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GEOMETRIC PROGRAMMING SOLUTION OF SECOND DEGREE
DIFFICULTY FOR CARBON EJECTION CONTROLLED RELIABLE SMART

PRODUCTION SYSTEM

Andreas Se Ho Kugele1 , Waqas Ahmed2 and Biswajit Sarkar1,3,*

Abstract. Smart manufacturing systems should always aim to be fully sustainable while simultane-
ously being as reliable as possible which is difficult to reach. Furthermore, climate change especially
by carbon emission in the industry is a significant topic and carbon emission should be controlled and
reduced to save the environment. Contributing towards a greener environment in a positive manner
is done by reducing the number of insufficient items that are produced in a smart production system
which also can be reached with higher reliability in the system. Therefore, this study models a smart
reliable production system with controlled carbon ejection. To solve the proposed smart production
system in this study, a geometric programming approach with a degree of difficulty level two is used
which results in optimum results that are quasi-closed. Furthermore, numerical experiments are con-
ducted to validate the proposed model and prove that by using a higher degree geometric programming
approach, an optimal solution is found. The numerical results do not only show optimal solutions but
also that the smart production system with controlled carbon ejection is reliable.
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1. Introduction

Smart production systems should always aim to reduce waste and be as environmentally friendly as possible.
A positive contribution towards a greener environment in a smart production system may be inter alia gained
by reducing the amount of waste that the manufacturing system is producing as well as controlling the carbon
emission ejection. Furthermore, by making the smart production system reliable and sustainable, a great overall
positive output can be gained. A smart production system is said to be reliable if there are no defective items. In
addition, to call a smart production system (SPS) sustainable, the SPS must fulfill the pillars of sustainability.
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Hence, the smart production system must contribute towards a greener environment and bring economic as well
as social benefits.

This study considers a smart reliable production system by using a reliability factor and also considering car-
bon emission ejection. To solve the study, a geometric programming approach is used. In geometric programming
(GP), the degree of difficulty has great importance since it displays if there are no solutions, a unique solution,
or many solutions. The degree of difficulty in the GP approach in the proposed reliable smart production system
of this study equals two which indicates that there are many solutions. By executing numerical examples, it is
found that it is possible to find a solution while operating with a higher degree of difficulty than one.

Furthermore, by using geometric programming, the optimum total cost can be found before finding the
optimum of the four decision variables that are used which are production rate, reliability, production quantity,
and setup cost under managed carbon ejection. In the following, the novelty of the proposed study is displayed:

– The proposed study develops a smart production system under consideration of controlled carbon emission
to contribute to the prevention of excessive carbon emission of the manufacturing house which is needed for
saving the environment as well as reducing health issues caused by intoxicated air.

– The proposed smart production system is developed in a reliable and sustainable manner. By maintaining
a high degree of reliability and sustainability, the production of waste is reduced which contributes to a
greener environment.

– Setting up a smart reliable production system is considered to be very expensive. Investments to reduce the
expenditure for setup are implemented in the proposed model.

– The study is solved using a posynomial geometric programming method of second degree. Using the second
degree geometric programming approach, the optimum cost is found before finding optimum values of deci-
sion variables and the study proves that it is possible to find a unique solution utilizing the second degree
geometric programming methodology.

This study is structured as follows: Section 2 covers the reviewed literature and Section 3 explains the
complete model development of the smart reliable production system with managed carbon ejection. Section 4
deals with the geometric programming solution procedure in which before all else, the global minimum total
cost expression is determined. Afterward, the optimum expressions of the four decision variables are determined.
Section 5 validates the proposed model of a smart reliable production system with numerical examples and proves
that a unique solution can be found while having a degree of difficulty equalling two. Additionally, a sensitivity
analysis is conducted in Section 6. Section 7 covers the managerial insights and the last section concludes this
study.

2. Literature review

Generally being able to control and reduce carbon emission ejection in smart production systems is inevitable
to contribute to a greener environment. Production systems become more and more automated and show
development towards smart production systems which is discussed by Kusiak [19]. Also, it is found that for
changing a production system into a reliable production system, carbon emission ejection must be considered
[29].

2.1. Smart production system

A smart production process within a supply chain model with optimal energy consumption was studied by
Bhuniya et al. [4]. In the case of a production enterprise, a methodology for developing it into a smart and
sustainable production enterprise with sensing is developed by Chavarŕıa-Barrientos et al. [7]. Furthermore, an
increasement in energy efficiency in a smart production system by controlling peripheral equipment is done by
Bermeo-Ayerbe et al. [3]. Alavian et al. [1] developed a programmable production advisor that is able to find
the current status of the system and improvements of a smart production system.
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Also, a smart production system under a SCM is recently developed by Dey et al. [9] in which the lead time
is controllable and safety stock, as well as planned backorder, have been considered. Furthermore, a setup cost
reduction has been integrated. Relevant factors that decide the implementation of digital technologies as well
as information of smart production is studied by Ghobakhloo [13]. The study of Sarkar et al. [27] covers a smart
production system for a multi-type biofuel production. Their developed production system is sustainable and
includes the implementation of renewable energies.

