probability generating function of the system size is obtained as follows:

Φ(2)(𝑢) = Φ(2)
0 (1, 𝑢) + 𝑢Φ(2)

1 (1, 𝑢) + Φ(2)
2 (1, 𝑢). (4.33)

4.4. Performance characteristics

Using the steady solution derived in Theorem 4.1, performance measures such as system state probabilities,
mean orbit size, mean system size, and waiting time in the orbit have been obtained as follows

(1) Probability that the server is in idle state is given by

Φ(2)
0 (1, 1) =

𝛼̄𝛽(1−𝑅(𝛼̄))𝑉 (𝜏)
Ω(1)(1− 𝑉 (𝜏))

Π(2)
1,1,0. (4.34)

(2) Probability that the server is in busy state is given by

Φ(2)
1 (1, 1) =

𝛼2𝛽2𝐵1𝑆1

[︀
(1− 𝛼̄𝑅(𝛼̄))𝛽 − 𝑉 (𝜏)

]︀
Ω(1)(1− 𝑉 (𝜏))

Π(2)
1,1,0. (4.35)

(3) Probability that the server is under vacation is given by

Φ(2)
2 (1, 1) =

𝛼𝛽(𝜏)𝐵1𝑉1

(1− 𝑉 (𝜏))
Π(2)

1,1,0. (4.36)

(4) The arrival rate of customers to the orbit is given by

𝑃orbit = 𝛼𝛽Φ(2)
1 (1, 1). (4.37)

(5) The mean number of customers in the orbit group is given by 𝐸(𝑁) = Ψ′(1).
(6) The mean waiting time of a customer in the orbit is given by Little’s formula as

𝑊orbit =
𝐸(𝑁)
𝑃orbit

· (4.38)

4.5. Particular cases

Suppose that 𝛽 = 1, and 𝑉 (𝜈(𝑢)) = 1, there is no arrival of impatient customers and no vacation, the
proposed model becomes 𝐺𝑒𝑜[𝑋]/𝐺/1 with general retrial times. The following PGFs are obtained from the
equations (4.6), and (4.7) which is similar to the results in Aboul Hassen et al. [2].

Φ(2)
0 (𝑥, 𝑢) =

[𝑅(𝑥)−𝑅(𝛼̄)]𝛼𝑥[𝑢−𝐵(𝑢)𝑆(𝜈(𝑢))]Π(2)
0,0

[𝑥− 𝛼̄][(𝛼̄𝑅(𝛼̄))(1−𝐵(𝑢))𝑆(𝜈(𝑢))− (𝑢𝜈(𝑢)−𝐵(𝑢)𝑆(𝜈(𝑢)))]
, (4.39)

Φ(2)
1 (𝑥, 𝑢) =

[𝑆(𝑥)− 𝑆(𝜈(𝑢))]𝛼𝑥𝑅(𝛼̄)(1−𝐵(𝑢))
(︁
𝜈(𝑢)Π(2)

0,0

)︁
[𝑥− 𝜈(𝑢)][(𝛼̄𝑅(𝛼̄))(1−𝐵(𝑢))𝑆(𝜈(𝑢))− (𝑢𝜈(𝑢)−𝐵(𝑢)𝑆(𝜈(𝑢)))]

, (4.40)

where the value of Π(2)
0,0 is

Π(2)
0,0 =

1− 𝛼𝐵1𝑆1 −𝐵1𝛼̄(1−𝑅(𝛼̄))
𝑅(𝛼̄)

· (4.41)
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5. 𝐽 vacations model (JVM)

Performance analysis of 𝐺𝑒𝑜𝑋/𝐺/1 retrial queue with impatient customers and 𝐽 vacations is analyzed in
this section. Batch arrivals occur according to geometric process with rate 𝛼. An arriving batch of 𝐿 customers
finds the server is not occupied, one of the customers from the batch gets immediate service and the rest of the
𝐿− 1 customers join the orbit with probability 𝛽. On the other hand, if the server is not available at the time
of batch arrival, the decision is made by the batch whether to join the orbit with probability 𝛽 or to abandon
from the system with the probability 1 − 𝛽 = 𝛽. The customers that leave the system never return later. It is
assumed that customers in the orbit are persistent. At the server’s service completion period, if the number of
customers in the orbit is zero, then the server avails of the first vacation. If there is no arrival of the customer
at the period of the server’s first vacation completion, the server takes another vacation and continues with
the maximum 𝐽-vacations. The server resumes to idle state either when arrival there to the system or after
the completion of 𝐽th vacation. The schematic diagram of the 𝐽-vacations policy is shown in Figure 2. It is
considered that the inter-arrival time, service time, retrial time, and vacation time follow general probability
distribution and it is assumed that these times are independent of one another.

At the time 𝑚+, the state of the server is denoted by,

𝑆(3)
𝑚 =

⎧⎨⎩0 if the server is idle;
1 if the server is busy;
2 if the server is on vacation.

Let 𝑁
(3)
𝑜 denote the number of customers in the orbit, 𝑁

(3)
𝑣 , the number of vacations, 𝑅

(3)
0,𝑚, the remaining time

for retrial, 𝑅
(3)
1,𝑚, the remaining service time of the customer, and 𝑅

(3)
2,𝑚, the remaining vacation time of the

server. The system is modeled by the stochastic process Γ(3)
𝑚 =

(︁
𝑆

(3)
𝑚 , 𝑅

(3)
𝑘,𝑚, 𝑁

(3)
𝑜

)︁
.

Γ(3)
𝑚 is a Markov chain and state space is

𝜁
(3)
𝐽𝑉 𝑀 = {(0, 0) ∪ (0, 𝑖, 𝑘) ∪ (1, 𝑖, 𝑘) ∪ (2, 𝑖, 𝑘); 𝑖 ≥ 1, 𝑘 ≥ 0}.

To find the stationary distribution, the system steady-state probabilities are defined as follows

Π(3)
0,0 = lim

𝑚→∞
𝑃
{︁

𝑆(3)
𝑚 = 0, 𝑁 (3)

𝑜 = 0
}︁

,

Π(3)
0,𝑖,𝑘 = lim

𝑚→∞
𝑃
{︁

𝑆(3)
𝑚 = 0, 𝑅

(3)
0,𝑚 = 𝑖, 𝑁 (3)

𝑜 = 𝑘
}︁

; 𝑖 ≥ 1, 𝑘 ≥ 1,

Π(3)
1,𝑖,𝑘 = lim

𝑚→∞
𝑃
{︁

𝑆(3)
𝑚 = 1, 𝑅

(3)
1,𝑚 = 𝑖, 𝑁 (3)

𝑜 = 𝑘
}︁

; 𝑖 ≥ 1, 𝑘 ≥ 0,

𝑤
(2)
𝑗,𝑖,𝑘 = lim

𝑚→∞
𝑃
{︁

𝑆(3)
𝑚 = 2, 𝑁 (3)

𝑣 = 𝐽, 𝑅
(3)
2,𝑚 = 𝑖, 𝑁 (3)

𝑜 = 𝑘
}︁

; 𝑖 ≥ 1, 𝑘 ≥ 0,

The balance equations of the underlying system are obtained as follows:

Π(3)
0,0 = 𝛼̄Π(3)

0,0 + 𝛼̄𝑤
(2)
𝑗,1,0, (5.1)

Π(3)
0,𝑖,𝑘 = 𝛼̄Π(3)

