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AN INTEGRATED INVENTORY MODEL WITH CAPACITY CONSTRAINT
UNDER ORDER-SIZE DEPENDENT TRADE CREDIT, ALL-UNIT DISCOUNT
AND PARTIAL BACKORDERING

MUKUNDA CHOUDHURY, CHANDAN MAHATO AND GOUR CHANDRA MAHATA®

Abstract. In today’s competitive business situation, the supplier frequently offers his or her retailers a
permissible delay period (i.e., trade credit) to stimulate sales. In addition, the capacity of any warehouse
is limited in practice, thus the retailer needs an additional rented warehouse (RW) to store the excess
units when the order quantity exceeds the capacity of the own warehouse (OW). Furthermore, with the
globalization of the marketing policy, the supplier may provide the retailer with a discounted price if
the quantity of purchase is large enough. Considering all of the factors mentioned above, in this paper
we study an integrated inventory model with capacity constraint under order-size dependent trade
credit and all-units discount. Shortages are allowed and partially backordered. In addition, the unit
production cost, which is a function of the production rate, is considered. An algorithm is developed
to determine the optimal production and replenishment policies for both the supplier and the retailer.
Finally, numerical examples are presented to illustrate theoretical results. Sensitivity analysis of the
major parameters are performed and some insights are obtained.
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1. INTRODUCTION

Recently, with the emergence of market globalization, supply chain (SC) management and control have
become a strategic focus of leading manufacturing companies. The ultimate objective of effective supply chain
management is the reduction of costs, improvement of cash flow, and increased operational efficiency across the
entire business through connecting inventory control, purchasing coordination, and sales order processing with
market demand. In a competitive business environment, the ability to integrate one’s supply chain is essential
for company success. Each partner of SC is indented to increase his/her business sharing; consequently, they
adopt tactics that help in it. Trade credit policy is one such a tactic. According to an estimate, more than 80%
of business-to-business (B2B) transactions in the United Kingdom (UK), and about 80% of United States (US)
firms offer their product on trade credit [27]. More recently, Seifert et al. further studied a sample of 3383 groups
of public US firms and concluded that company profitability is positively associated with payment delay. Such
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a worldwide practice encourages researchers to model the trade credit or permissible delay in payment while
developing the mathematical models.

Goyal [9] was the first to study the EOQ model under the condition of permissible delay in payment. Later,
Aggarwal and Jaggi [1] extended Goyal’s model to consider the deterministic inventory model with a constant
deterioration rate. Jamal et al. [12] further extended Aggarwal and Jaggi’s model to allow for shortages, which
makes the inventory model more applicable in practice. Ouyang et al. [23] expanded the model proposed by
Goyal to consider deteriorating items and partially permissible delays in payment associated with order quantity.
Yang et al. [34] investigated how the retailer determines the optimal ordering and payment policies when the
supplier offers cash discounts or delayed payments depending on the order quantity. Recently, Lashgari et al.
[19] investigated an inventory control problem for deteriorating items with two-level trade credit linked to order
quantity. Related articles include studies by Sana [25], Khanra et al. [14], Sarkar [26], Jaggi et al. [11], Khanra
et al. [15], Ray [24], Khanra et al. [16] and their references. All the inventory models above assume that the
length of the trade credit period is a fixed value and independent of the retailer’s order quantity.

However, in practice, some suppliers usually provide the retailer with a trade period depending on the
retailer’s order quantity to stimulate the size of orders and benefit from the economies of scale in purchasing,
manufacturing, and transportation. There is also, another kind of contract in which the suppliers offer shorter
credit periods or partial trade credit for a smaller quantity of orders and provide the retailers with a greater
delay period for more than a certain volume.

In this regard, Khouja and Mehrez [18] investigated the effect of different payment policies including trade
credit contracts on the optimal order quantity when the credit terms are linked to the quantity of orders. Under
order quantity-dependent trade credit and price-linked demand, Shinn and Hwang [30] formulated the retailer’s
mathematical EOQ model to acquire its optimal order size and price. Chang et al. [3] established an EOQ
model with deteriorating items where the supplier offers trade credit to the retailer only if the order quantity
is greater than or equal to a specified threshold. Ouyang et al. [23] formulated an integrated inventory model
of a supplier and a buyer when demand is price sensitive and the credit period offered by the supplier depends
on the buyer’s order size. Chiu et al. [6] formulated an integrated inventory model of a manufacturer and a
buyer with order-size dependent trade credit and imperfect quality products. Huang [10] extended the model of
Chang et al. [3] to consider partial trade credit if the order quantity is lower than a specific quantity. Ouyang
et al. [22] proposed an EOQ model for deteriorating items under partially permissible delay in payments to
be linked with order quantity as well. Other related studies including Chung et al. [7,8], Chen et al. [5], Ting
[32], Shah et al. [28] and Tiwari et al. [33]. Clearly, there are two short comings in order-size dependent trade
credit terms schedule based on the only one order quantity threshold: (1) The supplier needs fully grasp all
kinds of information of the retailer (including market demand information, warehouse capacity information,
cost structure information, etc.) to set an appropriate order quantity threshold. (2) For the retailer, the trade
credit period with a single order quantity threshold forces the retailer to make two extreme choices: to enjoy a
delay in payment by making the order quantity greater than or equal to the predetermined quantity, or to pay
the full purchase amount immediately when the order quantity is less than the predetermined quantity. In the
above-mentioned studies, the trade credit period is provided based on only one predefined order quantity. But
this credit period based on one fixed order quantity consists of some drawbacks. For instance, in order to enjoy
the delay payment policy according to a single fixed order quantity compels the retailer to make the order size
greater than or equal to the fixed order quantity whatever the capacity of the warehouse of the retailer. On the
other hand, it is really difficult to define the predefined fixed order quantity for the suppliers considering the
different market demands of different retailers, and different capacities of the warehouses of different retailers.
Therefore, to remove these drawbacks, it is necessary to develop a more flexible trade credit policy with different
credit periods according to different fixed order quantities. Therefore, in order to reduce the difficulty of the
supplier decision-making and meanwhile increase the retailer’s choice, more flexible trade credit terms based on
different trade credit periods and different quantities thresholds emerge. However, to the best of our knowledge,
only a few researchers have paid attention to this kind of trade credit terms so far except Ouyang et al. [21]
and Chang et al. [4]. Additionally, a discount facility on the unit purchase cost is another effective strategy
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for the supplier to allure the retailer for enlarging order size. This discount facility offers a lower purchase cost
per unit for a sufficiently large enough order size. Consequently, to manipulate the opportunity of discounts
on the unit purchase cost, a higher trade credit period, the retailer wants to enlarge the order amount with
alacrity. In this case, a question may arise: Does the warehouse of the retailer always have sufficient capacity
to hold the entire purchased amount? In this circumstance, an additional RW is required to hold the surplus
purchased amounts than the capacity of OW. Moreover, shortages may appear and some customers may wait
for backorders to be fulfilled while some may turn to other places [12,19]. Therefore, with more adaptation to
the real world, this study would introduce a flexible trade credit policy and discount on unit purchase cost based
on different quantity breaks interconnected with shortages and capacity constraints of the retailer’s warehouse
in the development of a specific inventory model.

Clearly, when the length of the trade credit period is linked to the order quantity rather than a given
parameter, the retailer is encouraged to order more products to enjoy a longer trade credit period. But if the
retailer’s own warehouse (OW) capacity is insufficient to store all the purchased units, the retailer needs a
rented warehouse (RW) to store the excess units. Consequently, the assumption of a single warehouse in the
classical EOQ model is no longer valid. The development of the two-warehouse inventory model will be more
in line with the real business environment.

Also, in today’s competitive global market, the supplier frequently offers the retailer a discounted price if
the purchased quantity is large enough. Several types of single-item quantity discount approaches are used in
practice and have been discussed in the literature, among which all-units discount is most widely used in the
practical business environment. Specific literature on all-units discounts, we recommend that readers refer to
the literature of Taleizadeh et al. [31], Alfares et al. [2] and Shaikh et al. [29]. In addition, to illustrate the
contribution of this study, a comparison between this study and previous studies in Table 1.

From Table 1, it is clearly seen that no inventory model in the supply chain developed in previous studies has
simultaneously considered capacity constraint, order-size dependent trade credit, all-units discount and partial
backordering. Combining these factors, this paper derives a single-supplier, single-retailer integrated inventory
model that considers the following features. (1) The retailer’s OW capacity is limited, which means if the
retailer’s order quantity surpasses his/her OW capacity, an additional RW is needed to store the excess units;
(2) the retailer receives an order-size dependent trade credit and an all-units discount from the supplier that also
depends on the order size; (3) shortages are allowed and partial backordering. Hence, in the present paper, we
have generalized many existing literatures, such as Goyal [9], Taleizadeh et al. [31] and Ouyang et al. [23], etc.
Next, we proved the existence of the optimal solution of the objective function and then the closed-form optimal
solution was found. After that, we designed an algorithm to find the global optimal solution of the problem
in an integrated manner. Finally, some numerical examples are presented to illustrate theoretical results and
managerial insights are given.

2. NOTATION AND ASSUMPTIONS

The following notations and assumptions are used in formulating the model.

2.1. Notation

A, Retailer’s ordering cost per order

A, Supplier’s setup cost per setup

D Retailer’s demand rate

Fy Fixed transportation cost per shipment

Fy Unit transportation cost

R Supplier’s production rate, (> D)

hy The stock holding cost per unit time in RW

ho The stock holding cost per unit per unit time in OW
hs Supplier’s holding cost rate, excluding interest charged
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Supplier’s unit production cost which is a convex function of R
Retailer’s unit purchase cost for price range j
Retailer’s unit selling price

Supplier’s capacity utilization fraction i.e., p = 3
Maximum storage capacity of OW

The retailer’s trade credit period offered by the suppliers

Supplier’s capital opportunity cost per dollar per unit time

Retailer’s capital opportunity cost per dollar per unit time

Retailer’s interest earned per dollar per unit time

Retailer’s order quantity

Retailer’s replenishment cycle

Number of shipments from the supplier to the retailer

Number of shipments from the supplier to the retailer per production run, a positive integer
Percentage of duration of period in which inventory level is positive

Proportion of shortage that will be backordered

The cost of goodwill loss for a unit of lost sale

The backordering cost per unit per time due to shortages

Lost sales cost per unit for price range j, including the lost profit and the goodwill loss

IS

TABLE 1. Summarized and comparison of previous studies and this study.

Author(s) Trade credit Shortages Storage Purchase Solution Supply
policy facilities cost method chain type
Goyal [9] Fixed trade No Single Constant Closed-form  One level
credit warehouse
Jamal Fixed trade Completely Single Constant Non-closed One level
et al. [12] credit backordering ~ warehouse form
Yang et al. Fixed trade Partial backo- Two ware- Constant Non-closed One level
[34] credit rdering houses form
Jaggi et al. Fixed trade Completely Two ware- Constant Non-closed One level
[11] credit backordering ~ houses form
Chen et al. Conditional No Single Constant Closed-form  One level
[16] trade credit warehouse
Taleizadeh  No Partial backo-  Single Linked to Closed-form  One level
et al. [31] rdering warehouse  order
Ouyang Order-size No Two ware- Constant Closed-form  One level
et al. [23]  dependent houses
trade credit
Chang Order-size No Single Constant Non-closed One level
et al. [4] dependent warehouse form
trade credit
Alfares No No Single Linked to Closed-form  One level
et al. [2] warehouse  order
Lashgari Fixed trade Partial backo- Single Constant Closed-form  One level
et al. [19]  credit rdering warehouse
Shaikh No Partial backo-  Single Linked to Non-closed One level
et al. [29] rdering warehouse  order form
This Order-size Partial backo- Two ware- Linked to Closed-form  Two level
paper dependent rdering houses order

trade credit
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2.2. Assumptions

(1)

(2)

There are a single retailer and a single supplier in the inventory system. The retailer orders () units in each
order. The supplier manufactures m@) units in each production run to reduce the setup cost and delivers
@ units to the retailer in each shipment.

The unit production cost ¢(R) is a convex function of the production rate R, and is given by ¢(R) =
Cop + S + cop R, where cgp, c1p and ¢y, are non-negative real numbers. The fixed cost co, can be regarded
as the material cost. The cost component %’ decreases as the production rate increases, representing costs
such as labor cost or energy cost. The third term ¢y, R denotes a cost component that increases with the
production rate such as an additional tool or die wear at high production rate. For notational simplicity,
¢(R) and c are used interchangeably in this paper. (This assumption has been used by Khouja [17], Ouyang
et al. [20] and others).