2.2. Reliability

Reliability can inter alia be defined by carbon emission and defectiveness of produced items. A way of reducing
carbon emission is to implement smart energy systems. Important technologies and current developments of
those smart systems and their impact on carbon emission are shown in a study by Zhu et al. [34]. Habib et al.
[14] proved a minimum total expenditure in a supply chain model in which the carbon ejection is also minimized
under uncertain conditions. In a previous study of Wang et al. [31], it can be seen that carbon emission ejection
influences the judgment of manufacturing and remanufacturing. Sepehri et al. [28] developed an inventory model
with joint pricing in which carbon emissions are controlled.

Mahapatra et al. [23] introduced a continuous review production inventory system in which the preparation
time for manufacturing is considered to be flexible and the expenditure for setup considered to be depen-
dent on time. Additionally, a fuzzy environment has been assumed for the demand and time of setup. Ullah
et al. [30] developed a sustainable supply chain model in which remanufacturing as well as the return of items
have been considered. A production system that is not reliable has been discussed in the study of Nahas
[25]. Chen et al. [8] proposed an evaluation strategy that evaluates the reliability in a production system
with numerous states. Furthermore, Wu and Cui [32] analyzed the reliability of systems that are periodically
investigated.

A closed-loop supply chain model that simultaneously considers a conventional and green production under
consideration of carbon emission from various sources and considering a stochastic demand is developed by
Jauhari et al. [17]. Furthermore, Sarkar et al. [26] discussed inter alia carbon emission ejection and their effects
in a SCM that is sustainable and an improvement of production quality in the case of items with defined
lifetimes. A vague model with expenditure reliability of an incorporated manufacturing transportation sup-
ply chain is developed by Asim et al. [2] which is solved by numerous goal optimizations. Leung [20] found
an optimum total cost of an economic production quantity model that considers reliability. In his study, he
used a GP approach with a first degree of difficulty to find ideal decision variable values as well as the total
expenditure.

2.3. Geometric programming

A standard inventory model with various constraints is solved by El-Wakeel and Salman [11] with a geometric
programming approach, yet reliability has not been considered. Liu [21] used a geometric programming approach
with a degree of difficulty of zero to find the optimum profit as a global result. In a further step, Liu [22] used
the concept of a signomial geometric programming approach in which the optimum profit is derived with the
usage of interval coefficients and a quantity discount. Furthermore, a robust geometric programming approach
is done in a study by Chassein and Goerigk [6].

Geometric programming can also be done in a fuzzy manner. Hence, Cao and Wang [5] discussed the devel-
opment of uncertain geometric programming. A power optimization of a digital circuit with process variations
and time constraints by using fuzzy geometric programming is found by Ghavami et al. [12]. Dressler et al. [10]
considered positive certificates build on accumulations of positive circuit polynomials and geometric program-
ming which contains constraints for a polynomial optimization and combines those concepts. Jafarian et al.
[16] proposed a programming approach consisting of two steps to solve a nonlinear problem with numerous
objectives. The programming approach of the study combines geometric programming and fuzzy optimization
techniques.
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Table 1. Authors contribution table.

Author(s) Production system Reliability Carbon Geometric Setup
emission programming cost

Leung [20] EPQ Production
process

NA Degree = 1 Variable

Liu [21] NA NA NA Degree = 0 NA
Liu [22] NA NA NA Signomial NA
Moon et al. [24] Constant Production

process
Considered Considered Variable

Habib et al. [14] NA NA Considered NA NA
Chavarŕıa-Barrientos [7] Smart and sustainable NA NA NA NA
Jafarian et al. [16] NA NA NA Considered NA
Kusiak [19] Smart NA NA NA NA
Tiwari et al. [29] Sustainable NA Considered NA NA
Wang et al. [31] Constant NA Considered NA NA
Asim et al. [2] Hybrid Cost NA NA Reduced
Cao and Wang [5] NA NA NA Fuzzy NA
Chassein and Goerigk [6] NA NA NA Robust NA
Dressler et al. [10] NA NA NA Considered NA
El-Wakeel et al. [11] NA NA NA Considered NA
Ghavami et al. [12] NA NA NA Fuzzy NA
Yadav et al. [33] Smart NA Considered NA Reduced
Ullah et al. [30] Constant NA Considered NA Considered
Alavian et al. [1] Smart NA NA NA NA
Ghobakhloo [13] Smart NA NA NA NA
Nahas [25] Production line Unreliable NA NA NA
Sepehri et al. [28] NA NA Considered NA NA
Bhuniya et al. [4] Smart NA NA NA Constant
Bermeo-Ayerbe et al. [3] Smart NA NA NA NA
Chen et al. [8] Multi-state Product

quality
NA NA NA

Dey et al. [9] Smart System NA NA Reduced
Mahapatra et al. [14] Constant NA NA NA Time

depen-
dent

Hayhoe et al. [15] NA NA NA Posynomial NA
Jauhari et al. [17] Hybrid NA Considered NA Constant
Kalaiarasi et al. [18] Multi-item EPQ NA Considered Fuzzy NA
Sarkar et al. [26] Sustainable NA Considered NA Reduced
Wu and Cui [32] NA System NA NA NA
Sarkar et al. [27] Sustainable, smart NA Considered NA Reduced
Zhu et al. [34] NA Energy Considered NA NA
This study Smart Production

process
Considered Degree = 2 Variable,

Reduced

Notes. NA is inserted for the case that it is “Not Applicable”.

