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REMARKS ON COMPONENT FACTORS IN GRAPHS

Guowei Dai*

Abstract. For a family of connected graphs ℱ , a spanning subgraph 𝐻 of a graph 𝐺 is called an
ℱ-factor of 𝐺 if its each component is isomorphic to an element of ℱ . In particular, 𝐻 is called an
𝒮𝑘-factor of 𝐺 if ℱ = {𝐾1,1, 𝐾1,2, . . . , 𝐾1,𝑘}, where integer 𝑘 ≥ 2; 𝐻 is called a 𝑃≥3-factor of 𝐺 if every
component in ℱ is a path of order at least three. As an extension of 𝒮𝑘-factors, the induced star-factor
(i.e., ℐ𝒮𝑘-factor) is a spanning subgraph each component of which is an induced subgraph isomorphic
to some graph in ℱ = {𝐾1,1, 𝐾1,2, . . . , 𝐾1,𝑘}. In this paper, we firstly prove that a graph 𝐺 has an
𝒮𝑘-factor if and only if its isolated toughness 𝐼(𝐺) ≥ 1

𝑘
. Secondly, we prove that a planar graphs 𝐺

has an 𝒮2-factors if its minimum degree 𝛿(𝐺) ≥ 3. Thirdly, we give two sufficient conditions for graphs
with ℐ𝒮𝑘-factors by toughness and minimum degree, respectively. Additionally, we obtain three special
classes of graphs admitting 𝑃≥3-factors.
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1. Introduction

The graphs considered here are finite and simple, unless explicitly stated. Let 𝐺 = (𝑉 (𝐺), 𝐸(𝐺)) be a graph.
We denote by 𝑉 (𝐺) and 𝐸(𝐺) the vertex set and the edge set of 𝐺, respectively. For 𝑣 ∈ 𝑉 (𝐺), we use 𝑑𝐺(𝑣)
and 𝑁𝐺(𝑣) to denote the degree of 𝑣 and the set of vertices adjacent to 𝑣 in 𝐺, respectively. For 𝑆 ⊆ 𝑉 (𝐺), we
write 𝑁𝐺(𝑆) = ∪𝑣∈𝑆𝑁𝐺(𝑣). A graph 𝐺 is called an 𝑟-regular graph if 𝑑𝐺(𝑣) = 𝑟 for each 𝑣 ∈ 𝑉 (𝐺). We use
𝛿(𝐺) to denote the minimum degree of a graph 𝐺. The number of connected components and isolated vertices
of a graph 𝐺 is denoted by 𝜔(𝐺) and 𝑖(𝐺), respectively. We refer to [3] for the notation and terminologies not
defined here.

The complete bipartite graph 𝐾1,𝑟 is called the star of order 𝑟 + 1, where 𝑟 is a positive integer. We use 𝒮𝑘

to denote the set {𝐾1,1, 𝐾1,2, 𝐾1,3, . . . ,𝐾1,𝑘}, where integer 𝑘 ≥ 2.
Let ℱ be a family of connected graphs. Then a spanning subgraph 𝐻 of 𝐺 is called an ℱ-factor of

𝐺 if each component of 𝐻 is isomorphic to an element of ℱ . In particular, for an integer 𝑘 ≥ 2, a
{𝐾1,1, 𝐾1,2, 𝐾1,3, . . . ,𝐾1,𝑘}-factor is briefly called an 𝒮𝑘-factor. Similarly, a {𝑃𝑘, 𝑃𝑘+1, ...}-factor is called a
𝑃≥𝑘-factor.

In 1947, Tutte [10] presented a criterion for the existence of 1-factors (perfect matchings), which is one of the
classical results in graph theory. Denote by 𝑜(𝐺) the number of odd components of 𝐺, whose orders are odd.

Keywords. Star-factor, Induced star-factor, 𝑃≥3-factor, Toughness, Minimum degree.

1 School of Mathematical Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China.
*Corresponding author: guowei dai@aliyun.com

c○ The authors. Published by EDP Sciences, ROADEF, SMAI 2022

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1051/ro/2022033
https://www.rairo-ro.org
https://orcid.org/0000-0001-5839-4573
mailto:guowei_dai@aliyun.com
https://creativecommons.org/licenses/by/4.0


722 G. DAI

Theorem 1.1. (Tutte [10]) A graph 𝐺 has a 1-factor if and only if 𝑜(𝐺− 𝑆) ≤ |𝑆| for any 𝑆 ⊆ 𝑉 (𝐺).

Since the well-known Tutte 1-factor theorem [10] was proposed, there are many results about component-
factors, see [5, 9, 13,14], etc.

Akiyama, Avis and Era [1] demonstrated the following classical result, which is a characterization for the
existence of 𝑃≥2-factors in a graph.

