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UAVS ROUTES OPTIMIZATION ON SMART CITIES AND REGIONS
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Abstract. Unmanned Aerial Vehicles are becoming a common technology used on smart cities and
smart regions, thus requiring optimization of its routes with crucial importance. In this innovative work,
six objective functions are optimized in order to provide sets of non-dominated solutions, composed of
routes with different characteristics. Realistic constraints are considered such as obstacles and areas in
which drones could not pass through. A didactic case of study considering points of a graph is used in
order to illustrate a smart city composed of different regions. Obtained solutions are analyzed using a
state-of-the-art visualization tool, which guides the comprehension of harmony and conflicts between
objectives.
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1. Introduction

Recent technological advances have pushed towards the development and practical adoption of novel aerial
transportation methods, under the topic of Unmanned Aerial Vehicles (UAV).

Although UAV is often related to the hobby, entertainment and photographic industries, its uses have spread
to military, civil and commercial applications. Aerial surveillance, object recognition and tracking are some of
the many other applications that are emerging with potential for the use of UV (unmanned vehicle). Countless
others may arise from human creativity in the near future [6].

The freight transport sector, in particular, is already showing some interest and investment in UV applications.
The growth of e-commerce supported this interest from large companies. Transport drones are able to safely
take off and land near buildings and humans, improving the quality of service today in congested or remote
areas [10].
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Typical limitations of UAV include: limited energy storage; limited payload weight; limited speed (according to
weight); limited flight range (according to flight management and regulation). On the other hand, UAV allows
accessing remote locations and greater degrees of freedom during movement, when compared to terrestrial
vehicles. This calls for complex optimization processes to emerge when routing UAV through a set of client
points.

When the delivery service is discussed, we are implicitly talking about a Traveling Salesman Problem (TSP)
and its variations, like the Vehicle Routing Problem (VRP), for example. Which briefly means a problem of
designing optimal routes from one or several depots to a number of geographically dispersed cities, customers
or strategic points, subject to lateral constraints [20]. Although there are many works in the literature related
to variations of the TSP [11], those that approach UV routing are still few.

However, we cannot just focus on technological advances and simply forget about the damage to the envi-
ronment they can cause. That’s why the scientific community has been so concerned about developing green
technologies and it is no different in computing. The Green Vehicle Routing Problem (G-VRP), for example,
proposed by Erdoan et al. [9], adds to the original VRP, restrictions on fuel economy and/or choosing the least
environmentally harmful fuel.

The TSP with hotel selection [30] is a variation of the TSP with similarities to the problem addressed in this
work. The main objective is to minimize the number of trips and total travel time. This problem is found in
real-world scenarios, such as the delivery of products by electric vehicles that need to be recharged during a
ride.

Complex, real-world systems are usually composed by dozens or hundreds of variables and constraints. How-
ever, covering 100% of it is usually not feasible, it is often necessary to design a multi-objective problem providing
a set of non-dominated solutions (pool of solutions) with different possible routes and times. In UAV problems,
for example, it is likeable to find a solution that minimizes the route time and consumption at the same time.
The more objective functions and constraints it contains, the model tends to be more similar to the real world
and more complex. So, a trade-off must be done.

The main contributions of this current work are:

– Improve mathematical models from the literature and introduce a novel programming model for a time-
dependent UV routing problem, considering the following restrictions:
∙ respecting the operational requirements of the UVs;
∙ addressing micro-airspace avoiding prohibited points (docking constraints) [5];
∙ integrating UVs into new concepts of microgrid systems, in which vehicles can be loaded and/or recharged

at different points in future smart cities;
∙ dynamic routes considering drones already in motion: instances with initial battery different from 100%

and random point of origin;
∙ Presents a realistic scenario obtained from real-world from huge cities located in Brazil.

The remainder of this paper is organized as follows. Section 2 enlists works related to the theme of this
paper. Section 3 describes the proposed model of the Multi-Objective Green Routing Drone Grid Problem
(MOGRDGP), while Section 4 contains the mathematical formulation to tackle the problem. Section shows the
instances created based on Brazilian regions and geographical sites as constraints. In Section 6, one can find the
computational experiments comparing the different implementations, instances, variables and results. Finally,
Section 7 concludes the work and presents future research directions.

2. Related work

The work of Coelho et al. [6] proposed a mathematical programming model for the multi-objective UAV
routing problem, seeking to minimize seven distinct strategical objective functions while respecting UAV battery
constraints. On the other hand, a crucial set of constraints that involve avoiding prohibited points was not
considered by the latter. Here, the linear mathematical model is complemented in order to tackle the micro-
airspace considering docking constraints [5] for inspection points.
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Table 1. Comparison between UAV routing problem publications.

This paper Coelho et al. [6] TSPD 𝑘-MVDRP [27] FSTSP [17]

Microgrid X X
Multiobjective X X
Docking constraint X X
No. of Drones Multiple Multiple Single Multiple Single
Multilayer X
Deliver/collect X X X
Truck X X X

The current problem stems from the Traveling Salesman Problem with Drones (TSPD) [2] and the Vehicle
Routing Problem with Drones (VRPD) [31]. Both problems address the visit of clients by drones, used as
complementary vehicles to a main one (such as a truck). On the contrary, TSPD and VRPD are represented by
graphs, which differs from the grid representation used in this work.

