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GENERALIZED PERIODIC REPLACEMENT POLICIES FOR REPAIRABLE
SYSTEMS SUBJECT TO TWO TYPES OF FAILURES

Qi Li, Wenjie Dong* , Sifeng Liu and Zhigeng Fang

Abstract. The purpose of this current research is to schedule generalized periodic replacement poli-
cies for a single unit system executing random working jobs. The system is subject to two types of
failures when it has failed, including a minor failure (Type I failure), which can be thoroughly removed
by the minimal repair and a catastrophic failure (Type II failure), which should be rectified by the
corrective replacement. To be specific, four distinct periodic replacement models including a periodic
replacement first model (Model A1), a modified periodic replacement first model (Model A2), a periodic
replacement last model (Model B1), and a modified periodic replacement last model (Model B2) are
investigated. The long run average cost rate (ACR) over an infinite time span under different situa-
tions is obtained theoretically and optimal periodic replacement interval for each condition is derived
analytically. Numerical examples are exhibited to verify the derived results.
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1. Introduction

Maintenance activities, especially replacement behaviors are widely arranged in advance to avoid disastrous
systems failures and to decrease economic losses in various industrial scenes. Generally, replacement operations
where the procedure time is arranged before system failure and after system failure are called as preventive
replacement and corrective replacement, respectively [18]. Replacing a system either too frequently or too
less is not advisable as it increases unnecessary maintenance costs or reduces system availability. Therefore,
scheduling the optimal replacement cycle and numbers according to some criteria, such as long-run average
cost rate (ACR), expected long-run profit rate, or system availability is attracting more and more attention in
maintenance activity [3].

Age replacement (AR) models and periodic replacement (PR) models are two fundamental replacement
policies in preventive maintenance theory and they have been extensively studied in the past few decades [9,13].
Barlow and Hunter [4] investigated the AR policy for a single unit system, in which the original system is
replaced with an auxiliary system at a constant age 𝑇 after its operation or at system failure, whichever occurs
first. Different from AR policies, PR models are more practical since they do not need to keep records of usage
time, where the system is periodically replaced at 𝑘𝑇 (𝑘 = 1, 2, . . .) and only minimal repair at system failure
is addressed such that system failure rate is undisturbed by any repair for failures between two proximate
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replacements [8, 18]. Various replacement models and their theoretical computations are sufficiently analyzed
[1, 7, 12,14].

In the late 1990s, power companies in Brazil would be penalized stupendously for non-scheduled repairs when
a major overhaul of the electrical power sector happened. Therefore, the company wanted to adopt a preventive
maintenance policy, as opposed to repair actions adopted after failures and periodic visual inspections were
arranged for the power switch disconnectors. While some potential failures are detected and fixed at inspection
time, some other failures cannot be predicted through periodic visual inspection but only by a preventive
maintenance. It is evident that removing potential failures at inspection is less expensive than that the failures
have happened.

To deal with the above question in theory, Colosimo et al. [11] treated these two kinds of failures as events
governed by two non-homogeneous Poisson processes (NHPPs) for the random occurrence of failures, while the
concept of two categories of failures was initially put forward in 1980s. In 1983, the definition of two kinds of
failures (i.e., a minor failure and a major failure) was explicated by Brown and Proschan [6], in which the minor
failure is non-fatal and can be thoroughly rectified by a minimal repair, and the major failure is fatal and should
be removed by a corrective replacement. Later, Sheu et al. [30] studied a system with age-dependent failures and
random working missions, and developed three generalized age maintenance policies, where the system is also
subject to two failure types (Type I failure and Type II failure). The system is replaced ahead at a planned age
𝑇 or at the completion of the 𝑁th working mission, or correctively replaced at the first occurrence of Type II
failure. Wang et al. [27] extended the generalized age replacement policies for a single-unit system into a series
system and a parallel system with 𝑛 non-identical components, where two types of failures for both systems
were considered as well. Other maintenance policies on systems incorporated with two types of failures can be
found [2, 10, 25, 26]. The NHPP serves as an effective way to deal with different kinds of failures when system
failure can be categorized into distinct types.

When considering multiple type conditions for maintenance policies, a classical assumption is “whichever
occurs first” [20,24]. Such an assumption is more reasonable for situations where failures may bring catastrophic
production interruptions. It should be noted that maintenance actions of “whichever triggering event occurs
first” may be more frequent when several combined policies are scheduled [17, 23]. In addition, it would be
inappropriate to arrange a strict replacement on time at a planned age 𝑇 or at periodic cycles 𝑘𝑇 (𝑘 = 1, 2, . . .)
especially when the system needs to finish some successive working missions because any interruption of working
periods may incur tremendous losses of production to different degrees. Therefore, it would be not wise to
replace the system until the job is completed even though the scheduled maintenance time has arrived [19,22].
By considering the above aspects, the concept of “whichever occurs last” is developed and has been investigated
considerably [29,32].

To the best of our knowledge, more generalized periodic replacement policies for a system subject to two types of
failures (namely, Type I failure and Type II failure used in previous researches) with random working periods have
not been completely addressed yet, while their models are analytically investigated in this paper. It is assumed
that the system needs to execute several random working periods 𝑌1, 𝑌2, . . . , 𝑌𝑛 during its operation and is subject
to two types of failures when it has failed, where Type I failure is called as a minor failure and can be removed
by a minimal repair and Type II failure is a catastrophic failure which requires a corrective replacement or an
overhaul. Type I failure occurs with a probability 𝑞 (0 ≤ 𝑞 ≤ 1) and Type II failure occurs with another probability
𝑝 ≡ 1 − 𝑞. In the first generalized periodic replacement model, the system is replaced at age 𝑇 (0 < 𝑇 ≤ ∞),
or at the completion of 𝑛 working missions, or at the first occurrence time of a Type II failure, whichever comes
first. While in the second generalized periodic replacement model, the system is replaced at age 𝑇 (0 < 𝑇 ≤ ∞),
or at the completion of 𝑛 working times, or at the first occurrence time of Type II failure, whichever comes last.
Except for the two above replacement models, their respective extended models are developed as well. The ACR
function is minimized to seek the optimal replacement cycle in each model.

The remainder of this paper is organized as follows. Notations and some assumptions are offered in Section 2.
Sections 3 and 4 investigate the generalized periodic replacement policies under the assumption of “whichever
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occurs first” and “whichever occurs last”, respectively. In both models, theoretical computations are derived
and numerical examples are given to verify the results. Finally, some conclusions are summarized in Section 5.

2. Notations and assumptions

2.1. Notations

For the case of exposition, the notations used in this paper are firstly presented.
𝑇 Replacement interval
𝑌𝑖 The 𝑖th (𝑖 = 1, 2, . . . , 𝑛) random working period
𝐺𝑖(𝑡) Distribution of 𝑌𝑖

𝑌𝐹 Minimum of 𝑌1, 𝑌2, . . . , 𝑌𝑛

𝐺𝐹 (𝑡) Distribution of 𝑌𝐹

𝑌𝐿 Maximum of 𝑌1, 𝑌2, . . . , 𝑌𝑛

𝐺𝐿(𝑡) Distribution of 𝑌𝐿

𝑋 System failure time
𝐹 (𝑡) Distribution of 𝑋
𝜆(𝑡) System failure rate function
Λ(𝑡) Cumulative hazard rate function
𝑞 Occurrence probability of Type I failure
𝑝 Occurrence probability of Type II failure
𝑍 Waiting time until the first occurrence of Type II failure
𝐹 𝑝(𝑡) Survival function of 𝑍
𝑐𝑇 Replacement cost at periodic cycles 𝑘𝑇 (𝑘 = 1, 2, . . .)
𝑐𝑌 Replacement cost at the completion of 𝑌𝑖

𝑐𝐹 Replacement cost at the first Type II failure
𝑐𝑀 Replacement cost for each minimal repair
𝐶(𝑇 ) ACR
𝐶𝐹 (𝑇 ) ACR for Model A1̃︀𝐶𝐹 (𝑇 ) ACR for Model A2
𝐶𝐿(𝑇 ) ACR for Model B1̃︀𝐶𝐿(𝑇 ) ACR for Model B2

2.2. Some assumptions

Assume that a system has to operate for finite working jobs 𝑌1, 𝑌2, . . . , 𝑌𝑛 and 𝑌1, 𝑌2, . . . , 𝑌𝑛 are independent
and identically distributed (i.i.d). More specifically, 𝑌𝑖 (𝑖 = 1, 2, . . . , 𝑛) are assumed to be exponentially dis-
tributed with a parameter 𝜃, i.e., the distribution of 𝑌𝑖 is 𝐺𝑖(𝑡) = Pr{𝑌𝑖 ≤ 𝑡} = 1−e−𝜃𝑡 (0 < 𝜃 < ∞). The system
deteriorates with the operating time and has a lifetime 𝑋 according to a general distribution 𝐹 (𝑡) = Pr{𝑋 ≤ 𝑡},
where system failure time 𝑋 is statistically independent with 𝑌1, 𝑌2, . . . , 𝑌𝑛. Let 𝜆(𝑡) ≡ 𝑓(𝑡)/𝐹 (𝑡) be the failure
rate of 𝑋, where 𝑓(𝑡) is the density function of 𝐹 (𝑡), i.e., 𝑓(𝑡) ≡ d𝐹 (𝑡)/d𝑡. 𝜆(𝑡) is assumed to increase strictly
with 𝑡 from 𝜆(0) = 0 to 𝜆(∞). Λ(𝑡) ≡

∫︀ 𝑡

0
𝜆(𝑥)d𝑥 is the cumulative hazard rate and Φ(𝑡) ≡ 1 − Φ(𝑡) holds for

any function Φ(𝑡) in the whole contents.
Two types of failures are introduced for the deterioration system when it has failed at 𝑡. Type I failure (minor

failure) is occurred with a probability 𝑞 (0 ≤ 𝑞 ≤ 1) and it can be removed by a minimal repair, where minimal
repair means that system failure rate 𝜆(𝑡) remains undisturbed by any maintenance [16, 31]. Whereas Type II
failure (catastrophic failure) is formed with another probability 𝑝 ≡ 1 − 𝑞, resulting in a total breakdown and
needing a corrective replacement to rectify it [33].