Theorem 1.2. (Akiyama, Avis and Era [1]) A graph 𝐺 has a 𝑃≥2-factor if and only if 𝑖(𝐺−𝑆) ≤ 2|𝑆| for any
𝑆 ⊆ 𝑉 (𝐺).

Amahashi and Kano [2] and Las Vergnas [11] gave independently a characterization for graphs with 𝒮𝑘-factors,
which is a generalization of Theorem 1.2.

Theorem 1.3. (Amahashi and Kano [2]; Las Vergnas [11]) Let 𝑘 be an integer with 𝑘 ≥ 2. Then a graph 𝐺
has an 𝒮𝑘-factor if and only if 𝑖(𝐺− 𝑆) ≤ 𝑘|𝑆| for any 𝑆 ⊆ 𝑉 (𝐺).

A connected graph is called a cactus if each block of the graph is a complete subgraph. A cactus of odd order is
called an odd-cactus. As an extension of 𝒮𝑘-factors, the induced star factor, denoted by ℐ𝒮𝑘-factor, is a spanning
subgraph each component of which is an induced subgraph isomorphic to some graph in {𝐾1,1, 𝐾1,2, . . . ,𝐾1,𝑘}.
Denote by 𝑜𝑐(𝐺−𝑆) the number of odd-cactus of 𝐺−𝑆. The criterion for ℐ𝒮𝑘-factors was obtained by Egawa,
Kano and Kelmans as following.

Theorem 1.4. (Egawa, Kano and Kelmans [6]) Let 𝑘 ≥ 2 be an integer. A graph 𝐺 has an ℐ𝒮𝑘-factor if and
only if 𝑜𝑐(𝐺− 𝑆) ≤ 𝑘|𝑆| for any 𝑆 ⊆ 𝑉 (𝐺).

The toughness of a connected graph 𝐺, denoted by 𝜏(𝐺), was first introduced by Chvátal [4] as follows. If 𝐺
is complete, then 𝜏(𝐺) = +∞; otherwise,

𝜏(𝐺) = min
{︂

|𝑆|
𝜔(𝐺− 𝑆)

: 𝑆 ⊆ 𝑉 (𝐺), 𝜔(𝐺− 𝑆) ≥ 2
}︂

.

Kaneko [7] introduced the concept of a sun and gave a characterization for the existence of 𝑃≥3-factors in
a graph. It is perhaps the first criterion of graphs admitting path factors not including 𝑃2. Additionally, Kano
et al. [8] obtained a simpler proof for Kaneko’s result [7].

A graph 𝐻 is said to be a factor-critical graph if for each 𝑣 ∈ 𝑉 (𝐻), 𝐻 − {𝑣} has a 1-factor. Let 𝐻 be a
factor-critical graph such that 𝑉 (𝐻) = {𝑣1, 𝑣2, . . . , 𝑣𝑛}. A graph is called a sun if it is obtained from 𝐻 by
adding new vertices {𝑢1, 𝑢2, . . . , 𝑢𝑛} together with new edges {𝑣𝑖𝑢𝑖 : 1 ≤ 𝑖 ≤ 𝑛} to 𝐻. Note that, according to
Kaneko [7], 𝐾1 and 𝐾2 are also regarded as a sun, respectively. Usually, the suns other than 𝐾1 are called big
suns. We use 𝑠𝑢𝑛(𝐺−𝑋) to denote the number of sun components of 𝐺−𝑋.

Theorem 1.5. (Kaneko [7]) A graph 𝐺 has a 𝑃≥3-factor if and only if 𝑠𝑢𝑛(𝐺− 𝑆) ≤ 2|𝑆| for any 𝑆 ⊆ 𝑉 (𝐺).

Corollary 1.6. (Kaneko [7]) A graph 𝐺 has a 𝑃≥3-factor if one of the following holds: (i) 𝐺 is 𝑟-regular where
𝑟 ≥ 2; (ii) 𝜏(𝐺) = 1; (iii) 𝜏(𝐺) = 1

2 and 𝛿(𝐺) ≥ 2; (iv) 𝐺 is 3-connected planar; (v) 𝐺 is claw-free with 𝛿(𝐺) ≥ 2.

This paper attempts to find more sufficient conditions for the existence of these component factors by different
graphic parameters including minimum degree, toughness, isolated toughness, binding number, etc.
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2. Star-factor

The isolated toughness of a connected graph 𝐺 denoted by 𝐼(𝐺). If 𝐺 is complete, then 𝐼(𝐺) = +∞; otherwise,

𝐼(𝐺) = min
{︂

|𝑆|
𝑖(𝐺− 𝑆)

: 𝑆 ⊆ 𝑉 (𝐺), 𝑖(𝐺− 𝑆) ≥ 2
}︂

.

Lemma 2.1. [15] Let 𝐺 be a graph and 𝑘 ≥ 1 be a real number. Then the following three statements are
equivalent.