Lead time is zero and replenishment rate is infinite.

Demand rate is known and constant.

Shortages are allowed and partially backordered, and the fraction of shortages is backordered at a constant
rate (.

The OW has a limited capacity of W units. When @) > W, the retailer needs to rent an additional warehouse
to hold the excess units. In addition, we assume that the RW has an unlimited capacity. Moreover, in
practice, the RW usually offers better preserving facilities than the OW, thus this paper uses the relationship
h, > h, to reflect this situation. Moreover, the products in RW are consumed first to reduce the retailer’s
holding cost.

In actual commercial operations, the larger the retailer’s order quantity, the lower the purchase price. Here
we assume that the supplier offers an all-units quantity discount to the retailer. The purchase cost is a
decreasing step function of the order size Q:

ey, M <Q <M

where 1 =71 < m2 < ... <my < a1 = 00, each of which represents a boundary quantity. c. denotes the

unit purchase cost applicable to orders whose lot size @) falls in the interval ¢; > ¢o > ... > cy.

The supplier offers a credit period N,,,, m = 1,2,..., u, which is also related to the retailer’s order quantity

and the relationship is given as follows:

Ny 9
0,

J
Ny 9

INIA
INIA

1@ 2
2 <Q <3
N = .

N/L 19# < Q < ﬂ,u—i-l

where 1 =) < ¥s < ... <, <,41 = 00, each of which is a boundary values at which a specific credit
period is offered. N,, denotes the credit period applicable to orders whose lot size () falls in the interval
Y, to 19m+1 with N < N < ... < N#'

From assumptions (3.7) and (3.8), the retailer is presented with an order-size dependent trade-credit sched-
ule and an all-units quantity discounts schedule. For convenience, we now combine the two discount sched-
ules into a restructured new discount schedule. Rearrange boundary values 11,72, ...,nx and 91,92, ...,9,
in the order of small to large to form a new set of g1 < g2 < ...,qr. Then there only exists a unique
combination of purchase cost ¢; and credit period M; applicable to the lot size falling in the interval g; to
gj+1- The restructured discount schedule becomes
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Q c | M
q=1<Q<q | | My
2 G2 <Q<q3 co | My

=%,

k|l g <Q<qry1 | cx | My

where k <A+ p, 1=q1 <q2<...<qp < gry1 =00. For ¢; < Q < ¢gjy1,5 =1,2,...,k, the purchase cost
and the length of credit period offered by supplier are c; and M; respectively, where ¢; > ca > ... > ¢ >0
and 0 < My < My < ... < M.

(10) During the credit period, the account is not settled, the retailer sells the items and uses the sales revenues
to earn interest at a rate of Ir.. At the end of the credit period, the retailer pays off all units bought, and
starts to pay for the interest charges on the items remaining in stock with at a rate of Ip..

(11) By offering trade credit to the retailer, the supplier bears opportunity cost at the rate of I's,, for the offered
credit period.

3. MODEL FORMULATION

In this section, we first establish the total profit functions for the supplier and the retailer respectively, and
then make some appropriate combination to obtain the supplier-retailer integrated total profit function.

3.1. Supplier’s total profit per unit time

The supplier produces a batch quantity of m(@ units in each production run; hence, the production cycle
length for the supplier is mng = mT. The supplier’s total profit per unit time is the total sales revenue minus the
total relevant cost (which consists of the production cost, setup cost, inventory holding cost and opportunity
cost for offering trade credit). These components are evaluated as follows:

(a) Sales revenue: the sales revenue per unit time is given by ¢; D[ K + (1 — K)/].

(b) Production cost: the production cost per unit time is given by ¢D[K + (1 — K)0].

(¢) Setup cost: the supplier manufactures m@ in one production run. The cycle length is m@Q/D = mT. There-
fore, the setup cost per unit time is As/(mT).

(d) Holding cost: the supplier’s inventory per cycle can be calculated by subtracting the retailer’s accumulated
inventory level from the supplier’s accumulated inventory level. Hence, the supplier’s average inventory per
unit time is given by

{mQ[%Jr(m—l)% —mjgz —%2[1+2+...+(m—1)]} 0

[(m—-1)(R—- D)+ D]

o IR
DT
= 7[(7”* (1= p) +pl,
where p = %.

Considering the inventory holding cost, it can be split into two components: real holding cost and opportunity
holding cost. The first component relates to the actual ownership of the goods and includes such items as
storage and maintenance, which are accounted for on a per-unit-of-inventory basis. The second component is
the capital locked with the inventory. On other words, the opportunity holding cost is charged on the money
value of the inventory on hand. Because the production cost per unit is ¢, the holding cost rate excluding
interest charges is hs, hence the real holding cost per unit per unit time is ¢ x hg. Also, the supplier’s capital
opportunity cost per dollar per unit time is Is,, we can get the opportunity holding cost per unit per unit
time as ¢ X Igp.

Therefore, the supplier’s holding cost per unit time is c(hs + Isp) DT[(m — 1)(1 — p) + p]/2.
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Note that a similar derivation in the supplier’s average inventory using a manufacturing lot size of m@ units
can be found in Joglekar [13].

(e) Opportunity cost: offering a credit period M; to the retailer, the opportunity cost per unit time is
cilspmQM;/(mT) = ¢jIs, DK + (1 — K)B]M;.

Consequently, when the supplier provides a given credit period M;,j = 1,2,...,k to the retailer, the total
profit per unit time (denoted by STP;(m)) is a function of m and can be expressed as

STP,(m, K) = sales revenue — production cost — setup cost — holding cost — opportunity cost

= (¢j — DK + (1~ K)f] - % _clhst fsp)DT[(n; —1)(1—p) + )

— ¢;I5,DIK + (1 — K)B]M;. (3.1)

3.2. Retailer’s total profit per unit time

Suppose the retailer’s order size of the product, without loss of generality, is € [g;, gj4+1) for the entire cycle
length T'. In accordance with the assumptions, the purchase cost offered by supplier is c¢; and the length of
the credit period is M; for the purchase cost. The retailer receives the products at the starting time ¢t = 0 of
the inventory system and the stock level remains positive during the time interval [0, KT after fulfilling the
customer’s demand. Shortly after, shortages are allowed and partially backlogged with a constant rate 8 during
time interval [K'T, T|. Therefore, the retailer’s order size for the cycle length T'is Q = KT D+ (1 — K)BDT. The
duration for consuming the maximum storage capacity, W, of the retailer OW is obtained as: Ty = W/D. Based
on the assumptions, if the remaining number of products of the retailer’s total ordered quantities after fulfilling
the backorders K DT exceeds the capacity of the OW, i.e., W, then the retailer needs a rented warehouse to
keep the excess amount.

As to the retailer, the annual total profit is composed of sales revenue, ordering cost, purchasing cost, holding
cost, back ordering cost, opportunity cost due to lost sales, interest charged and the interest earned. Now the
identical terms of the components of the retailer’s net profit per unit of time are computed as follows:

Annual sales revenue: pD[K + (1 — K)f].

Annual ordering cost: A, /T.

Annual purchasing cost: ¢; D[K + (1 — K)/].

Annual transportation cost: (Fy + F1Q)/T = £2 + FiD[K + (1 — K)J].

Annual holding cost: if the retailer’s order quantity Q@ < W (i.e., T < Ty,), the retailer keeps all the products
in his/her OW. Otherwise, the retailer keeps the excess amount than W, i.e., K DT —W in a rented warehouse
(RW). Thus, holding cost per unit per unit of time is computed as follows:

2
RDICT g, 320
he(KDT —W)*  ho(2DKT — W)W
T>T,. 2
2DT * 2DT = (3.2b)

2
Annual backordering cost: M.

Annual opportunity cost due to lost sales: ¢,D(1 — K)(1 — 3).

The non-identical terms of the components of the retailer’s net profit per unit of time are interest charged per
unit time and interest earned per unit time due to the credit period facilities from the supplier to the retailer.
There are two possibilities for the interest earned and interest charged according to the values of duration of
the positive inventory level KT and allowed trade credit period M;. The possible situations are: situation 1:
KT < Mj and situation 2: K'T' > M;, which are depicted in Figure 1. We will discuss them separately.

Situation 1: KT < M;(j =1,2,...k)
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AImrentory level AInventory level

FIGURE 1. Interest charged and interest earned under various situations. (a) KT < M;. (b)
KT > M.

In this situation, the retailer’s trade credit period M; is longer than or equal to the positive inventory level
length KT (see Fig. 1a). It indicates that the retailer has sold all the stock at the time M;. Therefore, there is
no interest charged. On the other hand, the retailer’s interest earned per cycle contains two parts: (1) during the
period [0, KT, the retailer can obtain the interest earned on the sales revenue received (including sale revenues
from backlogged); and (2) the retailer can use all the sales revenue to earn interest during the period, [K'T', M;].
Therefore, the annual total interest earned is

— plp.D [K(Mj - ?) . K)ﬁMj].

(3.3)

[pIRe ST DAt + pIge DKT(M; — KT) + plge(1 — K)ﬂDTMj]
T

Situation 2: KT > M;(j =1,2,...k)

In this situation, the retailer’s delay payment period M is shorter than or equal to the positive inventory
level length KT (see Fig. 1b), it indicates that the retailer has some inventory available after due date M;.
Thus, during the period [Mj, KT], the retailer must pay the interest for the items in stock, then the annual
total interest charged is

KT
lestre iy, DIKT=0)dt] 1 p(rT — a2 (3.4)
T - 2T .

Also, during the period [0, M;], the retailer can use the sales revenue to gain interest. Hence, the annual total
interest earned is

[pIRe I Dtdt + plpe(1 - K) 5DTM]} A2
- = plD| 5+ (1= K)BM; | (3.5)

Combining the above results, for given M;, j = 1,2,...,k, and based on the length of KT and T,, the retailer’s
annual profit function under various situations can be expressed as
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ATPEj )(K, T)(i =1,2) = annual sales revenue — annual ordering cost — annual purchasing cost — annual
transportation cost — annual holding cost — annual backordering cost — annual opportunity cost due to lost sales
— annual interest charged + annual interest earned.

ATPY) (K, T) = 0 (3.6)
ATPY)(K,T), 0<KT <T,<M;or0<KT<M;<T,
() ATPY) (K, T), Ty <M;<KTor M; <T, <KT
ATPE (K1) =\ op) (3.7)
ATP22 (KvT)7 TwSKTSM]
where,
() Ay Fy
ATPYY (K, T) = pDIK + (1 = K)B] = = = ¢;DIK + (1 = K)f] = | 7 + FDIK + (1 = K)f]
hoDK?T  ¢,3D(1 — k)°T ¢, IneD(KT — M)’
S S 5 —¢gD(1 - K)(1-p) - 5T
M?
+plreD ﬁ + (1 — K)BM; (3.8)
(4) A, Fy
ATPY (K, T) = pD[K + (1 = K)f] = = — ¢;D[K + (1 = K)B] = | = + FaD[K + (1 = K)j]
hoDK2T  ¢,3D(1 — k)°T
- MPRTL_aBPUZRT b - k)1~ )
KT
+plgeD [K (Mj - 2) +(- K)ﬁMJ] (3.9)
(7) A, Fy
ATP3 (K, T) = pD[K + (1 = K)f] = 7 = ¢;DIK + (1 = K)f] = | 75 + FLD[K + (1 = K)f]
he(KDT —W)?  ho(2DKT — W)W  ¢,8D(1 — k)*T
a 2DT - 2oDT - 5 —¢gD(1 = K)(1-p)
 ¢jIreD(KT — M;)? M7 - |
oT +plreD | 5 + (1= K)BM,; (3.10)
(4) A, Fy
ATP3 (K, T) = pD[K + (1 = K)B] = = = ¢; D[K + (1 = K)f] = { 75 + FiD[K + (1 - K)f]
he(KDT —W)*  ho(2DKT — W)W  ¢,3D(1 — k)°T
2DT 2oDT 5 cgD(1 - K)(1 - )
KT
+ plgeD [K (Mj - 2> +(1- K)ﬂMj]- (3.11)

Here, equation (3.6) represents the retailer’s annual profit function when he or she does not need to rent an
additional warehouse (i.e., KT < T,). More specifically, for M; < KT < T,, it indicates that the retailer
needs to use equations (3.4) and (3.5) to calculate interest charged and interest earned, and the holding cost
is referred to equation (3.2a). Therefore, the retailer’s annual profit function in this case can be described as
equation (3.7). For 0 < KT < T, < M; or 0 < KT < M; <T,, it indicates that there is no interest charged
and the retailer needs to use equation (3.2) to calculate interest earned, and the holding cost is referred to
equation (3.2a). Therefore, the retailer’s annual profit function in this case can be described as equation (3.9).