In addition, the current model integrates UAVs into the new concepts of microgrid systems, in which vehicles
can be charged at different points of smart cities/regions, as well as consider dynamic in-route drones (which
allows the system to be re-optimized at any time, even when a given solution is already being implemented).
The latter allows new clients to be added or removed at any time, as well as other changes on environment
conditions. It is based on the following principles: allows initial battery to be different than 100% and permits
random origin point.

The scope of the model introduced in this paper is not limited to deliver activities, differently than Coelho
et al. [6]. In this sense, it takes into account the distinct lack of applications that UAVs can cover such as
infrastructure inspection [1, 8, 16, 22, 24], surveillance [14, 25], area mapping [12] and others. Focusing, then, on
realistic assumptions required for fast re-optimization (via heuristics) and taking into account many requirements
like restricted area.

Moreover, this study tries to analyze the many objective problem space to make sure that the optimization
algorithms perform with high performance output. One of the modern approaches to have better problem space
understanding is throughout visualization techniques. The applied data visualization tool provides a qualitative
analyzing with Schneiderman’s mantra [29] to present two level of details [13] of the problem space. This strategy
has been applied in a multidisciplinary form of many objective optimization [3, 18, 23]. This approach enables
subject matter experts to understand the relationships between objectives in a problem space and then, based
on the amount of harmonies and conflicts and also according to the priorities, use dimension reduction methods
on the problem space. It is crystal clear that reduction of objectives can increase the chance of finding global
optimum solutions in problem space.

Table 1 compares some prominent works in the UAV routing field with our current work. The main differentials
of this paper to the literature, as we can observe, are the microgrid approach allied to the docking constraint.
Drone routing problems generally assume a deterministic distance between two nodes and the grid modelling
tackles this issue.

Incorporating spatial constraints (e.g., no fly zones) is also an important issue to create more realistic mod-
els. Certain areas (e.g., airports, government or critical facilities, areas subject to communication interference
or interruptions) will likely remain off-limits to drone fly-over, so optimal routes need to incorporate those
restrictions [15,26].

3. Problem description

The proposed MOGRDGP consists of an airspace divided into horizontal and vertical bands, organized as
a grid of points in two-dimensional space. Each UAV can move following the Chebyshev distance, where the
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Figure 1. Instance and solution example to MOGRDGP.

distances between any adjacent points are the same. This distance metric was chosen to simplify the calculations,
without loss of generality, and without prejudice to the construction of the routes.

Power stations are scattered around the routing area and accessed by the drone to recharge its batteries. To
represent prohibited areas, the grid is also composed of prohibited points that the UAV cannot access, otherwise,
this invalidates the route. Figure 1 illustrates a solution for a PMORVD instance.

As a routing problem, the vehicle must serve/visit clients that are spread across the grid. For this, the point
corresponding to the client must be part of the final route. This means that the clients’ 𝑥 and 𝑦 coordinates
must be part of the matrix that represents the solution.

In order to model the problem computationally, we mapped five main objectives that satisfactorily summarize
how the real system should behave. It is desirable to end the route with the maximum possible charge rate (final
charge – O4), ensuring that the drone is prepared for a future route.

This means that a drone can start a new route at the end of an old one, as well as in the middle of the
route if the conditions change. The total route must be completed in the shortest possible time, represented by
the combination of maximum lowest speed (O0 – maximizes the lower speed limit, then maximizing the UAV
speed throughout the whole route), total travelled distance (O1) and time spent recharging the vehicle (O2).
Also, it is desirable that during the route, the vehicle consumes (consumption – O3) as little battery/fuel as
possible.

If we compare the objective functions of this work with the ones explored in [6], it can be related O4 with
toFull, O1 with distance, O0 with maxvel and O3 is combination of time, distance and maxvel in a certain way.
The number of drones was not seen as an objective function that should be minimized but as a parameter of
the instances to test the developed methods. Since our focus was to elaborate a model that could fit to different
applications involving drones, constraints and objectives exclusively related to delivery problems; addressed
in [6] such as makespanC, makespanD, weight of the products, capacity of the UAVs; were not taken into
consideration in this work.
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The algorithm proposed in this article focuses on finding a balance between solutions, since one element can
affect another. The shorter the time, the greater the speed, the greater the consumption. Higher final charge
means more time spent on recharging/refueling, which results in longer times.

4. MILP

In this section, we propose the mathematical formulation of MOGRDGP.