(i) 𝑖(𝐺− 𝑆) ≤ 𝑘|𝑆| for all 𝑆 ⊂ 𝑉 (𝐺).
(ii) |𝑈 | ≤ 𝑘|𝑁𝐺(𝑈)| for all independent set 𝑈 of 𝐺.

Theorem 2.2. A connected nontrivial graph 𝐺 has an 𝒮𝑘-factor if and only if 𝐼(𝐺) ≥ 1
𝑘 , where integer 𝑘 ≥ 2.

Proof. Sufficiency: If 𝐺 is complete and nontrivial, then 𝐺 has an 𝒮𝑘-factor obviously. Thus we may assume
that 𝐺 is a graph of order at least two and not complete. Suppose, by way of contradiction, that 𝐺 has no
𝒮𝑘-factor, then by Theorem 1.3, there is a subset 𝑆 ⊆ 𝑉 (𝐺) such that 𝑖(𝐺−𝑆) > 𝑘|𝑆|. Then, by the integrality
of 𝑖(𝐺− 𝑆), we obtain that

𝑖(𝐺− 𝑆) ≥ 𝑘|𝑆|+ 1. (2.1)

If |𝑆| = 0, then 𝑖(𝐺) = 𝑖(𝐺− 𝑆) ≥ 𝑘|𝑆|+ 1 = 1, which contradicts the fact that 𝐺 is connected.
If |𝑆| = 1, then 𝑖(𝐺− 𝑆) > 𝑘|𝑆| = 𝑘. By the definition of 𝐼(𝐺), we have that

𝐼(𝐺) ≤ |𝑆|
𝑖(𝐺− 𝑆)

<
1
𝑘

,

a contradiction.
If |𝑆| ≥ 2, then by (2.1), we have

|𝑆| ≤ 𝑖(𝐺− 𝑆)− 1
𝑘

·

By the definition of 𝐼(𝐺), we have

𝐼(𝐺) ≤ |𝑆|
𝑖(𝐺− 𝑆)

≤ 𝑖(𝐺− 𝑆)− 1
𝑘 × 𝑖(𝐺− 𝑆)

=
1
𝑘
− 1

𝑘 × 𝑖(𝐺− 𝑆)

<
1
𝑘

,

a contradiction.
Necessity: Suppose that 𝐺 has an 𝒮𝑘-factor and 𝐼(𝐺) < 1

𝑘 . Then by Theorem 1.3 and Lemma 2.1, for each
independent set 𝑈 ⊆ 𝑉 (𝐺), we have

|𝑈 | ≤ 𝑘|𝑁𝐺(𝑈)|. (2.2)

Since 𝐼(𝐺) < 1
𝑘 , there is a subset 𝑆 ⊆ 𝑉 (𝐺) such that |𝑆|

𝑖(𝐺−𝑆) < 1
𝑘 . Let 𝑈 be the set of isolated vertices of

𝐺− 𝑆, then 𝑁𝐺(𝑈) ⊆ 𝑆. Obviously, 𝑈 is independent and

|𝑁𝐺(𝑈)| ≤ |𝑆| < 𝑖(𝐺− 𝑆)
𝑘

=
|𝑈 |
𝑘

,

which contradicts (2.2). �



724 G. DAI

Lemma 2.3. [3] Let 𝐺 be a simple connected planar graph of order at least three. If 𝐺 does not contain triangles,
then |𝐸(𝐺)| ≤ 2|𝑉 (𝐺)| − 4.

Theorem 2.4. Let 𝐺 be a connected planar graph. If 𝛿(𝐺) ≥ 3, then 𝐺 has an 𝒮2-factor.

Proof. Suppose that 𝐺 is a connected planar graph with no 𝒮2-factor. By Theorem 1.3, there exists a subset
𝑆 ⊆ 𝑉 (𝐺) such that 𝑖(𝐺− 𝑆) > 2|𝑆|. According to the integrality of 𝑖(𝐺− 𝑆), we obtain that

𝑖(𝐺− 𝑆) ≥ 2|𝑆|+ 1. (2.3)

Claim 2.5. 𝑆 ̸= ∅.

