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AN INTEGRATED INVENTORY MODEL WITH CAPACITY CONSTRAINT
UNDER ORDER-SIZE DEPENDENT TRADE CREDIT, ALL-UNIT DISCOUNT

AND PARTIAL BACKORDERING

Mukunda Choudhury, Chandan Mahato and Gour Chandra Mahata*

Abstract. In today’s competitive business situation, the supplier frequently offers his or her retailers a
permissible delay period (i.e., trade credit) to stimulate sales. In addition, the capacity of any warehouse
is limited in practice, thus the retailer needs an additional rented warehouse (RW) to store the excess
units when the order quantity exceeds the capacity of the own warehouse (OW). Furthermore, with the
globalization of the marketing policy, the supplier may provide the retailer with a discounted price if
the quantity of purchase is large enough. Considering all of the factors mentioned above, in this paper
we study an integrated inventory model with capacity constraint under order-size dependent trade
credit and all-units discount. Shortages are allowed and partially backordered. In addition, the unit
production cost, which is a function of the production rate, is considered. An algorithm is developed
to determine the optimal production and replenishment policies for both the supplier and the retailer.
Finally, numerical examples are presented to illustrate theoretical results. Sensitivity analysis of the
major parameters are performed and some insights are obtained.
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1. Introduction

Recently, with the emergence of market globalization, supply chain (SC) management and control have
become a strategic focus of leading manufacturing companies. The ultimate objective of effective supply chain
management is the reduction of costs, improvement of cash flow, and increased operational efficiency across the
entire business through connecting inventory control, purchasing coordination, and sales order processing with
market demand. In a competitive business environment, the ability to integrate one’s supply chain is essential
for company success. Each partner of SC is indented to increase his/her business sharing; consequently, they
adopt tactics that help in it. Trade credit policy is one such a tactic. According to an estimate, more than 80%
of business-to-business (B2B) transactions in the United Kingdom (UK), and about 80% of United States (US)
firms offer their product on trade credit [27]. More recently, Seifert et al. further studied a sample of 3383 groups
of public US firms and concluded that company profitability is positively associated with payment delay. Such
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a worldwide practice encourages researchers to model the trade credit or permissible delay in payment while
developing the mathematical models.

Goyal [9] was the first to study the EOQ model under the condition of permissible delay in payment. Later,
Aggarwal and Jaggi [1] extended Goyal’s model to consider the deterministic inventory model with a constant
deterioration rate. Jamal et al. [12] further extended Aggarwal and Jaggi’s model to allow for shortages, which
makes the inventory model more applicable in practice. Ouyang et al. [23] expanded the model proposed by
Goyal to consider deteriorating items and partially permissible delays in payment associated with order quantity.
Yang et al. [34] investigated how the retailer determines the optimal ordering and payment policies when the
supplier offers cash discounts or delayed payments depending on the order quantity. Recently, Lashgari et al.
[19] investigated an inventory control problem for deteriorating items with two-level trade credit linked to order
quantity. Related articles include studies by Sana [25], Khanra et al. [14], Sarkar [26], Jaggi et al. [11], Khanra
et al. [15], Ray [24], Khanra et al. [16] and their references. All the inventory models above assume that the
length of the trade credit period is a fixed value and independent of the retailer’s order quantity.

However, in practice, some suppliers usually provide the retailer with a trade period depending on the
retailer’s order quantity to stimulate the size of orders and benefit from the economies of scale in purchasing,
manufacturing, and transportation. There is also, another kind of contract in which the suppliers offer shorter
credit periods or partial trade credit for a smaller quantity of orders and provide the retailers with a greater
delay period for more than a certain volume.

In this regard, Khouja and Mehrez [18] investigated the effect of different payment policies including trade
credit contracts on the optimal order quantity when the credit terms are linked to the quantity of orders. Under
order quantity-dependent trade credit and price-linked demand, Shinn and Hwang [30] formulated the retailer’s
mathematical EOQ model to acquire its optimal order size and price. Chang et al. [3] established an EOQ
model with deteriorating items where the supplier offers trade credit to the retailer only if the order quantity
is greater than or equal to a specified threshold. Ouyang et al. [23] formulated an integrated inventory model
of a supplier and a buyer when demand is price sensitive and the credit period offered by the supplier depends
on the buyer’s order size. Chiu et al. [6] formulated an integrated inventory model of a manufacturer and a
buyer with order-size dependent trade credit and imperfect quality products. Huang [10] extended the model of
Chang et al. [3] to consider partial trade credit if the order quantity is lower than a specific quantity. Ouyang
et al. [22] proposed an EOQ model for deteriorating items under partially permissible delay in payments to
be linked with order quantity as well. Other related studies including Chung et al. [7, 8], Chen et al. [5], Ting
[32], Shah et al. [28] and Tiwari et al. [33]. Clearly, there are two short comings in order-size dependent trade
credit terms schedule based on the only one order quantity threshold: (1) The supplier needs fully grasp all
kinds of information of the retailer (including market demand information, warehouse capacity information,
cost structure information, etc.) to set an appropriate order quantity threshold. (2) For the retailer, the trade
credit period with a single order quantity threshold forces the retailer to make two extreme choices: to enjoy a
delay in payment by making the order quantity greater than or equal to the predetermined quantity, or to pay
the full purchase amount immediately when the order quantity is less than the predetermined quantity. In the
above-mentioned studies, the trade credit period is provided based on only one predefined order quantity. But
this credit period based on one fixed order quantity consists of some drawbacks. For instance, in order to enjoy
the delay payment policy according to a single fixed order quantity compels the retailer to make the order size
greater than or equal to the fixed order quantity whatever the capacity of the warehouse of the retailer. On the
other hand, it is really difficult to define the predefined fixed order quantity for the suppliers considering the
different market demands of different retailers, and different capacities of the warehouses of different retailers.
Therefore, to remove these drawbacks, it is necessary to develop a more flexible trade credit policy with different
credit periods according to different fixed order quantities. Therefore, in order to reduce the difficulty of the
supplier decision-making and meanwhile increase the retailer’s choice, more flexible trade credit terms based on
different trade credit periods and different quantities thresholds emerge. However, to the best of our knowledge,
only a few researchers have paid attention to this kind of trade credit terms so far except Ouyang et al. [21]
and Chang et al. [4]. Additionally, a discount facility on the unit purchase cost is another effective strategy
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for the supplier to allure the retailer for enlarging order size. This discount facility offers a lower purchase cost
per unit for a sufficiently large enough order size. Consequently, to manipulate the opportunity of discounts
on the unit purchase cost, a higher trade credit period, the retailer wants to enlarge the order amount with
alacrity. In this case, a question may arise: Does the warehouse of the retailer always have sufficient capacity
to hold the entire purchased amount? In this circumstance, an additional RW is required to hold the surplus
purchased amounts than the capacity of OW. Moreover, shortages may appear and some customers may wait
for backorders to be fulfilled while some may turn to other places [12, 19]. Therefore, with more adaptation to
the real world, this study would introduce a flexible trade credit policy and discount on unit purchase cost based
on different quantity breaks interconnected with shortages and capacity constraints of the retailer’s warehouse
in the development of a specific inventory model.

Clearly, when the length of the trade credit period is linked to the order quantity rather than a given
parameter, the retailer is encouraged to order more products to enjoy a longer trade credit period. But if the
retailer’s own warehouse (OW) capacity is insufficient to store all the purchased units, the retailer needs a
rented warehouse (RW) to store the excess units. Consequently, the assumption of a single warehouse in the
classical EOQ model is no longer valid. The development of the two-warehouse inventory model will be more
in line with the real business environment.

Also, in today’s competitive global market, the supplier frequently offers the retailer a discounted price if
the purchased quantity is large enough. Several types of single-item quantity discount approaches are used in
practice and have been discussed in the literature, among which all-units discount is most widely used in the
practical business environment. Specific literature on all-units discounts, we recommend that readers refer to
the literature of Taleizadeh et al. [31], Alfares et al. [2] and Shaikh et al. [29]. In addition, to illustrate the
contribution of this study, a comparison between this study and previous studies in Table 1.