4.1. Sets, parameters, auxiliary and decision variables

The following parameters were defined and considered for the model:

Parameters

𝑇 Set of discretized time intervals {1, · · · , 𝑡max}
𝑇𝑖𝑚𝑒𝑈𝑛𝑖𝑡 Fixed time unit at any time between 𝑡 ∈ 𝑇 and 𝑡 + 1 ∈ 𝑇
𝑍𝑥 Length of the map to be considered by the model
𝑍𝑦 Width of the map to be considered by the model
𝐶 Set of clients, containing the following information for each client 𝑐

𝐶𝑥,𝑐 𝑥 coordinate for 𝑐 ∈ 𝐶
𝐶𝑦,𝑐 𝑦 coordinate for 𝑐 ∈ 𝐶

𝐸 Set of energy stations
𝐸𝑥,𝑒 𝑥 coordinate for 𝑒 ∈ 𝐸
𝐸𝑦,𝑒 𝑦 coordinate for 𝑒 ∈ 𝐸

𝑃 Set of map points that the vehicle cannot pass through.
𝑃𝑥,𝑝 𝑥 coordinate for 𝑝 ∈ 𝑃
𝑃𝑦,𝑝 𝑦 coordinate for 𝑝 ∈ 𝑃

𝑈 Set of available UAVs of predetermined size in the instance
𝐼𝑥 𝑥 coordinate of UAVs at the beginning of the route (𝑡 = 1)
𝐼𝑦 𝑦 coordinate of UAVs at the beginning of the route (𝑡 = 1)
𝑈count Number of UAVs to be used in the solution
𝑉max Maximum speed of UAVs

Vehicle recharge parameters:

Vehicle recharge parameters

DOR Duration of the recharge process per full charge
VEV Variable energy consumption (%) related to UAV speed
FEV Fixed consumption (%) at any time between 𝑡 ∈ 𝑇 and 𝑡 + 1 ∈ 𝑇
BI Percentage of drone battery at start (%)

The following decision variables used to provide a complete solution for the proposed model.

Decision variables

𝑣𝐶𝑢,𝑐,𝑡 Binary variable that indicates whether the client 𝑐 was visited by UAV 𝑢 at time 𝑡
𝑣𝐸𝑢,𝑒,𝑡 Binary variable that indicates whether the station 𝑒 was visited by UAV 𝑢 at time 𝑡
𝑝𝑜𝑠𝑥

𝑢,𝑡 Coordinate 𝑥 ∈ Z+ of UAV 𝑢 in time 𝑡
𝑝𝑜𝑠𝑦

𝑢,𝑡 Coordinate 𝑦 ∈ Z+ of UAV 𝑢 in time 𝑡
𝑣𝑢,𝑡 Speed of UAV 𝑢 in time 𝑡 (starting in the interval 𝑡− 1 to 𝑡 ∈ 𝑇 )
𝑜𝑛𝑢,𝑡 UAV 𝑢 is in operation at time 𝑡, binary

About the prohibited area constraints, the following decision variables were used. Since the model of the
problem was based on a grid, four variables were needed, each one representing a quadrant of the Cartesian
plane.
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No-fly zone decision variables

𝑢𝑃 ̸≥,𝑥
𝑢,𝑝,𝑡 Binary variable that indicates whether the UAV 𝑢 coordinate 𝑥 is not

greater than the coordinate 𝑥 of the forbidden point 𝑝 at time 𝑡

𝑢𝑃 ̸≤,𝑥
𝑢,𝑝,𝑡 Binary variable that indicates whether the UAV 𝑢 coordinate 𝑥 is not

less than the coordinate 𝑥 of the forbidden point 𝑝 at time 𝑡

𝑢𝑃 ̸≥,𝑦
𝑢,𝑝,𝑡 Binary variable that indicates whether the UAV 𝑢 coordinate 𝑦 is not

greater than the coordinate 𝑦 of the forbidden point 𝑝 at time 𝑡

𝑢𝑃 ̸≤,𝑦
𝑢,𝑝,𝑡 Binary variable that indicates whether the UAV 𝑢 coordinate 𝑦 is not

less than the coordinate 𝑦 of the forbidden point 𝑝 at time 𝑡

Furthermore, additional auxiliary variables were needed to update the battery rate of the UAV at each 𝑡
interval, as well as checking whether the UAVs are running at each 𝑡 time.

𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒𝑅𝑎𝑡𝑒𝑢,𝑒,𝑡 Recharge rate of UAV 𝑢 at station 𝑒 at time 𝑡 (%)
𝑏𝑎𝑡𝑅𝑎𝑡𝑒𝑢,𝑡 Battery charge of UAV 𝑢 in time 𝑡, ≥ 0 and ≤ 100

4.2. Goals to be optimized

The route must be carried out in the shortest possible time, thus we have to minimize the total travelled
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (Obj1), maximize the 𝑚𝑖𝑛𝑉 𝑒𝑙 (Obj0) of the vehicles and reduce the time spent at base stations
(𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒𝑇 𝑖𝑚𝑒 – Obj2). The equations (4.1), (4.2) and (4.3) represent these goals respectively.