The preventive replacement costs at periodic times 𝑘𝑇 (𝑘 = 1, 2, . . .) and at the completion of random working
periods 𝑌1, 𝑌2, . . . , 𝑌𝑛 are 𝑐𝑇 and 𝑐𝑌 , respectively. The corrective replacement cost at the first Type II failure
is 𝑐𝐹 , and the maintenance cost for each minimal repair is 𝑐𝑀 . It is set that 𝑐𝐹 > 𝑐𝑌 > 𝑐𝑇 . In addition, the
preparation time for every maintenance activity including the replacement and the minimal repair is negligible.
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3. Periodic replacement first policies

According to the assumptions, system failure is subject to events following an NHPP with intensity 𝜆(𝑡),
increasing strictly with respect to 𝑡 from 𝜆(0) = 0 to 𝜆(∞). Denote {𝑁1(𝑡), 𝑡 ≥ 0} and {𝑁2(𝑡), 𝑡 ≥ 0} as the
respective counting numbers of Type I failures and Type II failures in [0, 𝑡]. Then, the processes {𝑁1(𝑡), 𝑡 ≥ 0}
and {𝑁2(𝑡), 𝑡 ≥ 0} are two independent NHPPs with intensities 𝑞𝜆(𝑡) and 𝑝𝜆(𝑡), respectively [28]. Let 𝑍 be the
waiting time until the first occurrence of Type II failure in time interval [0, 𝑡], i.e.,

𝑍 = inf {𝑡 ≥ 0 : 𝑁2(𝑡) = 1} . (3.1)

The survival function of 𝑍 is

𝐹 𝑝(𝑡) = Pr{𝑍 > 𝑡} = Pr {𝑁2(𝑡) = 0} = exp
[︂
−𝑝

∫︁ 𝑡

0

𝜆(𝑥)d𝑥

]︂
. (3.2)

The mean number of Type I failures in time interval [0, 𝑡] is

𝐸 [𝑁1(𝑡)] = 𝑞Λ(𝑡) = 𝑞

∫︁ 𝑡

0

𝜆(𝑥)d𝑥. (3.3)

Let 𝑈𝑖 be the length of the 𝑖th (𝑖 = 1, 2, . . .) replacement cycle and 𝑉𝑖 be the cost over the replacement cycle
𝑈𝑖. Then, {𝑈𝑖, 𝑉𝑖} constitutes a renewal reward process. Defining 𝐷(𝑡) as the expected cost of the operating
system over the time interval [0, 𝑡], according to the renewal reward theorem [5,15], we have

𝐶(𝑇 ) = lim
𝑡→∞

𝐷(𝑡)
𝑡

=
𝐸[𝑉1]
𝐸[𝑈1]

· (3.4)

3.1. Periodic replacement first policy (Model A1)

For Model A1, we consider the following replacement situations in a renewal cycle and derive the corresponding
probabilities.

(1) The probability that the system is preventively replaced at periodic times 𝑘𝑇 (𝑘 = 1, 2, . . .) is

Pr{𝑇 < 𝑌𝐹 , 𝑇 < 𝑍} = 𝐹 𝑝(𝑇 )𝐺𝐹 (𝑇 ), (3.5)

in which 𝑌𝐹 = min {𝑌1, 𝑌2, . . . , 𝑌𝑛} and

𝐺𝐹 (𝑡) = Pr{𝑌𝐹 ≤ 𝑡} = 1−
𝑛∏︁

𝑖=1

Pr{𝑌𝑖 > 𝑡} = 1−
𝑛∏︁

𝑖=1

𝐺𝑖(𝑡). (3.6)

Thus, (3.5) becomes

Pr{𝑇 < 𝑌𝐹 , 𝑇 < 𝑍} = 𝐹 𝑝(𝑇 )
𝑛∏︁

𝑖=1

𝐺𝑖(𝑇 ). (3.7)

(2) The probability that the system is preventively replaced at the completion of random working jobs is

Pr{𝑌𝐹 < 𝑇, 𝑌𝐹 < 𝑍} =
∫︁ 𝑇

0

𝐹 𝑝(𝑡)d

(︃
1−

𝑛∏︁
𝑖=1

𝐺𝑖(𝑡)

)︃
. (3.8)

(3) The probability that the system is correctively replaced at the first occurrence of Type II failure is

Pr{𝑍 ≤ 𝑇, 𝑍 ≤ 𝑌𝐹 } =
∫︁ 𝑇

0

𝑛∏︁
𝑖=1

𝐺𝑖(𝑡)d𝐹𝑝(𝑡), (3.9)

where should note that Pr{𝑇 < 𝑍, 𝑇 < 𝑌𝐹 }+ Pr{𝑌𝐹 < 𝑇, 𝑌𝐹 < 𝑍}+ Pr{𝑍 ≤ 𝑇, 𝑍 ≤ 𝑌𝐹 } ≡ 1.
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It is clear that each replacement time for the deterioration system is a regeneration point, and therefore, the
expected length of the first renewal cycle 𝑈1 is

𝐸[𝑈1] = 𝑇𝐹 𝑝(𝑇 )
𝑛∏︁

𝑖=1

𝐺𝑖(𝑇 ) +
∫︁ 𝑇

0

𝑡𝐹 𝑝(𝑡)d

(︃
1−

𝑛∏︁
𝑖=1

𝐺𝑖(𝑡)

)︃
+
∫︁ 𝑇

0

𝑡

𝑛∏︁
𝑖=1

𝐺𝑖(𝑡)d𝐹𝑝(𝑡)

=
∫︁ 𝑇

0

𝐹 𝑝(𝑡)
𝑛∏︁

𝑖=1

𝐺𝑖(𝑡)d𝑡. (3.10)

The total mean number of Type I failures before replacement is

𝑞𝑇𝐹 𝑝(𝑇 )
𝑛∏︁

𝑖=1

𝐺𝑖(𝑇 )
∫︁ 𝑇

0

𝜆(𝑡)d𝑡 + 𝑞

∫︁ 𝑇

0

∫︁ 𝑡

0

𝜆(𝑥)𝐹 𝑝(𝑡)d𝑥d

(︃
1−

𝑛∏︁
𝑖=1

𝐺𝑖(𝑡)

)︃

+ 𝑞

∫︁ 𝑇

0

∫︁ 𝑡

0

𝜆(𝑥)
𝑛∏︁

𝑖=1

𝐺𝑖(𝑡)d𝑥d𝐹𝑝(𝑡)

= 𝑞

∫︁ 𝑇

0

𝑛∏︁
𝑖=1

𝐺𝑖(𝑡)𝜆(𝑡)𝐹 𝑝(𝑡)d𝑡. (3.11)

The expected maintenance cost of the first renewal cycle is

𝐸[𝑉1] = 𝑐𝑇 𝐹 𝑝(𝑇 )
𝑛∏︁

𝑖=1

𝐺𝑖(𝑇 ) + 𝑐𝑌

∫︁ 𝑇

0

𝐹 𝑝(𝑡)d

(︃
1−

𝑛∏︁
𝑖=1

𝐺𝑖(𝑡)

)︃

+ 𝑐𝐹

∫︁ 𝑇

0

𝑛∏︁
𝑖=1

𝐺𝑖(𝑡)d𝐹𝑝(𝑡) + 𝑐𝑀𝑞

∫︁ 𝑇

0

𝑛∏︁
𝑖=1

𝐺𝑖(𝑡)𝜆(𝑡)𝐹 𝑝(𝑡)d𝑡

= 𝑐𝑇 + (𝑐𝑌 − 𝑐𝑇 )
∫︁ 𝑇

0

𝐹 𝑝(𝑡)d

(︃
1−

𝑛∏︁
𝑖=1

𝐺𝑖(𝑡)

)︃

+ (𝑐𝐹 − 𝑐𝑇 )
∫︁ 𝑇

0

𝑛∏︁
𝑖=1

𝐺𝑖(𝑡)d𝐹𝑝(𝑡) + 𝑐𝑀𝑞

∫︁ 𝑇

0

𝑛∏︁
𝑖=1

𝐺𝑖(𝑡)𝜆(𝑡)𝐹 𝑝(𝑡)d𝑡. (3.12)