From Table 1, it is clearly seen that no inventory model in the supply chain developed in previous studies has
simultaneously considered capacity constraint, order-size dependent trade credit, all-units discount and partial
backordering. Combining these factors, this paper derives a single-supplier, single-retailer integrated inventory
model that considers the following features. (1) The retailer’s OW capacity is limited, which means if the
retailer’s order quantity surpasses his/her OW capacity, an additional RW is needed to store the excess units;
(2) the retailer receives an order-size dependent trade credit and an all-units discount from the supplier that also
depends on the order size; (3) shortages are allowed and partial backordering. Hence, in the present paper, we
have generalized many existing literatures, such as Goyal [9], Taleizadeh et al. [31] and Ouyang et al. [23], etc.
Next, we proved the existence of the optimal solution of the objective function and then the closed-form optimal
solution was found. After that, we designed an algorithm to find the global optimal solution of the problem
in an integrated manner. Finally, some numerical examples are presented to illustrate theoretical results and
managerial insights are given.

2. Notation and assumptions

The following notations and assumptions are used in formulating the model.

2.1. Notation

𝐴𝑟 Retailer’s ordering cost per order
𝐴𝑠 Supplier’s setup cost per setup
𝐷 Retailer’s demand rate
𝐹0 Fixed transportation cost per shipment
𝐹1 Unit transportation cost
𝑅 Supplier’s production rate, (> 𝐷)
ℎ𝑟 The stock holding cost per unit time in RW
ℎ𝑜 The stock holding cost per unit per unit time in OW
ℎ𝑠 Supplier’s holding cost rate, excluding interest charged
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𝑐(𝑅) Supplier’s unit production cost which is a convex function of 𝑅
𝑐𝑗 Retailer’s unit purchase cost for price range 𝑗
𝑝 Retailer’s unit selling price
𝜌 Supplier’s capacity utilization fraction i.e., 𝜌 = 𝐷

𝑅
𝑊 Maximum storage capacity of OW
𝑁 The retailer’s trade credit period offered by the suppliers
𝐼𝑆𝑝 Supplier’s capital opportunity cost per dollar per unit time
𝐼𝑅𝑐 Retailer’s capital opportunity cost per dollar per unit time
𝐼𝑅𝑒 Retailer’s interest earned per dollar per unit time
𝑄 Retailer’s order quantity
𝑇 Retailer’s replenishment cycle
𝑚 Number of shipments from the supplier to the retailer
𝑀 Number of shipments from the supplier to the retailer per production run, a positive integer
𝐾 Percentage of duration of period in which inventory level is positive
𝛽 Proportion of shortage that will be backordered
𝐶𝑔 The cost of goodwill loss for a unit of lost sale
𝐶𝑏 The backordering cost per unit per time due to shortages
𝜋𝑗 Lost sales cost per unit for price range 𝑗, including the lost profit and the goodwill loss

Table 1. Summarized and comparison of previous studies and this study.

Author(s) Trade credit
policy

Shortages Storage
facilities

Purchase
cost

Solution
method

Supply
chain type

Goyal [9] Fixed trade
credit

No Single
warehouse

Constant Closed-form One level

Jamal
et al. [12]

Fixed trade
credit

Completely
backordering

Single
warehouse

Constant Non-closed
form

One level

Yang et al.
[34]

Fixed trade
credit

Partial backo-
rdering

Two ware-
houses

Constant Non-closed
form

One level

Jaggi et al.
[11]

Fixed trade
credit

Completely
backordering

Two ware-
houses

Constant Non-closed
form

One level

Chen et al.
[16]

Conditional
trade credit

No Single
warehouse

Constant Closed-form One level

Taleizadeh
et al. [31]

No Partial backo-
rdering

Single
warehouse

Linked to
order

Closed-form One level

Ouyang
et al. [23]

Order-size
dependent
trade credit

No Two ware-
houses

Constant Closed-form One level

Chang
et al. [4]

Order-size
dependent
trade credit

No Single
warehouse

Constant Non-closed
form

One level

Alfares
et al. [2]

No No Single
warehouse

Linked to
order

Closed-form One level

Lashgari
et al. [19]

Fixed trade
credit

Partial backo-
rdering

Single
warehouse

Constant Closed-form One level

Shaikh
et al. [29]

No Partial backo-
rdering

Single
warehouse

Linked to
order

Non-closed
form

One level

This
paper

Order-size
dependent
trade credit

Partial backo-
rdering

Two ware-
houses

Linked to
order

Closed-form Two level
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2.2. Assumptions

(1) There are a single retailer and a single supplier in the inventory system. The retailer orders 𝑄 units in each
order. The supplier manufactures 𝑚𝑄 units in each production run to reduce the setup cost and delivers
𝑄 units to the retailer in each shipment.

(2) The unit production cost 𝑐(𝑅) is a convex function of the production rate 𝑅, and is given by 𝑐(𝑅) =
𝑐0𝑝 + 𝑐1𝑝

𝑅 + 𝑐2𝑝𝑅, where 𝑐0𝑝, 𝑐1𝑝 and 𝑐2𝑝 are non-negative real numbers. The fixed cost 𝑐0𝑝 can be regarded
as the material cost. The cost component 𝑐1𝑝

𝑅 decreases as the production rate increases, representing costs
such as labor cost or energy cost. The third term 𝑐2𝑝𝑅 denotes a cost component that increases with the
production rate such as an additional tool or die wear at high production rate. For notational simplicity,
𝑐(𝑅) and 𝑐 are used interchangeably in this paper. (This assumption has been used by Khouja [17], Ouyang
et al. [20] and others).

(3) Lead time is zero and replenishment rate is infinite.
(4) Demand rate is known and constant.
(5) Shortages are allowed and partially backordered, and the fraction of shortages is backordered at a constant

rate 𝛽.
(6) The OW has a limited capacity of 𝑊 units. When 𝑄 > 𝑊 , the retailer needs to rent an additional warehouse

to hold the excess units. In addition, we assume that the RW has an unlimited capacity. Moreover, in
practice, the RW usually offers better preserving facilities than the OW, thus this paper uses the relationship
ℎ𝑟 ≥ ℎ𝑜 to reflect this situation. Moreover, the products in RW are consumed first to reduce the retailer’s
holding cost.

(7) In actual commercial operations, the larger the retailer’s order quantity, the lower the purchase price. Here
we assume that the supplier offers an all-units quantity discount to the retailer. The purchase cost is a
decreasing step function of the order size 𝑄:

𝑐 =

⎧⎪⎪⎨⎪⎪⎩
𝑐1, 𝜂1 ≤ 𝑄 ≤ 𝜂2
𝑐2, 𝜂2 ≤ 𝑄 ≤ 𝜂3
...

...
𝑐𝜆, 𝜂𝜆 ≤ 𝑄 ≤ 𝜂𝜆+1

where 1 = 𝜂1 < 𝜂2 < . . . < 𝜂𝜆 < 𝜂𝜆+1 = ∞, each of which represents a boundary quantity. 𝑐𝜀 denotes the
unit purchase cost applicable to orders whose lot size 𝑄 falls in the interval 𝑐1 > 𝑐2 > . . . > 𝑐𝜆.

(8) The supplier offers a credit period 𝑁𝑚,𝑚 = 1, 2, . . . , 𝜇, which is also related to the retailer’s order quantity
and the relationship is given as follows:

𝑁 =

⎧⎪⎪⎨⎪⎪⎩
𝑁1 𝜗1 ≤ 𝑄 ≤ 𝜗2

𝑁2 𝜗2 ≤ 𝑄 ≤ 𝜗3

...
...

𝑁𝜇 𝜗𝜇 ≤ 𝑄 ≤ 𝜗𝜇+1

where 1 = 𝜗1 < 𝜗2 < . . . < 𝜗𝜇 < 𝜗𝜇+1 = ∞, each of which is a boundary values at which a specific credit
period is offered. 𝑁𝑚 denotes the credit period applicable to orders whose lot size 𝑄 falls in the interval
𝜗𝑚 to 𝜗𝑚+1 with 𝑁1 < 𝑁2 < . . . < 𝑁𝜇.