Similarly, equation (3.7) represents the retailer’s annual profit function when he or she need to rent an
additional warehouse (i.e., KT > T,). For T,, < M; < KT or M; < T,, < KT, it indicates that the retailer
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needs to use equations (3.4) and (3.5) to calculate interest charged and interest earned, and the holding cost
is referred to equation (3.2b). Therefore, the retailer’s annual profit function in this case can be described as
equation (3.10). For To, < KT < M;, it indicates that there is no interest charged and the retailer needs to use
equation (3.3) to calculate interest earned, and the holding cost is referred to equation (3.2b). Therefore, the
retailer’s annual profit function in this case can be described as equation (3.11).

3.3. The integrated total profit function

Once the supplier and retailer have established a long-term strategic partnership and are treated as an
integrated supply chain system and decide to share resources with each other to undertake mutually beneficial
cooperation, the joint total profit per unit time can be obtained as the sum of the supplier’s and the retailer’s
total profit per unit time and is a function of m, K, and T as follows:

JTPY) (m, K, T)
JTPY) (m, K, T)
JTPY) (m, K, T) = ATPY) (K, T) + STP,(m,K), M; < KT <T,

ATP{" 4 STP; = JTPY) (m, K, T) = ATPY) (K, T) + STP;(m,K), 0< KT <T, < M, or
0< KT <M, <T,
JTPY) (m, K, T) = ATPY)(K,T) + STP;(m,K), T, < M; < KT or
M; <T, < KT
JTPY) (m, K, T) = ATPY)(K,T) + STP,(m,K), T, < KT < M,

JTPY) (m, K, T) = { (3.12)

ATPS) + STP;

where

JTPY (m, K,T) = pD[K + (1 — K)B] — % —¢;DIK + (1 - K)8] — (1;) + P D[K + (1- K)ﬂ])

hoDK2T — &,8D(1 — k)°T ¢jIreD(KT — M;)®
S 5 —¢gD(1 = K)(1 = §) = T2
Mj2 A,
+ plreD > +(1—-K)BM;| +(¢; —¢)DIK + (1 - K)B] — T
_clhs ISP)DTK”; “ D= p Dik 4 (1 - K)AM, (3.13)
ITPY) (m, K1) =pDIK + (1~ K)8] = DI + (1= 58] — (52 + ADIK + (1~ )]
B h0D2K T cb,@Du{ DT b k1)
+ plreD [K(Mj - K2T> +(1- K)ﬁMJ} + (¢ —e)D[K + (1 - K)p] — ;:;
_ clhs + ISP)DT[(”; “ VA=) 0 g DIk 4 (1— K)BIM, (3.14)

JTPY) (m, K,T) = pD[K + (1 — K)B] — % —¢;DIK + (1 — K)8] — (1;) + P D[K + (1- K)ﬁ])

h(KDT —W)*>  ho(2DKT — W)W D(1 — k)T
_ ( DT ) _ 0( DT ) _cbﬁ (2 ) —CgD(l—K)(l—ﬁ)

2 2

CjIRCD(KT—Mj) Mj
- —L 4+ (1-K)8M,
2T ar JAM;

A,
mT

+ pIlreD +(¢;j —e)D[K+ (1 - K)g] —
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elhy + Is) DT[(m — 1)(1 — p) + ]

. — ¢;Is,DIK + (1 — K)B]M; (3.15)
JTPY) (m, K, T) = pD[K + (1 — K)5] — % —¢;DIK + (1 - K)f] — (1;0 + DK + (1 - K)ﬁ])
he(KDT —W)*>  ho(2DKT — W)W  ¢,8D(1 — k)*T
N 2DT S N 2 — ¢ DA - K)(1=F)
+ pIgeD [K (Mj - K2T> +(- K)ﬂM]} +(c; — )DIK + (1 - K)B] — ;:T
_ clhs + IS”)DTW; “VA=0 A DIk 4 (1 - K)3M,. (3.16)

4. THEORETICAL RESULTS

In this section, the closed form optimal solutions for the decision variables are formulated to maximize the
joint total profit function per unit time in (3.13)—(3.16) by the similar fashion which is presented in Lashgari
et al. [19]. Now the closed form solutions for each case are derived as follows:

Firstly, for fixed M;,j =1,2,...,k, and any given (K, T), we temporarily relax the integer requirement on

m and take the second partial derivative of JTPEj)(m, K,T),i=1,2 with respect to m which gives
O2ITPY (m, K, T)  92JTPY) (m,K,T)  —24,

3 s = 5= <0, k=12 (4.1)

It is obvious from equation (4.1) that for any given (K, T), JTPEJ )(m, K, T) is a concave function in m, where
1 = 1,2 for any given (K,T). Hence, searching for the optimal solution of shipment number m is reduced to
find a local optimal solution.

Next, for fixed m, we will discuss how to find the optimal solution (K,T). There are four casesarising as
follows:

(i) 0< KT < T\ < M or 0 < KT < M; < T,,
(il) Ty < M; < KT or M; <T, < KT, and
(iv) Ty < KT < M;.

4.1. Case 1-1: M; < KT < T,

Maximizing equation (3.13) is equivalent to minimizing the following function

ITPY (m, K, T) = 9111 K°T — 0112KT — 113K + p114T + L;s + @116 (4.2)

where ©111, @112, ©113, P114, P115, and 15 are given in Appendix A.

First, for any given K, take the first and second derivatives of JT P(ﬂ) (m, K, T) with respect to T, we obtain
equations (4.3) and (4.4), respectively
8JTPY) (m, K, T) 2 $115
=K - K - 4.3
T P111 P11z + Q114 T2 (4.3)
32JTP§]1)(m, K, T) 2p15 (4.4)
01?2 T3 ’

2 (3) .
From equation (4.4), if ¢115 > 0, then % > 0, i.e., JTngl) (m, K, T) is strictly convex function of
)
T. Setting w =0 yields
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- $115
r= V t11(m, K) (45)

where, 111 (m, K) = K2p111 — K112 + 0114-
The discriminant of 11 (m, K),

A =ty — dpi1ei1a = —D?[eoB(ho + ¢jlre) + (ho + cuB + ¢jIrc)c(hs + Isp){(m — 1)(1 = p) + p}] <0,

is always negative. Thus 11 (m, K) has no roots and it is always either negative or positive. Since t11(m,0) =
o114 = 2lepB+ c(hs + Isp){(m —1)(1 = p) 4+ p}] > 0, we can conclude that 11 (m, K) is strictly positive in
[0, 1]. So, equation (4.12) is feasible, and for all K € [0, 1], there is always a unique T = % such that
minimizes JTPY (m, K, T).

Substituting equation (4.4) into equation (4.2) (i.e., T=, /% into JTP(ﬂ) (m, K, T)) leads to

JTngl)(m, K) = 2\/ @1151#11(7’)1,[() — @113K + Y116- (46)

Taking the first and second derivatives of equation (4.6) with respect to K, we have

/ " 7 2
JTP/(J) JK) = wll(m3 K) B _ 2w11<m7K)11(m?K) B (?ll(va))
1 (m, K) = /o115 <1/)11(m,K) Y113 Y115 2 (. K))F
_ Jom <4<P111(K2<P111 — Koz + ¢114) — (K111 — 90112)2>
21 (m, K))*

_ m<4¢111<ﬂ114 — @%;2)
2(¢11(m, K))?®

_ A /@115D2[0bﬁ(h0 + CjIRC) + (hO + Cbﬁ + CjIRc?C(hs + ISP){(m B 1)(1 - p) + p}] > 0. (47)

2(¢h11 (m, K))?

From equation (4.7), JTP%) (m, K) is a strictly convex function of K. We check that

JTP;(f)(m»O) = —p1124/ LARLR ©113- (4.8)
$114

Note that if JTP'l(lj)(m,O) > 0, then JTng)(mJ() is increasing on [0, 1], i.e., JTng)(m7 K) reaches the global
minimum at K = 0, and it indicates that the best choice is that retailers do not build inventory. Therefore, we
only need to consider the situation of JTP’l(lj )(m, 0) < 0. We further investigate

j 2111 — Q112
JTP 9 (m, 1) = /7( -
i ) o Vi — o112 + e pus

A, (¢jlpc — pIge)DM? V2D(ho + ¢;Ige)
=\|A, + Fy + —
% AT 2 Vot e + el + I {(m -~ D) + 9}
—lp—Fi+cg—c)D(1—B) — c;IspM;D(1 — ) + (¢jIre — pBIre) DM;). (4.9)

From equation (4.8), JTP’l(lj)(m, 1) > 0 hold if and only if
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(p — F1 + Cqg — C)D — CjISpMjD + CjIRCMjD — \/2Ar + 2Fo + 24, + (CjIRC *pIRe)Dsz

m

VD(ho+c;Ire)
VhotejIrcte(hs+Isp){(m=1)(1—p)+p}

>
p (p—F1+cyg—c)D —cjIspM;D + pIgr.M;D
= b1 (4.10)

Thus, if the inequality in equation (4.10) is established, JTP%)(m,K ) has a unique minimizer in the open
interval (0, 1), and the global optimum values of T7; and K17 can be obtained using equations (4.11) and (4.12),
respectively (see Appendix B, Egs. (B.3) and (B.4)). Otherwise, the global minimizer will lie on the boundary
point K11 = 1 (see Appendix C)

4 A2
Tn:\/ $111¥9115 — 113 (4.11)
2

dp111p114 — Plig

Ky =

©112 ©113 \/4@11150114 — 90%12. (4 12)

20111 2¢111 || 4p1110115 — P33

Here, for the discriminant term 11, it should be be noted that,

(1) if 0 < B11 < B, the optimal is that the retailer uses partial backlogging, and the optimal values of T7; and
K11 can be obtained using equations (4.11) and (4.12) respectively.

(2) If 0 < B < 11, the optimal is that the retailer employs inventory policy with without shortages (e.g.,
K =1)

(3) If B11 < 0, the retailer need to compare the cases of no stocking (e.g., K11 = 0) and partial backlogging to
determine which is optimal.

In addition, for the solutions Kj; and Tj; found by using equations (4.11) and (4.12), if the condition
M; < KT < T, is not satisfied, it implies that JTPEJR (m, K,T) will obtain the optimal solution at the
boundary. A logical solution is to set T = II(V[l ”'1 or T = ;—11”1, then we recommend that readers refer to the
detailed solution process given in Appendix D.

To sum up, based on the above analysis, the order quantity for trade credit period M; and purchase cost c;
can be computed form equation (4.13), namely,

Qj = DT[K + (1 - K)f]. (4.13)

From equation (4.13), if the optimal order quantity (Q;) satisfies ¢; < @; < gj41, the solution obtained by the
analysis above is feasible. Otherwise, we need to use the solution procedure given in Appendix D to determine
the optimal values of T" and K.

Case 1-2: 0< KT <T, < M;jor0< KT < M; <T,
Similar to Case 1-1, maximizing equation (3.14) is equivalent to minimizing the following function

JTngQ) (m, K, T) = (plgleT — 30122KT — @123K —+ @124T + % —+ @126 (414)

where 121, V122, P123, Y124, P125, and 126 are given in Appendix A.