According to (3.4), the ACR for Model A1 is

𝐶𝐹 (𝑇 ) =

𝑐𝑇 + (𝑐𝑌 − 𝑐𝑇 )
∫︀ 𝑇

0
𝐹𝑝(𝑡)d

(︂
1−

𝑛∏︀
𝑖=1

𝐺̄𝑖(𝑡)
)︂

+(𝑐𝐹 − 𝑐𝑇 )
∫︀ 𝑇

0

(︂
𝑛∏︀

𝑖=1

𝐺̄𝑖(𝑡)
)︂

d𝐹𝑝(𝑡) + 𝑐𝑀𝑞
∫︀ 𝑇

0

𝑛∏︀
𝑖=1

𝐺̄𝑖(𝑡)𝜆(𝑡)𝐹𝑝(𝑡)d𝑡∫︀ 𝑇

0
𝐹𝑝(𝑡)

𝑛∏︀
𝑖=1

𝐺̄𝑖(𝑡)d𝑡
· (3.13)

In order to find the optimal 𝑇 *𝐹 minimizing 𝐶𝐹 (𝑇 ) in (3.13) for an infinite time horizon, we differentiate
𝐶𝐹 (𝑇 ) with respect to 𝑇 and set it equal to zero. From d𝐶𝐹 (𝑇 )/d𝑇 = 0, 𝑇 *𝐹 satisfies

𝑄𝐹 (𝑇 ) = 𝑐𝑇 , (3.14)

where

𝑄𝐹 (𝑇 ) = 𝜙𝐹 (𝑇 )
∫︁ 𝑇

0

𝐹 𝑝(𝑡)
𝑛∏︁

𝑖=1

𝐺𝑖(𝑡)d𝑡− (𝑐𝑌 − 𝑐𝑇 )
∫︁ 𝑇

0

𝐹 𝑝(𝑡)d

(︃
1−

𝑛∏︁
𝑖=1

𝐺𝑖(𝑡)

)︃
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− (𝑐𝐹 − 𝑐𝑇 )
∫︁ 𝑇

0

𝑛∏︁
𝑖=1

𝐺𝑖(𝑡)d𝐹𝑝(𝑡)− 𝑐𝑀𝑞

∫︁ 𝑇

0

𝑛∏︁
𝑖=1

𝐺𝑖(𝑡)𝜆(𝑡)𝐹 𝑝(𝑡)d𝑡

=
∫︁ 𝑇

0

𝐹 𝑝(𝑡)e−𝑛𝜃𝑡 [𝜙𝐹 (𝑇 )− 𝜙𝐹 (𝑡)]d𝑡,

with

𝜙𝐹 (𝑡) = (𝑐𝑌 − 𝑐𝑇 )
d
(︂

1−
𝑛∏︀

𝑖=1

𝐺𝑖(𝑡)
)︂

/d𝑡

𝑛∏︀
𝑖=1

𝐺𝑖(𝑡)
+ (𝑐𝐹 − 𝑐𝑇 )

d𝐹𝑝(𝑡)/d𝑡

𝐹 𝑝(𝑡)
+ 𝑐𝑀𝑞𝜆(𝑡)

= (𝑐𝑌 − 𝑐𝑇 )𝑛𝜃 + [(𝑐𝐹 − 𝑐𝑇 )𝑝 + 𝑐𝑀𝑞] 𝜆(𝑡).

Then, the optimal 𝑇 *𝐹 is obtained according to the following theorem.

Theorem 3.1. If 𝑄𝐹 (∞) > 𝑐𝑇 , there exists an optimal 𝑇 *𝐹 (0 < 𝑇 *𝐹 < ∞) which satisfies (3.14), and the
optimal replacement cost rate is 𝐶𝐹 (𝑇 *𝐹 ) = 𝜙𝐹 (𝑇 *𝐹 ). Otherwise, 𝑇 *𝐹 = ∞.

Proof. Differentiating 𝑄𝐹 (𝑇 ) with respect to 𝑇 , we have

d𝑄𝐹 (𝑇 )
d𝑇

=
d𝜙𝐹 (𝑇 )

d𝑇

∫︁ 𝑇

0

𝐹 𝑝(𝑡)
𝑛∏︁

𝑖=1

𝐺𝑖(𝑡)d𝑡 + 𝜙𝐹 (𝑇 )𝐹 𝑝(𝑇 )
𝑛∏︁

𝑖=1

𝐺𝑖(𝑇 )

− (𝑐𝑌 − 𝑐𝑇 )𝐹 𝑝(𝑇 )
d
(︂

1−
𝑛∏︀

𝑖=1

𝐺𝑖(𝑇 )
)︂

d𝑇
− (𝑐𝐹 − 𝑐𝑇 )

𝑛∏︁
𝑖=1

𝐺𝑖(𝑇 )
d𝐹𝑝(𝑇 )

d𝑇

− 𝑐𝑀𝑞

𝑛∏︁
𝑖=1

𝐺𝑖(𝑇 )𝜆(𝑇 )𝐹 𝑝(𝑇 )

=
d𝜙𝐹 (𝑇 )

d𝑇

∫︁ 𝑇

0

𝐹 𝑝(𝑡)
𝑛∏︁

𝑖=1

𝐺𝑖(𝑡)d𝑡

= [(𝑐𝐹 − 𝑐𝑇 )𝑝 + 𝑐𝑀𝑞]
d𝜆(𝑇 )

d𝑇

∫︁ 𝑇

0

𝐹 𝑝(𝑡)e−𝑛𝜃𝑡d𝑡.

We judge that d𝑄𝐹 (𝑇 )/d𝑇 > 0 given the condition that 𝜆(𝑡) increases strictly with 𝑡 from 𝜆(0) = 0 to 𝜆(∞),
illustrating that 𝑄𝐹 (𝑇 ) also increases strictly from 𝑄𝐹 (0) = 0 to 𝑄𝐹 (∞) = lim

𝑇→∞
𝑄𝐹 (𝑇 ) with respect to 𝑇 , and

𝑄𝐹 (∞) = lim
𝑇→∞

𝑄𝐹 (𝑇 ) =
∫︁ ∞

0

𝐹 𝑝(𝑡)e−𝑛𝜃𝑡 [𝜙𝐹 (∞)− 𝜙𝐹 (𝑡)]d𝑡.

Thus, a finite and unique 𝑇 *𝐹 (0 < 𝑇 *𝐹 < ∞) exists when 𝑄𝐹 (∞) > 𝑐𝑇 , otherwise 𝑇 *𝐹 = ∞ when 𝑄𝐹 (∞) ≤ 𝑐𝑇 ,
which completes the proof process of Theorem 3.1. �

Remark 3.2. (1) When 𝑞 = 1, i.e., the system undergoes only minimal repair at failure, 𝐶𝐹 (𝑇 ) in (3.13)
becomes

𝐶𝐹 (𝑇 ) =
𝑐𝑇

𝑛∏︀
𝑖=1

𝐺𝑖(𝑇 ) + 𝑐𝑌

(︂
1−

𝑛∏︀
𝑖=1

𝐺𝑖(𝑇 )
)︂

+ 𝑐𝑀

∫︀ 𝑇

0

𝑛∏︀
𝑖=1

𝐺𝑖(𝑡)𝜆(𝑡)d𝑡∫︀ 𝑇

0

𝑛∏︀
𝑖=1

𝐺𝑖(𝑡)d𝑡
, (3.15)

which consists with the result in Wang et al. [27].
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(2) When 𝑇 → ∞, i.e., the system is replaced at the completion of random working jobs, or at the first
occurrence of Type II failure, whichever occurs first. 𝐶𝐹 (𝑇 ) in (3.13) becomes

𝐶𝐹 (𝑇 ) =

𝑐𝑌

∫︀∞
0

𝐹 𝑝(𝑡)d
(︂

1−
𝑛∏︀

𝑖=1

𝐺𝑖(𝑡)
)︂

+ 𝑐𝐹

∫︀∞
0

𝑛∏︀
𝑖=1

𝐺𝑖(𝑡)d𝐹𝑝(𝑡)

+𝑐𝑀𝑞
∫︀∞
0

𝑛∏︀
𝑖=1

𝐺𝑖(𝑡)𝜆(𝑡)𝐹 𝑝(𝑡)d𝑡∫︀∞
0

𝐹 𝑝(𝑡)
𝑛∏︀

𝑖=1

𝐺𝑖(𝑡)d𝑡
· (3.16)

(3) When 𝑞 = 1, 𝑌𝐹 → ∞, i.e., the system undergoes only minimal repair at failure and no random working
times are considered, then 𝐶𝐹 (𝑇 ) in (3.13) becomes

𝐶𝐹 (𝑇 ) =
𝑐𝑇 + 𝑐𝑀

∫︀ 𝑇

0
𝜆(𝑡)d𝑡

𝑇
, (3.17)

which is the classical periodic replacement policy.

