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SUFFICIENT CONDITIONS FOR EXTREMUM OF FRACTIONAL
VARIATIONAL PROBLEMS

ASHAPURNA PATTNAIK!, SAROJ KUMAR PADHAN'* AND R.N. MOHAPATRA?

Abstract. Sufficient conditions for extremum of fractional variational problems are formulated with
the help of Caputo fractional derivatives. The Euler—Lagrange equation is defined in the Caputo sense
and Jacobi conditions are derived using this. Again, Wierstrass integral for the considered functional
is obtained from the Jacobi conditions and the transversality conditions. Further, using the Taylor’s
series expansion with Caputo fractional derivatives in the Wierstrass integral, the Legendre’s suffi-
cient condition for extremum of the fractional variational problem is established. Finally, a suitable
counterexample is presented to justify the efficacy of the fresh findings.
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1. INTRODUCTION AND PRELIMINARIES

The fractional calculus deals with the problem of extremizing functionals, which are of non integer order and
are differentiable. It’s origin is more than three centuries old, and dates back to L’Hopital’s query to Leibniz
about the significance of the fractional order derivative of a function. In his reply to the above question, Leibniz
indicated it to be a paradox which can lead to useful consequences in the near future [36]. The subject caught
the attention of many eminent mathematicians including Euler, Fourier, Laplace, Lacroix, Abel, Riemann,
Liouville and Caputo et al. for its advancement. Several fractional derivatives in the sense of Griinwald Letnikov,
Riemann-Liouville and Caputo et al. are discussed in [32]. However, it gained popularity in the last three decades
for its wide applications in the field of science, engineering, statistics and mathematical biology [1-6,12,14,17,19—
21,24,28,34,35,37] etc.

The fractional derivatives are used in calculus of variations to generalize it to non integer orders. Agrawal [1]
formulated the Euler-Lagrange equations for fractional variational problem and proved the necessary conditions
for extremum of fractional variational problems using Riemann—Liouville fractional derivatives. Legendre’s sec-
ond order necessary optimality conditions for weak extremizers of the variational problems was subsequently
established by Lazo and Torres [29], where the involved functionals are fractional differentiable in the sense of
Riemann—Liouville. The isoperimetric problems have also been proved using the Caputo fractional derivatives
[10,30].

Keywords. Caputo fractional derivative, Jacobi conditions, transversality conditions, Wierstrass integral, Legendre’s condition.

1 Department of Mathematics, Veer Surendra Sai University of Technology, Burla 768018, India.

2 Department of Mathematics, University of Central Florida, Orlando, FL 32816, USA.
*Corresponding author: skpadhan math@vssut.ac.in

© The authors. Published by EDP Sciences, ROADEF, SMAIT 2022

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


https://doi.org/10.1051/ro/2022035
https://www.rairo-ro.org
mailto:skpadhan_math@vssut.ac.in
https://creativecommons.org/licenses/by/4.0

638 A. PATTNAIK ET AL.

Variational fuctionals with a Lagrangian are considered by Odzijewicz et al. [31] using classical as well
as Caputo fractional derivatives. Wang and Xiao [39] defined the fractional variational integrators in terms
of Caputo derivatives. The notion of Euler-Lagrange fractional extremals is used to prove the Noether type
theorem by Frederico and Torres [16]. Agrawal and Baleanu [7] studied fractional optimal control problems as
an application of the Riemann-Liouville fractional derivatives.

Recently, Zhang [40] proved the necessary and sufficient optimality conditions for the fractional variational
problems using the Caputo—Fabrizio fractional derivatives, and Baleanu et al. [11] presented suitable counterex-
amples to support it. Almeida [9] considered several problems of calculus of variations depending upon Lagrange
function on a Caputo type fractional derivative. Again, Almeida [8], obtained the necessary and sufficient con-
ditions, when the involved functionals are dependent upon the fractional integrals and fractional derivatives
having indefinite integral and in the presence of time delay. Rahman et al. [33] established the generalized
Riemann—Liouville fractional integrals in the sense of increasing, positive, monotone, and measurable function
¥ and also discussed the Chebyshev functionals. Goufo et al. [18] explored the differential fractional operators,
which include Atangana—Baleanu derivative and the Caputo—Fabrizio derivative.