Proof. Suppose 𝑆 = ∅, by (2.3), 𝑖(𝐺 − 𝑆) ≥ 2|𝑆| + 1 = 1. On the other hand, 𝑖(𝐺) ≤ 𝜔(𝐺) = 1 since 𝐺 is a
connected graph. So, we obtain that 𝐺 is an isolated vertex, which contradicts that 𝛿(𝐺) ≥ 3. �

By Claim 2.5, 𝑆 ̸= ∅. Set |𝑆| = 𝑠. Then by (2.3), 𝑖(𝐺 − 𝑆) ≥ 2𝑠 + 1. The set of isolated vertices in 𝐺 − 𝑆
is denoted by 𝐼(𝐺 − 𝑆). Then we construct a simple bipartite graph 𝐻 = 𝐻[𝑋, 𝑌 ] as follows. Let 𝑋 = 𝑆 and
𝑌 ⊆ 𝐼(𝐺 − 𝑆) such that |𝑌 | = 2𝑠 + 1. For any 𝑠 ∈ 𝑋 and 𝑦 ∈ 𝑌 , 𝑠𝑦 ∈ 𝐸(𝐻) if and only if 𝑠𝑦 ∈ 𝐸(𝐺). Since
𝛿(𝐺) ≥ 3, it is clear that for each 𝑦 ∈ 𝑌 , we have |𝑁𝐻(𝑦)| ≥ 3. Hence, |𝐻| = 𝑠 + (2𝑠 + 1) = 3𝑠 + 1 ≥ 4 and

|𝐸(𝐻)| ≥ 3× (2𝑠 + 1) = 6𝑠 + 3 > 6𝑠. (2.4)

As 𝐺 is a connected planar graph, it is easy to see that 𝐻 is also a connected planar graph. According to the
fact that a bipartite graph does not contain any odd cycles, Lemma 2.3 implies that

|𝐸(𝐻)| ≤ 2|𝐻| − 4
= 2× (3𝑠 + 1)− 4
= 6𝑠− 2
< 6𝑠,

which is a contradiction to (2.4). �

Remark 2.6. Now, we explain that the condition of minimum degree 𝛿(𝐺) ≥ 3 in Theorem 2.4 is the best
possible. Let 𝐺 = 2𝐾1 ∨ 5𝐾1 be a complete bipartite graph, where ∨ means “join”. We know that 𝐺 is a
connected planar graph with 𝛿(𝐺) = 2 < 3. Choose 𝑋 =: 𝑉 (2𝐾1) with |𝑋| = 2, then we have that

𝑖(𝐺−𝑋) = 5 > 2|𝑋| = 4.

In view of Theorem 1.3, 𝐺 has no 𝒮2-factor.

3. Induced star-factor

Theorem 3.1. Let 𝐺 be a connected graph of order at least three. If 𝐺 is not an odd cactus and 𝜏(𝐺) ≥ 1
𝑘 ,

then 𝐺 has an ℐ𝒮𝑘-factor.

Proof. Suppose, to the contrary, that 𝐺 is a connected graph with no ℐ𝒮𝑘-factor. If 𝐺 is a complete graph,
then 𝐺 has a Hamilton cycle, denoted by 𝐶. Since 𝐺 is not an odd cactus, 𝐶 is an even cycle and thus 𝐺 has a
1-factor. Hence, 𝐺 has an ℐ𝒮𝑘-factor, a contradiction. Thus, we may assume that 𝐺 is not a complete graph.

By Theorem 1.4, there is a subset 𝑆 ⊆ 𝑉 (𝐺) such that 𝑜𝑐(𝐺− 𝑆) > 𝑘|𝑆|. Due to the integrality, we obtain

𝑜𝑐(𝐺− 𝑆) ≥ 𝑘|𝑆|+ 1. (3.1)
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Claim 3.2. 𝑆 ̸= ∅.

Proof. Suppose that 𝑆 = ∅, then by (3.1), we have 𝑜𝑐(𝐺) = 𝑜𝑐(𝐺−𝑆) ≥ 𝑘|𝑆|+1 = 1. Note that 𝑜𝑐(𝐺) ≤ 𝜔(𝐺) = 1
since 𝐺 is connected. Thus 𝐺 is an odd cactus, a contradiction. �

By Claim 3.2, we have |𝑆| ≥ 1.
If |𝑆| = 1, then by (3.1), we have 𝑜𝑐(𝐺−𝑆) ≥ 𝑘|𝑆|+ 1 = 𝑘 + 1. Then due to the definition of 𝜏(𝐺), we obtain

that
1
𝑘
≤ 𝜏(𝐺) ≤ |𝑆|

𝜔(𝐺− 𝑆)
≤ |𝑆|

𝑜𝑐(𝐺− 𝑆)
≤ 1

𝑘 + 1
<

1
𝑘

,

a contradiction.
If |𝑆| ≥ 2, then by (3.1), we have

|𝑆| ≤ 𝑜𝑐(𝐺− 𝑆)− 1
𝑘

· (3.2)

Then by (3.2) and the definition of 𝜏(𝐺), we obtain that

1
𝑘
≤ 𝜏(𝐺) ≤ |𝑆|

𝜔(𝐺− 𝑆)

≤ |𝑆|
𝑜𝑐(𝐺− 𝑆)

≤ 𝑜𝑐(𝐺− 𝑆)− 1
𝑘 × 𝑜𝑐(𝐺− 𝑆)

=
1
𝑘
− 1

𝑘 × 𝑜𝑐(𝐺− 𝑆)
<

1
𝑘

,

a contradiction. �

Theorem 3.3. Let 𝐺 be a connected graph of order 𝑛 ≥ 3 which is not an odd cactus. Then 𝐺 has an ℐ𝒮𝑘-factor
if 𝛿(𝐺) ≥ max{ 𝑛

𝑘+1 , 4𝑛
3𝑘+1 − 1}.