(9) From assumptions (3.7) and (3.8), the retailer is presented with an order-size dependent trade-credit sched-
ule and an all-units quantity discounts schedule. For convenience, we now combine the two discount sched-
ules into a restructured new discount schedule. Rearrange boundary values 𝜂1, 𝜂2, . . . , 𝜂𝜆 and 𝜗1, 𝜗2, . . . , 𝜗𝜇
in the order of small to large to form a new set of 𝑞1 < 𝑞2 < . . . , 𝑞𝑘. Then there only exists a unique
combination of purchase cost 𝑐𝑗 and credit period 𝑀𝑗 applicable to the lot size falling in the interval 𝑞𝑗 to
𝑞𝑗+1. The restructured discount schedule becomes
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𝑗 𝑄 𝑐 𝑀
1 𝑞1 = 1 ≤ 𝑄 < 𝑞2 𝑐1 𝑀1

2 𝑞2 ≤ 𝑄 < 𝑞3 𝑐2 𝑀2

...
...

...
...

𝑘 𝑞𝑘 ≤ 𝑄 < 𝑞𝑘+1 𝑐𝑘 𝑀𝑘

where 𝑘 ≤ 𝜆+ 𝜇, 1 = 𝑞1 < 𝑞2 < . . . < 𝑞𝑘 < 𝑞𝑘+1 = ∞. For 𝑞𝑗 ≤ 𝑄 ≤ 𝑞𝑗+1, 𝑗 = 1, 2, . . . , 𝑘, the purchase cost
and the length of credit period offered by supplier are 𝑐𝑗 and 𝑀𝑗 respectively, where 𝑐1 > 𝑐2 > . . . > 𝑐𝑘 > 0
and 0 < 𝑀1 < 𝑀2 < . . . < 𝑀𝑘.

(10) During the credit period, the account is not settled, the retailer sells the items and uses the sales revenues
to earn interest at a rate of 𝐼𝑅𝑒. At the end of the credit period, the retailer pays off all units bought, and
starts to pay for the interest charges on the items remaining in stock with at a rate of 𝐼𝑅𝑐.

(11) By offering trade credit to the retailer, the supplier bears opportunity cost at the rate of 𝐼𝑆𝑝 for the offered
credit period.

3. Model formulation

In this section, we first establish the total profit functions for the supplier and the retailer respectively, and
then make some appropriate combination to obtain the supplier–retailer integrated total profit function.

3.1. Supplier’s total profit per unit time

The supplier produces a batch quantity of 𝑚𝑄 units in each production run; hence, the production cycle
length for the supplier is 𝑚𝑄

𝐷 = 𝑚𝑇 . The supplier’s total profit per unit time is the total sales revenue minus the
total relevant cost (which consists of the production cost, setup cost, inventory holding cost and opportunity
cost for offering trade credit). These components are evaluated as follows:

(a) Sales revenue: the sales revenue per unit time is given by 𝑐𝑗𝐷[𝐾 + (1−𝐾)𝛽].
(b) Production cost: the production cost per unit time is given by 𝑐𝐷[𝐾 + (1−𝐾)𝛽].
(c) Setup cost: the supplier manufactures 𝑚𝑄 in one production run. The cycle length is 𝑚𝑄/𝐷 = 𝑚𝑇 . There-

fore, the setup cost per unit time is 𝐴𝑠/(𝑚𝑇 ).
(d) Holding cost: the supplier’s inventory per cycle can be calculated by subtracting the retailer’s accumulated

inventory level from the supplier’s accumulated inventory level. Hence, the supplier’s average inventory per
unit time is given by{︁

𝑚𝑄
[︁
𝑄
𝑅 + (𝑚− 1)𝑄𝐷

]︁
− 𝑚2𝑄2

2𝑅 − 𝑄2

𝐷 [1 + 2 + . . .+ (𝑚− 1)]
}︁

𝑚𝑄
𝐷

=
𝑄

2𝑅
[(𝑚− 1)(𝑅−𝐷) +𝐷]

=
𝐷𝑇

2
[(𝑚− 1)(1− 𝜌) + 𝜌],

where 𝜌 = 𝐷
𝑅 .

Considering the inventory holding cost, it can be split into two components: real holding cost and opportunity
holding cost. The first component relates to the actual ownership of the goods and includes such items as
storage and maintenance, which are accounted for on a per-unit-of-inventory basis. The second component is
the capital locked with the inventory. On other words, the opportunity holding cost is charged on the money
value of the inventory on hand. Because the production cost per unit is 𝑐, the holding cost rate excluding
interest charges is ℎ𝑠, hence the real holding cost per unit per unit time is 𝑐×ℎ𝑠. Also, the supplier’s capital
opportunity cost per dollar per unit time is 𝐼𝑆𝑝, we can get the opportunity holding cost per unit per unit
time as 𝑐× 𝐼𝑆𝑝.
Therefore, the supplier’s holding cost per unit time is 𝑐(ℎ𝑠 + 𝐼𝑆𝑝)𝐷𝑇 [(𝑚− 1)(1− 𝜌) + 𝜌]/2.
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Note that a similar derivation in the supplier’s average inventory using a manufacturing lot size of 𝑚𝑄 units
can be found in Joglekar [13].

(e) Opportunity cost: offering a credit period 𝑀𝑖 to the retailer, the opportunity cost per unit time is
𝑐𝑗𝐼𝑆𝑝𝑚𝑄𝑀𝑗/(𝑚𝑇 ) = 𝑐𝑗𝐼𝑆𝑝𝐷[𝐾 + (1−𝐾)𝛽]𝑀𝑗 .

Consequently, when the supplier provides a given credit period 𝑀𝑗 , 𝑗 = 1, 2, . . . , 𝑘 to the retailer, the total
profit per unit time (denoted by STP𝑗(𝑚)) is a function of 𝑚 and can be expressed as

STP𝑗(𝑚,𝐾) = sales revenue − production cost − setup cost − holding cost − opportunity cost

= (𝑐𝑗 − 𝑐)𝐷[𝐾 + (1−𝐾)𝛽]− 𝐴𝑠
𝑚𝑇

− 𝑐(ℎ𝑠 + 𝐼𝑆𝑝)𝐷𝑇 [(𝑚− 1)(1− 𝜌) + 𝜌]
2

− 𝑐𝑗𝐼𝑆𝑝𝐷[𝐾 + (1−𝐾)𝛽]𝑀𝑗 . (3.1)

3.2. Retailer’s total profit per unit time

Suppose the retailer’s order size of the product, without loss of generality, is ∈ [𝑞𝑗 , 𝑞𝑗+1) for the entire cycle
length 𝑇 . In accordance with the assumptions, the purchase cost offered by supplier is 𝑐𝑗 and the length of
the credit period is 𝑀𝑗 for the purchase cost. The retailer receives the products at the starting time 𝑡 = 0 of
the inventory system and the stock level remains positive during the time interval [0,𝐾𝑇 ] after fulfilling the
customer’s demand. Shortly after, shortages are allowed and partially backlogged with a constant rate 𝛽 during
time interval [𝐾𝑇, 𝑇 ]. Therefore, the retailer’s order size for the cycle length 𝑇 is 𝑄 = 𝐾𝑇𝐷+(1−𝐾)𝛽𝐷𝑇 . The
duration for consuming the maximum storage capacity, 𝑊 , of the retailer OW is obtained as: 𝑇𝑊 = 𝑊/𝐷. Based
on the assumptions, if the remaining number of products of the retailer’s total ordered quantities after fulfilling
the backorders 𝐾𝐷𝑇 exceeds the capacity of the OW, i.e., 𝑊 , then the retailer needs a rented warehouse to
keep the excess amount.

As to the retailer, the annual total profit is composed of sales revenue, ordering cost, purchasing cost, holding
cost, back ordering cost, opportunity cost due to lost sales, interest charged and the interest earned. Now the
identical terms of the components of the retailer’s net profit per unit of time are computed as follows:

Annual sales revenue: 𝑝𝐷[𝐾 + (1−𝐾)𝛽].
Annual ordering cost: 𝐴𝑟/𝑇.
Annual purchasing cost: 𝑐𝑗𝐷[𝐾 + (1−𝐾)𝛽].
Annual transportation cost: (𝐹0 + 𝐹1𝑄)/𝑇 = 𝐹0

𝑇 + 𝐹1𝐷[𝐾 + (1−𝐾)𝛽].
Annual holding cost: if the retailer’s order quantity 𝑄 ≤𝑊 (i.e., 𝑇 ≤ 𝑇𝑤), the retailer keeps all the products
in his/her OW. Otherwise, the retailer keeps the excess amount than 𝑊 , i.e., 𝐾𝐷𝑇−𝑊 in a rented warehouse
(RW). Thus, holding cost per unit per unit of time is computed as follows:⎧⎪⎪⎨⎪⎪⎩

ℎ0𝐷𝐾
2𝑇

2
𝑇 ≤ 𝑇𝑤 (3.2a)

ℎ𝑟(𝐾𝐷𝑇 −𝑊 )2

2𝐷𝑇
+
ℎ0(2𝐷𝐾𝑇 −𝑊 )𝑊

2𝐷𝑇
𝑇 ≥ 𝑇𝑤. (3.2b)

Annual backordering cost: 𝑐𝑏𝛽𝐷(1−𝑘)2𝑇
2 .