Several interesting applications of fractional derivatives in modeling the ecological systems are found in
[23,26,28]. Between the Haar wavelet and Adams—Bashforth-Moulton method, a comparative investigation for
the fractional Lotka—Volterra (LV) system in the Caputo sense was done by Kumar et al. [22]. The fractional
derivatives such as the Caputo, Caputo—Fabrizio and Atangana—Baleanu derivatives are used to investigate
a mathematical system numerically to figure out the possible dynamics for the spread of the diseases like
HIV/AIDS and COVID-19 by Kumar et al. [25,27].

In this paper, sufficient optimality conditions for fractional variational problems are investigated with the
help of Legendre’s condition by using the Caputo fractional derivative. Again, the Jacobi condition and the
transversality conditions are discussed to validate the aforesaid condition. With the help of fractional Taylor’s
series expansion, the Legendre’s sufficient conditions for extremum of the fractional variational problems are
obtained. A number of remarks are mentioned at appropriate places for verifying the proper generalizations
of several classical equations and conditions. To support our new findings, a suitable counterexample is also
provided.

Definition 1.1 ([15]). Let f be a real valued function in the interval [a,b], @ be a positive real number, n be
the integer satisfying (n — 1) < a < n, and T" be the Euler gamma function. Then,

(i) the left Caputo fractional derivatives (CFD) of order « is defined by

O S GO (L0
$HI0) = =y |, G O

and
(ii) the right CFD of order « is defined by

P S DI LI
S0 = gy ) U G g

Remark 1.2. If a € Z, then the derivatives discussed above can be standardized in the classical sense, ¢.e.,
o = (L) f, S = (~2) f), a=12,....
a 14 dl,[, ) 12 d‘LL 9 ) k)

Remark 1.3. The CFD of a constant is always equal to zero.

Lemma 1.4. Consider a functional of the form

A1
J(p) = A f(A,M,f N %ﬁu) dA,

0
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defined on the set of functions u(\) with continuous left and right CFDs of order a and (8 respectively in
[Ao, A1], having boundary conditions p(Xo) = po and (A1) = p1. Then J[u] will have an extremum at p(N) if
w(\) satisfies the necessary condition (1.1) i.e., the Euler—Lagrange equation:

oF

oF oF c..5 OF
ou “

C oo
X% Ge g,

=0. (1.1)
A

o5 Ty
Remark 1.5. If the set of functions p(\) have continuous left and right Riemann—Liouville derivatives of order
a and (3 respectively, then the above Lemma 1.4 becomes Theorem 1, Page-372 of [1].

2. RESULT AND DISCUSSION

2.1. The Jacobi condition
Consider the functional J[u(A\)] = /\/\OIF()\,MWC@?\‘M —g@fu) dX, where the function F(X,pu,$ 2§

I, —f@bﬁ u) under consideration has continuous first and second order partial derivatives with respect to all its

arguments. Then the necessary condition for the functional J[u] to have an extremum is that it satisfies the
Euler-Lagrange’s equation given by (1.1).

Let = (), k), be the solution curves of the Euler-Lagrange’s equation having center at the point A(Ag, po)-
The k-discriminant curve is defined by the equations;

e (2.1)
and

ou(A, K)

S =o. (2.2)

The curves of this family that are close to the extremals p = p(A) moving through the points A(Ag, 1o)
& B(A1,p1) and the k-discriminant curves will intersect at points close to the tangent points of the extremal
under consideration with the x-discriminant curve. The function p(X) will have continuous left and right Caputo
fractional derivatives of order o and 3, respectively with the boundary points A(\g, to) and B(A1, 7).