Proof. Suppose, to the contrary, that 𝐺 is a connected graph having no ℐ𝒮𝑘-factor. By Theorem 1.4, there
exists 𝑆 ⊆ 𝑉 (𝐺) such that 𝑜𝑐(𝐺− 𝑆) > 𝑘|𝑆|. Due to the integrality, we obtain

𝑜𝑐(𝐺− 𝑆) ≥ 𝑘|𝑆|+ 1. (3.3)

Claim 3.4. 𝑆 ̸= ∅.

Proof. Suppose that 𝑆 = ∅, then by (3.3), we have 𝑜𝑐(𝐺) = 𝑜𝑐(𝐺−𝑆) ≥ 𝑘|𝑆|+1 = 1. Note that 𝑜𝑐(𝐺) ≤ 𝜔(𝐺) = 1
since 𝐺 is connected. Thus 𝐺 is an odd cactus, a contradiction. �

By Claim 3.4 and (3.3), we have that

𝑜𝑐(𝐺− 𝑆) ≥ 𝑘|𝑆|+ 1 ≥ 𝑘 + 1. (3.4)

Let 𝐶1, 𝐶2, . . . , 𝐶𝑚 be the odd cactus components of 𝐺 − 𝑆, where 𝑚 = 𝑜𝑐(𝐺 − 𝑆). Choose an odd cactus
component 𝐶𝑖 of 𝐺− 𝑆 such that |𝐶𝑖| is as small as possible, where 1 ≤ 𝑖 ≤ 𝑚. Without loss of generality, we
assume that 𝐶1 is such an odd cactus component and |𝐶1| = 𝑡.
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Case 1. 𝑡 = 1.

In this case, let 𝐶1 = {𝑥}. Since 𝑁𝐺(𝑥) ⊆ 𝑆, we have that

|𝑆| ≥ 𝑑𝐺(𝑥) ≥ 𝛿(𝐺) ≥ 𝑛

𝑘 + 1
·

It follows from (3.3) that

|𝐺| ≥ |𝑆|+
𝑚∑︁

𝑖=1

|𝐶𝑖|

≥ |𝑆|+ (𝑘|𝑆|+ 1)
= (𝑘 + 1)|𝑆|+ 1

≥ (𝑘 + 1)× 𝑛

𝑘 + 1
+ 1

= 𝑛 + 1,

a contradiction.

Case 2. 𝑡 ≥ 2.

Since 𝐶1 is an odd cactus and 𝑡 ≥ 2, we find that |𝐶1| = 𝑡 ≥ 3. On the other hand, according to the minimality
property, we have that

𝑡 ≤ |𝐺|
𝑜𝑐(𝐺− 𝑆)

≤ 𝑛

𝑘|𝑆|+ 1
≤ 𝑛

𝑘 + 1
<

3𝑛

3𝑘 + 1
· (3.5)

Let 𝑢 be the vertex with maximum degree in 𝐶1, then 𝑑𝐶1(𝑢) ≤ 𝑡− 1. It follows that

|𝑆| ≥ 𝑑𝑆(𝑢)
≥ 𝛿(𝐺)− 𝑑𝐶1(𝑢)

≥ 4𝑛

3𝑘 + 1
− 1− (𝑡− 1)

=
4𝑛

3𝑘 + 1
− 𝑡.

This together with (3.3), (3.5) and 𝑡 ≥ 3 implies that

|𝐺| ≥ |𝑆|+
𝑚∑︁

𝑖=1

|𝐶𝑖|

≥ |𝑆|+ (𝑘|𝑆|+ 1)× 𝑡

> (𝑘𝑡 + 1)|𝑆|

≥ (𝑘𝑡 + 1)×
(︂

4𝑛

3𝑘 + 1
− 𝑡

)︂
= (𝑘𝑡 + 1)×

(︂
𝑛

3𝑘 + 1
+ (

3𝑛

3𝑘 + 1
− 𝑡)

)︂
> (𝑘𝑡 + 1)× 𝑛

𝑘𝑡 + 1
= 𝑛,

a contradiction. �

Remark 3.5. Now, we explain that the condition of toughness 𝜏(𝐺) ≥ 1
𝑘 in Theorem 3.1 and minimum degree