0,𝑖+1,𝑘 + 𝛼̄𝑟𝑖Π
(3)
1,1,𝑘 + 𝛼̄𝑟𝑖

𝑗∑︁
𝑛=1

𝑤
(2)
𝑛,1,𝑘; 𝑖 ≥ 1, 𝑘 ≥ 1, (5.2)

Π(3)
1,𝑖,𝑘 = 𝛿0,𝑘𝛼𝛽𝑏𝑘+1𝑠𝑖Π

(3)
0,0 + (1− 𝛿0,𝑘)𝛼𝛽𝑠𝑖

𝑘∑︁
𝑙=1

𝑏𝑙

∞∑︁
𝑗=1

Π(3)
0,𝑗,𝑘−𝑙+1 + 𝛼̄𝑠𝑖Π

(3)
0,1,𝑘+1

+ 𝛼̄Π(3)
1,𝑖+1,𝑘 + 𝛼𝛽

∞∑︁
𝑙=1

𝑏𝑙Π
(3)
1,𝑖+1,𝑘 + (1− 𝛿0,𝑘)𝛼𝛽

𝑘∑︁
𝑙=1

𝑏𝑙Π
(3)
1,𝑖+1,𝑘−𝑙
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+ 𝛼̄𝑟0𝑠𝑖Π
(3)
1,1,𝑘+1 + 𝛼𝛽

𝑘∑︁
𝑙=1

𝑏𝑙𝑠𝑖Π
(3)
1,1,𝑘−𝑙+1

+ 𝛼̄𝑟0𝑠𝑖

𝑗∑︁
𝑛=1

𝑤
(2)
𝑛,1,𝑘+1 + 𝛼𝛽𝑠𝑖

𝑘∑︁
𝑙=1

𝑏𝑙

𝑗∑︁
𝑛=1

𝑤
(2)
𝑛,1,𝑘−𝑙+1; 𝑖 ≥ 1, 𝑘 ≥ 0, (5.3)

𝑤
(2)
1,𝑖,𝑘 = 𝛿0,𝑘𝛼̄𝑣𝑖Π

(3)
1,1,𝑘 + 𝛿0,𝑘𝛼𝛽

∞∑︁
𝑙=1

𝑏𝑙𝑣𝑖Π
(3)
1,1,𝑘 + 𝛼̄𝑤1,𝑖+1,𝑘 + 𝛼𝛽

∞∑︁
𝑙=1

𝑏𝑙𝑤
(2)
𝑛,𝑖+1,𝑘

+ (1− 𝛿0,𝑘)𝛼𝛽

𝑘∑︁
𝑙=1

𝑏𝑙𝑤
(2)
1,𝑖+1,𝑘−𝑙; 𝑖 ≥ 1, 𝑘 ≥ 0, (5.4)

𝑤
(2)
𝑛,𝑖,𝑘 = 𝛿0,𝑘𝛼̄𝑣𝑖𝑤

(2)
𝑛−1,1,𝑘 + 𝛿0,𝑘𝛼𝛽

∞∑︁
𝑙=1

𝑏𝑙𝑣𝑖𝑤
(2)
𝑛−1,1,𝑘 + 𝛼̄𝑤

(2)
𝑛,𝑖+1,𝑘

+ 𝛼𝛽

𝑗∑︁
𝑙=1

𝑏𝑙𝑤
(2)
𝑛,𝑖+1,𝑘 + (1− 𝛿0,𝑘)𝛼𝛽

𝑘∑︁
𝑙=1

𝑏𝑙𝑤
(2)
𝑛,𝑖+1,𝑘−𝑙; 2 ≤ 𝑛 ≤ 𝑗, 𝑖 ≥ 1, 𝑘 ≥ 0, (5.5)

where 𝛼̄ = 1− 𝛼 and 𝛿𝑖,𝑗 denotes the Kronecker delta and the condition is

Π(3)
0,0 +

∞∑︁
𝑖=1

∞∑︁
𝑘=1

Π(3)
0,𝑖,𝑘 +

∞∑︁
𝑖=1

∞∑︁
𝑘=0

Π(3)
1,𝑖,𝑘 +

𝑗∑︁
𝑛=1

∞∑︁
𝑖=1

∞∑︁
𝑘=0

𝑤
(2)
𝑛,𝑖,𝑘 = 1. (5.6)

5.1. Steady-state orbit size probabilities

The probability generating functions are introduced as follows to obtain the performance measures of the
underlying model

Φ(3)
0,𝑖 (𝑢) =

∞∑︁
𝑘=1

Π(3)
0,𝑖,𝑘𝑢𝑘; 𝑖 ≥ 1, Φ(3)

1,𝑖 (𝑢) =
∞∑︁

𝑘=0

Π(3)
1,𝑖,𝑘𝑢𝑘; 𝑖 ≥ 1,

𝑤
(2)
1,𝑖 (𝑢) =

∞∑︁
𝑘=0

𝑤
(2)
1,𝑖,𝑘𝑢𝑘; 𝑖 ≥ 1, 𝑤

(2)
𝑛,𝑖(𝑢) =

∞∑︁
𝑘=0

𝑤
(2)
𝑛,𝑖,𝑘𝑢𝑘; 𝑖 ≥ 1,

Φ(3)
ℎ (𝑥, 𝑢) =

∞∑︁
𝑖=1

Φ(2)
ℎ,𝑖(𝑢)𝑥𝑖, where ℎ = 0, 1

𝑤
(2)
ℎ (𝑥, 𝑢) =

∞∑︁
𝑖=1

𝑤
(2)
ℎ,𝑖(𝑢)𝑥𝑖, where ℎ = 1, 𝑛 and

Φ(3)
2 (𝑥, 𝑢) =

𝑗∑︁
𝑛=1

𝑤(2)
𝑛 (𝑥, 𝑢).

Steady-state orbit size probability generating functions have also been derived to obtain the performance
characteristics of the system. The orbit size probability generating functions for the underlying 𝐽 vacations
model are derived in the following theorem.

Theorem 5.1. The steady-state probability distribution of the Markov chain Γ(3)
𝑚 =

(︁
𝑆

(3)
𝑚 , 𝑅

(3)
𝑘,𝑚, 𝑁

(3)
𝑜

)︁
at an

arbitrary slot has the following probability generating functions:

Φ(3)
0 (𝑥, 𝑢) =

𝑅(𝑥)−𝑅(𝛼̄)
𝑥− 𝛼̄

𝛼̄𝑥
[︀
𝑢𝜈(𝑢)𝑉 (𝜏)𝐽+1 +

(︀
𝛼̄𝛽𝐵(𝑢)(1− 𝑉 (𝜏))𝑆(𝜈(𝑢))

−(𝜏)𝑢𝑉 (𝜈(𝑢))
)︀
𝑉 (𝜏)𝐽 − 𝑢(𝜈(𝑢)− (𝜏)𝑉 (𝜈(𝑢))

]︀
(1− 𝑉 (𝜏))𝑉 (𝜏)𝐽Ω(𝑢)

Π(3)
0,0, (5.7)
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Φ(3)
1 (𝑥, 𝑢) =

𝑆(𝑥)− 𝑆(𝜈(𝑢))
𝑥− 𝜈(𝑢)

𝛼𝑥
[︀
𝜈(𝑢)(𝜂(𝑢)− 𝛼̄𝛽𝐵(𝑢))𝑉 (𝜏)𝐽+1 + (𝛼̄𝛽𝜈(𝑢)𝐵(𝑢)