3.2. Modified periodic replacement first policy (Model A2)

In this section we develop a modified periodic replacement first policy (Model A2) based on Section 3.1.
Suppose that the system is preventively replaced at the periodic time points 𝑘𝑇 (𝑘 = 1, 2, . . .), or at when at
least one of the 𝑛 random working times is longer than 𝑇 , or correctively replaced at the first time of Type II

failure, whichever occurs first. Replacing 𝐺𝐹 (𝑡) = 1 −
𝑛∏︀

𝑖=1

𝐺𝑖(𝑡) with 𝐺𝐿(𝑡) =
𝑛∏︀

𝑖=1

𝐺𝑖(𝑡) in (3.13), we have the

following ACR for Model A2 as

̃︀𝐶𝐹 (𝑇 ) =

𝑐𝑇 + (𝑐𝑌 − 𝑐𝑇 )
∫︀ 𝑇

0
𝐹 𝑝(𝑡)d

(︂
𝑛∏︀

𝑖=1

𝐺𝑖(𝑡)
)︂

+ (𝑐𝐹 − 𝑐𝑇 )
∫︀ 𝑇

0

(︂
1−

𝑛∏︀
𝑖=1

𝐺𝑖(𝑡)
)︂

d𝐹𝑝(𝑡)

+𝑐𝑀𝑞
∫︀ 𝑇

0

(︂
1−

𝑛∏︀
𝑖=1

𝐺𝑖(𝑡)
)︂

𝜆(𝑡)𝐹 𝑝(𝑡)d𝑡

∫︀ 𝑇

0
𝐹 𝑝(𝑡)

(︂
1−

𝑛∏︀
𝑖=1

𝐺𝑖(𝑡)
)︂

d𝑡

· (3.18)

In order to find the optimal ̃︀𝑇 *𝐹 which minimizes ̃︀𝐶𝐹 (𝑇 ) in (3.18) for an infinite time horizon, we differentiatẽ︀𝐶𝐹 (𝑇 ) with respect to 𝑇 and set it equal to zero. From d ̃︀𝐶𝐹 (𝑇 )/d𝑇 = 0, we have

̃︀𝑄𝐹 (𝑇 ) = 𝑐𝑇 , (3.19)

where

̃︀𝑄𝐹 (𝑇 ) = ̃︀𝜙𝐹 (𝑇 )
∫︁ 𝑇

0

𝐹 𝑝(𝑡)

(︃
1−

𝑛∏︁
𝑖=1

𝐺𝑖(𝑡)

)︃
d𝑡− (𝑐𝑌 − 𝑐𝑇 )

∫︁ 𝑇

0

𝐹 𝑝(𝑡)d

(︃
𝑛∏︁

𝑖=1

𝐺𝑖(𝑡)

)︃

− (𝑐𝐹 − 𝑐𝑇 )
∫︁ 𝑇

0

(︃
1−

𝑛∏︁
𝑖=1

𝐺𝑖(𝑡)

)︃
d𝐹𝑝(𝑡)

− 𝑐𝑀𝑞

∫︁ 𝑇

0

(︃
1−

𝑛∏︁
𝑖=1

𝐺𝑖(𝑡)

)︃
𝜆(𝑡)𝐹 𝑝(𝑡)d𝑡

=
∫︁ 𝑇

0

𝐹 𝑝(𝑡)
[︁
1− (1− e−𝜃𝑡)

𝑛
]︁

[̃︀𝜙𝐹 (𝑇 )− ̃︀𝜙𝐹 (𝑡)]d𝑡,
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with

̃︀𝜙𝐹 (𝑡) = (𝑐𝑌 − 𝑐𝑇 )
d
(︂

𝑛∏︀
𝑖=1

𝐺𝑖(𝑡)
)︂

/d𝑡

1−
𝑛∏︀

𝑖=1

𝐺𝑖(𝑡)
+ (𝑐𝐹 − 𝑐𝑇 )

d𝐹𝑝(𝑡)/d𝑡

𝐹 𝑝(𝑡)
+ 𝑐𝑀𝑞𝜆(𝑡)

= (𝑐𝑌 − 𝑐𝑇 )
𝑛𝜃e−𝜃𝑡(1− e−𝜃𝑡)𝑛−1

1− (1− e−𝜃𝑡)𝑛 + [(𝑐𝐹 − 𝑐𝑇 )𝑝 + 𝑐𝑀𝑞] 𝜆(𝑡).

Then, the optimal ̃︀𝑇 *𝐹 is obtained according to the following theorem.

Theorem 3.3. If ̃︀𝑄𝐹 (∞) > 𝑐𝑇 , there exists an optimal ̃︀𝑇 *𝐹 (0 < ̃︀𝑇 *𝐹 < ∞) which satisfies (3.19), and the
optimal replacement cost rate is ̃︀𝐶𝐹 ( ̃︀𝑇 *𝐹 ) = ̃︀𝜙𝐹 ( ̃︀𝑇 *𝐹 ). Otherwise, ̃︀𝑇 *𝐹 = ∞.

Proof. Differentiating ̃︀𝑄𝐹 (𝑇 ) with respect to 𝑇 , we have

d ̃︀𝑄𝐹 (𝑇 )
d𝑇

=
d̃︀𝜙𝐹 (𝑇 )

d𝑇

∫︁ 𝑇

0

𝐹 𝑝(𝑡)

(︃
1−

𝑛∏︁
𝑖=1

𝐺𝑖(𝑡)

)︃
d𝑡 + ̃︀𝜙𝐹 (𝑇 )𝐹 𝑝(𝑇 )

(︃
1−

𝑛∏︁
𝑖=1

𝐺𝑖(𝑇 )

)︃

− (𝑐𝑌 − 𝑐𝑇 )𝐹 𝑝(𝑇 )
d
(︂

𝑛∏︀
𝑖=1

𝐺𝑖(𝑇 )
)︂

d𝑇

− (𝑐𝐹 − 𝑐𝑇 )

(︃
1−

𝑛∏︁
𝑖=1

𝐺𝑖(𝑇 )

)︃
d𝐹𝑝(𝑇 )

d𝑇
− 𝑐𝑀𝑞𝜆(𝑇 )

(︃
1−

𝑛∏︁
𝑖=1

𝐺𝑖(𝑇 )

)︃
𝐹 𝑝(𝑇 )

=
d̃︀𝜙𝐹 (𝑇 )

d𝑇

∫︁ 𝑇

0

𝐹 𝑝(𝑡)

(︃
1−

𝑛∏︁
𝑖=1

𝐺𝑖(𝑡)

)︃
d𝑡

=

⎧⎨⎩(𝑐𝑌 − 𝑐𝑇 )
𝑛(𝑛− 1)𝜃2e−𝜃𝑇 (1− e−𝜃𝑇 )𝑛−2

1− (1− e−𝜃𝑇 )𝑛 + (𝑐𝑌 − 𝑐𝑇 )

[︃
𝑛𝜃e−𝜃𝑇 (1− e−𝜃𝑇 )𝑛−1

1− (1− e−𝜃𝑇 )𝑛

]︃2

+ [(𝑐𝐹 − 𝑐𝑇 )𝑝 + 𝑐𝑀𝑞]
d𝜆(𝑇 )

d𝑇

}︂∫︁ 𝑇

0

𝐹 𝑝(𝑡)
[︁
1− (1− e−𝜃𝑡)

𝑛
]︁
d𝑡.

If 𝜆(𝑡) increases strictly with 𝑡 from 𝜆(0) = 0 to 𝜆(∞), it is clear that d ̃︀𝑄𝐹 (𝑇 )/d𝑇 > 0, then ̃︀𝑄𝐹 (𝑇 ) increases
strictly from ̃︀𝑄𝐹 (0) = 0 to ̃︀𝑄𝐹 (∞) = lim

𝑇→∞
̃︀𝑄𝐹 (𝑇 ) with respect to 𝑇 , and

̃︀𝑄𝐹 (∞) = lim
𝑇→∞

̃︀𝑄𝐹 (𝑇 ) =
∫︁ ∞

0

𝐹 𝑝(𝑡)
[︁
1− (1− e−𝜃𝑡)

𝑛
]︁

[̃︀𝜙𝐹 (∞)− ̃︀𝜙𝐹 (𝑡)]d𝑡.

Thus, a finite and unique ̃︀𝑇 *𝐹 (0 < ̃︀𝑇 *𝐹 < ∞) exists when ̃︀𝑄𝐹 (∞) > 𝑐𝑇 , otherwise ̃︀𝑇 *𝐹 = ∞ when ̃︀𝑄𝐹 (∞) ≤ 𝑐𝑇 ,
which completes the proof process of Theorem 3.3. �

3.3. Numerical examples

In this section, numerical examples are given to verify the theoretical results obtained. Assume that system
failure time follows a Weibull distribution, i.e., 𝐹 (𝑡) = 1 − e−0.01𝑡2 . The 𝑖th (𝑖 = 1, 2, . . . , 𝑛) working time is
exponentially distributed with 𝐺𝑖(𝑡) = 1−e−0.1𝑡. For convenient computation, the following costs are introduced:
𝑐𝑇 = 500, 𝑐𝑌 = 750, 𝑐𝐹 = 1000, and 𝑐𝑀 = 100. Tables 1 and 2 show the optimal replacement cycles 𝑇 *𝐹 and̃︀𝑇 *𝐹 , and the corresponding minimized maintenance cost rates 𝐶𝐹 (𝑇 *𝐹 ) and ̃︀𝐶𝐹 ( ̃︀𝑇 *𝐹 ) for Model A1 and Model
A2, respectively.
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Table 1. Optimal 𝑇 *𝐹 and 𝐶𝐹 (𝑇 *𝐹 ) for different 𝑞 and 𝑛 (𝑐𝑇 = 500, 𝑐𝑌 = 750, 𝑐𝐹 = 1000,
𝑐𝑀 = 100, 𝐺𝑖(𝑡) = 1− e−0.1𝑡, 𝐹 (𝑡) = 1− e−0.01𝑡2).