Now let’s consider the functional on the pencil of extremals i.e.,

A1

Tl = [ PO 0. EZO ), ~S P (0, ) O (2.3)

The Jacobi condition states that, to establish a central field of extremals containing the arc AB of extremals it
is sufficient that, there does not exist any common point (apart from A) between the k-discriminant curve and
the arc AB of extremals.

Now, let us define the J acob(i co)ndition analytically in fractional variational sense.
op(\,k

Denote the function g := ===, where & is given.
2
Hence ¢} = ¢’ = 8;,533\”), since ¢ is the function of \ alone.

The functions p = p(\, k); are solutions of the Euler-Lagrange’s equation.

OF ()\, w(A k), g@;{“,u()\, K), —f@bﬁ,u(/\, H))
op

OF (A 1 1), S T80 1), =S 2 (A ) )
05 I3

OF (A, n(\, ), € 78\ 1), =S 2 u(N ) )
o5 Ty

+5 o8

+S9)
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Differentiating the above equation with respect to s in the Caputo sense, we get,

/ ! C oo ! /
Fing + Fugosud’ = Fugapud' + S P (Fugasud + Feosugozus’ ~ Foogugap,d)
C B o N\ _
o D\ Fugapud T Feapucacnd —Feopugapnd ) =0 (2:5)

which is called the Jacobi’s equation.

The solution of the above equation g = W vanishes at the center of the extremals for A = A\g. If it does
not vanishes further at any point in the interval Ay < A < A1, then the Jacobi condition is fulfilled.

If the solution of the equation (2.2), vanishes at any other point of the interval Ay < A < A1, then the point
A* conjugate to A is defined by the equations;

u(A, k)
Ok

= p(\ ko) and =0org=0,

which lies on the arc AB of the extremal.

Remark 2.1. When a=g=1, aC@ff = % and (/\J@bﬁ = E—;\i and the above equation reduces to

d
Fupg + Fuwg — a(Fuu’g + Fwg) =0, (2.6)

which is the Jacobi equation in the classical sense [13].

Note that for fractional calculus of variational problems the resulting Jacobi equation contains both the left
and right CFD. This is to be expected, since the optimum function must satisfy both terminal conditions. If
there exists a solution of the Jacobi equation that vanishes only at the point A = )y and does not vanish at any
other point in [Ag, A1], then no points are conjugate to the arc AB; and the Jacobi condition is fulfilled.

Remark 2.2. The functional F()\,u()\, K), S D¢\, k), f.@bﬁu(/\, K,)), satisfies the Euler-Lagrange’s equation
(1.1) but fails to satisfy the Jacobi equation(2.5) taken in right CFD sense and hence fails to satisfy the sufficient
conditions for optimality. Whereas, the functional F()\, (X &), € DN, k), —f@,’?u()\, n)), satisfies the Euler—

Lagrange’s equation (1.1) as well as the Jacobi equation (2.5) in CFD sense. Therefore, the above functional is
taken into consideration.

2.2. The transversality condition

Consider the functional of the form (2.3) having fixed boundary points. This functional has a solution of the
form (2.1). Now consider the case where one or both of the boundary points can move. Then we can get a larger
class of acceptable curves comprising of the comparison curves having common boundary points with the curve
under consideration and the curves that are generated by the extension of the boundary points. We establish
the following result:

Theorem 2.3. Let J[u(N)] be a functional of the form (2.3) defined on the set of function u(X\), which have
continuous left and right CFD of order a and (3 respectively with moving boundary points. Then the extremal of

the given functional satisfies the transversality condition given by
c c A2
[F + FC_O/;\lu(a D — ¢ .@/‘\)‘u)é)\] =0 (in left CFD sense) and

a A1

{F + wau(f@fw - g@f,u) 5)\} ‘-0 (in right CFD sense), (2.7)

A
A1

where ¥ is a function of .
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Proof. The variation of the functional J[u(, )] on the extremals u = p(A, k), when the boundary point is
displaced from the position (A1, A2) to the position (A1 + A1, Ao +dA2) may be calculated in the fractional sense
and is given by,