Kalaiarasi et al. [18] developed an economic quantity model with numerous items and solved their model with
geometric programming in an uncertain manner using a variety of membership functions for the fuzzification
process. Furthermore, Hayhoe et al. [15] used a posynomial geometric programming approach to solve an optimal
control problem and find strategies for the best control method. Table 1 displays the authors contribution
table.
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3. Mathematical model

This section of the study deals with the generation of the model. The mathematical model for this study is
divided into a basic problem definition, followed up by notation that are used, assumptions that are made, and
the full model development.

3.1. Problem definition

Production systems generally tend to produce a significant amount of defective items with an irregular quota
of defectiveness and not be fully reliable even if it is a smart production system. Reliability has great importance
not only when it comes to the quality of the products and the production system itself but also in terms of
waste reduction and having a big positive impact on contributing towards a greener environment.

In a reliable production system, it is possible to reduce waste and have waste control while simultaneously
being able to keep the quality of the products that are being produced. A production system that reduces
waste instantly contributes to a greener environment. By additionally considering carbon emission ejection, a
production system can be further significantly improved.

Therefore, this study deals with a smart reliable production system that considers carbon emission ejection.
The goal of this study is to gain a significant improvement of a conventional production system by turning
it into a smart production system and using a reliability factor under carbon emission and also obtaining a
minimum total cost. To find an optimum production quantity, as well as optimum values for reliability, setup
cost, an optimum production rate, and finally an optimum total cost, a geometric programming approach with
a positive degree of difficulty is used in this study by which a quasi-closed form of an optimum solution can be
found.

3.2. Notation

The notation that have been used in this study are the following:
Decision variables

𝜅 Expenditure for setup per setup ($/setup)
𝜂 Quota of production (units/unit time)
𝛿 Manufacturing process reliability
𝑞 Production quantity (units/batch)

Parameters

𝜁(𝜅, 𝛿) Expenditure for depreciation and interest ($/year)
TC(𝜅, 𝜂, 𝛿, 𝑞) Total expenditure of the smart production system ($/year)
𝑐D Development cost function
𝛼 Tool cost function
𝑐m Raw material cost ($/unit)
𝜒 Expenditure for holding ($/unit/year)
𝜏 Demand (units/year)
𝜉 Scaling factor for investment function
𝑎, 𝑏, 𝑐 Shape parameters for depreciation and interest cost
𝑝 Production cost per year ($/year)
𝜔 Setup cost per year ($/year)
Ξ Investment cost ($)
𝐻𝑐 Inventory holding cost per year ($/year)
𝜇𝑖 Term expressions for dual function, 𝑖 = 1, . . . , 7
𝜙𝑖 Normalized dual variables, 𝑖 = 1, . . . , 7
𝜙 Column vector of normalized dual variables
𝜑(𝜙, 𝜅, 𝑞, 𝛿, 𝜂) Total expenditure expressed with normalized dual variables
𝜃 Optimal variables expressed with normalized dual variables
𝑋(𝜙4, 𝜙7) Logarithmic expression of total cost expressed with normalized dual variables
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3.3. Assumptions

The following assumptions are considered for the development of the model in this study.

(1) The considered reliable smart production system only produces one kind of item and each item is inspected.
In case a defective item is found at the inspection, the insufficient item is being removed to keep the smart
production system reliable.

(2) The reliable smart production system controls carbon emissions, which leads to a reduction of carbon
emission ejection and contributes to saving the environment. Each cost that is considered in this study is
also considered with managed carbon ejection.

(3) To lower the expenditure for setup, an investment function is considered, which is as follows: Ξ = 𝜉 𝜅2

2 ,
where 𝜉 is the scaling parameter. Furthermore, the time boundary is considered to be not existent [33].

(4) The model of this study considers a depreciation and interest cost in which the reliability is considered and
is contrarily proportional to the setup cost. The depreciation and interest cost is formulated as follows:
𝜁(𝜅, 𝛿) = 𝑎𝜅−𝑏𝛿𝑐, where the parameters 𝑎, 𝑏 and 𝑐 are the shape parameters which are constant real numbers
that are greater than zero [24].

3.4. Model development

3.4.1. Production cost

In a reliable smart production system, a production cost should be considered. For the production cost per
cycle, the following equation is being used

𝑝 =
(︂

𝛼𝜂 +
𝑐D

𝜂
+ 𝑐m

)︂
𝜏

𝛿
, (3.1)

where 𝜂 denotes the variable production quota. The parameter 𝛼 represents the tool cost function and 𝑐D is the
development cost. The parameter 𝑐m represents the expenditure for raw materials.

3.4.2. Setup cost

Since this study deals with a production system, considering a setup cost is mandatory. The reliable smart
production system is dependant on the reliability of the product since the reliability factor influences the
acceptable quality of the product that can satisfy the demand. Therefore, the length of a cycle has to be 𝛿𝑞/𝜏 .
Hence, the expenditure for setup per cycle is as follows

𝜔 =
𝜅𝜏

𝑞𝛿
. (3.2)

3.4.3. Investment cost

Since the setup for a reliable smart production system is very high, a reduction of the setup cost is considered
in this study. Therefore, the following investment function is introduced to reduce the setup cost

Ξ = 𝜉
𝜅2

2
, (3.3)

where 𝜉 is the scaling parameter.