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ≥
∑︁
𝑡∈𝑇

𝑜𝑛𝑢,𝑡 ∀𝑢 ∈ 𝑈 (4.1)

𝑚𝑖𝑛𝑉 𝑒𝑙 ≤ 𝑣𝑢,𝑡 ∀𝑢 ∈ 𝑈, 𝑡 ∈ 𝑇 : 𝑡 ≤ 𝑡max (4.2)

𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒𝑇 𝑖𝑚𝑒 ≥
∑︁
𝑒∈𝐸

∑︁
𝑡∈𝑇

𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒𝑅𝑎𝑡𝑒𝑢,𝑒,𝑡 ∀𝑢 ∈ 𝑈. (4.3)

𝑐𝑜𝑛𝑠 (Obj3): it is desirable that during the route, the vehicle consumes as little battery/fuel as possible.
Equation (4.4) measures the consumption of all vehicles. The clarification of the variables is presented in
the Section 4.4.

𝑐𝑜𝑛𝑠 ≥
∑︁
𝑡∈𝑇

VEV · 𝑣𝑢,𝑡

𝑉max
+ 𝑜𝑛𝑢,𝑡 · FEV ∀𝑢 ∈ 𝑈. (4.4)

The 𝑐𝑜𝑛𝑠 variable is composed by two parts, the first one responsible for representing the velocity dependent
element (greater the speed on the stretch, greater the variable consumption) and the other one representing
the fixed portion.
𝑓𝑖𝑛𝑎𝑙𝐶ℎ𝑎𝑟𝑔𝑒 (Obj4): it is interesting to end the route with the maximum possible charge rate, ensuring that
the drone is prepared for a future route, since the current work has a dynamic nature where the instances
already consider the initial location and capacity of the drone to be arbitrary, which means that a drone
can start a new route at the end of an old one, as well as in an arbitrary point. Equation (4.5) measures the
minimum amount of energy that UAVs will have at the end of the route.

𝑓𝑖𝑛𝑎𝑙𝐶ℎ𝑎𝑟𝑔𝑒 ≤ 𝑏𝑎𝑡𝑅𝑎𝑡𝑒𝑢,𝑡max ∀𝑢 ∈ 𝑈. (4.5)

We then have the structure of the objective function demonstrated by equation (4.6). The 𝜆𝑖 parameters
indicate the weights for each objective. Their values are set according to an algorithm explained on Section 4.5.

𝑓.𝑜. = min
(︂
−𝜆0 ·𝑚𝑖𝑛𝑉 𝑒𝑙 + 𝜆1 · 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + 𝜆2 · 𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒𝑇 𝑖𝑚𝑒 + 𝜆3 · 𝑐𝑜𝑛𝑠− 𝜆4 ·

𝑓𝑖𝑛𝑎𝑙𝐶ℎ𝑎𝑟𝑔𝑒

100

)︂
· (4.6)
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4.3. Constraints and operational requirements of the model

The initial position of the UAVs is updated in the equations (4.7) and (4.8).

𝑝𝑜𝑠𝑥
𝑢,1 = 𝐼𝑥 ∀𝑢 ∈ 𝑈 (4.7)

𝑝𝑜𝑠𝑦
𝑢,1 = 𝐼𝑦 ∀𝑢 ∈ 𝑈. (4.8)

Equations (4.9) and (4.10) ensure that drones can only move to points adjacent to each shift.

−𝑜𝑛𝑢,𝑡 ≤ 𝑝𝑜𝑠𝑥
𝑢,𝑡 − 𝑝𝑜𝑠𝑥

𝑢,𝑡−1 ≤ 𝑜𝑛𝑢,𝑡 ∀𝑢 ∈ 𝑈, 𝑡 ∈ 𝑇 : 𝑡 ≥ 2 (4.9)
−𝑜𝑛𝑢,𝑡 ≤ 𝑝𝑜𝑠𝑦

𝑢,𝑡 − 𝑝𝑜𝑠𝑦
𝑢,𝑡−1 ≤ 𝑜𝑛𝑢,𝑡 ∀𝑢 ∈ 𝑈, 𝑡 ∈ 𝑇 : 𝑡 ≥ 2. (4.10)

Equations (4.11) and (4.12) refer to the map boundaries.

0 ≤ 𝑝𝑜𝑠𝑦
𝑢,𝑡 ≤ 𝑍𝑦 ∀𝑢 ∈ 𝑈, 𝑡 ∈ 𝑇 (4.11)

0 ≤ 𝑝𝑜𝑠𝑥
𝑢,𝑡 ≤ 𝑍𝑥 ∀𝑢 ∈ 𝑈, 𝑡 ∈ 𝑇. (4.12)

From equation (4.13) to equation (4.16), if a client is visited, a UAV passes through its coordinates. The
combination of these four equations represent the quadrants of the grid in wich the variable 𝑣𝐶𝑢,𝑐,𝑡 can only be
set to 1 (UAV 𝑢 visited client 𝑐 at time 𝑡) if both coordinates 𝑥 and 𝑦 of the UAV and client match.