Ao+OA o o A o
AT = [ PN+ b T8+ T80, =S T = SaIR) an = [ P (X, § D, =S 75 ) ax,

where h is the difference between the original and the perturbed curve and is given by, h = du — ¢ 2¢ud\ (in
left CFD sense) and h = u + ¢ 2 udA (in right CFD sense). Then

)\2 AQ
AJz/ F(A,MJrh,aC@fquf.@fh,—f@bﬂu—f@fh)d)\—/ F(/\,u,fgfp,—f%?u)d)\
A

1 A1

A1+0X
_/ F(A,u+h,g.@§‘u+f.@§“h, —f@fu—f@fh) dA
A

1

A2+0A2
+/ F()\,u+h,g.@§‘u+f.@§“h, —f@fu—fgfh) dA
A2
)\2 AQ
z/ F(A,u+h,59§‘u+f.@§“h,—f@bﬂu—f@bﬂh) d)\—/
)\1 )\1
= Flax=x0A1 + Fa=x,0A2. (2.8)

F(\ o5, 7))

O

If, we expand the first term on the right hand side of the equation (2.8) by means of Taylor’s expansion [38]
then,

F(A,u+h,f.@§‘,u+f@,%h,ff%;@uff@fh) = F 4 Fuh+ Fege, SO8h—Fego, SO0h. (29)
Thus,

A2
A [F()\7u+h,aC@,‘\Iu—kaC@;"h,—f@fu—f@fh)dA—F(A,u,aC@j\*u,—fgfu)}d)\
1
A2
:A (Fuh+ Feagy S78h = Fego, S 7). (2.10)
1

The second part of the integration of the above equation is

A2 Ao Ag
C o _ C o
| Beogu C78har = {Fggguh}/\l + [ M Feag, (2.11)
and the third part of the integration is
A C o A2 Moo
Al Fg_@éf‘u )\‘@b hdA = [ngfﬂh} A + /)\1 ha QXFE_(Z”?;L d)\ (212)

Hence,

A2
/A (Fuh +Foggu § I8h = Foyp, f@fh) dx
1

A2
_ {wa“h} o (2.13)

2

A2 A
_ A (Fu+ S5 Feagu + SPFe o, )1+ [Foaguh]
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A2 s A

AT & F,+$29F CobF ht [Fege b = [Fous b + [FoAP: 9.14
.. ~ N ( H+A b ac@iyu—’_a A g@fu) +|: ac.@;\"p :|>\1_[ 595# :|>\1+[ ])\1. ( . )
At the extremals,

A2

C oo C B — i

/}\1 (Fﬂ +3Dy Fegou+ 4 95 Ff@fu>h =0. (by EL equation)
A2 A2 N

A= [Fggguhhl - {Ff@fﬂh]xl + [FoN) = 0. (2.15)

Now replacing the value of h in the above equation (2.15) in left CFD sense, we have,

Az
(Feoen (00— 75100 PR =0
)\2 A2
— [(F ~ Fege, g‘@gﬂ)&] ot [Fgggﬂaﬂ} =0 (2.16)

Now the basic necessary condition for an extremum; A J = 0 has the form (2.16).
If the variations are independent, then,

KF ~ Fege, 3@@)&] 12 —0 (2.17)
and
[Fgggﬂau] ij —0. (2.18)

If the variations are dependent; let p = 1(\),
= 0 =S DS (2.19)

By substituting the value of du from the above equation in equation (2.16);

[(F = Feagu ST80)0A+ Feog, S 7500)] i —0
= KF + Fope, (S 754 — fj@fu))é/\] ii ~0. (2.20)

Similarly, replacing the value of h in equation (2.15) and proceeding in the same way, we will get,

*_0 2.21
Yoo (221)

C b C B
(6 e (5550 - 300
This establishes a relationship between the slopes of ¥ and p at the boundary points. This condition is called
the transversality condition.