3.4.4. Inventory holding cost

The expenditure for holding inventory is also a mandatory cost that has to be considered in a reliable smart
production system. Hence, the expenditure of holding inventory is as follows

𝐻𝑐 =
𝜒𝑞𝛿

2
· (3.4)
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3.4.5. Depreciation and interest cost

Since the decision variable 𝛿 represents the reliability, the unreliability can be written as 1 − 𝛿 and the
depreciation and interest cost can be formulated as the following

𝜁(𝜅, 𝛿) = 𝑎𝜅−𝑏(1− 𝛿)−𝑐1 . (3.5)

The reliability factor 𝛿 can take values between zero and one. It is impossible for a production process to be
perfectly reliable and in case the equation for unreliability is being used and if 𝛿 goes to 1, it means that
equation (3.5) goes to ∞. This would mean that the closed-form optimum solution for this model is not possible
to be found.

Hence, the following equation for the depreciation and interest cost is used for the model of the reliable smart
production system

𝜁(𝜅, 𝛿) = 𝑎𝜅−𝑏𝛿𝑐, (3.6)

where 𝑎, 𝑏 and 𝑐 are the shape parameters and the following holds: 𝑎, 𝑏, 𝑐 > 0.

3.4.6. Total cost

The total cost of the reliable smart production system under controlled carbon emission per production cycle
can be found by adding all the previously mentioned costs

Total expenditure with controlled carbon ejection = Production cost + Setup cost
+ Investment cost to reduce the setup cost
+ Inventory holding cost
+ Depreciation and interest cost.

The mathematical formulation of the accumulated expenditure is the following

TC(𝜅, 𝑞, 𝛿, 𝜂) = 𝜏𝜅𝑞−1𝛿−1 + 𝛼𝜂𝜏𝛿−1 +
𝑐D𝜏

𝜂𝛿
+ 𝑐m𝜏𝛿−1 +

𝜒𝑞𝛿

2

+ 𝜏𝑎𝜅−𝑏𝑞−1𝛿𝑐−1 + 𝜉
𝜅2

2
, (3.7)

where 𝜂, 𝜅, 𝑞, 𝛿 > 0.

4. Geometric programming solution to the mathematical model

To solve the previously proposed model, a geometric programming approach is used. In geometric program-
ming, an important factor is the degree of difficulty through which one can obtain information if the model
has a unique solution, many solutions, or no solutions. The degree of difficulty in this study equals two, which
implies that there are many solutions. The aim of this study is to find an optimum minimum cost under carbon
emission of the proposed smart production system at a degree of difficulty of two. When it comes to geometric
programming, two different categories are existent in which one is called posynomial, and the other is called
signomial. Both categories contain power functions but in a signomial problem, one or more coefficients are
negative while in a posynomial problem all coefficients have to be positive. By using a geometric programming
approach, the optimum minimum cost can be found before calculating the ideal values of the decision variables
by finding the optimum values of the dual variables. The following equations are considered to find an optimum
solution of this model through geometric programming

𝜇1 = 𝜏𝜅𝑞−1𝛿−1 (4.1)
𝜇2 = 𝛼𝜂𝜏𝛿−1 (4.2)
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𝜇3 =
𝑐D𝜏

𝜂𝛿
(4.3)

𝜇4 = 𝑐m𝜏𝛿−1 (4.4)

𝜇5 =
𝜒𝑞𝛿

2
(4.5)

𝜇6 = 𝜏𝑎𝜅−𝑏𝑞−1𝛿𝑐−1 (4.6)

𝜇7 = 𝜉
𝜅2

2
· (4.7)

The previously mentioned total cost equation can be written in the following form

TC(𝜅, 𝑞, 𝛿, 𝜂) = 𝜇1 + 𝜇2 + 𝜇3 + 𝜇4 + 𝜇5 + 𝜇6 + 𝜇7

≥
(︂

𝜇1

𝜙1

)︂𝜙1
(︂

𝜇2

𝜙2

)︂𝜙2
(︂

𝜇3

𝜙3

)︂𝜙3
(︂

𝜇4

𝜙4

)︂𝜙4
(︂

𝜇5

𝜙5

)︂𝜙5
(︂

𝜇6

𝜙6

)︂𝜙6
(︂

𝜇7

𝜙7

)︂𝜙7

≡ 𝜑(𝜙, 𝜅, 𝑞, 𝛿, 𝜂). (4.8)

Furthermore, the sum of 𝜙1 to 𝜙7 must equal to 1 and 𝜙1 to 𝜙7 must be greater than 0.
Equation (4.8) consists of a primal function that is shown on the left side of the equation and a dual function

that is displayed on the right-hand side of the function. The column vector 𝜙 consists of the normalized dual
variables 𝜙1 to 𝜙7. By using the values of 𝜇1 to 𝜇7, the following equation is found

𝜑(𝜙, 𝜅, 𝑞, 𝛿, 𝜂) =
(︂

𝜏𝜅𝑞−1𝛿−1

𝜙1

)︂𝜙1(︂𝛼𝜂𝜏𝛿−1

𝜙2

)︂𝜙2(︂𝑐D𝜏𝜂−1𝛿−1

𝜙3

)︂𝜙3(︂𝑐m𝜏𝛿−1

𝜙4

)︂𝜙4

×
(︂

𝜒𝑞𝛿

2𝜙5

)︂𝜙5
(︂

𝜏𝑎𝜅−𝑏𝑞−1𝛿𝑐−1

𝜙6

)︂𝜙6(︂
𝜉𝜅2

2𝜙7

)︂𝜙7

=
(︂

𝜏

𝜙1

)︂𝜙1
(︂

𝛼𝜏

𝜙2

)︂𝜙2
(︂

𝑐D𝜏

𝜙3

)︂𝜙3
(︂

𝑐m𝜏

𝜙4

)︂𝜙4
(︂

𝜒

2𝜙5

)︂𝜙5
(︂

𝜏𝑎

𝜙6

)︂𝜙6
(︂

𝜉

2𝜙7

)︂𝜙7

× 𝜂𝜙2−𝜙3𝜅𝜙1−𝑏𝜙6+2𝜙7𝑞−𝜙1+𝜙5−𝜙6𝛿−𝜙1−𝜙2−𝜙3−𝜙4+𝜙5+𝜙6(𝑐−1), (4.9)

in which 𝜙 is arbitrary, which means that the exponents of each decision variable equals to zero.
Hence, equation (4.9) can be written as follows