Annual opportunity cost due to lost sales: 𝑐𝑔𝐷(1−𝐾)(1− 𝛽).

The non-identical terms of the components of the retailer’s net profit per unit of time are interest charged per
unit time and interest earned per unit time due to the credit period facilities from the supplier to the retailer.
There are two possibilities for the interest earned and interest charged according to the values of duration of
the positive inventory level 𝐾𝑇 and allowed trade credit period 𝑀𝑗 . The possible situations are: situation 1:
𝐾𝑇 ≤𝑀𝑗 and situation 2: 𝐾𝑇 ≥𝑀𝑗 , which are depicted in Figure 1. We will discuss them separately.

Situation 1: 𝐾𝑇 ≤𝑀𝑗(𝑗 = 1, 2, . . . 𝑘)
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Figure 1. Interest charged and interest earned under various situations. (a) 𝐾𝑇 ≤ 𝑀𝑗 . (b)
𝐾𝑇 ≥𝑀𝑗 .

In this situation, the retailer’s trade credit period 𝑀𝑗 is longer than or equal to the positive inventory level
length 𝐾𝑇 (see Fig. 1a). It indicates that the retailer has sold all the stock at the time 𝑀𝑗 . Therefore, there is
no interest charged. On the other hand, the retailer’s interest earned per cycle contains two parts: (1) during the
period [0,𝐾𝑇 ], the retailer can obtain the interest earned on the sales revenue received (including sale revenues
from backlogged); and (2) the retailer can use all the sales revenue to earn interest during the period, [𝐾𝑇,𝑀𝑗 ].
Therefore, the annual total interest earned is[︁
𝑝𝐼𝑅𝑒

∫︀𝐾𝑇
0

𝐷𝑡d𝑡+ 𝑝𝐼𝑅𝑒𝐷𝐾𝑇 (𝑀𝑗 −𝐾𝑇 ) + 𝑝𝐼𝑅𝑒(1−𝐾)𝛽𝐷𝑇𝑀𝑗

]︁
𝑇

= 𝑝𝐼𝑅𝑒𝐷

[︂
𝐾

(︂
𝑀𝑗 −

𝐾𝑇

2

)︂
+ (1−𝐾)𝛽𝑀𝑗

]︂
.

(3.3)

Situation 2: 𝐾𝑇 ≥𝑀𝑗(𝑗 = 1, 2, . . . 𝑘)

In this situation, the retailer’s delay payment period 𝑀𝑗 is shorter than or equal to the positive inventory
level length 𝐾𝑇 (see Fig. 1b), it indicates that the retailer has some inventory available after due date 𝑀𝑗 .
Thus, during the period [𝑀𝑗 ,𝐾𝑇 ], the retailer must pay the interest for the items in stock, then the annual
total interest charged is [︁

𝑐𝑗𝐼𝑅𝑐
∫︀𝐾𝑇
𝑀𝑗

𝐷(𝐾𝑇 − 𝑡) d𝑡
]︁

𝑇
=
𝑐𝑗𝐼𝑅𝑐𝐷(𝐾𝑇 −𝑀𝑗)

2

2𝑇
· (3.4)

Also, during the period [0,𝑀𝑗 ], the retailer can use the sales revenue to gain interest. Hence, the annual total
interest earned is [︁

𝑝𝐼𝑅𝑒
∫︀𝑀𝑗

0
𝐷𝑡d𝑡+ 𝑝𝐼𝑅𝑒(1−𝐾)𝛽𝐷𝑇𝑀𝑗

]︁
𝑇

= 𝑝𝐼𝑅𝑒𝐷

[︃
𝑀2
𝑗

2𝑇
+ (1−𝐾)𝛽𝑀𝑗

]︃
. (3.5)

Combining the above results, for given 𝑀𝑗 , 𝑗 = 1, 2, . . . , 𝑘, and based on the length of 𝐾𝑇 and 𝑇𝑤, the retailer’s
annual profit function under various situations can be expressed as
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ATP(𝑗)
𝑖 (𝐾,𝑇 )(𝑖 = 1, 2) = annual sales revenue – annual ordering cost – annual purchasing cost – annual

transportation cost – annual holding cost – annual backordering cost – annual opportunity cost due to lost sales
– annual interest charged + annual interest earned.

ATP(𝑗)
1 (𝐾,𝑇 ) =

{︃
ATP(𝑗)

11 (𝐾,𝑇 ), 𝑀𝑗 ≤ 𝐾𝑇 ≤ 𝑇𝑤

ATP(𝑗)
12 (𝐾,𝑇 ), 0 < 𝐾𝑇 ≤ 𝑇𝑤 ≤𝑀𝑗 or 0 < 𝐾𝑇 ≤𝑀𝑗 ≤ 𝑇𝑤

(3.6)

ATP(𝑗)
2 (𝐾,𝑇 ) =

{︃
ATP(𝑗)

21 (𝐾,𝑇 ), 𝑇𝑤 ≤𝑀𝑗 ≤ 𝐾𝑇 or 𝑀𝑗 ≤ 𝑇𝑤 ≤ 𝐾𝑇

ATP(𝑗)
22 (𝐾,𝑇 ), 𝑇𝑤 ≤ 𝐾𝑇 ≤𝑀𝑗

(3.7)

where,

ATP(𝑗)
11 (𝐾,𝑇 ) = 𝑝𝐷[𝐾 + (1−𝐾)𝛽]− 𝐴𝑟

𝑇
− 𝑐𝑗𝐷[𝐾 + (1−𝐾)𝛽]−

(︂
𝐹0

𝑇
+ 𝐹1𝐷[𝐾 + (1−𝐾)𝛽]

)︂
− ℎ0𝐷𝐾

2𝑇

2
− 𝑐𝑏𝛽𝐷(1− 𝑘)2𝑇

2
− 𝑐𝑔𝐷(1−𝐾)(1− 𝛽)− 𝑐𝑗𝐼𝑅𝑐𝐷(𝐾𝑇 −𝑀𝑗)

2

2𝑇

+ 𝑝𝐼𝑅𝑒𝐷

[︃
𝑀2
𝑗

2𝑇
+ (1−𝐾)𝛽𝑀𝑗

]︃
(3.8)

ATP(𝑗)
12 (𝐾,𝑇 ) = 𝑝𝐷[𝐾 + (1−𝐾)𝛽]− 𝐴𝑟

𝑇
− 𝑐𝑗𝐷[𝐾 + (1−𝐾)𝛽]−

(︂
𝐹0

𝑇
+ 𝐹1𝐷[𝐾 + (1−𝐾)𝛽]

)︂
− ℎ0𝐷𝐾

2𝑇

2
− 𝑐𝑏𝛽𝐷(1− 𝑘)2𝑇

2
− 𝑐𝑔𝐷(1−𝐾)(1− 𝛽)

+ 𝑝𝐼𝑅𝑒𝐷

[︂
𝐾

(︂
𝑀𝑗 −

𝐾𝑇

2

)︂
+ (1−𝐾)𝛽𝑀𝑗

]︂
(3.9)

ATP(𝑗)
21 (𝐾,𝑇 ) = 𝑝𝐷[𝐾 + (1−𝐾)𝛽]− 𝐴𝑟

𝑇
− 𝑐𝑗𝐷[𝐾 + (1−𝐾)𝛽]−

(︂
𝐹0

𝑇
+ 𝐹1𝐷[𝐾 + (1−𝐾)𝛽]