Note that equations (4.14) and (4.2) have similar function structures (i.e., 121 through ;26 instead of ¢111
through ¢116). So, the analysis and discussion provided for equations (4.3)—(4.8) of Case 1-1 is also established
for Case 1-2. Next, the equivalent analysis for Case 1-2 of equation (4.9) for Case 1-1 is

j 2p121 — Q122
JTP Y (m, 1) = ﬁ( -
12 ( ) P125 V121 — @122 + pi24 v
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B é \/@(ho +pIRe)
= m<\/ho + plre + c(hs + Isp){(m —1)(1 = p) + p}>

—(p = F1+ ¢y = ¢)D(1 = B) + (plre — ¢;1sp) DM;(1 = 3)]. (4.15)

From equation (4.15), JTP’l(Qj)(m7 1) > 0 hold if and only if

— Fy+cy—c)D + (pIge — c;Is,) DM, — /A, + Fy + 4= V2D +plre)
ﬂ N (p 1+ Cq C) + (p R Cj SP) J + Fo + m (\/h0+p1Re+C(hs+ISp){(m—1)(1—p)+l)}
(p—Fi1+cyg—c)D+ (plge — ¢jlsp) DM,

= Pi2. (4.16)

Consequently, if the inequality in equation (4.16) is established, JTP&JQ)(m, K) has a uniqueminimizer in the
open interval (0,1), and the global optimum values of Th5 and Kj2 can be obtained using equations (4.17) and
(4.18), respectively (see Appendix B). Otherwise, the global minimizer will lie on the boundary point K3 = 1
(see Appendix C).

4 A2
Ty = \/ ©121P125 — P1o3 (4.17)
4 2
P121¥124 — P122

Ko =

©122 ©123 \/4@12190124 — @%22. (4 18)

20121 2¢121 || 412190125 — Plag
Similar to Case 1-1, we still need to perform the following two steps to ensure the feasibility of the solution:

(1) For the solutions Kjo and Ti3 found by using equations (4.17) and (4.18), check whether they satisfy
K199 < min{M;,T,} and if not, we need to use Appendix D to determine the optimal values of T' and
K.

(2) Check whether the order quantity @, satisfies ¢; < @; < gj+1, and if not, we need to use Appendix D to
determine the optimal values of T" and K.

Case 2-1: T,, < M; < KT or M; < T,, < KT

Similarly, maximizing equations (3.15) is equivalent to minimizing the following function

JTP%) (m, K,T) = po11 K*T — 0210 KT — 213K + @214T + % + 216 (4.19)

where @211, V212, V213, V214, Y215, and @216 are given in Appendix A.
Similar to previous cases,

j 2211 — P212
JTPLY (m, 1) = /7< ~ o
21 (m.1) w2 VP211 — 212 + P214 w8

Tre — plre)DM? _ 2
a4 Ae y (ilRe mPIR)DM (B — ho)W
m 2 2D
y V2D (hy + ¢;Ine)
Ve +¢iIre + c(hs + Isp){(m = 1)(1 = p) + p}

—[(p = F1 +c¢cg —¢)D(1 = B) + (hy — ho)w — ¢ 15, MjD(1 — ) + (cjIpe — pﬂfRe)DMg]- )
4.20

From equation (4.20), JTP'Q(lj)(m7 1) > 0 hold if and only if
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(p — F1 + Cqg — C)D + Cj(IRC — Isp)MjD + (hr — h())W
- 24, i - 2 (hr—ho)W?2 VD(hr+c;IRe)
5 N \/ZAT + 2F0 + m (CJIRC pIRe)DM7 + D (\/hr+0_7’1Rc+C(hs+ISp){(m1)(1P)+P}>
(p—F1+cyg—c)D+ (plge — cjIsp)DM;

= fo1. (4.21)
Consequently, if the inequality in equation (4.21) is established, JTPg)(m, K) has a unique minimizer in the
open interval (0,1), and the global optimum values of T5; and K5 can be obtained using equations (4.22) and
(4.23), respectively (see Appendix B). Otherwise, the global minimizer will lie on the boundary point Ko = 1.
(see Appendix C)

4 — 2.
Ty = \/ ©211¥215 80313 (4.22)
42119214 — P31

Ky = P22, o8 4%021180214—<P§12_ (4.23)
20011 2211 \| 421190215 — ©313

Similar to previous cases, the feasibility of the solution needs to be checked. If the solution is not feasible, we
suggest that readers refer to the detailed solution process given in Appendices D and E.
Case 2-2: T, < KT < M;

Similarly, maximizing equation (3.16) is equivalent to minimizing the following function

JTPY) (m, K, T) = 0231 K*T — 020 KT — 223K + 0224T + L;% + 226 (4.24)

where, @201, @202, P23, Y224, P225, and paoe are given in Appendix A.
Similarly,

j 20901 — p222
JTPY (m, 1) = /7< .
22 (m:1) w2 VP21 — P202 + P224 p22

_ é (hy — ho)W? \/ﬁ(hv + plRe)
=\t e (m ol + o + I {(m - D0 —7) +p}>
l(p—Fu g~ D(1— B) + (e — ho)w + (plr. — ¢;Is,) DA (1 — B)). (1.25)

From equation (4.25), JTP'Qg)(m7 1) > 0 hold if and only if

(p— Fi + ¢y — D+ (plre — ¢;I5,) DM, + (hy — ho)W — \/24, + 2, + 2= (ot
VD (h,+plre)
8> Vhr+pIget+e(hs+Isp){(m—1)(1—p)+p}
(p—Fi+cyg—c)D+ (plpe — cjlsp)DM;

= Paz- (4.26)

Consequently, if the inequality in equation (4.26) is established, JTPgJQ) (m, K) has a unique minimizer in the
open interval (0,1), and the global optimum values of T53 and Ko can be obtained using equations (4.27) and
(4.28), respectively (see Appendix B). Otherwise, the global minimizer will lie on the boundary point Kg; = 1
(see Appendix C).

4 5 — 32
Tyy = \/4%02218022 90323 (4.27)
P221¥9224 — P29



1608 M. CHOUDHURY ET AL.

TABLE 2. Optimal solution, when 7" and K do not satisfy the condition.

Cases Possibility Optimal solution

M; M; s0114M2
Case 1-1 =L > T T = = K]

K1 H H K1y 1 M250111 — Mj;p113 + @115

Kw v Tw / ()0114T1%

— < T T = — K4 =

K1 " " K1y " \/Tz%ﬂﬁlll — Twp113 + @115

. . N . . X 2
Case 1-2 min{7, M, } < T Tly= mm{Tl;):MJ} T), = : ‘P2124(mm{1—.’w7MJ})
Ki2 Ki, (min{Tw, M;}) p121 — min{Tw, M, }p123 + @125
Case 2-1 M >Ty Th = w Ky = 90214(maX{Tw,M]})
Ko K3, (max{Tw, M;}) 211 — max{Tw, M;}p213 + p215

M; M; <,0224M2
Case 2-2 —L < T: Toy = —= K}

Koo 22 » Kég » M2<,0221 — Mjpa23 + 225

K : Tw / 022473

— < T Thy = Kb, =

Koo 22 2 Kég » \/TE,QOzm — Twp223 + @225

2
222 223 [4p2210224 —
K22 _ % + ® P221p 90322 . (428)
20001 2221 \| 42210225 — P393

Similarly, Appendices D and E are used to determine the optimal values of T" and K if the solution is not
feasible (Tab. 2).

Algorithm: summarizing the above results, we can establish the following algorithm to find the optimal solution
(m*, K*,T%).

Algorithm 4.1. Step 1. Set m = 1.

Step 2. For each j, j =1,2,...,k — 1, k, perform Steps 3-5.

Step 3. Compare M; and Ty, if M; < T, go to Step 4; if not, go to Step 5.

Step 4. Execute Steps 4.1-4.4, and determine ( (]),T(*;;) and JTPU)< Kg),T(j;)

Step 4.1. Determine (K77, T75) and JTP11 (m, K7, T}]) using Algorithm A provided in Appendix F, and
go to Step 4.2.

Step 4.2. Determine (K335, T55) and JTP%) (m, K{5, Ty ) using Algorithm B provided in Appendix G, and
go to Step 4.3.

Step 4.3. Determine (K3, T57) and JTPY) (m, K37, T3 using Algorithm C provided in Appendix H, and
go to Step 4.4.

Step 4.4. Set JTPY) (m KT, ) = max{ JTPY (m, K33, Tj7), JTPY) (m, K13, T35,

ITPY) (m, K57, T57) }
*% *% (7) *% * %
Step 5. Execute Steps 5.1-5.4, and determine (K(j),T(J)) and JTP ( K(j),T(j))
Step 5.1. Determine (K735,755) and JTPEJ2 (m, K55, Ty ) using Algorithm B provided in Appendix G, and
go to Step 5.2.
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Step 5.2. Determine (K37, T57) and JTPéjl) (m, K55, T57) using Algorithm C provided in Appendix H, and
go to Step 5.3.

Step 5.3. Determine (K35, T55) and JTPéjé) (m, K35, T55) using Algorithm D provided in Appendix I, and
go to Step 5.4.

Step 5.4. Set JTPY) (m K T**) - maX{JTP§2>(m K33, T8, JTPY) (m, K35, T50),

G G)
ITPY) (m, K35, T55) .
Step 6. Set JTP(m, K¥,T,**) = max;j=1 o,

m

()~ )
Step 7. Set m = m + 1, repeat Steps 2-6 to find JTP(m, K*, T:).

Step 8. If JTP(m, K%, T%) > JTP( LK o ))7 g0 to Step 7. Otherwise, go to Step 9.
Step 9. Set (m*, K**,T**) = ( Ka’; 1) T(’:EL 1)) (m*, K**,T**) is the optimal solution and Q** =

k{JTP( >( K, T)}

5. NUMERICAL EXAMPLES AND SENSITIVITY ANALYSIS

In this section, some examples are provided to illustrate the theoretical results and solution procedure obtained
in this paper. In addition, we also carry out a sensitivity analysis of major parameters.

Example 5.1. The input parameters are as follows: A, = $100/order, A, = $180/order, D = 350 units/year,
Fy = $50/shipment, F; = $0.2/unit, R = 500 units/year, h, = $2/unit/year, hy = $1.4/unit/year, hy =
$0.8/unit/year, co, = $2/unit, ¢1, = $2.5/unit, ¢z, = $0.5/unit, p = $15/unit, W = 150 units (hence, Tyy =
150/350 = 0.429 year) Is, = 0.1, I, = 0.10, Tpe = 0.12, ¢, = 2, ¢y = 4, B = 0.85.

In addition, the supplier offers an all-units quantity discounts schedule, which is ¢ = (¢1,¢9,¢c3) =
$(10,9.7,9.4) /unit,n = (m1,m2,m3) = (1,150,500) unit, and the trade credit period schedule offered
by the supplier is N = (Np,N2,N3) = (0.30,0.45,0.60) year, v = (91,92,95) = (1,350,600)

unit. Combining the two discount schedules above, we obtain a new schedule, namely, (¢, M) =
{(e1, My), (ca, M), (c3, M3), (ca, My), (c5, M5)} = (8, year) {(10, 0.30), (9.7, 0.30), (9.7, 0.45), (9.4, 0.45), (9.4,
0.60)}, ¢ = (¢1,92,43,94) = (1, 150, 350, 500, 600) unit.

Applying Algorithm 4.1, the solution procedure is shown in Table 3. As can be seen from Table 3, when
k = 2, the joint total annual profit is the largest, i.e., JTP* = JTPS) = $4579.54. Furthermore, the optimal
solution is m** = 5, K** = Ko = 0.9101, T** = Tb; = 0.4940 year, the retailer’s optimal order quantity is
Q** = Q21 = 170.56 units, the supplier’s optimal production quantity is m**@Q** = 852.8 units. Meanwhile, the
purchase price and trade credit chosen by the retailer is co = 9.7 and Ny = 0.3, respectively. Also, we notice
that W = 150 < 157.36 = 0.9101 x 0.4940 x 350 = K**T™* D, which means the capacity of OW is insufficient
to store the ordered quantity, so an additional warehouse (RW) is necessary for the retailer.

Example 5.2. This example concerns the impact of the OW capacity and credit period on the optimal
solution. The parameter values are identical to those used in Example 5.1 except for W and (Ny, Na, N3).
Table 4 shows the optimal solutions for each value of W = {100,200, 300,400,500} and (Nj, No, N3) =
{(0.10,0.20, 0.30), (0.30, 0.45,0.60) , (0.40,0.60,0.80), (0.60,0.70,0.80)}.

Table 4 shows that when the OW capacity is relatively small (i.e., W < 200), the retailer must rent a
warehouse to enjoy a longer credit period and a lower purchase price. However, we notice that when the value
of the credit period is relatively long (i.e., (N1, No, N3) = {(0.40,0.60,0.80)}, retailers typically orders larger
quantities to benefit from a longer credit period, such that a rented warehouse is necessary. Moreover, the
supplier’s optimal shipment number decreases for longer credit periods, and the joint total profit per unit time
increases with the increase the capacity of OW or the length of the credit. Based on the above results, we have
several managerial implications. First, trade credit linked to the order quantity is an effective tool or means if
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TABLE 3. Solution procedure of Example 5.1.