𝜑(𝜙1, 𝜙2, 𝜙3, 𝜙4, 𝜙5, 𝜙6, 𝜙7) =
(︂

𝜏

𝜙1

)︂𝜙1
(︂

𝛼𝜏

𝜙2

)︂𝜙2
(︂

𝑐D𝜏

𝜙3

)︂𝜙3
(︂

𝑐m𝜏

𝜙4

)︂𝜙4
(︂

𝜒

2𝜙5

)︂𝜙5
(︂

𝜏𝑎

𝜙6

)︂𝜙6
(︂

𝜉

2𝜙7

)︂𝜙7

· (4.10)

The model is accepted when the orthogonality and normality conditions hold. The orthogonality and normality
conditions are as follows

𝜙2 − 𝜙3 = 0 (4.11)
𝜙1 − 𝑏𝜙6 + 2𝜙7 = 0 (4.12)
−𝜙1 + 𝜙5 − 𝜙6 = 0 (4.13)

−𝜙1 − 𝜙2 − 𝜙3 − 𝜙4 + 𝜙5 + 𝜙6(𝑐− 1) = 0 (4.14)
𝜙1 + 𝜙2 + 𝜙3 + 𝜙4 + 𝜙5 + 𝜙6 + 𝜙7 = 1. (4.15)

Furthermore, the degree of difficulty has to be specified to know if geometric programming can be used. The
degree of difficulty (DoD) can be found as follows

DoD = Number of terms−Number of decision variables− 1 (4.16)
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=

⎧⎪⎨⎪⎩
unique solution, if degree of difficulty = 0
many solutions, if degree of difficulty > 0
no solution, if degree of difficulty < 0.

Hence, the degree of difficulty in this model is the following

The degree of difficulty = 7− 4− 1 = 2. (4.17)

The solutions of 𝜙1, 𝜙2, 𝜙3, 𝜙5 and 𝜙6 in terms of 𝜙4 and 𝜙7 are the following

𝜙1 = 𝑏

(︂
(−1− 3𝜙7)

(−2− 2𝑏− 𝑐)

)︂
− 2𝜙7 (4.18)

𝜙2 =
(︂

1− 𝜙4 −
(︂

1− 𝑐

(︂
(−1− 3𝜙7)

(−2− 2𝑏− 𝑐)

)︂
− 𝜙7

)︂
− (1 + 𝑏)

(︂
(−1− 3𝜙7)

(−2− 2𝑏− 𝑐)

)︂
+ 𝜙7

)︂
1
2

(4.19)

𝜙3 =
(︂

1− 𝜙4 −
(︂

1− 𝑐

(︂
(−1− 3𝜙7)

(−2− 2𝑏− 𝑐)

)︂
− 𝜙7

)︂
− (1 + 𝑏)

(︂
(−1− 3𝜙7)

(−2− 2𝑏− 𝑐)

)︂
+ 𝜙7

)︂
1
2

(4.20)

𝜙5 = 1− 𝑐

(︂
(−1− 3𝜙7)

(−2− 2𝑏− 𝑐)

)︂
− 𝜙7 (4.21)

𝜙6 =
(−1− 3𝜙7)

(−2− 2𝑏− 𝑐)
· (4.22)

To maximize the dual function with optimal 𝜙*4 and 𝜙*7, a logarithm of the function (4.10) can be used.
Hence, the following equation can be obtained

𝑋(𝜙4, 𝜙7) = ln 𝜑(𝜙4, 𝜙7)

= 𝜙1 ln
(︂

𝜏

𝜙1

)︂
+ 𝜙2 ln

(︂
𝛼𝜏

𝜙2

)︂
+ 𝜙3 ln

(︂
𝑐D𝜏

𝜙3

)︂
+ 𝜙4 ln

(︂
𝑐m𝜏

𝜙4

)︂
+ 𝜙5 ln

(︂ 𝜒
2

𝜙5

)︂
+ 𝜙6 ln

(︂
𝜏𝑎

𝜙6

)︂
+ 𝜙7 ln

(︂
𝜉 1

2

𝜙7

)︂
· (4.23)

From equation (4.10), one can get the following

TC(𝜅, 𝑞, 𝛿, 𝜂) ≥ 𝜑*(𝜙*1, 𝜙
*
2, 𝜙

*
3, 𝜙

*
4, 𝜙

*
5, 𝜙

*
6, 𝜙

*
7)

= 𝜑(𝜙*1, 𝜙
*
2, 𝜙

*
3, 𝜙

*
4, 𝜙

*
5, 𝜙

*
6, 𝜙

*
7)