)︂
− ℎ𝑟(𝐾𝐷𝑇 −𝑊 )2

2𝐷𝑇
− ℎ0(2𝐷𝐾𝑇 −𝑊 )𝑊

2𝐷𝑇
− 𝑐𝑏𝛽𝐷(1− 𝑘)2𝑇

2
− 𝑐𝑔𝐷(1−𝐾)(1− 𝛽)

− 𝑐𝑗𝐼𝑅𝑐𝐷(𝐾𝑇 −𝑀𝑗)
2

2𝑇
+ 𝑝𝐼𝑅𝑒𝐷

[︃
𝑀2
𝑗

2𝑇
+ (1−𝐾)𝛽𝑀𝑗

]︃
(3.10)

ATP(𝑗)
22 (𝐾,𝑇 ) = 𝑝𝐷[𝐾 + (1−𝐾)𝛽]− 𝐴𝑟

𝑇
− 𝑐𝑗𝐷[𝐾 + (1−𝐾)𝛽]−

(︂
𝐹0

𝑇
+ 𝐹1𝐷[𝐾 + (1−𝐾)𝛽]

)︂
− ℎ𝑟(𝐾𝐷𝑇 −𝑊 )2

2𝐷𝑇
− ℎ0(2𝐷𝐾𝑇 −𝑊 )𝑊

2𝐷𝑇
− 𝑐𝑏𝛽𝐷(1− 𝑘)2𝑇

2
− 𝑐𝑔𝐷(1−𝐾)(1− 𝛽)

+ 𝑝𝐼𝑅𝑒𝐷

[︂
𝐾

(︂
𝑀𝑗 −

𝐾𝑇

2

)︂
+ (1−𝐾)𝛽𝑀𝑗

]︂
. (3.11)

Here, equation (3.6) represents the retailer’s annual profit function when he or she does not need to rent an
additional warehouse (i.e., 𝐾𝑇 ≤ 𝑇𝑤). More specifically, for 𝑀𝑗 ≤ 𝐾𝑇 ≤ 𝑇𝑤, it indicates that the retailer
needs to use equations (3.4) and (3.5) to calculate interest charged and interest earned, and the holding cost
is referred to equation (3.2a). Therefore, the retailer’s annual profit function in this case can be described as
equation (3.7). For 0 < 𝐾𝑇 ≤ 𝑇𝑤 ≤ 𝑀𝑗 or 0 < 𝐾𝑇 ≤ 𝑀𝑗 ≤ 𝑇𝑤, it indicates that there is no interest charged
and the retailer needs to use equation (3.2) to calculate interest earned, and the holding cost is referred to
equation (3.2a). Therefore, the retailer’s annual profit function in this case can be described as equation (3.9).

Similarly, equation (3.7) represents the retailer’s annual profit function when he or she need to rent an
additional warehouse (i.e., 𝐾𝑇 ≥ 𝑇𝑤). For 𝑇𝑤 ≤ 𝑀𝑗 ≤ 𝐾𝑇 or 𝑀𝑗 ≤ 𝑇𝑤 ≤ 𝐾𝑇 , it indicates that the retailer
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needs to use equations (3.4) and (3.5) to calculate interest charged and interest earned, and the holding cost
is referred to equation (3.2b). Therefore, the retailer’s annual profit function in this case can be described as
equation (3.10). For 𝑇𝑤 ≤ 𝐾𝑇 ≤𝑀𝑗 , it indicates that there is no interest charged and the retailer needs to use
equation (3.3) to calculate interest earned, and the holding cost is referred to equation (3.2b). Therefore, the
retailer’s annual profit function in this case can be described as equation (3.11).

3.3. The integrated total profit function

Once the supplier and retailer have established a long-term strategic partnership and are treated as an
integrated supply chain system and decide to share resources with each other to undertake mutually beneficial
cooperation, the joint total profit per unit time can be obtained as the sum of the supplier’s and the retailer’s
total profit per unit time and is a function of 𝑚, 𝐾, and 𝑇 as follows:

JTP(𝑗)(𝑚,𝐾, 𝑇 ) =

{︃
JTP(𝑗)

1 (𝑚,𝐾, 𝑇 )

JTP(𝑗)
2 (𝑚,𝐾, 𝑇 )

(3.12)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ATP(𝑗)
1 + STP𝑗 =

⎧⎪⎨⎪⎩
JTP(𝑗)

11 (𝑚,𝐾, 𝑇 ) = ATP(𝑗)
11 (𝐾,𝑇 ) + STP𝑗(𝑚,𝐾), 𝑀𝑗 ≤ 𝐾𝑇 ≤ 𝑇𝑤

JTP(𝑗)
12 (𝑚,𝐾, 𝑇 ) = ATP(𝑗)

12 (𝐾,𝑇 ) + STP𝑗(𝑚,𝐾), 0 < 𝐾𝑇 ≤ 𝑇𝑤 ≤𝑀𝑗 or
0 < 𝐾𝑇 ≤𝑀𝑗 ≤ 𝑇𝑤

ATP(𝑗)
2 + STP𝑗 =

⎧⎨⎩JTP(𝑗)
21 (𝑚,𝐾, 𝑇 ) = ATP(𝑗)

21 (𝐾,𝑇 ) + STP𝑗(𝑚,𝐾), 𝑇𝑤 ≤𝑀𝑗 ≤ 𝐾𝑇 or
𝑀𝑗 ≤ 𝑇𝑤 ≤ 𝐾𝑇

JTP(𝑗)
22 (𝑚,𝐾, 𝑇 ) = ATP(𝑗)

22 (𝐾,𝑇 ) + STP𝑗(𝑚,𝐾), 𝑇𝑤 ≤ 𝐾𝑇 ≤𝑀𝑗

where

JTP(𝑗)
11 (𝑚,𝐾, 𝑇 ) = 𝑝𝐷[𝐾 + (1−𝐾)𝛽]− 𝐴𝑟

𝑇
− 𝑐𝑗𝐷[𝐾 + (1−𝐾)𝛽]−

(︂
𝐹0

𝑇
+ 𝐹1𝐷[𝐾 + (1−𝐾)𝛽]

)︂
− ℎ0𝐷𝐾

2𝑇

2
− 𝑐𝑏𝛽𝐷(1− 𝑘)2𝑇

2
− 𝑐𝑔𝐷(1−𝐾)(1− 𝛽)− 𝑐𝑗𝐼𝑅𝑐𝐷(𝐾𝑇 −𝑀𝑗)

2

2𝑇

+ 𝑝𝐼𝑅𝑒𝐷

[︃
𝑀2
𝑗

2𝑇
+ (1−𝐾)𝛽𝑀𝑗

]︃
+ (𝑐𝑗 − 𝑐)𝐷[𝐾 + (1−𝐾)𝛽]− 𝐴𝑠

𝑚𝑇

− 𝑐(ℎ𝑠 + 𝐼𝑆𝑝)𝐷𝑇 [(𝑚− 1)(1− 𝜌) + 𝜌]
2

− 𝑐𝑗𝐼𝑆𝑝𝐷[𝐾 + (1−𝐾)𝛽]𝑀𝑗 (3.13)

JTP(𝑗)
12 (𝑚,𝐾, 𝑇 ) = 𝑝𝐷[𝐾 + (1−𝐾)𝛽]− 𝐴𝑟

𝑇
− 𝑐𝑗𝐷[𝐾 + (1−𝐾)𝛽]−

(︂
𝐹0

𝑇
+ 𝐹1𝐷[𝐾 + (1−𝐾)𝛽]

)︂
− ℎ0𝐷𝐾

2𝑇

2
− 𝑐𝑏𝛽𝐷(1− 𝑘)2𝑇

2
− 𝑐𝑔𝐷(1−𝐾)(1− 𝛽)

+ 𝑝𝐼𝑅𝑒𝐷

[︂
𝐾

(︂
𝑀𝑗 −

𝐾𝑇

2

)︂
+ (1−𝐾)𝛽𝑀𝑗

]︂
+ (𝑐𝑗 − 𝑐)𝐷[𝐾 + (1−𝐾)𝛽]− 𝐴𝑠

𝑚𝑇

− 𝑐(ℎ𝑠 + 𝐼𝑆𝑝)𝐷𝑇 [(𝑚− 1)(1− 𝜌) + 𝜌]
2

− 𝑐𝑗𝐼𝑆𝑝𝐷[𝐾 + (1−𝐾)𝛽]𝑀𝑗 (3.14)