𝑝𝑜𝑠𝑥
𝑢,𝑡 − 𝐶𝑥,𝑐 ≤ 𝑍𝑥(1− 𝑣𝐶𝑢,𝑐,𝑡) ∀𝑢 ∈ 𝑈, 𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇 (4.13)

−𝑝𝑜𝑠𝑥
𝑢,𝑡 + 𝐶𝑥,𝑐 ≤ 𝑍𝑥(1− 𝑣𝐶𝑢,𝑐,𝑡) ∀𝑢 ∈ 𝑈, 𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇 (4.14)

𝑝𝑜𝑠𝑦
𝑢,𝑡 − 𝐶𝑦,𝑐 ≤ 𝑍𝑦(1− 𝑣𝐶𝑢,𝑐,𝑡) ∀𝑢 ∈ 𝑈, 𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇 (4.15)

−𝑝𝑜𝑠𝑦
𝑢,𝑡 + 𝐶𝑦,𝑐 ≤ 𝑍𝑦(1− 𝑣𝐶𝑢,𝑐,𝑡) ∀𝑢 ∈ 𝑈, 𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇. (4.16)

All clients must be visited by at least one UAV:∑︁
𝑢∈𝑈

∑︁
𝑡∈𝑇

𝑣𝐶𝑢,𝑐,𝑡 ≥ 1 ∀𝑐 ∈ 𝐶. (4.17)

Equations (4.18)–(4.22) concern the ban on the passage of drones at points reported as prohibited. If the
route contains these points, the solution will be invalid. If every component of equation (4.22) is set to 1, it
means that the UAV is passing through a no-fly area, which is a constraint of the problem.

𝑝𝑜𝑠𝑥
𝑢,𝑡 − 𝑃𝑥,𝑝 ≥ 1−

(︁
𝑍𝑥 · 𝑢𝑃 ̸≥,𝑥

𝑢,𝑝,𝑡

)︁
∀𝑢 ∈ 𝑈, 𝑝 ∈ 𝑃, 𝑡 ∈ 𝑇 (4.18)

− 𝑝𝑜𝑠𝑥
𝑢,𝑡 + 𝑃𝑥,𝑝 ≥ 1−

(︁
𝑍𝑥 · 𝑢𝑃 ̸≤,𝑥

𝑢,𝑝,𝑡

)︁
∀𝑢 ∈ 𝑈, 𝑝 ∈ 𝑃, 𝑡 ∈ 𝑇 (4.19)

𝑝𝑜𝑠𝑦
𝑢,𝑡 − 𝑃𝑦,𝑝 ≥ 1−

(︁
𝑍𝑦 · 𝑢𝑃 ̸≥,𝑦

𝑢,𝑝,𝑡

)︁
∀𝑢 ∈ 𝑈, 𝑝 ∈ 𝑃, 𝑡 ∈ 𝑇 (4.20)

− 𝑝𝑜𝑠𝑦
𝑢,𝑡 + 𝑃𝑦,𝑝 ≥ 1−

(︁
𝑍𝑦 · 𝑢𝑃 ̸≤,𝑦

𝑢,𝑝,𝑡

)︁
∀𝑢 ∈ 𝑈, 𝑝 ∈ 𝑃, 𝑡 ∈ 𝑇 (4.21)

𝑢𝑃 ̸≥,𝑥
𝑢,𝑝,𝑡 + 𝑢𝑃 ̸≤,𝑥

𝑢,𝑝,𝑡 + 𝑢𝑃 ̸≥,𝑦
𝑢,𝑝,𝑡 + 𝑢𝑃 ̸≤,𝑦

𝑢,𝑝,𝑡 ≤ 3 ∀𝑢 ∈ 𝑈, 𝑝 ∈ 𝑃, 𝑡 ∈ 𝑇. (4.22)

Finally, equation (4.23) limits the speed of UAVs to the defined maximum.

𝑜𝑛𝑢,𝑡 ≤ 𝑣𝑢,𝑡 ≤ 𝑉max ∀𝑢 ∈ 𝑈, 𝑡 ∈ 𝑇. (4.23)



860 ELIAS L. MARQUES JR. ET AL.

4.4. Model restrictions and operational requirements for batteries

Restrictions related to UAV charging stations and the requirements for the charging rate value are listed
below. Equation (4.24) defines the vehicle’s initial battery charge, while equation (4.25) updates the battery
rate each shift, increasing it if it has been recharged and decreasing it due to its speed and fixed consumption.

𝑏𝑎𝑡𝑅𝑎𝑡𝑒𝑢,1 = BI ∀𝑢 ∈ 𝑈. (4.24)

The speed in the section influences not only the total time of the route, but also the consumption, the higher
the speed (𝑣), the greater the consumption. The fuel/battery level at the end of the stretch is a result of the
fuel/battery level at the start of the stretch decreased by the fixed consumption (𝑐𝑓 ) and the speed multiplied
by the variable consumption coefficient as shown in equation (4.25).

The time spent at the power station also influences. If the vehicle spends more time, it can accumulate more
fuel/energy for its battery. The fuel/battery level at the end of the stretch is a result of the fuel/battery level
at the beginning of the stretch, increased by the amount of fuel/energy recharged.