𝑞
𝑛 = 1 𝑛 = 2 𝑛 = 3

𝑇 *
𝐹 𝐶𝐹 (𝑇 *

𝐹 ) 𝑇 *
𝐹 𝐶𝐹 (𝑇 *

𝐹 ) 𝑇 *
𝐹 𝐶𝐹 (𝑇 *

𝐹 )

1.0 34.69 94.38 54.99 160.01 78.33 231.67
0.9 28.31 104.27 41.95 167.45 57.91 237.16
0.8 24.32 112.54 34.47 174.09 46.47 242.29
0.7 21.55 119.82 29.58 180.15 39.12 247.13
0.6 19.50 126.41 26.11 185.77 33.99 251.74
0.5 17.91 132.47 23.51 191.05 30.19 256.14
0.4 16.63 138.12 21.48 196.04 27.26 260.37
0.3 15.58 143.43 19.84 200.79 24.93 264.44
0.2 14.70 148.45 18.49 205.33 23.02 268.37
0.1 13.94 153.24 17.36 209.68 21.43 272.18
0 13.28 157.82 16.39 213.88 20.09 275.88

Table 2. Optimal ̃︀𝑇 *𝐹 and ̃︀𝐶𝐹 ( ̃︀𝑇 *𝐹 ) for different 𝑞 and 𝑛 (𝑐𝑇 = 500, 𝑐𝑌 = 750, 𝑐𝐹 = 1000,
𝑐𝑀 = 100, 𝐺𝑖(𝑡) = 1− e−0.1𝑡, 𝐹 (𝑡) = 1− e−0.01𝑡2).

𝑞
𝑛 = 1 𝑛 = 2 𝑛 = 3

̃︀𝑇 *
𝐹

̃︀𝐶𝐹 ( ̃︀𝑇 *
𝐹 ) ̃︀𝑇 *

𝐹
̃︀𝐶𝐹 ( ̃︀𝑇 *

𝐹 ) ̃︀𝑇 *
𝐹

̃︀𝐶𝐹 ( ̃︀𝑇 *
𝐹 )

1.0 34.69 94.38 23.50 70.74 20.29 62.14
0.9 28.31 104.27 19.89 78.87 17.66 69.92
0.8 24.32 112.54 17.58 85.93 15.90 76.81
0.7 21.55 119.82 15.93 92.29 14.61 83.06
0.6 19.50 126.41 14.69 98.12 13.61 88.84
0.5 17.91 132.47 13.70 103.55 12.80 94.25
0.4 16.63 138.12 12.89 108.66 12.13 99.36
0.3 15.58 143.43 12.21 113.49 11.56 104.20
0.2 14.70 148.45 11.63 118.10 11.07 108.83
0.1 13.94 153.24 11.13 122.51 10.63 113.26
0 13.28 158.82 10.69 126.74 10.25 117.53

Tables 1 and 2 illustrate that 𝑇 *𝐹 and ̃︀𝑇 *𝐹 increase with 𝑞 for a fixed 𝑛, while 𝐶𝐹 (𝑇 *𝐹 ) and ̃︀𝐶𝐹 ( ̃︀𝑇 *𝐹 ) decrease
with 𝑞. When 𝑞 is given, both 𝑇 *𝐹 and 𝐶𝐹 (𝑇 *𝐹 ) increase with 𝑛, whereas on the other aspect, both ̃︀𝑇 *𝐹 and̃︀𝐶𝐹 ( ̃︀𝑇 *𝐹 ) decrease with 𝑛. Figure 1 shows the average cost rate 𝐶𝐹 (𝑇 ) for different 𝑛 in terms of 𝑞 = 1 for Model
A1 and Figure 2 shows the average cost rate ̃︀𝐶𝐹 (𝑇 ) for different 𝑛 in terms of 𝑞 = 1 for Model A2, where 𝑞 = 1
illustrates that the failure rate of the system is undisturbed by any shocks. From Figures 1 and 2, it is clear that
the finite and unique replacement intervals 𝑇 *𝐹 and ̃︀𝑇 *𝐹 exist when 𝑞 = 1, i.e., 0 < 𝑇 *𝐹 < ∞ and 0 < ̃︀𝑇 *𝐹 < ∞.

4. Periodic replacement last policies

Implementing replacement first policies may lead to too frequent unnecessary replacement, as well as inter-
rupting random working jobs. In this case, we develop generalized periodic replacement last models. The system
is preventively replaced at periodic cycles 𝑘𝑇 (𝑘 = 1, 2, . . .) before Type II failure, or at the completion of random
working times, whichever occurs last. Corrective replacement is arranged immediately at the first occurrence of
Type II failure.
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Figure 1. 𝐶𝐹 (𝑇 ) for different 𝑛 in terms of 𝑞 = 1 (𝑐𝑇 = 500, 𝑐𝑌 = 750, 𝑐𝐹 = 1000, 𝑐𝑀 = 100,
𝐺𝑖(𝑡) = 1− e−0.1𝑡, 𝐹 (𝑡) = 1− e−0.01𝑡2).

Figure 2. ̃︀𝐶𝐹 (𝑇 ) for different 𝑛 in terms of 𝑞 = 1 (𝑐𝑇 = 500, 𝑐𝑌 = 750, 𝑐𝐹 = 1000, 𝑐𝑀 = 100,
𝐺𝑖(𝑡) = 1− e−0.1𝑡, 𝐹 (𝑡) = 1− e−0.01𝑡2).

4.1. Periodic replacement last policy (Model B1)

For Model B1, the following three distinct situations are considered and their corresponding probabilities are
derived.
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(1) The probability that the system is preventively replaced at periodic times 𝑘𝑇 (𝑘 = 1, 2, . . .) is

Pr{𝑇 < 𝑍, 𝑌𝐿 ≤ 𝑇} = 𝐹 𝑝(𝑇 )
𝑛∏︁

𝑖=1

𝐺𝑖(𝑇 ). (4.1)

(2) The probability that the system is preventively replaced at the completion of 𝑛 random working jobs is

Pr{𝑌𝐿 > 𝑇, 𝑌𝐿 ≤ 𝑍} =
∫︁ ∞

𝑇

𝐹 𝑝(𝑡)d

(︃
𝑛∏︁

𝑖=1

𝐺𝑖(𝑡)

)︃
. (4.2)

(3) The probability that the system is correctively replaced at the first occurrence of Type II failure is

Pr{𝑍 ≤ 𝑇}+ Pr{𝑇 < 𝑍, 𝑍 < 𝑌𝐿} = 𝐹𝑝(𝑇 ) +
∫︁ ∞

𝑇

(︃
1−

𝑛∏︁
𝑖=1

𝐺𝑖(𝑡)

)︃
d𝐹𝑝(𝑡), (4.3)

where should note that Pr{𝑇 < 𝑍, 𝑌𝐿 ≤ 𝑇}+ Pr{𝑌𝐿 > 𝑇, 𝑌𝐿 ≤ 𝑍}+ Pr{𝑍 ≤ 𝑇}+ Pr{𝑇 < 𝑍, 𝑍 < 𝑌𝐿} ≡ 1.

The expected length of the first renewal cycle is

𝐸[𝑈1] = 𝑇𝐹 𝑝(𝑇 )
𝑛∏︁

𝑖=1

𝐺𝑖(𝑇 ) +
∫︁ ∞

𝑇

𝑡𝐹 𝑝(𝑡)d

(︃
𝑛∏︁

𝑖=1

𝐺𝑖(𝑡)

)︃
+
∫︁ 𝑇

0

𝑡d𝐹𝑝(𝑡)

+
∫︁ ∞

𝑇

𝑡

(︃
1−

𝑛∏︁
𝑖=1

𝐺𝑖(𝑡)

)︃
d𝐹𝑝(𝑡)

=
∫︁ 𝑇

0

𝐹 𝑝(𝑡)d𝑡 +
∫︁ ∞

𝑇

𝐹 𝑝(𝑡)

(︃
1−

𝑛∏︁
𝑖=1

𝐺𝑖(𝑡)

)︃
d𝑡. (4.4)

The total mean number of Type I failures before replacement is

𝑞𝐹 𝑝(𝑇 )
𝑛∏︁

𝑖=1

𝐺𝑖(𝑇 )
∫︁ 𝑇

0

𝜆(𝑡)d𝑡 + 𝑞

∫︁ ∞

𝑇

∫︁ 𝑡

0

𝜆(𝑥)𝐹 𝑝(𝑡)d𝑥d

(︃
𝑛∏︁

𝑖=1

𝐺𝑖(𝑡)

)︃

+ 𝑞

∫︁ 𝑇

0

∫︁ 𝑡

0

𝜆(𝑥)d𝑥d𝐹𝑝(𝑡) + 𝑞

∫︁ ∞

𝑇

∫︁ 𝑡

0

𝜆(𝑥)

(︃
1−

𝑛∏︁
𝑖=1

𝐺𝑖(𝑡)

)︃
d𝑥d𝐹𝑝(𝑡)

= 𝑞

[︃∫︁ 𝑇

0

𝐹 𝑝(𝑡)𝜆(𝑡)d𝑡 +
∫︁ ∞

𝑇

𝐹 𝑝(𝑡)