JTP(𝑗)
21 (𝑚,𝐾, 𝑇 ) = 𝑝𝐷[𝐾 + (1−𝐾)𝛽]− 𝐴𝑟

𝑇
− 𝑐𝑗𝐷[𝐾 + (1−𝐾)𝛽]−

(︂
𝐹0

𝑇
+ 𝐹1𝐷[𝐾 + (1−𝐾)𝛽]

)︂
− ℎ𝑟(𝐾𝐷𝑇 −𝑊 )2

2𝐷𝑇
− ℎ0(2𝐷𝐾𝑇 −𝑊 )𝑊

2𝐷𝑇
− 𝑐𝑏𝛽𝐷(1− 𝑘)2𝑇

2
− 𝑐𝑔𝐷(1−𝐾)(1− 𝛽)

− 𝑐𝑗𝐼𝑅𝑐𝐷(𝐾𝑇 −𝑀𝑗)
2

2𝑇
+ 𝑝𝐼𝑅𝑒𝐷

[︃
𝑀2
𝑗

2𝑇
+ (1−𝐾)𝛽𝑀𝑗

]︃
+ (𝑐𝑗 − 𝑐)𝐷[𝐾 + (1−𝐾)𝛽]− 𝐴𝑠

𝑚𝑇
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− 𝑐(ℎ𝑠 + 𝐼𝑆𝑝)𝐷𝑇 [(𝑚− 1)(1− 𝜌) + 𝜌]
2

− 𝑐𝑗𝐼𝑆𝑝𝐷[𝐾 + (1−𝐾)𝛽]𝑀𝑗 (3.15)

JTP(𝑗)
22 (𝑚,𝐾, 𝑇 ) = 𝑝𝐷[𝐾 + (1−𝐾)𝛽]− 𝐴𝑟

𝑇
− 𝑐𝑗𝐷[𝐾 + (1−𝐾)𝛽]−

(︂
𝐹0

𝑇
+ 𝐹1𝐷[𝐾 + (1−𝐾)𝛽]

)︂
− ℎ𝑟(𝐾𝐷𝑇 −𝑊 )2

2𝐷𝑇
− ℎ0(2𝐷𝐾𝑇 −𝑊 )𝑊

2𝐷𝑇
− 𝑐𝑏𝛽𝐷(1− 𝑘)2𝑇

2
− 𝑐𝑔𝐷(1−𝐾)(1− 𝛽)

+ 𝑝𝐼𝑅𝑒𝐷

[︂
𝐾

(︂
𝑀𝑗 −

𝐾𝑇

2

)︂
+ (1−𝐾)𝛽𝑀𝑗

]︂
+ (𝑐𝑗 − 𝑐)𝐷[𝐾 + (1−𝐾)𝛽]− 𝐴𝑠

𝑚𝑇

− 𝑐(ℎ𝑠 + 𝐼𝑆𝑝)𝐷𝑇 [(𝑚− 1)(1− 𝜌) + 𝜌]
2

− 𝑐𝑗𝐼𝑆𝑝𝐷[𝐾 + (1−𝐾)𝛽]𝑀𝑗 . (3.16)

4. Theoretical results

In this section, the closed form optimal solutions for the decision variables are formulated to maximize the
joint total profit function per unit time in (3.13)–(3.16) by the similar fashion which is presented in Lashgari
et al. [19]. Now the closed form solutions for each case are derived as follows:

Firstly, for fixed 𝑀𝑗 , 𝑗 = 1, 2, . . . , 𝑘, and any given (𝐾,𝑇 ), we temporarily relax the integer requirement on
𝑚 and take the second partial derivative of JTP(𝑗)

𝑖 (𝑚,𝐾, 𝑇 ), 𝑖 = 1, 2 with respect to 𝑚 which gives

𝜕2JTP(𝑗)
𝑖 (𝑚,𝐾, 𝑇 )
𝜕𝑚2

=
𝜕2JTP(𝑗)

𝑖𝑘 (𝑚,𝐾, 𝑇 )
𝜕𝑚2

=
−2𝐴𝑠
𝑚3𝑇

< 0, 𝑖, 𝑘 = 1, 2. (4.1)

It is obvious from equation (4.1) that for any given (𝐾,𝑇 ), JTP(𝑗)
𝑖 (𝑚,𝐾, 𝑇 ) is a concave function in 𝑚, where

𝑖 = 1, 2 for any given (𝐾,𝑇 ). Hence, searching for the optimal solution of shipment number 𝑚 is reduced to
find a local optimal solution.

Next, for fixed 𝑚, we will discuss how to find the optimal solution (𝐾,𝑇 ). There are four casesarising as
follows:

(i) 𝑀𝑗 ≤ 𝐾𝑇 ≤ 𝑇𝑤,
(ii) 0 < 𝐾𝑇 ≤ 𝑇𝑤 ≤𝑀𝑗 or 0 < 𝐾𝑇 ≤𝑀𝑗 ≤ 𝑇𝑤,
(iii) 𝑇𝑤 ≤𝑀𝑗 ≤ 𝐾𝑇 or 𝑀𝑗 ≤ 𝑇𝑤 ≤ 𝐾𝑇 , and
(iv) 𝑇𝑤 ≤ 𝐾𝑇 ≤𝑀𝑗 .

4.1. Case 1-1: 𝑀𝑗 ≤ 𝐾𝑇 ≤ 𝑇𝑤

Maximizing equation (3.13) is equivalent to minimizing the following function

JTP(𝑗)
11 (𝑚,𝐾, 𝑇 ) = 𝜙111𝐾

2𝑇 − 𝜙112𝐾𝑇 − 𝜙113𝐾 + 𝜙114𝑇 +
𝜙115

𝑇
+ 𝜙116 (4.2)

where 𝜙111, 𝜙112, 𝜙113, 𝜙114, 𝜙115, and 𝜙115 are given in Appendix A.
First, for any given 𝐾, take the first and second derivatives of JTP(𝑗)

11 (𝑚,𝐾, 𝑇 ) with respect to 𝑇 , we obtain
equations (4.3) and (4.4), respectively

𝜕JTP(𝑗)
11 (𝑚,𝐾, 𝑇 )
𝜕𝑇

= 𝐾2𝜙111 −𝐾𝜙112 + 𝜙114 −
𝜙115

𝑇 2
(4.3)

𝜕2JTP(𝑗)
11 (𝑚,𝐾, 𝑇 )
𝜕𝑇 2

=
2𝜙115

𝑇 3
· (4.4)

From equation (4.4), if 𝜙115 > 0, then 𝜕2JTP
(𝑗)
11 (𝑚,𝐾,𝑇 )
𝜕𝑇 2 > 0, i.e., JTP(𝑗)

11 (𝑚,𝐾, 𝑇 ) is strictly convex function of

𝑇 . Setting 𝜕JTP
(𝑗)
11 (𝑚,𝐾,𝑇 )
𝜕𝑇 = 0 yields
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𝑇 =
√︂

𝜙115

𝜓11(𝑚,𝐾)
(4.5)

where, 𝜓11(𝑚,𝐾) = 𝐾2𝜙111 −𝐾𝜙112 + 𝜙114.
The discriminant of 𝜓11(𝑚,𝐾),

∆ = 𝜙2
112 − 4𝜙111𝜙114 = −𝐷2[𝑐𝑏𝛽(ℎ0 + 𝑐𝑗𝐼𝑅𝑐) + (ℎ0 + 𝑐𝑏𝛽 + 𝑐𝑗𝐼𝑅𝑐)𝑐(ℎ𝑠 + 𝐼𝑆𝑝){(𝑚− 1)(1− 𝜌) + 𝜌}] < 0,

is always negative. Thus 𝜓11(𝑚,𝐾) has no roots and it is always either negative or positive. Since 𝜓11(𝑚, 0) =
𝜙114 = 𝐷

2 [𝑐𝑏𝛽 + 𝑐(ℎ𝑠 + 𝐼𝑆𝑝){(𝑚− 1)(1− 𝜌) + 𝜌}] > 0, we can conclude that 𝜓11(𝑚,𝐾) is strictly positive in

[0, 1]. So, equation (4.12) is feasible, and for all 𝐾 ∈ [0, 1], there is always a unique 𝑇 =
√︁

𝜙115
𝜓11(𝑚,𝐾) such that

minimizes JTP(𝑗)
11 (𝑚,𝐾, 𝑇 ).