𝑏𝑎𝑡𝑅𝑎𝑡𝑒𝑢,𝑡 = 𝑏𝑎𝑡𝑅𝑎𝑡𝑒𝑢,𝑡−1 −VEV · 𝑣𝑢,𝑡

𝑉max
− 𝑜𝑛𝑢,𝑡 · FEV +

∑︁
𝑒∈𝐸

𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒𝑅𝑎𝑡𝑒𝑢,𝑒,𝑡 ∀𝑢 ∈ 𝑈, 𝑡 ≥ 2, 𝑡 ∈ 𝑇

(4.25)
0 ≤ 𝑏𝑎𝑡𝑅𝑎𝑡𝑒𝑢,𝑡 ≤ 100 ∀𝑢 ∈ 𝑈, 𝑡 ∈ 𝑇. (4.26)

From equations (4.27) to (4.30) a UAV can recharge if it passes through the coordinates of the power stations.
Here, these equations consist of the same idea of equations (4.13)–(4.16) applied to station visit instead of client
one.

𝑝𝑜𝑠𝑥
𝑢,𝑡 − 𝐸𝑥,𝑒 ≤ 𝑍𝑥(1− 𝑣𝐸𝑢,𝑒,𝑡) ∀𝑢 ∈ 𝑈, 𝑒 ∈ 𝐸, 𝑡 ∈ 𝑇 (4.27)

−𝑝𝑜𝑠𝑥
𝑢,𝑡 + 𝐸𝑥,𝑒 ≤ 𝑍𝑥(1− 𝑣𝐸𝑢,𝑒,𝑡) ∀𝑢 ∈ 𝑈, 𝑒 ∈ 𝐸, 𝑡 ∈ 𝑇 (4.28)

𝑝𝑜𝑠𝑦
𝑢,𝑡 − 𝐸𝑦,𝑒 ≤ 𝑍𝑦(1− 𝑣𝐸𝑢,𝑒,𝑡) ∀𝑢 ∈ 𝑈, 𝑒 ∈ 𝐸, 𝑡 ∈ 𝑇 (4.29)

−𝑝𝑜𝑠𝑦
𝑢,𝑡 + 𝐸𝑦,𝑒 ≤ 𝑍𝑦(1− 𝑣𝐸𝑢,𝑒,𝑡) ∀𝑢 ∈ 𝑈, 𝑒 ∈ 𝐸, 𝑡 ∈ 𝑇. (4.30)

The equation (4.31) represents the constraint in which the UAV can only charge at the station it visits.

𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒𝑅𝑎𝑡𝑒𝑢,𝑒,𝑡

100
≤ 𝑣𝐸𝑢,𝑒,𝑡 ∀𝑢 ∈ 𝑈, 𝑒 ∈ 𝐸, 𝑡 ∈ 𝑇. (4.31)

As the variable 𝑜𝑛𝑢,𝑡 informs the end of the route, the UAV can no longer recharge.

𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒𝑅𝑎𝑡𝑒𝑢,𝑒,𝑡

100
≤ 𝑜𝑛𝑢,𝑡 ∀𝑢 ∈ 𝑈, 𝑒 ∈ 𝐸, 𝑡 ∈ 𝑇. (4.32)

4.5. Matheuristic

Considering the number of objectives of the proposed routing problem, it is advisable to obtain a set of
non-dominated solutions. In order to do that in restricted computational time, it is proposed the use of the
Multi-Objective Smart Pool Search (MOSPOOLS) Matheuristic, introduced by Coelho et al. [4] and extended
in Coelho et al. [7].

A predefined set of objective function weights is defined as vΛ = {𝑣𝜆0, . . . , 𝑣𝜆𝑖, . . . , 𝑣𝜆4}. Several different
MILP problems are generated by the linear combination of the weights of each vector 𝑣𝜆𝑖 = {𝑣𝜆1

𝑖 , . . . , 𝑣𝜆𝑘
𝑖 },

composed of 𝑘 possible weights. Thus, the Cartesian product of them, Λ = {𝑣𝜆0× . . .×𝑣𝜆4}, defines the number
of MILP problems to be solved (Eq. (4.33)). This strategy is capable of providing a good balance between each
objective generating a plural amount of solutions non-dominated.

|Λ| = |𝑣𝜆0| × . . .× |𝑣𝜆𝑖| × . . .× |𝑣𝜆4|. (4.33)
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Algorithm 1. MOSPOOLS.
Input: Solver time limit 𝑠𝑇𝐿𝑖𝑚𝑖𝑡 and vector of MILP weights Λ = {𝑣𝜆0 × . . .× 𝑣𝜆4}
Output: Set of non-dominated solutions 𝑋𝑒

𝑚𝑖𝑝𝑃𝑜𝑝← ∅
for all 𝜆𝑖 ∈ Λ|∀𝑖 = {0,. . . ,4} do

𝑚𝑜𝑑𝑒𝑙← MILP model with weights 𝜆𝑖

(𝑝𝑜𝑜𝑙𝑆𝑜𝑙, 𝑝𝑜𝑜𝑙𝐸𝑣𝑎𝑙)←𝑀𝐼𝐿𝑃𝑆𝑜𝑙𝑣𝑒𝑟(𝑚𝑜𝑑𝑒𝑙, 𝑠𝑇𝐿𝑖𝑚𝑖𝑡)
for all 𝑛𝑆 ∈ 𝑝𝑜𝑜𝑙𝑆𝑜𝑙 do

𝑋𝑒← 𝑎𝑑𝑑𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑋𝑒, 𝑝𝑜𝑜𝑙𝑆𝑜𝑙𝑛𝑆 , 𝑝𝑜𝑜𝑙𝐸𝑣𝑎𝑙𝑛𝑆)
end for

end for
return 𝑋𝑒

Algorithm 1 states MOSPOOLS pseudocode, which calls the math model, described in Section 4, with a
unique combination of weights for each of the seven objective functions. The generated model is solved and
returns all feasible solutions obtained during the optimization process.