𝛿(𝐺) ≥ max{ 𝑛
𝑘+1 , 4𝑛

3𝑘+1−1} in Theorem 3.3 are all the best possible. Let 𝐻1, 𝐻2, . . . ,𝐻𝑘+1 be 𝑘+1 odd complete
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graphs, each of which contains exactly 𝑛−1
𝑘+1 vertices, where integer 𝑘 ≥ 2 and 𝑛−1

𝑘+1 is an integer. We construct
a connected graph 𝐺 = 𝐾1 ∨ (

⋃︀𝑘+1
𝑖=1 𝐻𝑖), the order of which is 𝑛. It is obviously that 𝜏(𝐺) = 1

𝑘+1 < 1
𝑘 , and

𝛿(𝐺) = 𝑛−1
𝑘+1 < 𝑛

𝑘+1 . Choose 𝑋 =: 𝑉 (𝐾1) with |𝑋| = 1, then we have that

𝑜𝑐(𝐺−𝑋) = 𝑘 + 1 > 𝑘|𝑋| = 𝑘.

It follows from Theorem 1.4 that 𝐺 has no ℐ𝒮𝑘-factor.

4. Path-factor

In this section, we obtain some sufficient conditions for the existence of graphs admitting 𝑃≥3-factors.
The binding number is introduced by Woodall [12] and defined as

𝑏𝑖𝑛𝑑(𝐺) = min
{︂
|𝑁𝐺(𝑆)|
|𝑆|

: ∅ ≠ 𝑆 ⊆ 𝑉 (𝐺), 𝑁𝐺(𝑆) ̸= 𝑉 (𝐺)
}︂

.

Theorem 4.1. Let 𝐺 be a connected graph of order 𝑛 ≥ 3. Then 𝐺 has a 𝑃≥3-factor if one of the following
statements holds:

(i) 𝐼(𝐺) ≥ 3
2 ;

(ii) 𝑏𝑖𝑛𝑑(𝐺) ≥ 5
4 ;

(iii) 𝑛 ≥ 8 and for all three independent vertices 𝑢, 𝑣, 𝑤 ∈ 𝑉 (𝐺),

max{𝑑𝐺(𝑢), 𝑑𝐺(𝑣), 𝑑𝐺(𝑤)} ≥ 𝑛

3
.

Proof. By way of contradiction, suppose that 𝐺 is a connected graph with no 𝑃≥3-factor. Then by Theorem
1.5, there is a subset 𝑆 ⊆ 𝑉 (𝐺) such that 𝑠𝑢𝑛(𝐺− 𝑆) > 2|𝑆|. Due to the integrality of 𝑠𝑢𝑛(𝐺− 𝑆), we obtain

𝑠𝑢𝑛(𝐺− 𝑆) ≥ 2|𝑆|+ 1. (4.1)

(i) Obviously 𝐺 has a 𝑃≥3-factor if 𝐺 is complete, a contradiction. Thus, we may assume that 𝐺 is not
complete. We shall consider two cases by the value of |𝑆| and derive a contradiction in each case.

Case 1. |𝑆| = 0.

By (4.1), we have 𝑠𝑢𝑛(𝐺) = 𝑠𝑢𝑛(𝐺− 𝑆) ≥ 2|𝑆|+ 1 = 1. Note that 𝑠𝑢𝑛(𝐺) ≤ 𝜔(𝐺) = 1 since 𝐺 is connected.
Then, 𝑠𝑢𝑛(𝐺) = 1 and thus 𝐺 is a big sun. Of course, 𝐺 is not an isolated edge since its order at least three.
Let 𝑅 be the factor-critical subgraph of 𝐺 and set 𝑈 = 𝑉 (𝑅). It is clear that 𝐺− 𝑈 is an independent set and
|𝐺− 𝑈 | = |𝑈 |. By the definition of 𝐼(𝐺) and 𝐼(𝐺) ≥ 3

2 , we have that

3
2
≤ 𝐼(𝐺) ≤ |𝑈 |

𝑖(𝐺− 𝑈)
= 1,

a contradiction.

Case 2. |𝑆| ≥ 1.

By (4.1), we have that

|𝑆| ≤ 𝑠𝑢𝑛(𝐺− 𝑆)− 1
2

· (4.2)

Assume that 𝑠𝑢𝑛(𝐺 − 𝑆) − 𝑖(𝐺 − 𝑆) = 𝑚, i.e., there are 𝑚 big sun components of 𝐺 − 𝑆, denoted by 𝒞 =
{𝐶1, 𝐶2, . . . , 𝐶𝑚}. For each 𝑖 ∈ [1, 𝑚], let 𝑅𝑖 be the factor-critical subgraph of 𝐶𝑖 if 𝐶𝑖 is not an isolated edge,
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and choose vertices 𝑐𝑖 ∈ 𝑉 (𝑅𝑖). If 𝐶𝑖 is an isolated edge, then choose arbitrarily 𝑐𝑖 ∈ 𝑉 (𝑅𝑖) where 1 ≤ 𝑖 ≤ 𝑚.
Let 𝑆′ = {𝑐𝑖 : 1 ≤ 𝑖 ≤ 𝑚}. Then by (4.2), we have that

|𝑆 ∪ 𝑆′| = |𝑆|+ 𝑠𝑢𝑛(𝐺− 𝑆)− 𝑖(𝐺− 𝑆)
≤ |𝑆|+ 𝑠𝑢𝑛(𝐺− 𝑆)