Substituting equation (4.4) into equation (4.2)
(︁
i.e., 𝑇 =

√︁
𝜙115

𝜓11(𝑚,𝐾) into JTP(𝑗)
11 (𝑚,𝐾, 𝑇 )

)︁
leads to

JTP(𝑗)
11 (𝑚,𝐾) = 2

√︀
𝜙115𝜓11(𝑚,𝐾)− 𝜙113𝐾 + 𝜙116. (4.6)

Taking the first and second derivatives of equation (4.6) with respect to 𝐾, we have

JTP′(𝑗)11 (𝑚,𝐾) =
√
𝜙115

(︃
𝜓′11(𝑚,𝐾)√︀
𝜓11(𝑚,𝐾)

)︃
− 𝜙113 =

√
𝜙115

(︃
2𝜓11(𝑚,𝐾)′′11(𝑚,𝐾)− (𝜓′11(𝑚,𝐾))2

2(𝜓11(𝑚,𝐾))
3
2

)︃

=
√
𝜙115

(︃
4𝜙111

(︀
𝐾2𝜙111 −𝐾𝜙112 + 𝜙114

)︀
− (2𝐾𝜙111 − 𝜙112)2

2(𝜓11(𝑚,𝐾))
3
2

)︃

=
√
𝜙115

(︃
4𝜙111𝜙114 − 𝜙2

112

2(𝜓11(𝑚,𝐾))
3
2

)︃

=
√
𝜙115𝐷

2[𝑐𝑏𝛽(ℎ0 + 𝑐𝑗𝐼𝑅𝑐) + (ℎ0 + 𝑐𝑏𝛽 + 𝑐𝑗𝐼𝑅𝑐)𝑐(ℎ𝑠 + 𝐼𝑆𝑝){(𝑚− 1)(1− 𝜌) + 𝜌}]

2(𝜓11(𝑚,𝐾))
3
2

> 0. (4.7)

From equation (4.7), JTP(𝑗)
11 (𝑚,𝐾) is a strictly convex function of 𝐾. We check that

JTP′(𝑗)11 (𝑚, 0) = −𝜙112

√︂
𝜙115

𝜙114
− 𝜙113. (4.8)

Note that if JTP′(𝑗)11 (𝑚, 0) ≥ 0, then JTP(𝑗)
11 (𝑚,𝐾) is increasing on [0, 1], i.e., JTP(𝑗)

11 (𝑚,𝐾) reaches the global
minimum at 𝐾 = 0, and it indicates that the best choice is that retailers do not build inventory. Therefore, we
only need to consider the situation of JTP′(𝑗)11 (𝑚, 0) < 0. We further investigate

JTP′(𝑗)11 (𝑚, 1) =
√
𝜙115

(︂
2𝜙111 − 𝜙112√

𝜙111 − 𝜙112 + 𝜙114

)︂
− 𝜙113

=

√︃
𝐴𝑟 + 𝐹0 +

𝐴𝑠
𝑚

+
(𝑐𝑗𝐼𝑅𝑐 − 𝑝𝐼𝑅𝑒)𝐷𝑀2

𝑗

2

(︃ √
2𝐷(ℎ0 + 𝑐𝑗𝐼𝑅𝑐)√︀

ℎ0 + 𝑐𝑗𝐼𝑅𝑐 + 𝑐(ℎ𝑠 + 𝐼𝑆𝑝){(𝑚− 1)(1− 𝜌) + 𝜌}

)︃
− [(𝑝− 𝐹1 + 𝑐𝑔 − 𝑐)𝐷(1− 𝛽)− 𝑐𝑗𝐼𝑆𝑝𝑀𝑗𝐷(1− 𝛽) + (𝑐𝑗𝐼𝑅𝑐 − 𝑝𝛽𝐼𝑅𝑒)𝐷𝑀𝑗 ]. (4.9)

From equation (4.8), JTP′(𝑗)11 (𝑚, 1) > 0 hold if and only if
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𝛽 >

(𝑝− 𝐹1 + 𝑐𝑔 − 𝑐)𝐷 − 𝑐𝑗𝐼𝑆𝑝𝑀𝑗𝐷 + 𝑐𝑗𝐼𝑅𝑐𝑀𝑗𝐷 −
√︁

2𝐴𝑟 + 2𝐹0 + 2𝐴𝑠

𝑚 + (𝑐𝑗𝐼𝑅𝑐 − 𝑝𝐼𝑅𝑒)𝐷𝑀2
𝑗(︂ √

𝐷(ℎ0+𝑐𝑗𝐼𝑅𝑐)√
ℎ0+𝑐𝑗𝐼𝑅𝑐+𝑐(ℎ𝑠+𝐼𝑆𝑝){(𝑚−1)(1−𝜌)+𝜌}

)︂
(𝑝− 𝐹1 + 𝑐𝑔 − 𝑐)𝐷 − 𝑐𝑗𝐼𝑆𝑝𝑀𝑗𝐷 + 𝑝𝐼𝑅𝑒𝑀𝑗𝐷

= 𝛽11. (4.10)

Thus, if the inequality in equation (4.10) is established, JTP(𝑗)
11 (𝑚,𝐾) has a unique minimizer in the open

interval (0, 1), and the global optimum values of 𝑇11 and 𝐾11 can be obtained using equations (4.11) and (4.12),
respectively (see Appendix B, Eqs. (B.3) and (B.4)). Otherwise, the global minimizer will lie on the boundary
point 𝐾11 = 1 (see Appendix C)

𝑇11 =

√︃
4𝜙111𝜙115 − 𝜙2

113

4𝜙111𝜙114 − 𝜙2
112

(4.11)

𝐾11 =
𝜙112

2𝜙111
+

𝜙113

2𝜙111

√︃
4𝜙111𝜙114 − 𝜙2

112

4𝜙111𝜙115 − 𝜙2
113

· (4.12)

Here, for the discriminant term 𝛽11, it should be be noted that,

(1) if 0 ≤ 𝛽11 ≤ 𝛽, the optimal is that the retailer uses partial backlogging, and the optimal values of 𝑇11 and
𝐾11 can be obtained using equations (4.11) and (4.12) respectively.

(2) If 0 < 𝛽 < 𝛽11, the optimal is that the retailer employs inventory policy with without shortages (e.g.,
𝐾11 = 1)

(3) If 𝛽11 < 0, the retailer need to compare the cases of no stocking (e.g., 𝐾11 = 0) and partial backlogging to
determine which is optimal.

In addition, for the solutions 𝐾11 and 𝑇11 found by using equations (4.11) and (4.12), if the condition
𝑀𝑗 ≤ 𝐾11𝑇11 ≤ 𝑇𝑤 is not satisfied, it implies that JTP(𝑗)

11 (𝑚,𝐾, 𝑇 ) will obtain the optimal solution at the
boundary. A logical solution is to set 𝑇 = 𝑀𝑗

𝐾11
or 𝑇 = 𝑇𝑤

𝐾11
, then we recommend that readers refer to the

detailed solution process given in Appendix D.
To sum up, based on the above analysis, the order quantity for trade credit period 𝑀𝑗 and purchase cost 𝑐𝑗

can be computed form equation (4.13), namely,

𝑄𝑗 = 𝐷𝑇 [𝐾 + (1−𝐾)𝛽]. (4.13)

From equation (4.13), if the optimal order quantity (𝑄𝑗) satisfies 𝑞𝑗 ≤ 𝑄𝑗 < 𝑞𝑗+1, the solution obtained by the
analysis above is feasible. Otherwise, we need to use the solution procedure given in Appendix D to determine
the optimal values of 𝑇 and 𝐾.