Case m* K* T* Q" JTP*

Case 1-1 1 Ky =0 Tyy =inf Q11=0 JTPY = —2450 —
Case 1-2 1 Ki2=0 Tio =inf Qi12=0 JTPLY) = —2450 —
Case 2-1 x X X X %

Case 1-1 5 Ky =0.9053 Thp = 04734 Qi = 163.33 JTPY) = 4579.06 —
Case1-2 5 K2 =0.4072 Ti» = 0.7368 Q12 = 234.95 JTpg) — 4441.78 —
Case2-1 5 Ky =0.9101 Tp1 =0.4940 Q21 =170.56 j7p( _ 457954 o
Case 1-1 X X X X X

Case 21 5 Koi = 0.7154 Tb = 1.0446 Qo1 =350  JTPSY = 4573.94 —
Case 2-2 x X X X X

Case 1-1 X X X X X

Case 21 5 Koi = 0.6734 To = 1.5022 Qo1 =500  JTPSY = 4563.7 —
Case 2-2 x X X X X

Case 1-1 x x X X X.

Case2-1 5  Koi = 0.6464 Ty =1.8103 Qo1 =600  JTPS) = 4558.49 —
Case 2-2 x X X X X

Notes. “—” denote the optimal solution for given k. “x” denotes the problem is not feasible in this case. “—®” denotes

the global optimal solution.

TABLE 4. The result of sensitivity analysis on W and (N7, No, N3).

(N1, N2, N3) W m*K~* T Q" JTP* Rented Credit
warehouse  period
(0.10, 0.20, 0.30) 100 6 0.9208 0.4910 169.80 4479.02 Yes Ny
200 6 0.9363 0.5189 179.88 4485.95 No Ny
300 5 0.9363 0.5189 179.88 4485.95 No Ny
400 5 0.9363 0.5189 179.88 4484.95 No Ny
500 5 0.9363 0.5189 179.88 4485.95 No Ny
(0.30, 0.45, 0.60) 100 4 0.8975 0.4741 163.38 4547.56 Yes Ny
200 4 0.7280 1.0425 349.99 4581.22 Yes Ny
300 4 0.7000 1.4960 500.04 4586.96 Yes N3
400 3 0.6825 1.8000 600.00 4592.86 Yes N3
500 3 0.6871 1.7987 600.00 4593.32 Yes N3
(0.40, 0.60, 0.80) 100 3 0.6294 1.8152 600.00 4649.27 Yes N3
200 3 0.6441 1.8110 600.00 4673.29 Yes N3
300 3 0.6586 1.8068 600.00 4688.67 Yes N3
400 2 0.6727 1.8028 600.00 4695.37 Yes N3
500 2 0.6764 1.8017 599.99 4695.68 Yes N3

the purpose of the supply chain system is to encourage the retailer to order more units or to lower the supplier’s
shipment number. Second, the longer credit period set the supplier provided or the larger capacity of OW, the
more benefit for the supply chain system will be. In a word, it is the best choice for the retailer to persuade
the supplier to offer a longer trade the credit period schedule or to choose the supplier with a longer trade
credit period. In addition, the joint total profit per unit time can be increased by expanding OW capacity
appropriately.
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TABLE 5. Sensitivity analysis on the retailer’s major parameters.

Parameters Values m* K* T Q" JTP* Rented Credit
warehouse  period
Ay 80 6 0.9640 0.4309 150.00 4623.44 No Ny
90 6 0.9414 0.4562 158.27 4600.60 No Ny
100 5 0.6997 1.4960 500.01 4586.96 Yes No
110 5 0.6994 1.4960 499.99 4580.27 Yes N>
120 5 0.6678 1.8042 600.00 4574.55 Yes N3
D 150 5 0.7490 1.0391 150.00 3592.59 No N
250 6 0.8393 0.6424 156.73 4078.27 No Ny
350 5 0.6997 1.4960 500.01 4586.96 Yes No
450 5 0.6889 1.3986 600.00 5180.35 Yes N3
550 6 0.7099 1.1405 599.98 5782.04 Yes N3
hr 1.6 5 0.6804 1.8006 600.00 4590.61 Yes N3
1.8 5 0.6742 1.8023 599.98 4588.05 Yes Ns
2.0 6 0.6997 1.4960 500.01 4586.96 Yes No
2.2 6 0.6960 1.4968 499.99 4586.14 Yes No
2.4 6 0.6925 1.4976 499.98 4585.36 Yes Ns
ho 1.0 5 0.6984 1.7955 600.00 4639.05 Yes N>
1.2 5 0.7178 1.4917 499.99 4612.27 Yes No
1.4 5 0.6997 1.4960 500.01 4586.96 Yes Ns
1.6 6 0.8858 0.4910 168.91 4565.68 No N
1.8 6 0.8615 0.4839 165.85 4552.66 No M
Cb 2.0 5 0.5359 1.8425 599.98 4669.13 Yes N3
3.0 5 0.6131 1.8199 600.00 4620.22 Yes N3
4.0 5 0.6997 1.4960 500.01 4586.96 Yes No
5.0 6 0.9271 0.4911 170.00 4579.18 No Ny
6.0 6 0.9382 0.4857 168.42 4578.85 No M
Cg 0.5 5 0.6480 1.8098 599.98 4612.56 Yes Ns
1.0 5 0.6547 1.8079 599.99 4603.40 Yes N3
2.0 5 0.6997 1.4960 500.01 4586.96 Yes No
3.0 6 0.9949 0.4602 160.95 4577.10 No Ny
4.0 6 1.0000 0.4578 160.23 4577.10 No Ny
D 13 5 0.6766 1.5014 500.00 3904.01 Yes No
14 5 0.6766 1.4987 500.00 4245.27 Yes No
15 5 0.6997 1.4960 500.01 4586.96 Yes No
16 6 0.9831 0.4605 160.77 4931.33 No N
17 6 1.0000 0.4477 156.69 5285.44 No Ny
8 0.75 6 1.0000 0.4578 160.23 4577.10 No Ny
0.80 6 1.0000 0.4578 160.23 4577.10 No M
0.85 5 0.6997 1.4960 500.01 4586.96 Yes No
0.90 5 0.6364 1.7790 600.01 4639.17 Yes N3
0.95 5 0.6059 1.7487 599.98 4696.54 Yes Ns
IRe 0.06 5 0.7238 1.4903 499.99 4603.49 Yes No
0.08 5 0.7114 1.4932 500.00 4595.00 Yes No
0.10 5 0.6997 1.4960 500.01 4586.96 Yes No
0.12 6 0.7358 1.0413 350.01 4581.72 No N>
0.14 6 0.7267 1.0427 349.98 4578.55 No No
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TABLE 5. Continued.

Parameters  Values m* K* T* Q" JTP* Rented Credit
warehouse  period
IRre 0.08 6 0.9639 0.4996 173.91 4557.39 No Ny
0.10 6 0.9371 0.5000 173.35 4568.17 No Ny
0.12 5 0.6997 1.4960 500.01 4586.96 Yes Ny
0.14 5 0.6549 1.8079 600.00 4614.22 Yes N3
0.16 5 0.6416 1.8117 600.00 4643.50 Yes N3
C1,C2,C3 9,8.7,8.4 6 0.9967 0.4650 162.67 4928.08 No Ny
9.5,9.25,9.0 5 0.7597 1.0374 350.00 4737.56 No N>
10,9.7,9.4 5 0.6997 1.4960 500.01 4586.96 Yes Ny
10.5,10,9.5 5 0.6974 1.4965 500.00 4553.12 Yes N>
11,10.6,10.2 5 0.6536 1.8082 599.99 4317.14 Yes N3

Example 5.3. Using the same data as those in Example 5.1 except for W = 300, this example outlines the
effects of changes in the retailer’s major parameters A,., D, h,, ho, ¢, 9, D, B, Ire, Ire, Fo, F1 and (c1,ca, c3)
on the optimal solutions. The results are summarized in Table 5.

Based on Table 5, the main conclusions are as follows:

(i) The joint total annual profit increases with respect to the changes of the JTP* parameters D, p, 8 and Ig,
whereas it decreases with respect to A, hy, ho, ¢, ¢4, Irc and (c1, ¢z, c3). Understandably, the parameters
D, p, 8 and I, have a positive influence on the joint total annual profit JTP*, so the increase of their
values must bring more profits. On the contrary, the parameters A,., h,, ho, ¢y, ¢g, Irc and (c1, ¢z, c3) are all
cost structure parameters of inventory system, and the increase of their values must result in the decrease
of total annual profit JTP*. Moreover, we observe that the annual profit JTP* is highly sensitive to the
changes of parameters D, p and (¢, ¢, c3).

(ii) Optimal order quantity Q* increases when we increase the values of parameters A,., D, Ir. and (¢, ¢, c3),
while it decreases with respect to changes of h,., ho, cp, ¢4, and p. Hence, if ordering cost A, increases, the
retailer wants to decrease order frequency by increasing order quantity; if the demand parameter D or the
backlogged parameter § increases, customers’ demand also increases and consequently, the retailer needs
to make a large order size. In addition, the increase of parameter Ir. or (c1,cs,c3) will motivate retailers
to order more goods to enjoy longer credit period and lower purchase price. On the other hand, if inventory
holding cost h,. or hg increases, the retailer will lessen order quantity to maintain a lower average inventory
level. If backlogging cost ¢y, lost sale cost ¢, or unit selling price p increases, the retailer wants to shorten
the replenishment cycle and the shortages period to reduce the shortage cost and the lost sales cost. As a
result, the retailer will make a small order size.

(i) Optimal fraction of no shortage K* increases with respect to the changes of the parameters ¢, ¢, and
p whereas it decreases with respect to the change of parameters A,, 3, Ig., and (c1,ca,c3). In fact, the
increase in the value of parameters ¢, ¢, and p means that the retailer will pay more for shortages. So,
the retailer will shorten the shortage period, i.e., by increasing the fraction of no shortage. However, If the
value of parameters A,, 8, Ig., and (c1,ca,c3) increases, the retailer will be encouraged to make a large
order size. Meanwhile, the retailer wants to lengthen the shortage period (i.e., reduce the fraction of no
shortage) to avoid paying excessive inventory holding costs. In addition, we observe that when the retailer
faces a discount schedule when purchase price and trade credit are both linked to the order quantity, there
is no specific monotonic relationship between K* and the value of parameters D, h,, hg and Ig..

(iv) Optimal replenishment cycle T* increases if we change the values of the parameters A,., Ir. and (c1, ¢, c3)
whereas decreases if we change the values of hg, ¢, ¢g, Ir. and p. Obviously, if the value of parameters A4,.,
Ire and (e, ca,c3) increases, the retailer will make a large order size, and thus T* also will be increased.
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TABLE 6. Sensitivity analysis on the supplier’s major parameters.

Parameters Values m* K~ T Q" m*T* m*Q* ATP~” STP* JTP*
As 160 6 0.9640  0.4309 150.00  2.5854  900.00 1286.77 1971.26 4558.03
170 6 0.9414  0.4562 158.27  2.7372  949.60 1295.42  1939.05 4534.47
180 5 0.6997  1.4960  500.01 7.4800  2500.07 1214.78 1106.06 3820.84
190 5 0.6994 1.4960  499.99  7.4800  2499.95 1214.79 1104.61 3819.40
200 5 0.6678 1.8042 600.00 9.0210 3000.01 1152.34 847.12 3299.46
hs 0.6 5 0.6804 1.8006 600.00 9.0030 2999.99 1152.84 1180.26 4633.10
0.7 5 0.6742 1.8023  599.98  9.0115  2999.89 1152.681 1015.07 4467.75
0.8 6 0.6997  1.4960  500.01 7.4800  2500.07 1214.78 1106.06 3620.84
0.9 6 0.6960 1.4968  499.99 89808  2999.95 1214.76 761.40  3276.16
1.0 6 0.6925 1.4976  499.98  8.9856  2999.90 1214.69 603.56  3118.26
Is, 0.08 5 0.7238 1.4903  499.99  7.4515  2499.97 1214.01 1166.33 3680.34
0.09 5 0.7114 1.4932  500.00 7.4660 2499.98 1214.62 1136.03 3650.66
0.10 5 0.6997  1.4960  500.01 7.4800  2500.07 1214.78 1106.06 3620.84
0.11 6 0.7358 1.0413 350.01 6.2478 2100.07 1293.41 1328.30 3611.70
0.12 6 0.7267  1.0427  349.98  6.2562  2099.90 1293.26 1302.77 3601.03

Similarly, if the value of parameters of hg, cs, ¢4, Ir. and p increases, the retailer will reduce their order
quantity, and eventually 7™ will be decreased. Moreover, optimal replenishment cycle T is highly sensitive
to the changes of parameters A,, D, ho, ¢, ¢g, p, B, Ire and (c1, ¢, c3).