(︃
1−

𝑛∏︁
𝑖=1

𝐺𝑖(𝑡)

)︃
𝜆(𝑡)d𝑡

]︃
. (4.5)

The expected maintenance cost in a renewal cycle is

𝐸[𝑉1] = 𝑐𝑇 𝐹 𝑝(𝑇 )
𝑛∏︁

𝑖=1

𝐺𝑖(𝑇 ) + 𝑐𝑌

∫︁ ∞

𝑇

𝐹 𝑝(𝑡)d

(︃
𝑛∏︁

𝑖=1

𝐺𝑖(𝑡)

)︃
+ 𝑐𝐹

[︃∫︁ ∞

𝑇

(︃
1−

𝑛∏︁
𝑖=1

𝐺𝑖(𝑡)

)︃
d𝐹𝑝(𝑡)

+ 𝐹𝑝(𝑇 )] + 𝑐𝑀

[︃
𝑞

∫︁ 𝑇

0

𝐹 𝑝(𝑡)𝜆(𝑡)d𝑡 + 𝑞

∫︁ ∞

𝑇

𝐹 𝑝(𝑡)

(︃
1−

𝑛∏︁
𝑖=1

𝐺𝑖(𝑡)

)︃
𝜆(𝑡)d𝑡

]︃

= 𝑐𝑇 + (𝑐𝑌 − 𝑐𝑇 )
∫︁ ∞

𝑇

𝐹 𝑝(𝑡)d

(︃
𝑛∏︁

𝑖=1

𝐺𝑖(𝑡)

)︃
+ (𝑐𝐹 − 𝑐𝑇 )

[︃∫︁ ∞

𝑇

(︃
1−

𝑛∏︁
𝑖=1

𝐺𝑖(𝑡)

)︃
d𝐹𝑝(𝑡)

+ 𝐹𝑝(𝑇 )] + 𝑐𝑀𝑞

[︃∫︁ 𝑇

0

𝐹 𝑝(𝑡)𝜆(𝑡)d𝑡 +
∫︁ ∞

𝑇

𝐹 𝑝(𝑡)

(︃
1−

𝑛∏︁
𝑖=1

𝐺𝑖(𝑡)

)︃
𝜆(𝑡)d𝑡

]︃
. (4.6)
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According to (3.4), the ACR for Model B1 is

𝐶𝐿(𝑇 ) =

𝑐𝑇 + (𝑐𝑌 − 𝑐𝑇 )
∫︀∞

𝑇
𝐹 𝑝(𝑡)d

(︂
𝑛∏︀

𝑖=1

𝐺𝑖(𝑡)
)︂

+ (𝑐𝐹 − 𝑐𝑇 )
[︂∫︀∞

𝑇

(︂
1−

𝑛∏︀
𝑖=1

𝐺𝑖(𝑡)
)︂

d𝐹𝑝(𝑡)

+ 𝐹𝑝(𝑇 )] + 𝑐𝑀𝑞

[︂∫︀ 𝑇

0
𝐹 𝑝(𝑡)𝜆(𝑡)d𝑡 +

∫︀∞
𝑇

𝐹 𝑝(𝑡)
(︂

1−
𝑛∏︀

𝑖=1

𝐺𝑖(𝑡)
)︂

𝜆(𝑡)d𝑡

]︂
∫︀ 𝑇

0
𝐹 𝑝(𝑡)d𝑡 +

∫︀∞
𝑇

𝐹 𝑝(𝑡)
(︂

1−
𝑛∏︀

𝑖=1

𝐺𝑖(𝑡)
)︂

d𝑡

· (4.7)

In order to find the optimal 𝑇 *𝐿 which minimizes 𝐶𝐿(𝑇 ) in (4.7) for an infinite time horizon, we differentiate
𝐶𝐿(𝑇 ) with respect to 𝑇 and set it equal to zero. From d𝐶𝐿(𝑇 )/d𝑇 = 0, we have

𝑄𝐿(𝑇 ) = 𝑐𝑇 , (4.8)

where

𝑄𝐿(𝑇 ) = 𝜙𝐿(𝑇 )

[︃∫︁ 𝑇

0

𝐹 𝑝(𝑡)d𝑡 +
∫︁ ∞

𝑇

𝐹 𝑝(𝑡)

(︃
1−

𝑛∏︁
𝑖=1

𝐺𝑖(𝑡)

)︃
d𝑡

]︃
− (𝑐𝑌 − 𝑐𝑇 )

∫︁ ∞

𝑇

𝐹 𝑝(𝑡)d

(︃
𝑛∏︁

𝑖=1

𝐺𝑖(𝑡)

)︃

− (𝑐𝐹 − 𝑐𝑇 )

[︃∫︁ ∞

𝑇

(︃
1−

𝑛∏︁
𝑖=1

𝐺𝑖(𝑡)

)︃
d𝐹𝑝(𝑡) + 𝐹𝑝(𝑇 )

]︃

− 𝑐𝑀

[︃
𝑞

∫︁ 𝑇

0

𝐹 𝑝(𝑡)𝜆(𝑡)d𝑡 + 𝑞

∫︁ ∞

𝑇

𝐹 𝑝(𝑡)

(︃
1−

𝑛∏︁
𝑖=1

𝐺𝑖(𝑡)

)︃
𝜆(𝑡)d𝑡

]︃

=
∫︁ 𝑇

0

𝐹 𝑝(𝑡) [𝜙𝐿(𝑇 )− 𝜙𝐿(𝑡)]d𝑡 +
∫︁ ∞

𝑇

𝐹 𝑝(𝑡)
[︁
1− (1− e−𝜃𝑡)

𝑛
]︁

[𝜙𝐿(𝑇 )− 𝜙𝐿(𝑡)]d𝑡,

with

𝜙𝐿(𝑡) = −(𝑐𝑌 − 𝑐𝑇 )
d
(︂

𝑛∏︀
𝑖=1

𝐺𝑖(𝑡)
)︂

/d𝑡

𝑛∏︀
𝑖=1

𝐺𝑖(𝑡)
+ (𝑐𝐹 − 𝑐𝑇 )

d𝐹𝑝(𝑡)/d𝑡

𝐹 𝑝(𝑡)
+ 𝑐𝑀𝑞𝜆(𝑡)

= −(𝑐𝑌 − 𝑐𝑇 )
𝑛𝜃e−𝜃𝑡

1− e−𝜃𝑡
+ [(𝑐𝐹 − 𝑐𝑇 )𝑝 + 𝑐𝑀𝑞] 𝜆(𝑡).

Then, the optimal 𝑇 *𝐿 is obtained according to the following theorem.

Theorem 4.1. If 𝑄𝐿(∞) > 𝑐𝑇 , there exists an optimal 𝑇 *𝐿 (0 < 𝑇 *𝐿 < ∞) which satisfies (4.8), and the optimal
replacement cost rate is 𝐶𝐿 (𝑇 *𝐿) = 𝜙𝐿 (𝑇 *𝐿). Otherwise, 𝑇 *𝐿 = ∞.

Proof. Differentiating 𝑄𝐿(𝑇 ) with respect to 𝑇 , we have

d𝑄𝐿(𝑇 )
d𝑇

=
d𝜙𝐿(𝑇 )

d𝑇

[︃∫︁ 𝑇

0

𝐹 𝑝(𝑡)d𝑡 +
∫︁ ∞

𝑇

𝐹 𝑝(𝑡)

(︃
1−

𝑛∏︁
𝑖=1

𝐺𝑖(𝑡)

)︃
d𝑡

]︃

− 𝜙𝐿(𝑇 )𝐹 𝑝(𝑇 )
𝑛∏︁

𝑖=1

𝐺𝑖(𝑇 ) + (𝑐𝑌 − 𝑐𝑇 )𝐹 𝑝(𝑇 )
d
(︂

𝑛∏︀
𝑖=1

𝐺𝑖(𝑇 )
)︂

d𝑇

− (𝑐𝐹 − 𝑐𝑇 )
𝑛∏︁

𝑖=1

𝐺𝑖(𝑇 )
d𝐹𝑝(𝑇 )

d𝑇
− 𝑐𝑀𝑞𝜆(𝑇 )𝐹 𝑝(𝑇 )

𝑛∏︁
𝑖=1

𝐺𝑖(𝑇 )
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=
d𝜙𝐿(𝑇 )

d𝑇

[︃∫︁ 𝑇

0

𝐹 𝑝(𝑡)d𝑡 +
∫︁ ∞

𝑇

𝐹 𝑝(𝑡)

(︃
1−

𝑛∏︁
𝑖=1

𝐺𝑖(𝑡)

)︃
d𝑡

]︃

=

{︃
(𝑐𝑌 − 𝑐𝑇 )

𝑛𝜃2e−𝜃𝑇

(1− e−𝜃𝑇 )2
+ [(𝑐𝐹 − 𝑐𝑇 )𝑝 + 𝑐𝑀𝑞]

d𝜆(𝑇 )
d𝑇

}︃{︃∫︁ 𝑇

0

𝐹 𝑝(𝑡)d𝑡

+
∫︁ ∞

𝑇

𝐹 𝑝(𝑡)
[︁
1− (1− e−𝜃𝑡)

𝑛
]︁
d𝑡

}︂
.