Each solution found is considered by the 𝑎𝑑𝑑𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 procedure (described in Algorithm 2). This procedure
tries to add each solution from the pool of solution 𝑠 ∈ 𝑝𝑜𝑜𝑙𝑆𝑜𝑙 to the set of non-dominated solutions 𝑋𝑒.

Algorithm 2. addSolution.
Input: Population 𝑋𝑒 potentially efficient; Solution 𝑠, and its evaluations 𝑧(𝑠)
Output: 𝑋𝑒

for all 𝑥 ∈ 𝑋𝑒 do
if 𝑧(𝑥) ⪯ 𝑧(𝑠) then return 𝑋𝑒
end if
if 𝑧(𝑠) ≺ 𝑧(𝑥) then

𝑋𝑒← 𝑋𝑒 ∖ 𝑥
end if

end for
𝑋𝑒← 𝑋𝑒 ∪ 𝑠
return 𝑋𝑒

5. Case of study

The case of studies designed for this work are based on the airspace of one of the most active regions of Brazil
(Fig. 2), and its main cities (Figs. 3–5), in terms of air and land traffic of people and merchandise.

As presented by Section 3, the airspace is represented by a grid of points of different characteristics (Figs. 6–8).
The recharge points were assigned to the capitals, representing base stations in a real applications. The client
points were assigned to other important cities surround the capitals. Some specific geographical sites, like the
sea, river, environmental park were represented by prohibited points, since it would be advisable for UAVs not
to pass by. These prohibited points could also represent any other forbidden area like military or private areas,
big mountains or buildings, airports.

From the grid representing the case of study, it is possible to generate the MILP problem parameters 𝐶, 𝑃
and 𝐸, respectively representing the sets of clients, prohibited points and recharge station. In order, the size of
each set is 10, 14 and 3. The other parameters are listed in Table 2. The 𝑡max was chosen as the total amount
of points presented in the grid.
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Figure 2. Brazil southeast (SE instance).

Figure 3. Rio de Janeiro (RJ) map representation.

6. Computational experiments

Our experiments were performed with a virtual machine with 6 GB of virtual RAM and 4 vCPUs running
a 64-bit version of Ubuntu 18.04 on the VirtualBox 5.0.10 hypervisor with Windows 10 as the host operating
system. The host hardware configuration consists of an Intel Core i5-6400 CPU with 16 GB of RAM.

An implementation of the proposed MILP models can also be found at https://github.com/
eliaslawrence/mogrdgp-mip. The model is implemented using Python-MIP [28]. To optimize the MILP model,
the solver GUROBI 9.1.0 was used, a state-of-the-art commercial optimizer.

The following weights were adopted for each objective function (𝑂𝑖), 𝜆𝑖 = {0.01, 0.1, 1} in SE instance. For
BH, RJ, and SP instance, it was adopted 𝜆𝑖 = {0.1, 1}.

https://github.com/eliaslawrence/mogrdgp-mip
https://github.com/eliaslawrence/mogrdgp-mip
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Figure 4. São Paulo (SP) map representation.

Figure 5. Belo Horizonte (BH) map representation.

Given all possible combinations of these sets of weights, 339 MILP problems (243 SE and 32 for each of the
other instances) are going to be solved to find solutions for the cases of study. Five different time limits were
established and the performance results can be seen in Tables 3 and 4.

For each execution we have the rate of the different configurations that found feasible solutions, optimal
solutions and the average gap to the optimal solution. The last column present the number of non-dominated
(ND) solutions, and some of the routes can be seen in Figures 9 and 10.

Multi-objective problems require a pool of non-dominated solutions as result. That being said, it can be
found in the resulting set, solutions that favor a certain subset of objectives over the others depending on the
combination of the sets of weights (𝜆𝑖), as can be seen in Tables 5 and 6. Than, the user must choose the
solution that best fit the goals of the interest problem. For example, if we are talking about a rescue situation,
the focus must be on “Lowest Speed” and “Distance”; problems of route in isolated area, the priority must be
“Consumption”.
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Figure 6. Converting region to grid (1 – client; 3 – station; 4 – prohibited area).

Figure 7. Converting cities to grid (1 – client; 3 – station; 4 – prohibited area). (a) Rio de
Janeiro. (b) São Paulo. (c) Belo Horizonte.