−𝜏𝜂(𝑢))𝑉 (𝜏)𝐽 + (𝜂(𝑢)(𝜏 − 𝜈(𝑢)))]
𝛼̄(1− 𝑉 (𝜏))𝑉 (𝜏)𝐽Ω(𝑢)

Π(3)
0,0, (5.8)

Φ(3)
2 (𝑥, 𝑢) =

𝑉 (𝑥)− 𝑉 (𝜈(𝑢))
𝑥− 𝜈(𝑢)

𝛼𝑥(𝜏)
(︀
1− 𝑉 (𝜏)𝐽

)︀
𝛼̄(1− 𝑉 (𝜏))𝑉 (𝜏)𝐽

Π(3)
0,0, (5.9)

where

Π(3)
0,0 =

𝛼̄𝛽(1− 𝛼̄𝑅(𝛼̄))(𝑉 (𝜏))𝐽(1− 𝑉 (𝜏))
(1 + (𝑉 (𝜏))𝐽+1)𝑇1 − 𝑇2 + 𝑇3(𝑉 (𝜏))𝐽+1 + 𝑇4(𝑉 (𝜏))𝐽

· (5.10)

Proof of the Theorem 5.1. From the Kolmogorov equation (5.1), the condition 𝑤
(2)
𝑗,1,0 = 𝛼

𝛼̄Π(3)
0,0 is obtained.

multiplying the equations (5.2)–(5.5) by 𝑢𝑘, summing up 𝑘, and the set of equations in terms of auxiliary
generating functions has determined as

Φ(3)
0,𝑖 (𝑢) = 𝛼̄Φ(3)

0,𝑖+1(𝑢) + 𝛼̄𝑟𝑖

[︁
Φ(3)

1,1(𝑢)−Π(3)
1,1,0

]︁
+ 𝛼̄𝑟𝑖

[︃
𝑗∑︁

𝑛=1

𝑤
(2)
𝑛,1(𝑢)−

𝑗∑︁
𝑛=1

𝑤
(2)
𝑛,1,0

]︃
; 𝑖 ≥ 1, (5.11)

Φ(2)
1,𝑖 (𝑢) = 𝛼𝛽

𝐵(𝑢)
𝑢

𝑠𝑖Φ
(3)
0 (1, 𝑢) + 𝛼̄𝑠𝑖

Φ(3)
0,1(𝑢)
𝑢

+ 𝜈(𝑢)Φ(3)
1,𝑖+1(𝑢)

+ 𝛼𝛽
𝐵(𝑢)

𝑢
𝑠𝑖Π

(3)
0,0 +

(︂
𝛼𝛽𝐵(𝑢) + 𝛼̄𝑟0

𝑢

)︂
𝑠𝑖

[︃
Φ(3)

1,1(𝑢) +
𝑗∑︁

𝑛=1

𝑤
(2)
𝑛,1(𝑢)

]︃

−
(︂

𝛼𝛽𝐵(𝑢) + 𝛼̄𝑟0

𝑢

)︂
𝑠𝑖

(︃
Π(3)

1,1,0 +
𝑗∑︁

𝑛=1

𝑤
(2)
𝑛,1,0

)︃
; 𝑖 ≥ 1, (5.12)

𝑤
(2)
1,𝑖 (𝑢) = 𝜏𝑣𝑖Π

(3)
1,1,0) + 𝜈(𝑢)𝑤(1)

1,𝑖+1(𝑢); 𝑖 ≥ 1, (5.13)

𝑤
(2)
𝑛,𝑖(𝑢) = 𝜏𝑣𝑖𝑤

(2)
𝑛,1,0) + 𝜈(𝑢)𝑤(2)

𝑛,𝑖+1(𝑢); 𝑖 ≥ 1, 2 ≤ 𝑛 ≤ 𝑗, (5.14)

To find Π(3)
1,1,0 and 𝑤

(2)
𝑛,1,0, multiplying the equation (5.13) by 𝑥𝑖, summing over i from 𝑖 = 1, 2, . . .

(𝑥− 𝜈(𝑢))𝑤(2)
1 (𝑥, 𝑢)

𝑥
= 𝜏𝑉 (𝑥)Π(3)

1,1,0 − 𝜈(𝑢)𝑤(2)
1,1(𝑢). (5.15)

Substituting 𝑥 = 𝜈(𝑢) in (5.15)

𝑤
(2)
1,1(𝑢) =

(𝜏)𝑉 (𝜈(𝑢))
𝜈(𝑢)

Π(3)
1,1,0. (5.16)

Substituting (5.16) in (5.15)

𝑤
(2)
1 (𝑥, 𝑢) =

(︀
𝑉 (𝑥)− 𝑉 (𝜈(𝑢))

)︀
𝑥− 𝜈(𝑢)

𝑥𝜏Π(3)
1,1,0. (5.17)

Differentiating (5.17) w.r.t 𝑥 and taking 𝑥 = 𝑢 = 0, we get 𝑤
(2)
1,1,0 = 𝑉 (𝜏)Π(3)

1,1,0. �

Similarly multiplying the equation (5.14) by 𝑥𝑖, summing over 𝑖 from 𝑖 = 1, 2, . . ., the reduced PGF is obtained
as follows

(𝑥− 𝜈(𝑢))𝑤(2)
𝑛 (𝑥, 𝑢)

𝑥
= 𝜏𝑉 (𝑥)𝑤(2)

𝑛−1,1,0 − 𝜈(𝑢)𝑤(2)
𝑛,1(𝑢) 2 ≤ 𝑛 ≤ 𝑗. (5.18)
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Substituting 𝑥 = 𝜈(𝑢) in (5.18)

𝑤
(2)
𝑛,1(𝑢) =

(𝜏)𝑉 (𝜈(𝑢))
𝜈(𝑢)

𝑤
(2)
𝑛−1,1,0. (5.19)

Substituting (5.19) in (5.18)

𝑤(2)
𝑛 (𝑥, 𝑢) =

(︀
𝑉 (𝑥)− 𝑉 (𝜈(𝑢))

)︀
𝑥− 𝜈(𝑢)

𝑥𝜏𝑤
(2)
𝑛−1,1,0. (5.20)

Differentiating (5.20) w.r.t 𝑥 and taking 𝑥 = 𝑢 = 0, the conditions obtained 𝑤
(2)
𝑛,1,0 = 𝑉 (𝜏)𝑤(2)

𝑛−1,1,0 =

𝑉 (𝜏)2𝑤(2)
𝑛−2,1,0 = . . . = 𝑉 (𝜏)𝑛−1𝑤

(2)
1,1,0 = 𝑉 (𝜏)𝑛Π(3)

1,1,0 and 𝑤
(2)
𝑗,1,0 = 𝑉 (𝜏)𝑗Π(3)

1,1,0. Equation (5.20) becomes

𝑤(2)
𝑛 (𝑥, 𝑢) =

(︀
𝑉 (𝑥)− 𝑉 (𝜈(𝑢))

)︀
𝑥− 𝜈(𝑢)

𝑥𝑉 (𝜏)𝑛−1Π(3)
1,1,0; 2 ≤ 𝑛 ≤ 𝑗. (5.21)

Since 𝑤
(2)
𝑗,1,0 = 𝛼

𝛼̄Π(3)
0,0 and 𝑤

(2)
𝑗,1,0 = 𝑉 (𝜏)𝑗Π(3)