If 𝜆(𝑡) increases strictly with 𝑡 from 𝜆(0) = 0 to 𝜆(∞), it is clear that d𝑄𝐿(𝑇 )/d𝑇 > 0, then 𝑄𝐿(𝑇 ) increases
strictly from 𝑄𝐿(0) to 𝑄𝐿(∞) = lim

𝑇→∞
𝑄𝐿(𝑇 ) with respect to 𝑇 , and

𝑄𝐿(∞) =
∫︁ ∞

0

𝐹 𝑝(𝑡) [𝜙𝐿(∞)− 𝜙𝐿(𝑡)]d𝑡.

Thus, a finite and unique 𝑇 *𝐿 (0 < 𝑇 *𝐿 < ∞) exists when 𝑄𝐿(∞) > 𝑐𝑇 , otherwise 𝑇 *𝐿 = ∞ when 𝑄𝐿(∞) ≤ 𝑐𝑇 ,
which completes the proof process of Theorem 4.1. �

Remark 4.2. (1) When 𝑞 = 1, i.e., the system undergoes only minimal repair at failure, 𝐶𝐿(𝑇 ) in (4.7) becomes

𝐶𝐿(𝑇 ) =

𝑐𝑇

𝑛∏︀
𝑖=1

𝐺𝑖(𝑇 ) + 𝑐𝑌

(︂
1−

𝑛∏︀
𝑖=1

𝐺𝑖(𝑇 )
)︂

+𝑐𝑀

[︂
𝑞
∫︀ 𝑇

0
𝜆(𝑡)d𝑡 + 𝑞

∫︀∞
𝑇

(︂
1−

𝑛∏︀
𝑖=1

𝐺𝑖(𝑡)
)︂

𝜆(𝑡)d𝑡

]︂
𝑇 +

∫︀∞
𝑇

(︂
1−

𝑛∏︀
𝑖=1

𝐺𝑖(𝑡)
)︂

d𝑡

· (4.9)

(2) When 𝑇 → ∞, i.e., the system is replaced at the completion of random working times, or at the first
occurrence of Type II failure, whichever occurs last. 𝐶𝐿(𝑇 ) in (4.7) becomes

𝐶𝐿(𝑇 ) =
𝑐𝐹 + 𝑐𝑀𝑞

∫︀∞
0

𝐹 𝑝(𝑡)𝜆(𝑡)d𝑡∫︀∞
0

𝐹 𝑝(𝑡)d𝑡
· (4.10)

4.2. Modified periodic replacement last policy (Model B2)

In this section we develop a modified periodic replacement last policy (Model B2) based on Section 4.1.
Suppose that the system is preventively replaced at the first completion of 𝑌1 among 𝑛 random working jobs
after the periodic cycle 𝑇 , or at periodic cycles when at least one of the 𝑛 random working jobs is less than 𝑇 ,

or correctively replaced at the occurrence of Type II failure, whichever occurs last. Replacing 𝐺𝐿(𝑡) =
𝑛∏︀

𝑖=1

𝐺𝑖(𝑡)

with 𝐺𝐹 (𝑡) = 1−
𝑛∏︀

𝑖=1

𝐺𝑖(𝑡) in (4.7), we have the ACR for Model B2 as

̃︀𝐶𝐿(𝑇 ) =

𝑐𝑇 + (𝑐𝑌 − 𝑐𝑇 )
∫︀∞

𝑇
𝐹 𝑝(𝑡)d

(︂
1−

𝑛∏︀
𝑖=1

𝐺𝑖(𝑡)
)︂

+ (𝑐𝐹 − 𝑐𝑇 )
[︂∫︀∞

𝑇

(︂
𝑛∏︀

𝑖=1

𝐺𝑖(𝑡)
)︂

d𝐹𝑝(𝑡)

+ 𝐹𝑝(𝑇 )] + 𝑐𝑀

[︂
𝑞
∫︀ 𝑇

0
𝐹 𝑝(𝑡)𝜆(𝑡)d𝑡 + 𝑞

∫︀∞
𝑇

𝐹 𝑝(𝑡)
𝑛∏︀

𝑖=1

𝐺𝑖(𝑡)𝜆(𝑡)d𝑡

]︂
∫︀ 𝑇

0
𝐹 𝑝(𝑡)d𝑡 +

∫︀∞
𝑇

𝐹 𝑝(𝑡)
𝑛∏︀

𝑖=1

𝐺𝑖(𝑡)d𝑡
· (4.11)

We differentiate ̃︀𝐶𝐿(𝑇 ) with respect to 𝑇 and set it equal to zero, finding the optimal ̃︀𝑇 *𝐿 which minimizes̃︀𝐶𝐿(𝑇 ) in (4.11) and having ̃︀𝑄𝐿(𝑇 ) = 𝑐𝑇 , (4.12)
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where

̃︀𝑄𝐿(𝑇 ) = ̃︀𝜙𝐿(𝑇 )

[︃∫︁ 𝑇

0

𝐹 𝑝(𝑡)d𝑡 +
∫︁ ∞

𝑇

𝐹 𝑝(𝑡)
𝑛∏︁

𝑖=1

𝐺𝑖(𝑡)d𝑡

]︃
− (𝑐𝑌 − 𝑐𝑇 )

∫︁ ∞

𝑇

𝐹 𝑝(𝑡)d

(︃
1−

𝑛∏︁
𝑖=1

𝐺𝑖(𝑡)

)︃

− (𝑐𝐹 − 𝑐𝑇 )

[︃∫︁ ∞

𝑇

(︃
𝑛∏︁

𝑖=1

𝐺𝑖(𝑡)

)︃
d𝐹𝑝(𝑡 + 𝐹𝑝(𝑇 )

]︃

− 𝑐𝑀

[︃
𝑞

∫︁ 𝑇

0

𝐹 𝑝(𝑡)𝜆(𝑡)d𝑡 + 𝑞

∫︁ ∞

𝑇

𝐹 𝑝(𝑡)
𝑛∏︁

𝑖=1

𝐺𝑖(𝑡)𝜆(𝑡)d𝑡

]︃

=
∫︁ 𝑇

0

𝐹 𝑝(𝑡) [̃︀𝜙𝐿(𝑇 )− ̃︀𝜙𝐿(𝑡)]d𝑡 +
∫︁ ∞

𝑇

𝐹 𝑝(𝑡)e−𝑛𝜃𝑡 [̃︀𝜙𝐿(𝑇 )− ̃︀𝜙𝐿(𝑡)]d𝑡,

with

̃︀𝜙𝐿(𝑡) = −(𝑐𝑌 − 𝑐𝑇 )
d
(︂

1−
𝑛∏︀

𝑖=1

𝐺𝑖(𝑡)
)︂

/d𝑡

1−
𝑛∏︀

𝑖=1

𝐺𝑖(𝑡)
+ (𝑐𝐹 − 𝑐𝑇 )

d𝐹𝑝(𝑡)/d𝑡

𝐹 𝑝(𝑡)
+ 𝑐𝑀𝑞𝜆(𝑡)

= −(𝑐𝑌 − 𝑐𝑇 )
𝑛𝜃e−𝑛𝜃𝑡

1− e−𝑛𝜃𝑡
+ [(𝑐𝐹 − 𝑐𝑇 )𝑝 + 𝑐𝑀𝑞] 𝜆(𝑡).

Then, the optimal ̃︀𝑇 *𝐿 is obtained according to the following theorem.

Theorem 4.3. If ̃︀𝑄𝐿(∞) > 𝑐𝑇 , there exists an optimal ̃︀𝑇 *𝐿 (0 < ̃︀𝑇 *𝐿 < ∞) which satisfies (4.12), and the
optimal maintenance cost rate is ̃︀𝐶𝐿( ̃︀𝑇 *𝐿) = ̃︀𝜙𝐿( ̃︀𝑇 *𝐿). Otherwise, ̃︀𝑇 *𝐿 = ∞.

Proof. Differentiating ̃︀𝑄𝐿(𝑇 ) with respect to 𝑇 , we have

d ̃︀𝑄𝐿(𝑇 )
d𝑇

=
d̃︀𝜙𝐿(𝑇 )

d𝑇

[︃∫︁ 𝑇

0

𝐹 𝑝(𝑡)d𝑡 +
∫︁ ∞

𝑇

𝐹 𝑝(𝑡)
𝑛∏︁

𝑖=1

𝐺𝑖(𝑡)d𝑡

]︃

+ ̃︀𝜙𝐿(𝑇 )𝐹 𝑝(𝑇 )

(︃
1−

𝑛∏︁
𝑖=1

𝐺𝑖(𝑇 )

)︃
+ (𝑐𝑌 − 𝑐𝑇 )𝐹 𝑝(𝑇 )

d
(︂

1−
𝑛∏︀

𝑖=1

𝐺𝑖(𝑇 )
)︂

d𝑇

− (𝑐𝐹 − 𝑐𝑇 )

(︃
1−

𝑛∏︁
𝑖=1

𝐺𝑖(𝑇 )

)︃
d𝐹𝑝(𝑇 )

d𝑇
− 𝑐𝑀𝑞𝜆(𝑇 )𝐹 𝑝(𝑇 )

(︃
1−

𝑛∏︁
𝑖=1

𝐺𝑖(𝑇 )