Due to a high number of objective functions and high dimensionality requested for the trade-off visualization,
non-dominated solutions are depicted using the tool proposed by Koochaksaraei et al. [19] (Fig. 11), a chord
diagram based on parallel coordinates to analyze relationships between objectives. It can be seen that the lower
boundary of Obj0 (Fig. 11a) is connected to the upper boundary of Obj1, Obj2 and Obj3. It means that the
solutions with minimum value of Obj0 have high value in Obj1, Obj12 and Obj13.

Furthermore, with assistance of the chord diagrams (Fig. 11b), we concluded that distance (Obj1), rechar-
geTime (Obj2) and consumption (Obj3) could be minimized given the high harmony between these objectives,
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Figure 8. Grid representation of the southeast region.

Table 2. MILP parameters.

Region Cities

𝐼𝑥 10 10
𝐼𝑦 0 0
𝑍𝑥 10 12
𝑍𝑦 14 24
𝑡max 𝑍𝑥 · 𝑍𝑦 − 1 𝑍𝑥 · 𝑍𝑦 − 1
𝑈count 1 1
𝑉max 10 10
DOR 0.5 0.5
VEV 1 0.5
FEV 5 2
BI 100% 100%

both upper and lower boundaries are connected respectively. Obj0 and Obj4 do not present a direct correlation
with each other, but we can also see a conflict of these objectives with Obj1, Obj2 and Obj3.

7. Conclusions

In this work, we approach the MOGRDGP, considering a novel and rich range of constraints, in addition to
using a model with several objective functions. The problem was inspired by a global interest in using UAVs in
several important applications. The multi-objective, grid, restrictions of prohibited areas (docking constraint),
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Table 3. Performance results (SE instance).

MILP Feasible Optimal Average ND
time limit solutions solutions GAP solutions

1min 100% 0.00% 119.59% 19
5min 100% 9.05% 68.02% 188
10min 100% 21.81% 51.93% 174
15min 100% 32.10% 40.69% 220
30min 100% 53.91% 25.25% 244

Table 4. Cities maps performance results with 1 hour time constraint.

Map Feasible Optimal Average
solutions solutions GAP

RJ 100% 0.00% 90.91%
SP 100% 3.13% 65.90%
BH 100% 0.00% 87.11%

Figure 9. Graphic representation of some of the ND solutions found.
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Figure 10. Graphic representation of some of the ND solutions found. (a) RJ. (b) BH. (c) SP.

Table 5. Different non-dominated solutions characteristics (South-east region map).

Weights Lowest Distance Recharge Consumption Final charge
speed time rate (%)

{0.01, 1.00, 1.00, 0.10, 1.00} 1.0 36.0 1.2 183.6 41.0
{0.01, 0.01, 0.01, 1.00, 1.00} 10.0 42.0 2.22 252.0 76.0
{1.00, 0.01, 0.10, 1.00, 1.00} 2.0 42.0 2.14 219.2 100.0
{1.00, 0.01, 0.10, 0.10, 0.01} 10.0 41.0 2.4 246.0 100.0
{1.00, 0.10, 0.10, 1.00, 1.00} 1.0 36.0 0.79 183.6 0.0

Table 6. Different non-dominated solutions characteristics (other maps).

Map Weights Lowest Distance Recharge Consumption Final charge
speed time rate (%)

BH {0.10,1.00,0.10, 0.10,1.00} 1.0 225 4.6 462.05 100.0
SP {0.10,1.00,0.10, 0.10,1.00} 1.0 59.0 1.14 120.95 95.0
RJ {1.00,1.00,0.10, 1.00,1.00} 1.0 122.0 2.49 251.05 100.0
BH {0.10, 1.00, 0.10, 0.10, 0.10} 1.0 57 0.27 116.85 12.0
SP {1.00, 0.10, 1.00, 1.00, 0.10} 1.0 55.0 0.11 112.75 0.0
RJ {1.00, 0.10, 0.10, 1.00, 0.10} 1.0 60.0 0.21 123.0 0.0
BH {1.00,1.00, 1.00,0.10, 1.00} 10.0 57.0 0.4 142.5 0.0
SP {1.00,1.00, 0.10,0.10, 0.10} 10.0 55.0 0.35 137.5 0.0
RJ {1.00,1.00, 0.10,0.10, 0.10} 10.0 60.0 0.48 150.0 0.0

Notes. Bold values relate similar weights to the main objectives affected.
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Figure 11. Interactive visualization tool for checking relations between objectives – Pareto
reference. (a) Lower boundary of Obj0. (b) Lower boundary of Obj1.

the concern with consumption (Green Computing) and the dynamism of this problem shows a practical approach
for real applications. A MILP model was formulated taking these aspects in consideration.

A case of study was developed inspired by a real Brazilian region, using the geography of the area as baseline
to the location of prohibited points. The experiments performed showed the correlation between the different
objectives.

In terms of computational efficiency, metaheuristic algorithms are, in general, reasonable approaches for
achieving good quality solutions in large instances. Then, future works aim to use this MILP implementation
of benchmark to metaheuristic implementations as in Marques et al. [21].

Acknowledgements. The authors would like to thank the Brazilian agencies FAPERJ, CNPq and the Coordination for
the Improvement of Higher Education Personnel – Brazil (CAPES).
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