≤ 𝑠𝑢𝑛(𝐺− 𝑆)− 1
2

+ 𝑠𝑢𝑛(𝐺− 𝑆)

=
3× 𝑠𝑢𝑛(𝐺− 𝑆)− 1

2
·

By the definition of 𝐼(𝐺), it follows that

3
2
≤ 𝐼(𝐺) ≤ |𝑆 ∪ 𝑆′|

𝑖(𝐺− 𝑆 − 𝑆′)

≤ 3× 𝑠𝑢𝑛(𝐺− 𝑆)− 1
2× 𝑖(𝐺− 𝑆 − 𝑆′)

=
3× 𝑠𝑢𝑛(𝐺− 𝑆)− 1

2× 𝑠𝑢𝑛(𝐺− 𝑆)
<

3
2
,

a contradiction.
The statement (i) in Theorem 4.1 is proved.

(ii) Let 𝑆′ = 𝑉 (𝐺− 𝑆). By the definition of 𝑏𝑖𝑛𝑑(𝐺), we have that

|𝑁𝐺(𝑆′)| ≥ 5
4
|𝑆′|. (4.3)

Case 1. |𝑆| ≥ 𝑛
5 .

In this case, |𝑆′| = |𝐺| − |𝑆| ≤ 4𝑛
5 . By (4.3),

5
4

(𝑛− |𝑆|) =
5
4
|𝑆′| ≤ |𝑁𝐺(𝑆′)|

= |𝑁𝐺(𝐺− 𝑆)| ≤ 𝑛− 𝑖(𝐺− 𝑆).

It follows immediately that

𝑖(𝐺− 𝑆) ≤ 5
4
|𝑆| − 𝑛

4
· (4.4)

Hence, by (4.4),

𝑛 ≥ |𝑆|+ 𝑖(𝐺− 𝑆) + 2× (𝑠𝑢𝑛(𝐺− 𝑆)− 𝑖(𝐺− 𝑆))
= |𝑆|+ 2× 𝑠𝑢𝑛(𝐺− 𝑆)− 𝑖(𝐺− 𝑆)

> |𝑆|+ 4|𝑆| − (
5
4
|𝑆| − 𝑛

4
)

=
15
4
|𝑆|+ 𝑛

4
≥ 𝑛,

a contradiction.
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Case 2. |𝑆| < 𝑛
5 ·

In this case, |𝑆′| = |𝐺| − |𝑆| > 4𝑛
5 . Let 𝑆0 ⊆ 𝑆′ such that |𝑆0| = 4𝑛

5 . By (4.3), we have that |𝑁𝐺(𝑆0)| ≥
5
4 |𝑆0| = 𝑛 and so 𝑉 (𝐺) ⊆ 𝑁𝐺(𝑆′). Consequently, there exists no singleton component of 𝐺− 𝑆, i.e.,

𝑖(𝐺− 𝑆) = 0. (4.5)

Consider all the sun components in 𝐺 − 𝑆 and let 𝑆′′ = 𝑉 (𝑆𝑢𝑛(𝐺 − 𝑆)). Since 𝑠𝑢𝑛(𝐺 − 𝑆) > 2|𝑆|, by (4.5),
|𝑆′′| > 2× 𝑠𝑢𝑛(𝐺− 𝑆) > 4|𝑆|. Hence,

𝑏𝑖𝑛𝑑(𝐺) ≤ |𝑁𝐺(𝑆′′)|
|𝑆′′|

≤ |𝑆′′|+ |𝑆|
|𝑆′′|

= 1 +
|𝑆|
|𝑆′′|

< 1 +
1
4

=
5
4
,

a contradiction.
The statement (ii) in Theorem 4.1 is proved.
(iii) We first give the argument as following.

Claim 4.2. 𝑆 ̸= ∅.

Proof. Suppose 𝑆 = ∅, by (4.1), 𝑠𝑢𝑛(𝐺) = 𝑠𝑢𝑛(𝐺 − 𝑆) ≥ 1. On the other hand, 𝑠𝑢𝑛(𝐺) ≤ 𝜔(𝐺) = 1. So, we
obtain that 𝐺 is a big sun containing at least 8 vertices. It follows that there exist three vertices of degree one,
denoted by {𝑢, 𝑣, 𝑤}, which contradicts that max{𝑑𝐺(𝑢), 𝑑𝐺(𝑣), 𝑑𝐺(𝑤)} ≥ 𝑛

3 > 2. �

By Claim 4.2 and (4.1), we have 𝑠𝑢𝑛(𝐺− 𝑆) ≥ 2|𝑆|+ 1 ≥ 3.