Remark 2.4. When o = 8 = 1, §2¢ = & and Cof = — the above conditions will reduce to
[F+ (¢ — p/)F,] =0, which is the trasversality condition in classical sense.
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3. SUFFICIENT CONDITION FOR EXTREMUM

In the preceding sections we have discussed the Euler—Lagrange equation, Jacobi condition and the transver-
sality condition in the CFD sense. The Euler—-Lagrange equation is the principal necessary condition which must
be satisfied by the solution of the functional to achieve the extremum. The Jacobi condition determines the
limitations to the extent of the region over which the integral may be extended. The transversality condition
deals with the moving boundary conditions of the functional under consideration.

Next, we are going to prove the sufficient conditions for the solution of the functional to achieve the extremum.
We now prove the following:

Theorem 3.1. A problem involving an extremal of the functional of the form (2.3) having boundary points
1(Ao) = po and p(A1) = py satisfies the Jacobi condition in Caputo sense. If 11o(A) gives a relative minimum(or

maximum) for [ F()\,u, CPeu, fg.@fu) then,

E()\,u,m, S, —f@f,u) >0 (or <0 for maximum), (3.1)

YV A € [Ag, A1], and for all close permissible curve . Here m(A, ) is the slope of the central field through which
the extremal x has passed.

Proof. Consider the problem involving an extremal of the functional of the form (2.3) having boundary points
1w(Ao) = po and p(A1) = p1. Let the Jacobi conditions are satisfied. Suppose the extremal x, passes through
the points A(\g, o) and B(A1, 1) is included in the central field with slope m(A, u). The increment AJ, the
difference of the functional J passing from the extremal x to some close acceptable curve &, is given by,

AT = / F(o .S o8-S 7)) ax - / F(o o5 =S 7 1) ax (3.2)
K

K

The symbols | F()\, 1, o0, ffgfu) dAand [ F(A, 1, D8, - 9f u) d\, represent the values of the func-
tional J = f/\)‘ol F()\, W, g@f‘p, 7(;@5#) d\ taken along the arcs of the curves k and «, respectively. O

Now the auxiliary functional
JPOwm) + (§70 = § 91 = m) Fos( )] ax, (3.3)

reduces to [_ F(%M,fﬁfﬂ,—f@fu) d), taken along the extremal x (when a = 8 = 1, 9¢ = dd—/\ and
g@bﬂ = 2); since % = m on extremals of the field.

The auxiliary functional (3.3);
Coo, _Cghb, _
NEA m) + (o DR — XDy = m ) Fon (A, i, m) | dA

= ‘/7[F(>‘wu'vm) _mFm()"/v"vm)} d)"’_/[acgs\xﬂFm()‘nu»m) —f@l’?uFm(A,p,m)] dA,

I

is the integral of an exact differential. B
The functional J[u(\)] is obtained by taking the differential of the function J(A, 1) having the form (by the
transversality condition (2.7))

4J = (F + S D uFe g, + 5@;;@@5“) A + (Fgggu - Fggfu) du, (3.4)
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or
aT = (F+ SO uFe o, + S P nFeog,) d+ (SO uFe oz, + S P uFeys, ) dX (3.5)
Thus, on the extremal x the integral given by (2.7) coincides with the integral,
[ (S5 -S7 ) ax

Since the functional (2.7) is the integral of an exact differential equation, it does not depend on the path of
integration. Therefore,

[ O gsu 570w = [ [FOupm) + (S50 - §Fn = m)Pu(rmm)] ar (30

holds not just for kK = kK but for any value of & as well.
Hence,

AJ = / F(A S 250~ 7)) dr — / [FOmm) + (T80 — S D= m) En O m)| . (37)
The integrand is called Weierstrass function and is denoted by F ()\, w,m, ¢ 7N _g} @bﬁ M);

E— /JF(A,M,(?@‘;M —(i%?u) — F(A\, piym) — (f%m — P m)Fm(A, ,u,m)} an. (3.8)

In this notation;

A1
AT = [ B(nm £ 95 -7 ) (3.9)
A

0

The functional AJ is minimum on the curve  if the function E > 0, and maximum if £ < 0. This condition is
sufficient to determine the extremum of the given functional.