1,1,0 implies that Π(3)
1,1,0 = 𝛼

𝛼̄𝑉 (𝜏)𝑗 Π(3)
0,0. The probability generating

function of the orbit size when the server is in vacation is derived as follows by summing up the equation (5.21)
over 𝑛 from 𝑛 = 2, 3, . . . 𝑗 and adding with (5.17)

Φ(3)
2 (𝑥, 𝑢) =

𝑉 (𝑥)− 𝑉 (𝜈(𝑢))
𝑥− 𝜈(𝑢)

𝛼𝑥(𝜏)
(︀
1− 𝑉 (𝜏)𝐽

)︀
𝛼̄(1− 𝑉 (𝜏))𝑉 (𝜏)𝐽

Π(3)
0,0. (5.22)

Further, to complete the proof, equation (5.11) has been multiplied by 𝑥𝑖, summing over 𝑖 from 1 to ∞ and
applying the results of 𝑤

(2)
𝑛,1,0(︂

𝑥− 𝛼̄

𝑥

)︂
Φ(3)

0 (𝑥, 𝑢) = 𝛼̄(𝑅(𝑥)− 𝑟0)

[︃
Φ(3)

1,1(𝑢) +
𝑗∑︁

𝑛=1

𝑤
(2)
𝑛,1(𝑢)

]︃
− 𝛼̄Φ(3)

0,1(𝑢)

−𝛼(𝑅(𝑥)− 𝑟0)
1− 𝑉 (𝜏)𝐽

(1− 𝑉 (𝜏))𝑉 (𝜏)𝐽
Π(3)

0,0. (5.23)

Multiplying the equation (5.12) by 𝑥𝑖, summing over 𝑖 from 1 to ∞.Φ(3)
0 (1, 𝑢) can be obtained from (5.23) by

substituting 𝑥 = 1.(︂
𝑥− 𝜈(𝑢)

𝑥

)︂
Φ(3)

1 (𝑥, 𝑢) =
(︂

1
𝑢
− 𝛽𝐵(𝑢)

𝑢

)︂
𝛼̄𝑆(𝑥)Φ(3)

0,1(𝑢)

+
[︂(︂

𝛽(1− 𝛼̄𝑟0)𝐵(𝑢)
𝑢

+
𝛼̄𝑟0

𝑢

)︂
𝑆(𝑥)− 𝜈(𝑢)

]︂
Φ(3)

1,1(𝑢)

+
[︂(︂

𝛽(1− 𝛼̄𝑟0)𝐵(𝑢)
𝑢

+
𝛼̄𝑟0

𝑢

)︂
𝑆(𝑥)

]︂ 𝑗∑︁
𝑛=1

𝑤
(2)
𝑛,1(𝑢)

−
[︂(︂

𝛽(1− 𝛼̄𝑟0)𝐵(𝑢)
𝑢

+
𝛼̄𝑟0

𝑢

)︂
1− 𝑉 (𝜏)𝐽

(1− 𝑉 (𝜏))𝑉 (𝜏)𝐽
−
(︂

𝛼𝛽𝐵(𝑢)
𝑢

)︂]︂
𝑆(𝑥)Π(3)

0,0. (5.24)

Substitute the result 𝑤
(2)
𝑛,1(𝑢) in (5.23) and (5.24). Solving the system for Φ(3)

0,1(𝑢) and Φ(3)
1,1(𝑢) by taking 𝑥 = 𝛼̄,

𝑥 = 𝜈(𝑢) in (5.23) and (5.24) respectively.

Φ(3)
0,1(𝑢) =

𝛼̄
[︀
𝑢𝜈(𝑢)𝑉 (𝜏)𝐽+1 + (𝛼̄𝛽𝐵(𝑢)(1− 𝑉 (𝜏))𝑆(𝜈(𝑢))
−(𝜏)𝑢𝑉 (𝜈(𝑢)))𝑉 (𝜏)𝐽 − 𝑢(𝜈(𝑢)− (𝜏)𝑉 (𝜈(𝑢))]

(1− 𝑉 (𝜏))𝑉 (𝜏)𝐽Ω(𝑢)
Π(3)

0,0, (5.25)
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Φ(3)
1,1(𝑢) =

𝛼
[︀
𝜈(𝑢)(𝜂(𝑢)− 𝛼̄𝛽𝐵(𝑢))𝑉 (𝜏)𝐽+1 + (𝛼̄𝛽𝜈(𝑢)𝐵(𝑢)

−𝜏𝜂(𝑢))𝑉 (𝜏)𝐽 + (𝜂(𝑢)(𝜏 − 𝜈(𝑢)))]
𝛼̄(1− 𝑉 (𝜏))𝑉 (𝜏)𝐽Ω(𝑢)

Π(3)
0,0. (5.26)

Substituting these results in (5.23) and (5.24), the probability generating functions are concluded as follows:

Φ(3)
0 (𝑥, 𝑢) =

𝑅(𝑥)−𝑅(𝛼̄)
𝑥− 𝛼̄

𝛼̄𝑥
[︀
𝑢𝜈(𝑢)𝑉 (𝜏)𝐽+1 + (𝛼̄𝛽𝐵(𝑢)(1− 𝑉 (𝜏))𝑆(𝜈(𝑢))
−(𝜏)𝑢𝑉 (𝜈(𝑢)))𝑉 (𝜏)𝐽 − 𝑢(𝜈(𝑢)− (𝜏)𝑉 (𝜈(𝑢))]

(1− 𝑉 (𝜏))𝑉 (𝜏)𝐽Ω(𝑢)
Π(3)

0,0, (5.27)

Φ(3)
1 (𝑥, 𝑢) =

𝑆(𝑥)− 𝑆(𝜈(𝑢))
𝑥− 𝜈(𝑢)

𝛼𝑥
[︀
𝜈(𝑢)(𝜂(𝑢)− 𝛼̄𝛽𝐵(𝑢))𝑉 (𝜏)𝐽+1 + (𝛼̄𝛽𝜈(𝑢)𝐵(𝑢)

−𝜏𝜂(𝑢))𝑉 (𝜏)𝐽 + (𝜂(𝑢)(𝜏 − 𝜈(𝑢)))]
𝛼̄(1− 𝑉 (𝜏))𝑉 (𝜏)𝐽Ω(𝑢)

Π(3)
0,0, (5.28)

The unknown constant Π(3)
0,0 is determined from the steady state condition (5.7) The proof is completed after

obtaining the unknown constant Π(3)
0,0 from the steady-state condition (5.7). The equation (5.7) is expressed in

terms of probability generating functions as follows:

Π(3)
0,0 + Φ(3)

0 (1, 1) + Φ(3)
1 (1, 1) + Φ(3)

2 (1, 1) = 1. (5.29)

Φ(3)
0 (1, 1), Φ(3)

1 (1, 1), and Φ(3)
2 (1, 1) are obtained from (5.27), (5.28), and (5.22) taking 𝑥 = 𝑢 = 1

Π(3)
0,0 =

𝛼̄𝛽(1− 𝛼̄𝑅(𝛼̄))(𝑉 (𝜏))𝐽(1− 𝑉 (𝜏))
(1 + (𝑉 (𝜏))𝐽+1)𝑇1 − 𝑇2 + 𝑇3(𝑉 (𝜏))𝐽+1 + 𝑇4(𝑉 (𝜏))𝐽

· (5.30)

5.2. Stability condition

Equation (4.5) becomes valid if the value of the constant Π(3)
0,0 in (5.30) is greater than zero. It is obtained

𝛼̄𝛽(1− 𝛼̄𝑅(𝛼̄))(𝑉 (𝜏))𝐽(1− 𝑉 (𝜏)) > 0 from Π(3)
0,0 = 𝛼̄𝛽(1−𝛼̄𝑅(𝛼̄))(𝑉 (𝜏))𝐽 (1−𝑉 (𝜏))

(1+(𝑉 (𝜏))𝐽+1)𝑇1−𝑇2+𝑇3(𝑉 (𝜏))𝐽+1+𝑇4(𝑉 (𝜏))𝐽 > 0. Since 𝛼, 𝛽 and
(𝑉 (𝜏)) are probabilities, (1− 𝛼̄𝑅(𝛼̄)) > 0 which gives the result 𝛼̄𝑅(𝛼̄) < 1. This is called the stability condition
of the Markov chain Γ(3)

𝑚 .