(v) As the value of A, D, 3, Igr. and (¢, ca, c3) increases, the retailer prefers to rent an additional warehouse,
while as the value of h,., hg, ¢, ¢g, p and I, increases, the retailer tends to choose not to rent an additional
warehouse.

Example 5.4. This example highlights the effects of changes in the supplier’s major parameters Ay, hg, and
Is;,, on the optimal solution.

The results in Table 6 show that JTP* (m*T* and m*Q*) decreases (increase) as A, increases. The results
show that the supplier has a longer production cycle length and higher production quantity at higher setup
cost. Furthermore, JTP*, m*T™*, and m*Q* decrease as hs or Ig, increase. It is clear that the supplier has a
shorter production cycle length and smaller production quantity at higher holding cost and capital opportunity
cost.

6. CONCLUSION

In this paper, we develop an integrated inventory model with capacity constraint under order-size dependent
trade credit, all-units discount and partial backordering. In order to obtain the global optimal solution, the
conditions of the objective functions to have interior minimizers are established and then a closed-form optimal
solution is found. An algorithm is proposed to reveal the optimal solutions. Furthermore, numerical examples
are given to demonstrate the solution procedures and a sensitivity analysis of the optimal solutions with respect
to major parameters are presented and meaningful insights are gained. This study provides a useful managerial
insight, for instance, that it is the best choice for the retailer to convince the supplier to offer a longer trade
credit period schedule or choose the supplier with a longer trade credit period. The retailer also can increase
their profits by expanding OW capacity appropriately.

Future research could modify or extend the present model in several ways. First, in this study a single-supplier
and a single- retailer for a single product were considered. This foundation could be further extended to more
practical situations, such as considering multiple retailers or multiple items, or taking raw material supply into
account. Other possible extensions are to formulate the demand as a function of the length of the allowable
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payment delay time and the other factors, or to examine the interactions between the supplier and the retailer
from the perspective of game theory. Finally, it would be of significant interest to relax the deterministic
assumptions, such as demand rate, defective rate, and backorder rate; and thus extend the methodology to
operate in an uncertain or stochastic environment.

APPENDIX A.
D
p111 = 5[h0 + B+ cjlRe), 0112 = D,
v =[(p— Fi + ¢y —c)D(1 = 3) — ¢;IspM;D(1 — ) + (¢jIrec — pBIre) DM,

A, (¢jIpe — pIre) DM?
8 + e(hs + Is){(m — 1)(1 = p) + p}] o115 = {Ar+Fo+ e } and

|

P114 =
Y116 = CgD(]- - 5) + (C+ Fl 7]9)Dﬁ+ (CjISp 7pIRe)DﬁMj'

D
p121 = 5[}10 + ¢y 3 + pIRe)

122 = 3D
Y123 = [(p —F + Cqg — C)D(l - ﬁ) + (PIRe - CjISp)DMj(l - 5)}90124

= JlesB+ clha + Isp}{m — 1)1 = p) + o}

A,
p125 = {Ar + Iy + }
m
126 = cgD(1 = 3) + (c + F1 — p)DB + (cjlsp — pIre) DBM;
D
p211 = E[hr + e+ ¢ 1]

212 = D
p213 = [(p— F1 + ¢y — ¢)D(L = ) + (hr — ho)w — ¢;IspM; D(1 — B8) + (¢;Ire — pBIRe) DM,

paa = 3 [+ el + Isy) {((m = 1)1 = ) + p}]

As C'I c _pI e _DM2 h’r' _ ho W2
P15 = AT+F0+7+(JR Re) J+( )
" 2 2D

@216 = cgD(1 = B) + (¢ + F1 — p)DB + (¢jlsp — plre) DBM;

D
P21 = E[hr + b8 + pIRge]
202 = D
pa2s = (0= 1 + ¢y = )D(1 = 8) + (hy — ho)w + (ple — ¢ 5,) DM, (1 = )]
D As hy — ho)W?
paas = Gl + el + Iy {(m = (1= )+ plpams = { 4, + P 22y Lo flE

©226 = CgD<1 - ﬁ) + (C+ Fl _p)Dﬁ + (CjISp _pIRe)DBMj-
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ApPPENDIX B. FIND THE ROOTS (Ki1,T11), (K12, Ti2), (Ka1,To1), AND (Kao, To)
Case 1-1: M; < KT < T,
From equation (4.2), differentiating JTPg{)(m, K, T) with respect to K and T, we have

8JTP(1]P(m, K,T) w1121 + p113

= 20111 KT — 01127 — 113 — K =

0K 20T
8JTPY) (m, K, T) ) 115 2 P15
? ) — K — K _ T = d . Bo2
T p111 p11288 + Y114 7 o1 K2 — o112K + p11a (B.2)
After some algebra
4 A2
Ty, = \/49011190115 90%13 (B.3)
P111P114 — P12
4 A2
and Kiq — P112 i P113 $111¥114 @;12_ (B.4)
20111 20111 || dp1inpiis — @113

Similarly, for Case 1-2, Case 2-1 and Case 2-2, the roots (K12, 7T12), (Ka1,T51), and (K22, T22) can be obtained
easily.

ApPENDIX C. FIND THE OPTIMAL VALUES OF T# WHEN K =1
Case 1-1: M; < KT < T,

Substituting K17 = 1 into equation (4.2) leads to

JTPﬁ) (m,1,T) = p111T — o112T — p113 + 01147 + 780}15 + ¢116. (C.1)

Taking the first and second derivatives of equation (B.1) with respect to T, we have

dJTPY (m,1,T) P15
L = - — = C.2
ar P111 — P112 T P114 T2 (C.2)
d2JTng1) (m,1,T)  2p115 (©.3)
dr? T3 ’

Obviously, if ¢115 > 0, then JTPEJP (m,1,T) is a strictly convex function of T. Setting JTP’l(lj)(m7 1,7) =0

yields
Y115
T# = \/ : (C.4)
P111 — P112 + Y114

Similarly, for the other cases, T# can be obtained when K5 = 1, Ko; = 1, and Koy = 1,

P125
T = \/ — (C.5)
P121 — P122 + Y124
Y215
T = \/ (C.6)
P211 — P212 + Y214

©225
T# = \/ _ . )
P221 — P222 + P24
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APPENDIX D. FIND THE OPTIMAL VALUES OF 7" AND K’

For the solution of K1, and T1; derived for Case 1-1, if the relationship K11711 < Mj is established, it shows
that the optimal values will be obtained on the boundary point. Thus, we may set T = M and then substitute

i27%
it into equation (4.2), which leads to "
: M, M, M, M, %

JTP%) (m, Ky, K1j1> = <,0111K%1K71]1 - 50112K11K71j1 —113K11 + <P114K7131 + ('DHTJH + ©116- (D.1)

Taking the first and second derivatives of equation (C.1) with respect to K11, we have

dJTPY) (m, K1, K%)

M; ©115
dK = o111 M; — o113 — <P114K712j1 + iz (D.2)
2 () M;
PITPE (0 K1 72 2,0, 0 (D.3)
dK?, K ' '

From equation (C.3), JTP(ljl) (m, Ky, %) is a strictly convex function of Ki;. Setting JTP’l(lj) (m, Ky, %) =
0 yields

Kil = 80114Mj2 .
e1uM; — p1i3M; + p11s

(D.4)

Noticing that, if K}, is feasible, the optimal solution in this case is (T11,K11) = (K%{Jl,Kh) Otherwise the
optimal solution is (Th1, K11) = (M, 1).
In addition, if the relationship K11771 > Ty, is established, use the same approach to develop Ki;, Kj; =

p114T2
p11172 —p113Tw+p115

In the same way, we can analyze Case 1-2, Case 2-1, Case 2-2. The specific computational results are sum-
marized in Table 2.

APPENDIX E. FIND THE OPTIMAL VALUES OF 7" AND K" WHEN OPTIMAL ORDER
QUANTITY Q; & [q;, ¢j+1)

If Q; & [gj,q;+1), there are two situations:

(1) if @Q; > g;+1, the optimal solution does not exist and then the retailer needs to adjust the order quantity;
2) if Q; < g;, the optimal values will be obtained at point T = ——H .
J J D[(1-B)K+0]

Based on the analysis above, we only need to discuss the case of Q; < g;.

First, for Case 1-1, substituting 7' = m into equation (4.2) leads to

ITPY) (m, K) = [{ho + e + ¢;Ire } K2 — 268K + [c38 + c(hs + Isp){(m — 1)(1 = p)+p}]]

. (2[(1—§j)K+ﬁ]> —[(p—¢j +¢g)D(1 = B) + (¢jIre — pBIre) DM;]K
L DIO-PK +4] {A cp et Glne —praDM;}
4j ' m 2

+{(cg — ¢;)D(1 = B) = pDB + Fi D + (cjIs, — pBIre)DM; + cD}. (E.1)
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Taking the first and second derivatives of equation (E.1) with respect to K, we have

()
dJTPyy (m, K) —q¢;(1-5) 2
= ho + B+ cilr. VK= — 2¢, BK + |ep 8 + c(hs + 1 m—1
dK 2[(1 —ﬂ)K+ﬁ]2 [{ 0 b3 JitR } b3 [ b3 ( Sp){( )
_ 4 . _ —Up— ¢ _
X (1 P) + p}]] + [(1 _ 6)]{ + ﬂ] [K{ho + Cbﬁ + CJIRC} Cbﬁ] [(p Gy + CQ)D(l ﬁ)
D(1— A, (¢jIpe — plre) DM?
+(es e — pBIng) DM;] + (ﬁ){Ar 1y Ar y (alre ZPIRg) DM, } (E2)
q; m 2
CITPY (. K) _ ;1= )’ [{ho + B + ¢ Trc K® — 264 8K + (e + e(hs + Isp) {(m — 1)
dK2 [(]_—ﬁ)K—Fﬂ]S 0 b j4 Rc b b s Sp
qi{ho + coff + cjlRe}
X (I—-p)+ +
( p) p}H (1= B)K + ]
qj(l - ﬁ) {
—= 2 ey — K(ho+ S+ cjlre)} (E.3)
[(1=B)K + 8] ’
From equation (E.3), we know that JTPg)(m7 K) is convex. Setting dJTP%) (m, K)/dK = 0 yields
0 P) (hy +f+ s Tn K — 200K + [ + ol + Tsp){(m — 1)(1 = p) + p}]
2[(1 - B)K + ]
4q;
+———F  [K{ho+ B+ cjIpe} — ] — [(p— ¢ + ¢g)D(1 —
[(1 — B)K +ﬁ][ { 0 cbﬂ CilRr } Cbﬂ] [(p Cj C!]) ( /8)
D(1 — A, (¢;Ipe — pIge)DM?
+ (¢jIre — pBlre)DM;] + (ﬂ){Ar gy Aoy (lre =PI DM, } —0. (E.4)
q; m 2
After some transformation, the equation (E.4) can be simplified to
111 K2 + pa12K + pyis =0 (E.5)
where,
i = 2(1 — B)°wing — q;(1 — B)(ho + v + ¢jIRre) (E.5a)
p12 = 48(1 = B)wiir — 2q;B(ho + e + ¢;iIre) (E.5b)
p11s = 2w111 8% + ¢;(1 = B) + ¢;(1 — B){coB + c(hs + Isp){(m — 1)(1 — p) + p}} + 2¢;c 3> (E.5¢)
win = [(p — ¢j + ¢g) D(1 = B) +(¢jIre — pBIRre) DM;]
D(1 — A, (¢jlpe — plge)DM?
—(ﬂ){AT+F0++(jR Plie) J} (B.5d)
q; m 2
For the quadratic equation (E.5), if it has roots (i.e., A = p112 — 4p111 0113 > 0), then we have
Kl = —pz + Vg, — 4pnnipas (E.6)
2p111
If K7, is feasible, then we obtain the retailer’s replenishment cycle
T = L - (E7)

D[(1 - B)K1y + 0]

If K7, is not feasible or equation (E.5) has no root, we may set K/; =0 or K{; =1
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In summary, for the solution of K1} and 77} derived for Case 1-1, we also need to check whether the constraint
M; < KT} <T, is satisfied. If the constraint is valid, the optimal solution is obtained. Otherwise, the optimal
solution does not exist.