=
(︂

𝜏

𝜙*1

)︂𝜙*
1
(︂

𝛼𝜏

𝜙*2

)︂𝜙*
2
(︂

𝑐D𝜏

𝜙*3

)︂𝜙*
3
(︂

𝑐m𝜏

𝜙*4

)︂𝜙*
4
(︂ 𝜒

2

𝜙*5

)︂𝜙*
5
(︂

𝜏𝑎

𝜙*6

)︂𝜙*
6
(︂

𝜉 1
2

𝜙*7

)︂𝜙*
7

· (4.24)

Taking the equation (4.24) into consideration, the following equation can be displayed

Min TC(𝜅, 𝑞, 𝛿, 𝜂) = Max 𝜑*(𝜙*1, 𝜙
*
2, 𝜙

*
3, 𝜙

*
4, 𝜙

*
5, 𝜙

*
6, 𝜙

*
7)

= 𝜑*(𝜙*1, 𝜙
*
2, 𝜙

*
3, 𝜙

*
4, 𝜙

*
5, 𝜙

*
6, 𝜙

*
7). (4.25)

In the following, the global optimum values of the decision variables are found.

𝜇*1
𝜙*1

=
𝜇*2
𝜙*2

=
𝜇*3
𝜙*3

=
𝜇*4
𝜙*4

=
𝜇*5
𝜙*5

=
𝜇*6
𝜙*6

=
𝜇*7
𝜙*7

= 𝜃. (4.26)

Using equation (4.8), the following can be obtained

𝜃𝜙*
1+𝜙*

2+𝜙*
3+𝜙*

4+𝜙*
5+𝜙*

6+𝜙*
7 = 𝜃 = 𝜑*. (4.27)
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Hence, 𝜇*𝑖 = 𝜙*𝑖 𝜑
*, 𝑖 = 1, 2, 3, 4, 5, 6, 7.

From equation (4.27), the following applies

𝜇*7 = 𝜙*7𝜑
*

which implies 𝜅* =

√︃
2𝜑*𝜙*7

𝜉
· (4.28)

The optimum expression for 𝛿 is as follows

𝜇*4 = 𝜙*4𝜑
*

and 𝛿* =
𝑐m𝜏

𝜑*𝜙*4
· (4.29)

Furthermore, the optimum production rate is expressed as follows

𝜇*2 = 𝜙*2𝜑
*

which implies 𝜂* =
𝜑*𝜙*2𝛿

*

𝛼𝜏
=

𝜑*𝜙*2

(︁
𝑐m𝜏
𝜑*𝜙*

4

)︁
𝛼𝜏

, (4.30)

and optimum 𝑞 is the following

𝜇*1 = 𝜙*1𝜑
*

which leads to 𝑞* =
𝜏𝜅*

𝛿*𝜑*𝜙*1
=

𝜏

(︂√︁
2𝜑*𝜙*

7
𝜉

)︂
(︁

𝑐m𝜏
𝜑*𝜙*

4

)︁
𝜑*𝜙*1

· (4.31)

5. Numerical example

To approve the proposed model of this study, numerical examples have been conducted in this section.
Geometric programming is the only methodology in which the optimum total cost can be obtained without
obtaining optimum values for decision variables. According to geometric programming theory, each value of
optimum 𝜙*1 to 𝜙*7 must be greater than zero and the sum of 𝜙*1 to 𝜙*7 equals to one. This study conducts
numerical examples for two different scenarios to validate the model. The Appendix A contains the Hessian
matrices and determinant values for both scenarios of the dual function. 𝐻11 is in both cases negative and 𝐻22

is in both cases positive which indicates that the global maximum is found. Referring to equation (4.25), the
global maximum of the dual function is the global minimum of the total cost function.

Scenario 1

Table 2 displays the input data that is used to conduct the numerical experiment of Scenario 1. The optimum
values for 𝜙1, 𝜙2, 𝜙3, 𝜙4, 𝜙5, 𝜙6, 𝜙7 of Scenario 1 are displayed in Table 3.

Furthermore, the optimum values of the four decision variables and the optimum cumulated expenditure of
Scenario 1 are displayed in Table 4.

Scenario 1 considers that the manufacturer has a demand of 600 units and an inventory holding cost of 5$ per
unit. Furthermore, the scaling factor for the investment to reduce the expenditure of setup is taken as 2200 and
the material cost is considered to be 0.005$ per unit. Using the input data from Table 2, the optimum values of
𝜙*1 to 𝜙*7 can be obtained from which the optimum total expenditure is found. Afterwards, the optimum values
of the decision variables are identified. The proposed reliable smart production system in Scenario 1 has a 97%
reliability which is displayed by the parameter 𝛿*. Figure 1 displays the graphical representation of optimization
for Scenario 1 using the dual variables 𝜙4 and 𝜙7. The maximum of 𝜑*(𝜙*1, 𝜙

*
2, 𝜙

*
3, 𝜙

*
4, 𝜙

*
5, 𝜙

*
6, 𝜙

*
7) is the minimum

of TC(𝜅, 𝑞, 𝛿, 𝜂) (refer to Eq. (4.25)).
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Table 2. Input data for numerical example of Scenario 1.

𝑎 𝑏 𝑐 𝜒($/unit) 𝛼 𝜏 (units) 𝜉 𝑐D 𝑐m

0.25 1.25 18.75 5 0.001 600 2200 40 0.005

Table 3. Optimum values of 𝜙1 to 𝜙7 of Scenario 1.