5.3. Marginal generating functions

Applying limit 𝑥 → 1 from (5.7) to (5.9) in Theorem 5.1, the marginal generating functions of the orbit size
at different states of the server are obtained under the stability condition as follows:

(1) The marginal generating function of the orbit size when the server is in idle state is given as

Φ(3)
0 (1, 𝑢) = 1 +

1−𝑅(𝛼̄)
1− 𝛼̄

𝛼̄
[︀
𝑢𝜈(𝑢)𝑉 (𝜏)𝐽 + (𝛼̄𝛽𝐵(𝑢)(1− 𝑉 (𝜏))𝑆(𝜈(𝑢))
−(𝜏)𝑢𝑉 (𝜈(𝑢)))(1− 𝑉 (𝜏))𝐽 − 𝑢(𝜈(𝑢)− (𝜏)𝑉 (𝜈(𝑢))]

(1− 𝑉 (𝜏))𝑉 (𝜏)𝐽Ω(𝑢)
Π(3)

0,0. (5.31)

(2) The marginal generating function of the orbit size when the server is busy with regular service is obtained
as

Φ(3)
1 (1, 𝑢) =

1− 𝑆(𝜈(𝑢))
1− 𝜈(𝑢)

𝛼𝑥
[︀
𝜈(𝑢)(𝜂(𝑢)− 𝛼̄𝛽𝐵(𝑢))𝑉 (𝜏)𝐽+1 + (𝛼̄𝛽𝜈(𝑢)𝐵(𝑢)

−𝜏𝜂(𝑢))𝑉 (𝜏)𝐽 + (𝜂(𝑢)(𝜏 − 𝜈(𝑢)))]
𝛼̄(1− 𝑉 (𝜏))𝑉 (𝜏)𝐽Ω(𝑢)

Π(3)
0,0. (5.32)

(3) When the server is under vacation, the marginal generating function of the orbit size is given as

Φ(3)
2 (1, 𝑢) =

1− 𝑉 (𝜈(𝑢))
1− 𝜈(𝑢)

𝛼(1− 𝛼𝛽)
(︀
1− 𝑉 (𝜏)𝐽

)︀
𝛼̄(1− 𝑉 (𝜏))𝑉 (𝜏)𝐽

Π(3)
0,0. (5.33)
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(4) The probability generating function of the mean orbit size is derived as

Ψ(3)(𝑢) = Φ(3)
0 (1, 𝑢) + Φ(3)

1 (1, 𝑢) + Φ(3)
2 (1, 𝑢), (5.34)

=
𝑁1(𝑢) + 𝜉2(𝑢)

𝐷3(𝑢)
Π(3)

0,0, (5.35)

where 𝐷3(𝑢) = 𝛼̄(1− 𝜈(𝑢))𝜈(𝑢)(1− 𝑉 (𝜏))𝑉 (𝜏)𝐽Ω(𝑢).
(5) The probability generating function of the mean system size is obtained as

Φ(3)(𝑢) = Π(3)
0,0 + Φ(3)

0 (1, 𝑢) + 𝑢Φ(3)
1 (1, 𝑢) + Φ(3)

2 (1, 𝑢). (5.36)

5.4. Performance characteristics

Using the steady solution derived in Theorem 5.1, performance measures such as system state probabilities,
mean orbit size, mean system size and waiting time in the orbit are obtained as follows

(1) Probability that the server is in idle state is given as

Π(3)
0,0 + Φ(3)

0 (1, 1) =
𝛼
[︀
(𝛽 −𝑅(𝛼̄))𝑉 (𝜏)𝐽+1 + 𝛽𝑅(𝛼̄)𝑉 (𝜏)𝐽 − 𝛽(1−𝑅(1− 𝛼))

]︀
Ω(1)(1− 𝑉 (𝜏))𝑉 (𝜏)𝐽

Π(3)
0,0. (5.37)

(2) Probability that the server is busy in service is determined as

Φ(3)
1 (1, 1) =

𝛼2𝛽𝐵1𝑆1

[︀(︀
𝛼̄𝛽𝑉 (𝜏) + 𝛽(𝛼̄(𝜏))𝑅(𝛼̄) + 𝛼𝛽

)︀
𝑉 (𝜏)𝐽

+(𝛼̄𝛽𝑅(𝛼̄) + 𝛽)𝑉 (𝜏)𝐽+1 − 𝛼𝛽
]︀

𝛼̄𝛽Ω(1)𝑉 (𝜏)𝐽(1− 𝑉 (𝜏))
Π(3)

0,0. (5.38)

(3) Probability that the server is under vacation is found as

Φ(3)
2 (1, 1) =

𝛼2𝛽(𝜏)𝐵1𝑉1

(︀
1− 𝑉 (𝜏)𝐽

)︀
𝛼̄𝑉 (𝜏)𝐽𝑉 (𝜏)

Π(3)
0,0. (5.39)

(4) The rate of arrival to the orbit is given by

𝑃orbit = 𝛼𝛽Φ(3)
1 (1, 1). (5.40)

(5) The mean number of customers in the orbit group is given by 𝐸(𝑁) = Ψ′(1).
(6) Mean waiting time of a customer in the orbit is given by Little’s formula

𝑊orbit =
𝐸(𝑁)
𝑃orbit

· (5.41)

5.5. Particular cases

Taking 𝛽 = 1, and 𝐵(𝑢) = 𝑢, there is a single arrival without impatient customers, the presented model is
reduced to 𝐺𝑒𝑜/𝐺/1 with 𝐽-vacations. From equations (5.7) to (5.9), the following PGFs are obtained, which
matches to the results in Yue and Zhang [31].