Following the same steps used in Case 1-1, we can analyze Case 1-2, Case 2-1 and Case 2-2 separately.

K, = — 122 + \/M?gz — 4p121 4123 (E.8)
241121
where,
o1 = 2(1 — B)’wiz — q;(1 — B)(ho + o3 + plge) (E.8a)
pi22 = 48(1 — Blwiar — 2¢;5(ho + e + plge) (E.8b)
123 = 2w121 8% + ¢; (1 — B){coB + c(hs + Lsp){(m — 1)(1 — p) + p}} + 2g;cp3 (E.8¢c)
o =10 - ¢+ e)D(L - 9) + (1= D DIret] - DA v R 2h @)
j
Kl = —p212 + /1315 — 211213 (£.9)
2p211
where,
pa = 2(1 — B)°wary — ¢ (1 = B)(hr + 58 + ¢;IR.) (E.9a)
p212 = 48(1 — Blwarr — 2q;8(hy + e + ¢jIRe) (E.9b)
pi213 = 2wa11 8 + 5 (1 — B){cofB + c(hs + Isp){(m — 1)(1 — p) + p}} + 2¢;¢,5° (E.9¢)
w211 = [(p —Cj + Cg)D(]. — ﬂ) +(hr — ho)W + (CjIRC —pﬂIRe)DMj}
D(1-7) A, (CjIRC — ])IRE)D]WJ-2 (hy — hO)W2
B {AT +Fo+ 5 - 5D (E.9d)
Kl = — 222 + \/M%gg — 41291 [1223 (E.10)
21921
where,
fiao1 = 2(1 — B)°waor — q;(1 = B)(hr + o3 + pIge) (E.10a)
H222 = 4B(1 — Blwaar — 2¢;6(hy + e + pIRe) (E.10b)
pi223 = 2wa01 8% + q; (1 — B){coB + c(hs + Isp){(m — 1)(1 — p) + p}} + 2q;¢, 87 (E.10c)
wao = [(p— ¢; + ¢g) D(1 = B) + (hy — ho)W + (1 — B)p DIgeM;]
D(1 - ) Ay (hy — ho)W?
B {AT+F0+m+2D } (E.10d)

ApPPENDIX F. ALGORITHM A: DETERMINE (K77, T}) AND JTPﬁ)(m,Kﬁ‘, )
Al. Calculate ¢11;(i = 1,2,...,6) from equations (4.3) to (4.9). If p115 > 0, go to step A2; if not, go to step
Ao6.
A2. Calculate 811 from equation (4.18), if 5 < (11, go to step A4; else if 8 > (11, calculate T1; from equation
(4.19). If Ty, is feasible, go to step A3; if not, go to step A4.
A3. Compute K7; from equation (4.20), if K17 < 1, go to step A5; if not, go to step A4.
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A4. Set K11 = 1, determine T7) from equations in Appendix A. If T > T,,, set (K7, T5;) = (1,T,) and go to
step AT; else if T < M;, set (K{,,T{;) = (1, M;) and go to step A7; otherwise, set (K;;,T7;) = (LTﬁ)
and go to step A7.

A5, If M; < K11Th1 < Ty, set (K7q,T7;) = (K11, Th1) and go to step A7; if not, go to step A6.

A6. If K11T11 > T, obtain (K7y,T7,) = (K1,T7;) by employing Table 2. Then if T}, and K7, are feasible, go
to step A7; if not, go to step A4. On the other hand, if K171 < Mj, obtain (K{,,T}|) = (K1{;,T7;) using
Table 2. Now, if T}, and K7, are feasible, go to step A7; if not, go to step A4.

A7. Calculate order quantity Q; = DT7,[(1 — K{,)3 + K{,] from equation (4.21), and go to step A8.

A8. Determine the relationship between @); and [g;, ¢j+1) using the following sub-steps.

A81. If ¢ < Q; < gj+1, set (K1, 17) = (Ki§;,Tf). Calculate the retailer’s annual profit
JTPgl) (m, K55, T7) using equation (3.13) and go to step A9.

A8.2. If Q; > gj41, then T, and K7, are not feasible solutions, set JTPll1 (m,K,T) = —inf.

A83. If Q ; < gj, then T}| and K7, are not feasible solutions. However, JTP%) (m,K,T) at point T =
W has a maximum value. Thus, calculate K} from equations in Appendix D. If K7, is feasible,
go to step A8.3.1; if not, go to step A8.3.2.

A83.1. If M; < K{\T{; < Ty, set (Kif,T75) = (K{1,T7}), and calculate the retailer’s annual profit
JTP%)(m K35, T1) using equation (3.13), go to step A9. Otherwise, 777 and K7 are not feasible
solutions, set JTPll1 (m, K,T) = —inf, go to step A9.

A8.3.2. Let Kt} =1 and T{, = ¢;/D. If M; < K{\T{, < Ty, set (K{{,T{) = (1,¢;/D), and calculate
the retailer’s annual profit JTP(ljl)(m, K35, T1) using equation (3.13) and go to step A9. Otherwise,
Ty} and K7, are not feasible solutions, set JTngl)(m7 K,T) = —inf, go to step A9.

A9. If JTPgl) (m, K37, T{{) > —c; D, the optimal solutions K37 and 775 are found and stop. Otherwise, go to
step A10.

A10. Set (K37, Ty7) = (0,00), JTPY) (m, K37, Ty) = —¢; D.

APPENDIX G. ALGORITHM B: DETERMINE (K75, 7)) AND JTPY) (m, 5. 17)

B1. Calculate 12;(i = 1,2,...,6) from equations (4.23) to (4.28), go to step B2.
B2. Calculate (12 from equation (B.2), if 8 < (12, go to step B4; else if 8 > (12, calculate Ty5 from equation
(4.17). If Ty5 is feasible, go to step B3; if not, go to step B4.
B3. Compute K5 from equation (B.4), if K15 < 1, go to step B5; if not, go to step B4.
B4. Set K15 = 1, determine T7; from equations in Appendix B. If 77, > min{T,, M;}, set (K{y,T75) =
(1,min{T,,, M;}) and go to step B7; otherwise, set (K75, Tj5) = (1 Tfé) and go to step B7.
B5. If K1oTh2 < min{T,, M;}, set (K{y, T75) = (Ki2,T12) and go to step B7; if not, go to step B6.
B6. If Ki2T12 > min{T,,, M;}, obtain (K{y,T}5) = (K{,,T},) by employing Table 2. Then if T}, and K7, are
feasible, go to step B7; if not, go to step B4.
B7. Calculate order quantity Q; = DT75[(1 — K{,)8 + K75], and go to step B8.
B8. Determine the relationship between Q; and [g;, ¢j4+1) using the following sub-steps.
B81. If ¢ < Q; < gj41, set (K75, 175) = (Kiy,Tfy). Calculate the retailer’s annual profit
JTPgQ) (m, K55, Ty using equation (3.14) and go to step B9.
B8.2. If @Q; > gj+1, then T}, and K7, are not feasible solutions, set JTPlé (m, K{5,T{y) = —inf.
B8.3. If Q] < gj, then T}, and K7, are not feasible solutions. However, JTPQ (m,K,T) at point T =
m has a maximum value. Thus, calculate K15 from equations in Appendix D. If K7}, is feasible,
go to step B8.3.1; if not, go to step B8.3.2.
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B8.3.1. If K{,T15 < min{T,,, M;}, set (Ki35,T75) = (K15, T15), and calculate the retailer’s annual profit
JTP%)(m K35, T75) using equation (3.14), go to step B9. Otherwise, 775 and K{5 are not feasible
solutions, set JTPgJ)(m K33, Tv5) = —inf, go to step B9.

B8.3.2. Let KY, = 1 and T{5 = ¢;/D. If K{,T1, < min{T,,,M;}, set (Ki5,T75) = (1,¢;/D), and
calculate the retailer’s annual profit JTP%) (m, K75, Ty5) using equation (3.14) and go to step B9.
Otherwise, T7; and K7; are not feasible solutions, set JTP%Q) (m, K55,T75) = —inf, go to step B9.

B9. If JTP%) (m, K{5,T{5) > —c; D, the optimal solutions K75 and 175 are found and stop. Otherwise, go to
step B10.

B10. Set (K73, T55) = (0,00), JTPY) (m, K33, Tf5) = —¢; D.

ApPENDIX H. ALGORITHM C: DETERMINE (K37, T5]) AND JTP21 (m, K37, T57)

C1. Calculate ¢21;(i = 1,2,...,6) from equations (C.2)—(C.7). If @215 > 0, go to step C2; if not, go to step C6.

C2. Calculate a1 from equation (D.2), if 8 < (a1, go to step C4; else if 8 > (21, calculate T; from equation
(4.22). If Ty, is feasible, go to step C3; if not, go to step C4.

C3. Compute Ko from equation (D.4), if Ko < 1, go to step C5; if not, go to step C4.

C4. Set Ky = 1, determine T from equations in Appendix D. If TJ < max{Ty, M;}, set (K3,T5) =

(1, max{T,,, M;}) and go to step C7. Otherwise, set (K3,,75;) = (1, T;‘f) and go to step C7.

C5. If max{T,, M;} < Ko1To, set (K31,T5) = (K21,T21) and go to step C7; if not, go to step C6.

C6. If K91 To < max{Ty, M;}, obtain (K3,,75) = (Kj5;,T5,) by employing Table 2. Then if T3, and K3, are
feasible, go to step C7; if not, go to step C4.

C7. Calculate order quantity Q; = DT5,[(1 — K3,)8 + K3,], and go to step C8.

C8. Determine the relationship between @); and [g;, ¢j+1) using the following sub-steps.

C81. If ¢ < Q; < gjt1, set (K31, T57) = (K3,,T5;). Calculate the retailer’s annual profit
JTPél) (m, K37, T57) using equation (3.15) and go to step C9.

C8.2. If Q; > gj+1, then 75, and K3, are not feasible solutions, set JTPg) (m, K3,,Ty;) = —inf.

C8.3. If QJ < gy, then T3 and K3, are not feasible solutions. However, JTP(])(m,K, T) at point T =
W has a maximum value. Thus, calculate K% from Algorithm A in Appendix F. If K| is
feasible, go to step C8.3.1; if not, go to step C8.3.2.

C8.3.1. If max{T,,, M;} < Ké’lTQ”l, set (K57, T57) = (K5, T4)), and calculate the retailer’s annual profit
JTPgl)(m K33, T5) using equation (3.15), go to step C9. Otherwise, T3, and K%, are not feasible
solutions, set JTPéjl)(m K37, T5F) = —inf, go to step C9.

C8.3.2. Let Ky, = 1 and T3} = ¢;/D. If max{T,,, M;} < K313, set (K3i,1T57) = (1,¢;/D), and
calculate the retailer’s annual profit JTP(le)(m K37, T5) using equation (3.15) and go to step C9.
Otherwise, Ty, and KY| are not feasible solutions, set JTP;l) (m, K357, T57) = —inf, go to step C9.

C9. If JTngl) (m, K37, T57) > —c¢; D, the optimal solutions K37 and 157 are found and stop. Otherwise, go to
step C10.
C10. Set (K35, T5) = (0,00), JTPY (m, K37, T37) = —c¢; D.

APPENDIX I. ALGORITHM D: DETERMINE (K35, T55) AND JTP%)(m, oy Tox)

D1. Calculate @a2;(i = 1,2,...,6) from equations (E.2)—(E.7), go to step D6.

D2. Calculate B25 from equation (E.8), if 8 < a2, go to step D4; else if 8 > a9, calculate Thy from equation
(E.9). If Ty is feasible, go to step D3; if not, go to step D4.

D3. Compute Koo from equation (E.10), if K9y < 1, go to step D5; if not, go to step-D4.
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D4. Set Ky = 1, determine T3, from equation (D7) in Appendix D. If T, < Ty, set (K3, T5,) = (1,T,) and go
to step D7; else if thi2 > Mj, set (K3, T55) = (1, M) and go to step D7; Otherwise, set (K35, T5,) = (1 T22)
and go to step D7.