The Taylor’s series expansion [38] in Caputo sense for F()\, L4 g@fu, —f@bﬂu), is given by
F(Auw S 221~ 20n) = FOupm) + ($750n = 2 —m) B\, pm)

(251 -S 2~ m)2 (

+ 91

Ff@fo‘u()‘vﬂat) + Fgg{f%(%#i)} (3.10)

where ¢ lies between m and p’.
Substituting the value of F (/\, w, S D3, —f.@f u) from Taylor’s series expansion in Weierstrass integral we
get,

2
(S%"u Y m)
|:Fac_@§"/t()‘7 Hy t) + FS—@;?[’M(A’ Hy t) . (311)

2!
The sign of the function £ depends on the sign of the functions Fec g2«

, and FS—@}?[’N. Thus E > 0 implies

Fe gz, (A pst) > 0 (or Fogon, (A p,t) > 0) for left (or right) CFD, where the functional achieves a weak
a A7b
minimum; and E < 0 implies Fegza, (A, p,t) < 0 (or Foyes, (A, p,t) < 0) for left (or right) CFD, where the
a A7b
functional achieves a weak maximum. The condition Fe g2a (A, p1,t) > 0 (or Fogza, (A, p,t) > 0) is called the
Legendre condition.
The following example is given to understand some of our theoretical investigations considered in this paper.
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Example 3.2. Test for an extremum for the functional

1
0
JpN)] = / ((g@j’\‘u)Z . u2> dA, where p©(0) =0,u(1)=1 and 8—/; = KCOS .
0
The Euler-Lagrange equation for left CFD is given by equation (1.1);
=2+ S22 (§ 7% m) = 0.
For a =1,

= —2u—2u"=0
= u' 4+ p=0.

It’s general solution is given by
[ = K1 COS A + Kgsin .

Applying the initial conditions, we get, k1 = 0 and k3 = 1.188396.
The Jacobi condition for left CFD is given by,
Fung + Fugagud + sor (Fuoc@?kbg + F()C@?ug@?“g/) =0
= —29+577(29') =0
= —g+527(¢) =0

When a = %,
S7t(g) =g9= 27 (827 (9) =S 27 °(9),
—4 3
"= —(1-))>2
=y Sﬁ( )2,
(A 4 :
pAF) A g
OKOA 3T
Integrating the above equation with respect to x we get,
ou(A —4
:M_ (1=X)2k+ (N

o\ 3w

Using the initial conditions,

Nfw

d(\) = Kcos A + %(1 —1x)2.
(x

Again integrating 8“87/\’“) = rcos \ with respect to )\, we have
= K(—sinA) + (k).
Substituting the initial conditions (k) = 0, we obtain

u= k(—sin M),
= = K1 sin .
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When a =1, {29 = -4
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da?

d
—g— (g) =0

=g +9=0,
= g = Ky sin A,

where ki is a constant.

The function vanishes at the points A = r7, where r is an integer. On the interval 0 < A\ < 1, the function g
vanishes only at the point A = 0 and the Jacobi equation is satisfied.

By the Legendre’s condition,

2
% :2>0’
8(09310

for any value of § 2§ p.
It follows that on the straight line ;4 = 0 a strong minimum is achieved for A < .

4. CONCLUSION

The sufficient conditions for fractional variational problems of the type

are

_ M C oo C B
T = [P (0. S 7O ), ~S (0. )

0

formulated with the help of Cauputo fractional derivatives. The sufficient conditions for the proposed

problems are established using the Weierstrass integral and the Legendre condition. It is observed that the
present work generalizes many classical investigations [13]. Again, with the help of discussed counterexample,

our

fresh findings have been justified. Many concepts of classical calculus of variations were found to be the

extension of fractional calculus of variations with minor modifications. Thus, ample of opportunities are open
for further investigation in this area.
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