Φ(3)
0 (𝑥, 𝑢) =

𝑅(𝑥)−𝑅(𝛼̄)
𝑥− 𝛼̄

𝛼𝑥𝑢
[︁(︁

1− 𝑉 (𝛼̄)𝐽+1
)︁
𝜈(𝑢)− 𝛼̄𝑉 (𝜈(𝑢))

(︁
1− 𝑉 (𝛼̄)𝐽

)︁
−
(︁

1− 𝑉 (𝛼̄)𝐽+1
)︁
− 𝛼̄

(︁
1− 𝑉 (𝛼̄)𝐽

)︁
𝑆(𝜈(𝑢))

]︁
(1− 𝑉 (𝛼̄))𝑉 (𝛼̄)𝐽(𝛼̄𝑅(𝛼̄)(1− 𝑢)𝑆(𝜈(𝑢)) + 𝑢(𝑆(𝜈(𝑢))− 𝜈(𝑢)))

Π(3)
0,0,
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Φ(3)
1 (𝑥, 𝑢) =

𝑆(𝑥)− 𝑆(𝜈(𝑢))
𝑥− 𝜈(𝑢)

𝛼𝑥
[︀
𝑢(𝜈(𝑢)− 𝑉 (𝜈(𝑢)))

(︀
1− 𝑉 (𝛼̄)𝐽

)︀
+𝑅(𝛼̄(1− 𝑢)((1− 𝑉 (𝛼̄)𝐽+1)𝜈(𝑢)− 𝛼̄𝑉 (𝜈(𝑢))(1− 𝑉 (𝛼̄)𝐽)))]

(1− 𝑉 (𝜏))𝑉 (𝜏)𝐽(𝛼̄𝑅(𝛼̄)(1− 𝑢)𝑆(𝜈(𝑢)) + 𝑢(𝑆(𝜈(𝑢))− 𝜈(𝑢))
Π(3)

0,0,

Φ(3)
2 (𝑥, 𝑢) =

𝑉 (𝑥)− 𝑉 (𝜈(𝑢))
𝑥− 𝜈(𝑢)

𝛼𝑥
(︁

1− 𝑉 (𝛼̄)𝐽
)︁

(1− 𝑉 (𝛼̄))𝑉 (𝛼̄)𝐽
Π(3)

0,0,

where

Π(3)
0,0 =

((1− 𝑉 (𝛼̄))𝑉 (𝛼̄)𝐽 [𝛼̄𝑅(𝛼̄) + 𝛼− 𝛼𝑆1]

𝑅(𝛼̄)
(︁(︁

1− 𝑉 (𝛼̄)𝐽+1
)︁
− 𝛼̄

(︁
1− 𝑉 (𝛼̄)𝐽

)︁)︁
− 𝛼(1− 𝑉1)

(︁
1− 𝑉 (𝛼̄)𝐽

)︁ ·
6. Results and discussions

The three models described in the previous sections differ with one another in their vacation pattern. In
steady-state, the three vacation policies such as single vacation model (SVM), multiple vacation model (MVM),
and 𝐽-Vacation model (JVM) are compared based on their performance characteristics. The comparison results
are presented in this section.

Case (i) Mean orbit size. In queueing scenario, the efficiency of the model seems to be evident from the
measure mean orbit size. From (3.33), (4.32), and (5.35), the marginal generating function of mean orbit
size with respect to each model is obtained as

Ψ(1)(𝑢) =
𝑁1(𝑢)− 𝜉1(𝑢)

𝐷1(𝑢)
Π(1)

0,0, (6.1)

Ψ(2)(𝑢) =
𝑁1(𝑢)
𝐷2(𝑢)

Π(2)
1,1,0, (6.2)

Ψ(3)(𝑢) =
𝑁1(𝑢) + 𝜉2(𝑢)

𝐷3(𝑢)
Π(3)

0,0. (6.3)

The mean orbit size under each model can be determined by Ψ(1)′(1), Ψ(2)′(1), and Ψ(3)′(1). In order to
compare these results, the ratio is obtained as

Ψ(1)′(1)
Ψ(2)′(1)

=
2𝛼𝐸1 − 𝐸2

𝐸3

1− 𝑉 (𝜏)
𝑉 (𝜏)

Π(1)
0,0

Π(2)
1,1,0

, (6.4)

Ψ(1)′(1)
Ψ(3)′(1)

=
𝛼𝛽𝐵1(𝐸4𝑉 (𝜏) + 𝐸5)

𝐸4𝑉 (𝜏)𝐽+1 + 𝐸5 + 𝐸6𝑉 (𝜏)𝐽

𝛼̄

𝛼

𝑉 (𝜏)𝐽(1− 𝑉 (𝜏))
𝑉 (𝜏)

Π(1)
0,0

Π(3)
0,0

, (6.5)

where

𝐸1 = 𝛽((1− 𝛼̄𝑅(𝛼̄)) + 𝛼(𝑆1 − 1))𝑉 (𝜏)− 𝛽(𝑉1 + 𝛼𝛽(𝑆1 − 𝑉1))(1− 𝛼̄𝑅(𝛼̄)),

𝐸2 = 𝛼4𝛽2(𝐵1)2
[︀
𝛼̄𝛽(𝑆1 − 1)𝑅(𝛼̄)𝑉 (𝜏) + 𝛽(1− 𝛼̄𝑅(𝛼̄) + 𝛼(𝑆1 − 1))

]︀2
,

𝐸3 =
1
2
𝛼̄(𝛼2𝛽𝛽(𝐵1)2𝑆2 + 𝛼𝛽(𝑆1 − 1)𝐵2 − 2𝐵1) + 𝛼𝛽

[︀
𝛼(𝐵1)2 + 𝛼𝐵2 − 𝛼𝛼̄𝛽(𝐵1)2𝑆1𝑅(𝛼̄)

+ 𝛼2𝛽(𝐵1)2𝑆2 + 𝛼(𝛽(𝐵1)2𝑆1 + (𝑆1 − 1)((𝐵1)2 + 𝐵2))
]︀
,

𝐸4 = (1− 𝛽𝑆1)𝛼̄𝑅(𝛼̄) + 𝛽(1 + 𝛼(𝑆1 − 1))
𝐸5 =

[︀
𝛼𝛽2(𝑆1 − 𝑉1) + 𝛽(1 + 𝑉1 − 𝛼(1− 𝑉 − 1))− 𝑉1

]︀
(1− 𝛼̄𝑅(𝛼̄)),

𝐸6 = 𝛼𝛽[𝑉1 + 𝛼̄𝑅(𝛼̄) + (𝛼𝛽(𝑆1 − 𝑉1))(1− 𝛼̄𝑅(𝛼̄))].
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From the equations (3.9) and (4.27), it is obtained that
Π

(1)
0,0

Π
(2)
1,1,0

= 𝛽𝑉 (𝜏)
1−𝑉 (𝜏)

𝑉 (𝜏)𝑇1−𝑇2
(1+𝑉 (𝜏))𝑇1−𝑇2+𝑇3𝑉 (𝜏) .

Similarly, it also found that
Π

(1)
0,0

Π
(3)
0,0

= 𝑉 (𝜏)
𝑉 (𝜏)𝐽 (1−𝑉 (𝜏))

(1+(𝑉 (𝜏))𝐽+1)𝑇1−𝑇2+𝑇3(𝑉 (𝜏))𝐽+1+𝑇4(𝑉 (𝜏))𝐽

(1+(𝑉 (𝜏)))𝑇1−𝑇2+𝑇3(𝑉 (𝜏)) . By observation,

the relations 𝐸3 > 𝐸1 and 𝐸3 > 𝐸2 hold true.
These results and the equation (6.4) imply that Ψ(1)′ (1)

Ψ(2)′ (1)
< 1. The mean orbit size is less under SVM by

comparing with the mean orbit size under MVM.

The relation Ψ(1)′ (1)

Ψ(3)′ (1)
< 1 is true from equation (6.5), which shows that the mean orbit size is smaller in SVM

when compared with JVM.