D5. If T, < KooToo < Mj, set (K35,T5,) = (Ka2,T22) and go to step D7; if not, go to step D6.

D6. If KooToo < Ty, obtain (K3y, Toy) = (K)o, Ts5) by employing Table 2. Then if T3, and K3, are feasible, go
to step D7; if not, go to step D4. On the other hand, if K275 > M;, obtain (K3,,T5;) = (Kb, T5y) using
Table 2. Now, if T3, and K3, are feasible, go to step D7; if not, go to step D4.

D7. Calculate order quantity Q; = DT5[(1 — K3,)3 + K3,], and go to step D8.

D8. Determine the relationship between @; and [qj, gj+1) using the following sub-steps.

D81. If ¢ < Q; < gj41, set (K33,155) = (K35,T5,). Calculate the retailer’s annual profit
JTP&Q) (m, K35, Ty using equation (3.16) and go to step D9.
D8.2. If Q; > gj+1, then T3, and K3, are not feasible solutions, set JTP(j)(m K3,,T5,) = —inf.

D8.3. If Q] < gj, then T3, and K3, are not feasible solutions. However, JTPEQ) (m, K35, T5,) at point T =
m has a maximum value. Thus, calculate K}, from algorithms in Appendix F. If K, is feasible,
go to step D8&.3.1; if not, go to step D8.3.2.

D8.3.1. If T, < K§,T5, < M;, set (K35,T55) = (K4, T5,), and calculate the retailer’s annual profit

JTPé]Q)(m K35, 15 ) using equation (3.16), go to step D9. Otherwise, To, and K, are not feasible

solutions, set JTP22 (m, K35, T55) = —inf, go to Step D9.

D8.3.2. Let K, =1 and T4, = q]/D If T, < K515 < Mj, set (K33,T55) = (1,q;/D), and calculate
the retailer’s annual profit JTPéJQ)(m K33, T55) using equation (3.16) and go to step D9. Otherwise,
T4, and KJ, are not feasible solutions, set JTP%Q)(m K33, T55) = —inf, go to step D9.

D9. If JTP(])(m K33, T55) > ¢;D, the optimal solutions K35 and Ty are found and stop. Otherwise, go to
step D10.

D10. Set (K35, T55) = (0,00), JTPY) (m, K335, Ts5) = ¢; D.

Acknowledgements. The authors are grateful to the Editor-in-chief, Associate editors and anonymous reviewers for their
valuable comments and suggestions to improve the quality of this article.

REFERENCES

[1] S.P. Aggarwal and C.K. Jaggi, Ordering policies of deteriorating items under permissible delay in payments. J. Oper. Res.
Soc. 46 (1995) 658—662.

[2] H.K. Alfares and A.M. Ghaithan, Inventory and pricing model with price-dependent demand, time-varying holding cost, and
quantity discounts. Comput. Ind. Eng. 94 (2016) 170-177.

[3] C.T. Chang, L.Y. Ouyang and J.T. Teng, An EOQ model for deteriorating items under supplier credits linked to ordering
quantity. Appl. Math. Modell. 27 (2003) 983-996.

[4] C.T. Chang, M.C. Cheng and L.Y. Ouyang, Optimal pricing and ordering policies for non-instantaneously deteriorating items
under order-size-dependent delay in payments. Appl. Math. Modell. 39 (2015) 747-763.

[5] S.C. Chen, L.E. Cérdenas-Barrén and J.T. Teng, Retailer’s economic order quantity when the supplier offers conditionally
permissible delay in payments link to order quantity. Int. J. Prod. Econ. 155 (2014) 284-291.

[6] Y.S. Chiu, S.C. Liu, C.L. Chiu and H.H. Chang, Mathematical modeling for determining the replenishment policy for EMQ
model with rework and multiple shipments. Math. Comput. Modell. 54 (2011) 2165-2174.

[7] K.J. Chung and J.J. Liao, The optimal ordering policy of the EOQ model under trade credit depending on the ordering
quantity from the DCF approach. Eur. J. Oper. Res. 196 (2009) 563-568.

[8] K.J. Chung, S.D. Lin and H.M. Srivastava, The inventory models under conditional trade credit in a supply chain system.
Appl. Math. Modell. 37 (2013) 10036-10052.

[9] S.K. Goyal, Economic order quantity under conditions of permissible delay in payments. J. Oper. Res. Soc. 36 (1985) 335-338.

[10] Y.F. Huang, Economic order quantity under conditionally permissible delay in payments. Eur. J. Oper. Res. 176 (2007)
911-924.

[11] C.K. Jaggi, S. Pareek, A. Khanna and R. Sharma, Credit financing in a two-warehouse environment for deteriorating items
with price-sensitive demand and fully backlogged shortages. Appl. Math. Modell. 38 (2014) 5315-5333.



1622 M. CHOUDHURY ET AL.

[12] A.M.M. Jamal, B.R. Sarker and S. Wang, An ordering policy for deteriorating items with allowable shortage and permissible
delay in payment. J. Oper. Res. Soc. 48 (1997) 826-833.

[13] P.N. Joglekar, Comments on “A quantity discount pricing model to increase vendor profits”. Manage. Sci. 34 (1988) 1391-1398.

[14] S. Khanra, S.K. Ghosh and K.S. Chaudhuri, An EOQ model for a deteriorating item with time dependent quadratic demand
under permissible delay in payment. Appl. Math. Comput. 218 (2011) 1-9.

[15] S. Khanra, B. Mandal and B. Sarkar, An inventory model with time dependent demand and shortages under trade credit
policy. Econ. Modell. 35 (2013) 349-355.

[16] S. Khanra, B. Mandal and B. Sarkar, A comparative study between inventory followed by shortages and shortages followed by
inventory under trade-credit policy. Int. J. Appl. Comput. Math. 1 (2015) 399-426.

[17] M. Khouja, The economic production lot size model under volume flexibility. Comput. Oper. Res. 22 (1995) 515-523.

[18] M. Khouja and A. Mehrez, Optimal inventory policy under different supplier credits. J. Manuf. Syst. 15 (1996) 334-339.

[19] M. Lashgari, A.A. Taleizadeh and S.J. Sadjadi, Ordering policies for non-instantaneous deteriorating items under hybrid partial
prepayment, partial trade credit and partial backordering. J. Oper. Res. Soc. 69 (2018) 1167—-1196.

[20] L.Y. Ouyang, C.H. Ho and C.H. Su, Optimal strategy for an integrated system with variable production rate when the freight
rate and trade credit are both linked to the order quantity. Int. J. Prod. Econ. 115 (2008) 151-162.

[21] L.Y. Ouyang, C.H. Ho and C.H. Su, An optimization approach for joint pricing and ordering problem in an integrated inventory
system with order-size dependent trade credit. Comput. Ind. Eng. 57 (2009) 920-930.

[22] L.Y. Ouyang, J.T. Teng, S.K. Goyal and C.T. Yang, An economic order quantity model for deteriorating items with partially
permissible delay in payments linked to order quantity. Eur. J. Oper. Res. 194 (2009) 418-431.

[23] LY. Ouyang, C.H. Ho, C.H. Su and C.T. Yang, An integrated inventory model with capacity constraint and order-size
dependent trade credit. Comput. Ind. Eng. 84 (2015) 133-143.

[24] J. Ray, A nonlinear EOQ model with the effect of trade credit. Int. J. Nonlin. Sci. Num. 17 (2014) 135-144.

[25] S.S. Sana and K.S. Chaudhuri, A deterministic EOQ model with delays in payments and price-discount offers. Eur. J. Oper.
Res. 184 (2008) 509-533.

[26] B. Sarkar, An EOQ model with delay in payments and time varying deterioration rate. Math. Comput. Modell. 55 (2012)
367-377.

[27] D. Seifert, R.W. Seifert and M. Protopappa-Sieke, A review of trade credit literature: opportunities for research in operations.
Eur. J. Oper. Res. 231 (2013) 245-256.

[28] N.H. Shah and L.E. Cérdenas-Barrén, Retailer’s decision for ordering and credit policies for deteriorating items when a supplier
offers order-linked credit period or cash discount. Appl. Math. Comput. 259 (2015) 569-578.

[29] A.A. Shaikh, M.A.A. Khan, G.C. Panda and I. Konstantaras, Price discount facility in an EOQ model for deteriorating items
with stock-dependent demand and partial backlogging. Int. Trans. Oper. Res. 26 (2019) 1365-1395.

[30] S.W. Shinn and H. Hwang, Optimal pricing and ordering policies for retailers under order-size-dependent delay in payments.
Comput. Oper. Res. 30 (2003) 35-50.

[31] A.A. Taleizadeh and D.W. Pentico, An economic order quantity model with partial backordering and all-units discount. Int.
J. Prod. Econ. 155 (2014) 172-184.

[32] P.S. Ting, Comments on the EOQ model for deteriorating items with conditional trade credit linked to order quantity in the
supply chain management. Eur. J. Oper. Res. 246 (2015) 108-118.

[33] S. Tiwari, L.E. Cdrdenas-Barrén, A.A. Shaikh and M. Goh, Retailer’s optimal ordering policy for deteriorating items under
order-size dependent trade credit and complete backlogging. Comput. Ind. Eng. 139 (2020) 1-12.

[34] H.L. Yang and C.T. Chang, A two-warehouse partial backlogging inventory model for deteriorating items with permissible
delay in payment under inflation. Appl. Math. Modell. 37 (2013) 2717-2726.

Subscribe to Open (S20)

A fair and sustainable open access model

This journal is currently published in open access under a Subscribe-to-Open model (S20). S20 is a transformative
model that aims to move subscription journals to open access. Open access is the free, immediate, online availability of
research articles combined with the rights to use these articles fully in the digital environment. We are thankful to our
subscribers and sponsors for making it possible to publish this journal in open access, free of charge for authors.

Please help to maintain this journal in open access!

Check that your library subscribes to the journal, or make a personal donation to the S20 programme, by contacting
subscribers@edpsciences.org

More information, including a list of sponsors and a financial transparency report, available at: https://www.
edpsciences.org/en/maths-s2o-programme



mailto:subscribers@edpsciences.org
https://www.edpsciences.org/en/maths-s2o-programme
https://www.edpsciences.org/en/maths-s2o-programme

	Introduction
	Notation and assumptions
	Notation
	Assumptions

	Model formulation
	Supplier's total profit per unit time
	Retailer's total profit per unit time
	The integrated total profit function

	Theoretical results
	Case 1-1: Mj KTTw 
	Case 1-2: bold0mu mumu 0<KTTw Mj0<KTTw Mj0<KTTw Mj0<KTTw Mj0<KTTw Mj0<KTTw Mj or bold0mu mumu 0<KTMj Tw0<KTMj Tw0<KTMj Tw0<KTMj Tw0<KTMj Tw0<KTMj Tw
	Case 2-1: bold0mu mumu Tw Mj KT Tw Mj KT Tw Mj KT Tw Mj KT Tw Mj KT Tw Mj KT  or bold0mu mumu Mj Tw KTMj Tw KTMj Tw KTMj Tw KTMj Tw KTMj Tw KT
	Case 2-2: bold0mu mumu Tw KTMj Tw KTMj Tw KTMj Tw KTMj Tw KTMj Tw KTMj 


	Numerical examples and sensitivity analysis
	Conclusion
	
	Find the roots ( K11 , T11  ), ( K12, T12  ), ( K21 , T21  ), and ( K22 , T22  )
	Case 1-1: bold0mu mumu Mj KTTw Mj KTTw Mj KTTw Mj KTTw Mj KTTw Mj KTTw 

	Find the optimal values of T# when K=1
	Case 1-1: bold0mu mumu Mj KTTwMj KTTwMj KTTwMj KTTwMj KTTwMj KTTw

	Find the optimal values of T' and K'
	Find the optimal values of T'' and K'' when optimal order quantity Qj[ qj ,qj+1  )
	Algorithm A: Determine (K11 ,T11) and JTP11(j) (m,K11, T11)
	Algorithm B: Determine (K12 ,T12 ) and JTP12( j ) ( m,K12 , T12  )
	Algorithm C: Determine (K21 ,T21) and JTP21( j ) ( m,K21 , T21  )
	Algorithm D: Determine (K22 ,T22) and JTP22( j ) ( m,K22 , T22  )
	References