𝜙*
1 𝜙*

2 𝜙*
3 𝜙*

4 𝜙*
5 𝜙*

6 𝜙*
7

0.00134237 0.40859 0.40859 0.01021475 0.0960636 0.0466894 0.0285097

Table 4. Optimum results of Scenario 1.

TC* 𝜅* 𝛿* 𝜂* 𝑞*

301.971 0.08846 0.972588 200 134.638

Figure 1. Optimization of Scenario 1.

Scenario 2

A second scenario of the proposed model is considered to further validate and enhance the effectiveness
of the study. Scenario 2 considers a reduced holding cost per unit which is changed to 3$ per unit while the
considered demand is increased by 20 units. Furthermore, the development and material cost have been reduced.
Additionally, the scaling parameter for the investment function is reduced on a large scale from 2200 to 800.
Table 5 displays the considered input data and Table 6 shows the optimum values of 𝜙*1 to 𝜙*7 for Scenario 2 of
the proposed model.

Table 7 displays the values for the optimum total expenditure as well as the decision variables. Scenario 2
shows a production quantity of almost 350 units per batch with a production rate of 173 units. Furthermore,
the reliability of the considered reliable smart production system in Scenario 2 is 99.8 %. Figure 2 graphically
shows the optimization for Scenario 2.
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Table 5. Input data for numerical example of Scenario 2.

𝑎 𝑏 𝑐 𝜒 ($/unit) 𝛼 𝜏 (units) 𝜉 𝑐D 𝑐m

0.5 1.5 16.75 3 0.001 620 800 30 0.001

Table 6. Optimum values of 𝜙1 to 𝜙7 of Scenario 2.

𝜙*
1 𝜙*

2 𝜙*
3 𝜙*

4 𝜙*
5 𝜙*

6 𝜙*
7

0.00105993 0.401515 0.401515 0.0023181 0.104521 0.0512005 0.0378704

Table 7. Optimum results of Scenario 2.

TC* 𝜅* 𝛿* 𝜂* 𝑞*

267.818 0.159236 0.998644 173.205 348.26

Figure 2. Optimization of Scenario 2.

6. Sensitivity analysis

The following section discusses the sensitivity of the model towards the input data values. Hence, the sen-
sitivity analysis of Scenario 1 is displayed in Table 8 and the sensitivity analysis of Scenario 2 is shown in
Table 9.

For the investigation of sensibility of the first scenario of the proposed model in this study, the influence of
changes of the considered cost parameters are inspected. The notation “NA” implicates that changing the cost
parameter in the associated manner, it is mathematically not possible in this particular model to find the total
cost. In case of highering the tool cost or development cost above 25%, results cannot be given with the used
input data and by using geometric programming since the variables 𝜙4 and 𝜙7 both come in terms of imaginary
numbers. The same result occurs for lowering the unit holding cost to 25% or lower.

The sensitivity analysis shows that the material cost 𝑐m does almost not influence the optimum total cost at
all by changing its values. The most influential and significantly high changes of the total cost occur by changing
the tool cost and development cost. Both costs influence the total cost in the same manner. In case of decreasing
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Table 8. Sensitivity analysis of the Scenario 1.

Parameters Changes (%) TCD (%) Parameters Changes (%) TCD (%)

−50 NA −50 −32.587
𝜒 −25 NA 𝛼 −25 −12.453

+25 +2.179 +25 NA
+50 +4.018 +50 NA
−50 −0.514 −50 −32.587

𝑐m −25 −0.256 𝑐D −25 −12.453
+25 +0.255 +25 NA
+50 +0.51 +50 NA

Notes. NA is inserted for the case that it is “Not Applicable”.

Table 9. Sensitivity analysis of Scenario 2.

Parameters Changes (%) TCD (%) Parameters Changes (%) TCD (%)

−50 −6.989 −50 NA
𝜒 −25 −2.95 𝛼 −25 NA

+25 NA +25 +9.378
+50 NA +50 +17.696
−50 −0.112 −50 NA

𝑐m −25 −0.058 𝑐D −25 NA
+25 +0.058 +25 +9.378
+50 +0.116 +50 +17.696

Notes. NA is inserted for the case that it is “Not Applicable”.

Figure 3. Sensitivity analysis illustration of Scenario 1.

the tool cost or development cost by 25%, the total cost reduces by around 12.5% and reducing those costs by
50% results in a total cost reduction of around 32.5%. If the holding cost per unit is increased by 25% and 50%,
the total expenditure increases by approximately 2% and 4%, respectively. The sensitivity analysis shows that
adjusting the tool cost and development cost are the best choices for lowering the total cost due to their high
sensitivity impact on the total cost. Figure 3 displays a graphical representation of the sensitivity analysis of
Scenario 1. Table 9 displays the sensitivity analysis of Scenario 2 of the proposed model.
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Figure 4. Sensitivity analysis illustration of Scenario 2.

The sensitivity analysis for Scenario 2 shows that similar to Scenario 1, the development cost and tool cost
behave in the same manner and have the biggest impact on the total expenditure. Increasing those costs by 25%
and 50% leads to an increasement of the total expenditure by around 9.4% and 17.7%, respectively. Decreasing
the unit holding cost in Scenario 2 of the model by 25% reduces the total cost by almost 3% and decreasing
it by 50% reduces the total cost by around 7%. Changing the material cost almost has no impact on the total
expenditure. Figure 4 shows a graphical display of the sensitivity analysis for Scenario 2.