)︃

=
d̃︀𝜙𝐿(𝑇 )

d𝑇

[︃∫︁ 𝑇

0

𝐹 𝑝(𝑡)d𝑡 +
∫︁ ∞

𝑇

𝐹 𝑝(𝑡)
𝑛∏︁

𝑖=1

𝐺𝑖(𝑡)d𝑡

]︃

=

{︃
(𝑐𝑌 − 𝑐𝑇 )

(𝑛𝜃)2e−𝑛𝜃𝑇

(1− e−𝑛𝜃𝑇 )2
+ [(𝑐𝐹 − 𝑐𝑇 )𝑝 + 𝑐𝑀𝑞]

d𝜆(𝑇 )
d𝑇

}︃{︃∫︁ 𝑇

0

𝐹 𝑝(𝑡)d𝑡

+
∫︁ ∞

𝑇

𝐹 𝑝(𝑡)e−𝑛𝜃𝑡d𝑡

}︂
.

d ̃︀𝑄𝐿(𝑇 )/d𝑇 > 0 if 𝜆(𝑡) increases strictly with 𝑡 from 𝜆(0) = 0 to 𝜆(∞), then ̃︀𝑄𝐿(𝑇 ) also increases strictly
from ̃︀𝑄𝐹 (0) = 0 to ̃︀𝑄𝐿(∞) = lim

𝑇→∞
̃︀𝑄𝐿(𝑇 ) with respect to 𝑇 , and

̃︀𝑄𝐿(∞) =
∫︁ ∞

0

𝐹 𝑝(𝑡) [̃︀𝜙𝐿(∞)− ̃︀𝜙𝐿(𝑡)]d𝑡.
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Table 3. Optimal 𝑇 *𝐿 and 𝐶𝐿(𝑇 *𝐿) for different 𝑞 and 𝑛 (𝑐𝑇 = 500, 𝑐𝑌 = 750, 𝑐𝐹 = 1000,
𝑐𝑀 = 100, 𝐺𝑖(𝑡) = 1− e−0.1𝑡, 𝐹 (𝑡) = 1− e−0.01𝑡2).

𝑞
𝑛 = 1 𝑛 = 2 𝑛 = 3

𝑇 *
𝐿 𝐶𝐿(𝑇 *

𝐿) 𝑇 *
𝐿 𝐶𝐿(𝑇 *

𝐿) 𝑇 *
𝐿 𝐶𝐿(𝑇 *

𝐿)

1.0 24.48 46.58 25.87 47.96 27.25 49.08
0.9 21.25 55.91 22.63 56.88 23.09 57.64
0.8 18.84 64.19 20.32 65.04 21.25 65.67
0.7 17.55 71.58 18.94 72.39 19.86 72.96
0.6 16.17 78.32 17.55 79.10 18.48 79.63
0.5 15.24 84.54 16.17 85.30 17.09 85.81
0.4 14.32 90.34 17.09 92.21 16.17 91.59
0.3 13.86 95.80 14.78 96.56 15.24 97.03
0.2 12.82 101.01 14.32 101.71 14.78 102.21
0.1 12.47 105.90 13.86 106.72 13.86 107.11
0 11.78 110.61 12.93 111.40 12.93 111.83

Table 4. Optimal ̃︀𝑇 *𝐿 and ̃︀𝐶𝐿( ̃︀𝑇 *𝐿) for different 𝑞 and 𝑛 (𝑐𝑇 = 500, 𝑐𝑌 = 750, 𝑐𝐹 = 1000,
𝑐𝑀 = 100, 𝐺𝑖(𝑡) = 1− e−0.1𝑡, 𝐹 (𝑡) = 1− e−0.01𝑡2).

𝑞
𝑛 = 1 𝑛 = 2 𝑛 = 3

̃︀𝑇 *
𝐿

̃︀𝐶𝐿( ̃︀𝑇 *
𝐿) ̃︀𝑇 *

𝐿
̃︀𝐶𝐿( ̃︀𝑇 *

𝐿) ̃︀𝑇 *
𝐿

̃︀𝐶𝐿( ̃︀𝑇 *
𝐿)

1.0 24.48 46.58 22.63 44.87 22.17 44.74
0.9 21.25 55.91 19.86 54.73 19.52 54.57
0.8 18.84 64.19 18.01 63.15 17.55 62.96
0.7 17.55 71.58 16.63 70.62 16.63 70.41
0.6 16.17 78.32 15.24 77.38 14.78 77.14
0.5 15.24 84.54 14.32 83.62 14.32 83.35
0.4 14.32 90.34 13.39 89.43 13.39 89.14
0.3 13.86 95.80 12.93 94.89 12.93 94.58
0.2 12.82 101.01 12.47 100.11 12.01 99.73
0.1 12.47 105.90 12.01 105.04 11.55 104.62
0 11.78 110.61 11.55 109.73 11.09 109.33

Thus, a finite and unique ̃︀𝑇 *𝐿 (0 < ̃︀𝑇 *𝐿 < ∞) exists when ̃︀𝑄𝐿(∞) > 𝑐𝑇 , otherwise ̃︀𝑇 *𝐿 = ∞ when ̃︀𝑄𝐿(∞) ≤ 𝑐𝑇 ,
which completes the proof of Theorem 4.3. �

4.3. Numerical examples

In this section, we use the same parameters with them in Section 4.3 to verify the theoretical results for
the generalized periodic replacement last models, i.e., system failure distribution is 𝐹 (𝑡) = 1 − e−0.01𝑡2 , the
distribution of the 𝑖th (𝑖 = 1, 2, . . . , 𝑛) working time is 𝐺𝑖(𝑡) = 1 − e−0.1𝑡, and the replacement costs are
𝑐𝑇 = 500, 𝑐𝑌 = 750, 𝑐𝐹 = 1000, and 𝑐𝑀 = 100. Tables 3 and 4 show the optimal replacement cycles 𝑇 *𝐿 and ̃︀𝑇 *𝐿,
and the corresponding minimized maintenance cost rates 𝐶𝐿 (𝑇 *𝐿) and ̃︀𝐶𝐿( ̃︀𝑇 *𝐿), respectively.

Tables 3 and 4 illustrate that 𝑇 *𝐿 and ̃︀𝑇 *𝐿 increase with 𝑞 for a fixed 𝑛, while 𝐶𝐿(𝑇 *𝐿) and ̃︀𝐶𝐿( ̃︀𝑇 *𝐿) decrease
with 𝑞. When 𝑞 is fixed, 𝑇 *𝐿 and 𝐶𝐿(𝑇 *𝐿) increase with 𝑛 while ̃︀𝑇 *𝐿 and ̃︀𝐶𝐿( ̃︀𝑇 *𝐿) decrease with 𝑛. Figure 3 shows
the average cost rate 𝐶𝐿(𝑇 ) for different 𝑛 in terms of 𝑞 = 1 for Model B1 and Figure 4 shows the average cost
rate ̃︀𝐶𝐿(𝑇 ) for different 𝑛 in terms of 𝑞 = 1 for Model B2. From Figures 3 and 4, it is clear that the finite and
unique replacement intervals 𝑇 *𝐿 and ̃︀𝑇 *𝐿 exist when 𝑞 = 1, i.e., 0 < 𝑇 *𝐿 < ∞ and 0 < ̃︀𝑇 *𝐿 < ∞.
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Figure 3. 𝐶𝐿(𝑇 ) for different 𝑛 in terms of 𝑞 = 1 (𝑐𝑇 = 500, 𝑐𝑌 = 750, 𝑐𝐹 = 1000, 𝑐𝑀 = 100,
𝐺𝑖(𝑡) = 1− e−0.1𝑡, 𝐹 (𝑡) = 1− e−0.01𝑡2).

Figure 4. ̃︀𝐶𝐿(𝑇 ) for different 𝑛 in terms of 𝑞 = 1 (𝑐𝑇 = 500, 𝑐𝑌 = 750, 𝑐𝐹 = 1000, 𝑐𝑀 = 100,
𝐺𝑖(𝑡) = 1− e−0.1𝑡, 𝐹 (𝑡) = 1− e−0.01𝑡2).

5. Conclusions

We have investigated preventive replacement policies in this paper and constructed four models, i.e., a
periodic replacement first model (Model A1), a modified periodic replacement first model (Model A2), a periodic
replacement last model (Model B1), and a modified periodic replacement last model (Model B2). In each
modeling framework, the infinite time span is considered and average replacement cost rate is minimized to seek
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the optimal replacement interval. All discussions have been conducted analytically and examined numerically.
For the generalized periodic replacement first policy and generalized periodic replacement last policy, both the
optimal replacement intervals 𝑇 *𝐹 and 𝑇 *𝐿 increase with the number of random working periods 𝑛, while on the
contrary, both ̃︀𝑇 *𝐹 and ̃︀𝑇 *𝐿 for the modified generalized periodic replacement first policy and modified generalized
periodic replacement last policy decrease with 𝑛. The developed maintenance models in this paper have potential
applications in practical products such as the unmanned aerial vehicle (UAV), micro-electro-mechanical system
(MEMS), and gyroscope in the inertial navigation system (INS) as soon as their operating conditions satisfy
the assumptions in Section 2.

For future research, we should consider the condition that times for repair and replacement are not neglected.
In addition, more complex maintenance models should be developed on reliability for deterioration systems as
they are capable of describing the sophisticated degrading behaviors of engineering systems.
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