Case (ii) Vacation state. In the MVM model, the entire idle time of the server is utilized, where as in SVM
and JVM, the server utilizes the partial idle time. This can be presented quantitatively by comparing the
measures that the fraction of time the server is under vacation. From (3.36), (4.36), and (5.39), the probability
that the server under vacation (SV) with respect to each model is simplified as follows:

𝑃 1(SV) =
𝛼𝛽𝜏𝐵1(1− 𝛼̄𝑅(𝛼̄))𝑉1

(1 + 𝑉 (𝜏))𝑇1 − 𝑇2 + 𝑇3𝑉 (𝜏)
, (6.6)

𝑃 2(SV) =
𝛼𝛽𝜏𝐵1(1− 𝛼̄𝑅(𝛼̄))𝑉1

𝑉 (𝜏)𝑇1 − 𝑇2
, (6.7)

𝑃 3(SV) =
𝛼2𝛽𝛽𝜏𝐵1(1− 𝛼̄𝑅(𝛼̄))𝑉1(1− (𝑉 (𝜏))𝐽)

(1 + (𝑉 (𝜏))𝐽+1)𝑇1 − 𝑇2 + 𝑇3(𝑉 (𝜏))𝐽+1 + (𝑉 (𝜏))𝐽𝑇4
· (6.8)

Equations (6.6) and (6.7) imply the following relation 𝑃 1(SV)
𝑃 2(SV) = 𝑉 (𝜏)𝑇1−𝑇2

(1+𝑉 (𝜏))𝑇1−𝑇2+𝑇3𝑉 (𝜏) <

1 and also equations (6.6) and (6.8) establish the relation 𝑃 1(SV)
𝑃 3(SV) =

𝛼𝛽𝜏𝐵1(1−𝛼̄𝑅(𝛼̄))𝑉1

𝛼2𝛽𝛽𝜏𝐵1(1−𝛼̄𝑅(𝛼̄))𝑉1(1−(𝑉 (𝜏))𝐽 )

(1+(𝑉 (𝜏))𝐽+1)𝑇1−𝑇2+𝑇3(𝑉 (𝜏))𝐽+1+(𝑉 (𝜏))𝐽𝑇4
(1+𝑉 (𝜏))𝑇1−𝑇2+𝑇3𝑉 (𝜏) < 1. It can be observed that the

probability that the server on vacation is lesser in SVM when compared with the probability of server on
vacation with MVM and the probability of server on vacation with JVM.

Case (iii) Busy state. From (3.35), (4.35), and (5.38), the probability that the server is busy by providing
service (SB) with respect to each model is obtained as follows:

𝑃 1(SB) =
(𝛼2𝛽𝐵1𝑆1

(︀
𝑉 (𝜏)− 𝛽(1− 𝛼̄𝑅(𝛼̄))

)︀
) + (𝛼𝛽𝛽1𝐵1𝑆1)

(︀
𝛼𝛽 + 𝛼̄𝛽𝑅(𝛼̄)𝑉 (𝜏)

)︀
(1 + 𝑉 (𝜏))𝑇1 − 𝑇2 + 𝑇3𝑉 (𝜏)

, (6.9)

𝑃 2(SB) =
𝛼2𝛽𝐵1𝑆1

(︀
𝑉 (𝜏)− 𝛽(1− 𝛼̄𝑅(𝛼̄))

)︀
𝑉 (𝜏)𝑇1 − 𝑇2

, (6.10)

𝑃 3(SB) =

(︀
𝛼2𝛽𝐵1𝑆1

(︀
(𝑉 (𝜏))𝐽+1 − 𝛽(1− 𝛼̄𝑅(𝛼̄))

)︀)︀
+ (𝛼𝛽𝛽1𝐵1𝑆1)

(︀
𝛼𝛽 + 𝛼̄𝛽𝑅(𝛼̄)(𝑉 (𝜏))𝐽

)︀
(𝛼𝛽𝛽1𝐵1𝑆1)

(︀
𝛼𝛽 + 𝛼̄𝛽𝑅(𝛼̄)(𝑉 (𝜏))𝐽+1

)︀
(1 + (𝑉 (𝜏))𝐽+1)𝑇1 − 𝑇2 + (𝑉 (𝜏))𝐽+1𝑇3 + (𝑉 (𝜏))𝐽𝑇4

. (6.11)

The equations (6.9)–(6.11) gives the relations 𝑃 1(SB)
𝑃 2(SB) < 1 and 𝑃 1(SB)

𝑃 3(SB) < 1.

Case (iv) Idle state. From (3.34), (4.34), and (5.37), the probability that the server in idle (SI) with respect
to each model is determined as follows

𝑃 1(SI) =
𝛼̄(1−𝑅(𝛼̄))𝑉 (𝜏) + 𝛼̄(𝛽𝑉 (𝜏) + 𝛽(1−𝑅(𝛼̄)))

𝛽[(1 + 𝑉 (𝜏))𝑇1 − 𝑇2 + 𝑇3𝑉 (𝜏)]
, (6.12)

𝑃 2(SI) =
𝛼̄(1−𝑅(𝛼̄))𝑉 (𝜏)

𝑉 (𝜏)𝑇1 − 𝑇2
, (6.13)
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Table 1. Arrival rate vs. probability that the server is in idle state.

𝛼 0.30 0.35 0.40 0.45 0.50 0.55 0.60

𝑃 1(SI) 0.4101 0.3309 0.2672 0.2166 0.1766 0.1451 0.1203

𝑃 2(SI) 0.3197 0.2506 0.1961 0.1533 0.1268 0.0979 0.0721

𝑃 3(SI) 0.3522 0.2732 0.2116 0.1638 0.1196 0.0931 0.0753

Table 2. Arrival rate vs. probability that the server is in busy state.

𝛼 0.20 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3

𝑃 1(SB) 0.5611 0.5839 0.6060 0.6272 0.6476 0.6671 0.6857 0.7035 0.7205 0.7366 0.7520

𝑃 2(SB) 0.5836 0.6134 0.6424 0.6703 0.6973 0.7232 0.7481 0.7721 0.7950 0.8169 0.8379

𝑃 3(SB) 0.5581 0.5842 0.6093 0.6332 0.6560 0.6777 .6983 0.7178 0.7362 0.7536 0.7700

𝑃 3(SI) =
𝛼̄(1−𝑅(𝛼̄))(𝑉 (𝜏))𝐽+1 + 𝛼̄

(︀
𝛽(𝑉 (𝜏))𝐽+1 + 𝛽(1−𝑅(𝛼̄))

)︀
− 𝛽𝑅(𝛼̄)(𝑉 (𝜏))𝐽+1

𝛽[(1 + (𝑉 (𝜏))𝐽+1)𝑇1 − 𝑇2 + (𝑉 (𝜏))𝐽+1𝑇3 + (𝑉 (𝜏))𝐽𝑇4]
· (6.14)

Equations (6.12) and (6.13) imply the result 𝑃 1(SI)
𝑃 2(SI) =

𝛼̄(1−𝑅(𝛼̄))𝑉 (𝜏)+𝛼̄(𝛽𝑉 (𝜏)+𝛽(1−𝑅(𝛼̄)))
𝛼̄(1−𝑅(𝛼̄))𝑉 (𝜏)

𝑉 (𝜏)𝑇1−𝑇2
𝛽[(1+𝑉 (𝜏))𝑇1−𝑇2+𝑇3𝑉 (𝜏)]

> 1 and also equations (6.12) and (6.14) indicate that the following result holds true 𝑃 1(SV)
𝑃 3(SV) =

𝛼𝛽𝜏𝐵1(1−𝛼̄𝑅(𝛼̄))𝑉1

𝛼2𝛽𝛽𝜏𝐵1(1−𝛼̄𝑅(𝛼̄))𝑉1(1−(𝑉 (𝜏))𝐽 )

(1+(𝑉 (𝜏))𝐽+1)𝑇1−𝑇2+𝑇3(𝑉 (𝜏))𝐽+1+(𝑉 (𝜏))𝐽𝑇4
𝛽[(1+(𝑉 (𝜏))𝐽+1)𝑇1−𝑇2+(𝑉 (𝜏))𝐽+1𝑇3+(𝑉 (𝜏))𝐽𝑇4]

> 1.