Case 1. 𝑖(𝐺− 𝑆) ≥ 3.

Let {𝑥, 𝑦, 𝑧} be three distinct isolated vertices of 𝐺 − 𝑆. Since max{𝑑𝐺(𝑥), 𝑑𝐺(𝑦), 𝑑𝐺(𝑧)} ≥ 𝑛
3 and 𝑁𝐺(𝑥) ∪

𝑁𝐺(𝑦) ∪𝑁𝐺(𝑧) ⊆ 𝑆, we have that

|𝑆| ≥ max{𝑑𝐺(𝑥), 𝑑𝐺(𝑦), 𝑑𝐺(𝑧)} ≥ 𝑛

3
·

It follows from (4.1) that 𝑠𝑢𝑛(𝐺− 𝑆) ≥ 2|𝑆|+ 1 ≥ 2𝑛
3 + 1 and thus

𝑛 ≥ |𝑆|+ 𝑠𝑢𝑛(𝐺− 𝑆) ≥ 𝑛

3
+

2𝑛

3
+ 1 = 𝑛 + 1,

a contradiction.

Case 2. 𝑖(𝐺− 𝑆) ≤ 2.

In this case, by (4.1), there exist at least three suns of 𝐺 − 𝑆, denoted by 𝐶1, 𝐶2, . . . , 𝐶𝑡 where 𝑡 ≥ 3.
Then we choose 𝑐𝑖 ∈ 𝑉 (𝐶𝑖) such that 𝑑𝐶𝑖(𝑐𝑖) ≤ 1, where 𝑖 = 1, 2, 3. Obviously, {𝑐1, 𝑐2, 𝑐3} is an independent
set of 𝐺. Then max{𝑑𝐺(𝑐1), 𝑑𝐺(𝑐2), 𝑑𝐺(𝑐3)} ≥ 𝑛

3 . Without loss of generality, we assume 𝑑𝐺(𝑐1) ≥ 𝑛
3 . Since

𝑑𝑆(𝑐1) = 𝑑𝐺(𝑐1)− 𝑑𝐶1(𝑐1) ≥ 𝑛
3 − 1, we have that |𝑆| ≥ 𝑑𝑆(𝑐1) ≥ 𝑛

3 − 1. It follows from (4.1) that

𝑠𝑢𝑛(𝐺− 𝑆) ≥ 2|𝑆|+ 1 ≥ 2𝑛

3
− 1,

and thus
𝑛 ≥ |𝑆|+ 2× 𝑠𝑢𝑛(𝐺− 𝑆)− 𝑖(𝐺− 𝑆)

≥ 𝑛

3
− 1 + 2×

(︂
2𝑛

3
− 1

)︂
− 2

=
5𝑛

3
− 5 > 𝑛,

a contradiction. The statement (iii) in Theorem 4.1 is proved. �
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Remark 4.3. Now, we claim that the conditions of isolated toughness 𝐼(𝐺) ≥ 2
3 and binding number 𝑏𝑖𝑛𝑑(𝐺) ≥

5
4 in Theorem 4.1 are all the best possible. Let 𝑃5 be a path of order 5, the center vertex of which is denoted
by 𝑢. We construct a connected graph 𝐺 = 𝑃5 ∪ {𝑣} ∪ 𝑒, where 𝑒 = 𝑢𝑣. It is obvious that 𝐼(𝐺) = 1 < 3

2 , and
𝑏𝑖𝑛𝑑(𝐺) = 1 < 5

4 . Choose 𝑋 =: {𝑢}, then we have that 𝑠𝑢𝑛(𝐺−𝑋) = 3 > 2 = 2|𝑋|. It follows from Theorem 1.5
that 𝐺 has no 𝑃≥3-factor.

Remark 4.4. Now, we explain that the degree condition in the statement (iii) of Theorem 4.1 is the best
possible. Let 𝐺 = 2𝐾1 ∨ 7𝐾1 be a connected complete bipartite graph of order 𝑛 = 9. We know there exists
three independent vertices {𝑢, 𝑣, 𝑤} ⊆ 𝑉 (7𝐾1) such that max{𝑑𝐺(𝑢), 𝑑𝐺(𝑣), 𝑑𝐺(𝑤)} = 2 < 3 = 𝑛

3 . Choose
𝑋 =: 𝑉 (2𝐾1) with |𝑋| = 2, then we have that 𝑠𝑢𝑛(𝐺 − 𝑋) = 7 > 2|𝑋| = 4. Using Theorem 1.5, 𝐺 has no
𝑃≥3-factor.
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