7. Managerial insights

This section discusses the industrial benefits for industry managers and are as follows:

– Implementing a reliable smart production system is necessary to protect the environment and reduce carbon
emissions in the industrial sector as well as making the production system more sustainable. Additionally
to the positive effects of a greener environment, a smart reliable production system allows the industrial
manager to be more responsive to the market environment and enhances the manager’s ability to compete
in it.

– Considering Figures 3 and 4 of this study, the industrial manager must concentrate on the tool cost as well
as development expenditure. The figures show that the two expenditures are highly sensible for reducing as
well as increasing the total cost. On the contrary, the industrial manager does not need to focus much on
the raw material cost due to its low sensibility and should keep an eye on the inventory holding cost.

– Since the expenditure for setup may be very high, the industrial manager should consider using the discrete
investment used in this study to reduce the setup cost.

– The industrial manager should also consider using a geometric programming approach for evaluating changes.
Using the geometric programming approach, which this study proves can be done with a second degree of
difficulty, the industrial manager can find the total expenditure before finding the optimum values of decision
variables. Hence, the industrial manager can find out in a faster manner if and how much beneficial it is to
have changes in input parameters without knowing the optimum values of the decision variables yet.

8. Conclusions

The model of this study considers a smart production system with controlled carbon ejection that is sustain-
able. In the development of this study, an investment cost has been included to lower the setup cost of the reliable
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smart manufacturing system. Furthermore, a reliability factor 𝛿 has been used and is seen as a decision variable.
The optimum production quantity, as well as setup cost, are found. To solve the proposed model of this study, a
geometric programming approach is used. The advantage of using geometric programming as a methodology is
that the global optimum total cost can be found before finding the ideal values of the decision variables. When
it comes to geometric programming, the degree of difficulty displays if there are no solutions, a unique solution,
or many solutions. Thus far in the literature, any model that has been solved with geometric programming
either had a degree of difficulty of 0 (unique solution) or a degree of difficulty of 1 (many solutions). Not only is
this proposed study developing a smart production system with controlled carbon ejection, but also solves the
model via geometric programming that has a degree of difficulty of 2. By conducting numerical examples, the
proposed model is validated and a minimum total cost is found. Furthermore, the numerical examples prove
that an optimum solution can be found by using a geometric programming approach with a degree of difficulty
of 2. Hence, this study proves that with a degree of difficulty of 2, geometric programming can be used to solve
the model.

The proposed model may be extended in various ways. One way to extend the study may be to further develop
the proposed manufacturing system that consists of a singular stage to a numerous-stage manufacturing system
or even numerous-stage with numerous cycles. Also, an extension may be done by slightly changing the model
and solving it with a higher degree of difficulty than 2 by inter alia using constraints such as a space constraint
for storage. To make the proposed smart and reliable production system even more sustainable and have a
greater impact on a greener environment, the study can be extended by considering renewable energies or
other energy optimization strategies [27]. Furthermore, to make the study closer to reality, fuzziness could be
introduced [12]. The proposed model considers a smart production system with controlled carbon emission and
uses a posynomial geometric programming approach to solve it. Advancing the smart and reliable production
system by inter alia further introducing a holding cost for not only perfect but also insufficient items and a
reworking expenditure as well as considering random defective rates during the manufacturing process [27], the
proposed study is not able to be solved by geometric programming in a posynomial manner and a signomial
geometric programming approach can be used [22].

Appendix A.

The following displays the Hessian matrices for 𝜑*

𝐻11 =
(︀
𝜕𝜙7,𝜙7𝜑

*)︀
𝐻22 =

(︂
𝜕𝜙7,𝜙7𝜑

* 𝜕𝜙7,𝜙4𝜑
*

𝜕𝜙4,𝜙7𝜑
* 𝜕𝜙4,𝜙4𝜑

*

)︂
.

Hessian determinant values

𝐻11 𝐻22

Scenario 1 −814285 2.437𝑥1010

Scenario 2 −852901 9.882𝑥1010

Acknowledgements. This study has been supported by the International Joint Research Grant by Yonsei Graduate School
(Support year: 2020 Spring Semester).

References

[1] P. Alavian, Y. Eun, S.M. Meerkov and L. Zhang, Smart production systems: automating decision-making in manufacturing
environment. Int. J. Prod. Res. 58 (2020) 828–845.

[2] Z. Asim, S.A. Jalil and S. Javaid, An uncertain model for integrated production-transportation closed-loop supply chain
network with cost reliability. Sust. Prod. Consump. 17 (2019) 298–310.



1028 A.S.H. KUGELE ET AL.

[3] M.A. Bermeo-Ayerbe, C. Ocampo-Mart́ınez and J. Diaz-Rozo, Adaptive predictive control for peripheral equipment manage-
ment to enhance energy efficiency in smart manufacturing systems. J. Clean. Prod. 291 (2021) 125556.

[4] S. Bhuniya, S. Pareek, B. Sarkar and B.K. Sett, A Smart Production Process for the Optimum Energy Consumption with
Maintenance Policy under a Supply Chain Management. Processes 9 (2021) 19.

[5] B.-Y. Cao and P.-H. Wang, The Origin and Development of Fuzzy Geometric Programming. Fuzzy Inf. Eng. 11 (2019)
203–211.

[6] A. Chassein and M. Goerigk, On the complexity of robust geometric programming with polyhedral uncertainty. Oper. Res.
Let. 47 (2019) 21–24.
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