From 𝑃 1(SI) > 𝑃 2(SI) and 𝑃 1(SI) > 𝑃 3(SI), it can be observed that the probability that the server waiting
for the customer is greater in SVM when compared with the probability that the server is waiting for the
customer with the MVM and JVM.

7. Numerical results and discussions

This section explores three queueing models numerically to show their effectiveness. The following assumptions
and notations are used for numerical analysis,

Arrival rate 𝛼
customer impatience’s probability 𝛽
Retrial rate 𝑟
Service time follows a geometric distribution with parameter 𝑠
Vacation time follows a geometric distribution with parameter 𝑣
The values of all the parameters have taken to fulfill the stability condition.

Taking 𝛽 = 0.9, 𝑟 = 0.9, 𝐵1 = 5, 𝑆1 = 3, 𝑉1 = 2, Table 1 displays the steady-state probabilities with respect to
different arrival rates. It shows the results the probability that the server is in an idle state under SVM, MVM,
and JVM. It is observed that the probability that the server is waiting for the customer to provide service
is greater in the single vacation model. From Table 2, it appears that the probability that the server is in a
busy is higher in the single vacation model than those in 𝐽 vacations model and multiple vacations model. The
probability that the server is under vacation is lower in a single vacation model but is greater in the MVM, as can
be viewed in Table 3. In Tables 4 and 5, the three vacation models SVM, MVM, and JVM have been compared
based on the characteristic mean orbit size. Considering 𝛽 = 0.9, 𝑟 = 0.9, 𝐵1 = 5, 𝑆1 = 3, 𝑆2 = 15, 𝑉1 = 2, 𝑉2 = 6,
Table 4 displays the effect of arrival rate on the mean orbit size and it evident orbit size increases with increasing
values of 𝛼. 𝐸(𝑁) has been observed concerning each vacation model and it is apparent from Table 4 that the
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Table 3. Arrival rate vs. probability that the server is under vacation state.

𝛼 0.30 0.35 0.40 0.45 0.50 0.55 0.60

𝑃 1(SV) 0.0716 0.0684 0.0639 0.0587 0.0534 0.0480 0.0428

𝑃 2(SV) 0.2480 0.2603 0.2692 0.2767 0.2846 0.2945 0.3087

𝑃 3(SV) 0.1222 0.1119 0.1003 0.0886 0.0774 0.0671 0.0577

Table 4. Effect of arrival rate on mean orbit size.

𝛼 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

𝑃 1(SV) 29.30 56.05 86.22 124.9 172.7 230.2 297.2 374.1

𝑃 2(SV) 33.49 56.50 86.46 125.5 174.1 232.7 302.0 385.6

𝑃 3(SV) 33.27 56.69 86.56 125.3 173.3 231.0 298.3 375.4

Table 5. Effect of retrial rate on mean orbit size.

𝑟 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

𝑃 1(SV) 142.0 134.9 127.8 120.8 113.7 106.7 99.81 92.97 86.22 76.33

𝑃 2(SV) 141.4 134.4 127.3 120.3 113.4 106.5 99.68 92.99 86.46 80.17

𝑃 3(SV) 142.7 135.6 128.5 121.4 114.3 107.3 100.3 93.39 86.56 79.86

Figure 3. Effect of retrail on (a) Probability that the server busy. (b) Probability that the
server busy.

single vacation model possesses a lesser mean orbit size when compared with other vacation models, MVM
and JVM. Table 5 has plotted mean orbit size against the retrial rate. 𝐸(𝑁) values tend to decrease with the
increasing values of the retrial rate. Table 5 shows a similar effect as seen in Table 4 that the mean orbit size
is smaller in the single vacation model. It can be observed that single vacation model is a superior model to
the multiple vacations model and 𝐽-vacations from the numerical observation on mean orbit size and other
performance characteristics.

This model focusses on the importance of vacation queueing models. The value Π0,0 represents the probability
that the server is free and that no customer in the orbit. 1− Π0,0 is the probability measure that the server is
occupied. Taking the values of the parameter as in Atencia et al. [8], 𝛼 = 0.2, 𝐵1 = 1, 𝑆1 = 2, and assuming
𝛽 = 0.9, 𝑆2 = 15, 𝑉1 = 2, 𝑉2 = 6, Figure 3a displays the values 1 − Π0,0 with respect to the proposed SVM



PERFORMANCE ANALYSIS OF DISCRETE-TIME 𝐺𝐸𝑂𝑋/𝐺/1 1115

Figure 4. Effect of retrail on (a) Probability that the server busy. (b): Probability that the
server busy.

and queueing model without vacation [8]. It can be observed that as the retrial rate increases, the utilization
factor also increases. The utilization factor, the probability that the server is busy, is more in SVM than those
observed by Atencia et al. [8]. Similarly, Figure 3b shows the values 1−Π0,0 with respect to the proposed MVM,
JVM, and queueing model without vacation [8]. It can be concluded that vacation models are more appropriate
at a place where the server should be utilized properly. Using the parameter values 𝛼 = 0.1, 𝐵1 = 1, 𝑆1 = 2
as in Aboul-Hassan [2] and assuming 𝛽 = 0.9, 𝑆2 = 15, 𝑉1 = 2, 𝑉2 = 6, the utilization factors are presented
in Figure 4a based on proposed SVM and batch arrival model given by Aboul-Hassan [2]. It can be noticed
that 1−Π0,0 increases if the retrial rate increases. Also Figure 4b shows the comparison between the proposed
MVM, JVM, and batch arrival model given by Aboul-Hassan [2]. The utilization of the server can be made
more effective by fitting the model using Vacations.

8. Conclusion and future work

This paper majorly would help designers to make decisions regarding allocate server under various conditions
of vacations.The study considered a discrete-time bulk arrival 𝐺𝑒𝑜𝑋/𝐺/1 with three types of vacations, single,
multiple, and 𝐽 vacations. The probability generating functions and marginal generating functions have been
derived for each model. In a steady-state, performance characteristics of the three models have been obtained.
A theoretical comparative analysis among three models based on the measures was also presented. From the
theoretical observation on mean orbit size and the other performance characteristics, it was observed that a
single vacation is superior to the multiple vacations model and 𝐽 vacations model in discrete-time bulk arrival
𝐺𝑒𝑜𝑋/𝐺/1 queueing context. The result concluded in the paper will be more helpful to the designer to choose
the appropriate model. The consistency of the theory developed has also been also verified through numerical
illustration.

Future studies can consider the reward for work can be included during the vacation. Further, optimal cost of
the model and waiting time distribution can be incorporated in the study. The comparisons can also be revised
conditionally. Also, the general arrival process also can be included to enhance the model. The work can also
be carried out using simulation with general distribution.
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