Case 1-2: 0 < 𝐾𝑇 ≤ 𝑇𝑤 ≤ 𝑀𝑗 or 0 < 𝐾𝑇 ≤ 𝑀𝑗 ≤ 𝑇𝑤

Similar to Case 1-1, maximizing equation (3.14) is equivalent to minimizing the following function

JTP(𝑗)
12 (𝑚,𝐾, 𝑇 ) = 𝜙121𝐾

2𝑇 − 𝜙122𝐾𝑇 − 𝜙123𝐾 + 𝜙124𝑇 +
𝜙125

𝑇
+ 𝜙126 (4.14)

where 𝜙121, 𝜙122, 𝜙123, 𝜙124, 𝜙125, and 𝜙126 are given in Appendix A.
Note that equations (4.14) and (4.2) have similar function structures (i.e., 𝜙121 through 𝜙126 instead of 𝜙111

through 𝜙116). So, the analysis and discussion provided for equations (4.3)–(4.8) of Case 1-1 is also established
for Case 1-2. Next, the equivalent analysis for Case 1-2 of equation (4.9) for Case 1-1 is

JTP′(𝑗)12 (𝑚, 1) =
√
𝜙125

(︂
2𝜙121 − 𝜙122√

𝜙121 − 𝜙122 + 𝜙124

)︂
− 𝜙123
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=

√︂
𝐴𝑟 + 𝐹0 +

𝐴𝑠
𝑚

(︃ √
2𝐷(ℎ0 + 𝑝𝐼𝑅𝑒)√︀

ℎ0 + 𝑝𝐼𝑅𝑒 + 𝑐(ℎ𝑠 + 𝐼𝑆𝑝){(𝑚− 1)(1− 𝜌) + 𝜌}

)︃
− [(𝑝− 𝐹1 + 𝑐𝑔 − 𝑐)𝐷(1− 𝛽) + (𝑝𝐼𝑅𝑒 − 𝑐𝑗𝐼𝑆𝑝)𝐷𝑀𝑗(1− 𝛽)]. (4.15)

From equation (4.15), JTP′(𝑗)12 (𝑚, 1) > 0 hold if and only if

𝛽 >

(𝑝− 𝐹1 + 𝑐𝑔 − 𝑐)𝐷 + (𝑝𝐼𝑅𝑒 − 𝑐𝑗𝐼𝑆𝑝)𝐷𝑀𝑗 −
√︁
𝐴𝑟 + 𝐹0 + 𝐴𝑠

𝑚

(︂ √
2𝐷(ℎ0+𝑝𝐼𝑅𝑒)√

ℎ0+𝑝𝐼𝑅𝑒+𝑐(ℎ𝑠+𝐼𝑆𝑝){(𝑚−1)(1−𝜌)+𝜌}

)︂
(𝑝− 𝐹1 + 𝑐𝑔 − 𝑐)𝐷 + (𝑝𝐼𝑅𝑒 − 𝑐𝑗𝐼𝑆𝑝)𝐷𝑀𝑗

= 𝛽12. (4.16)

Consequently, if the inequality in equation (4.16) is established, JTP(𝑗)
12 (𝑚,𝐾) has a uniqueminimizer in the

open interval (0,1), and the global optimum values of 𝑇12 and 𝐾12 can be obtained using equations (4.17) and
(4.18), respectively (see Appendix B). Otherwise, the global minimizer will lie on the boundary point 𝐾12 = 1
(see Appendix C).

𝑇12 =

√︃
4𝜙121𝜙125 − 𝜙2

123

4𝜙121𝜙124 − 𝜙2
122

(4.17)

𝐾12 =
𝜙122

2𝜙121
+

𝜙123

2𝜙121

√︃
4𝜙121𝜙124 − 𝜙2

122

4𝜙121𝜙125 − 𝜙2
123

· (4.18)

Similar to Case 1-1, we still need to perform the following two steps to ensure the feasibility of the solution:

(1) For the solutions 𝐾12 and 𝑇12 found by using equations (4.17) and (4.18), check whether they satisfy
𝐾12𝑇12 ≤ min{𝑀𝑗 , 𝑇𝑤} and if not, we need to use Appendix D to determine the optimal values of 𝑇 and
𝐾.

(2) Check whether the order quantity 𝑄𝑗 satisfies 𝑞𝑗 ≤ 𝑄𝑗 < 𝑞𝑗+1, and if not, we need to use Appendix D to
determine the optimal values of 𝑇 and 𝐾.

Case 2-1: 𝑇𝑤 ≤ 𝑀𝑗 ≤ 𝐾𝑇 or 𝑀𝑗 ≤ 𝑇𝑤 ≤ 𝐾𝑇

Similarly, maximizing equations (3.15) is equivalent to minimizing the following function

JTP(𝑗)
21 (𝑚,𝐾, 𝑇 ) = 𝜙211𝐾

2𝑇 − 𝜙212𝐾𝑇 − 𝜙213𝐾 + 𝜙214𝑇 +
𝜙215

𝑇
+ 𝜙216 (4.19)

where 𝜙211, 𝜙212, 𝜙213, 𝜙214, 𝜙215, and 𝜙216 are given in Appendix A.
Similar to previous cases,

JTP′(𝑗)21 (𝑚, 1) =
√
𝜙215

(︂
2𝜙211 − 𝜙212√

𝜙211 − 𝜙212 + 𝜙214

)︂
− 𝜙213

=

√︃
𝐴𝑟 + 𝐹0 +

𝐴𝑠
𝑚

+
(𝑐𝑗𝐼𝑅𝑐 − 𝑝𝐼𝑅𝑒)𝐷𝑀2

𝑗

2
+

(ℎ𝑟 − ℎ0)𝑊 2

2𝐷

×

(︃ √
2𝐷(ℎ𝑟 + 𝑐𝑗𝐼𝑅𝑐)√︀

ℎ𝑟 + 𝑐𝑗𝐼𝑅𝑐 + 𝑐(ℎ𝑠 + 𝐼𝑆𝑝){(𝑚− 1)(1− 𝜌) + 𝜌}

)︃
− [(𝑝− 𝐹1 + 𝑐𝑔 − 𝑐)𝐷(1− 𝛽) + (ℎ𝑟 − ℎ0)𝑤 − 𝑐𝑗𝐼𝑆𝑝𝑀𝑗𝐷(1− 𝛽) + (𝑐𝑗𝐼𝑅𝑐 − 𝑝𝛽𝐼𝑅𝑒)𝐷𝑀𝑗 ].

(4.20)

From equation (4.20), JTP′(𝑗)21 (𝑚, 1) > 0 hold if and only if
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𝛽 >

(𝑝− 𝐹1 + 𝑐𝑔 − 𝑐)𝐷 + 𝑐𝑗(𝐼𝑅𝑐 − 𝐼𝑆𝑝)𝑀𝑗𝐷 + (ℎ𝑟 − ℎ0)𝑊

−
√︁

2𝐴𝑟 + 2𝐹0 + 2𝐴𝑠

𝑚 + (𝑐𝑗𝐼𝑅𝑐 − 𝑝𝐼𝑅𝑒)𝐷𝑀2
𝑗 + (ℎ𝑟−ℎ0)𝑊 2

𝐷

(︂ √
𝐷(ℎ𝑟+𝑐𝑗𝐼𝑅𝑐)√

ℎ𝑟+𝑐𝑗𝐼𝑅𝑐+𝑐(ℎ𝑠+𝐼𝑆𝑝){(𝑚−1)(1−𝜌)+𝜌}

)︂
(𝑝− 𝐹1 + 𝑐𝑔 − 𝑐)𝐷 + (𝑝𝐼𝑅𝑒 − 𝑐𝑗𝐼𝑆𝑝)𝐷𝑀𝑗

= 𝛽21. (4.21)

Consequently, if the inequality in equation (4.21) is established, JTP(𝑗)
21 (𝑚,𝐾) has a unique minimizer in the

open interval (0, 1), and the global optimum values of 𝑇21 and 𝐾21 can be obtained using equations (4.22) and
(4.23), respectively (see Appendix B). Otherwise, the global minimizer will lie on the boundary point 𝐾21 = 1.
(see Appendix C)

𝑇21 =

√︃
4𝜙211𝜙215 − 𝜙2

213

4𝜙211𝜙214 − 𝜙2
212

(4.22)

𝐾21 =
𝜙212

2𝜙211
+

𝜙213

2𝜙211

√︃
4𝜙211𝜙214 − 𝜙2

212

4𝜙211𝜙215 − 𝜙2
213

· (4.23)

Similar to previous cases, the feasibility of the solution needs to be checked. If the solution is not feasible, we
suggest that readers refer to the detailed solution process given in Appendices D and E.

Case 2-2: 𝑇𝑤 ≤ 𝐾𝑇 ≤ 𝑀𝑗

Similarly, maximizing equation (3.16) is equivalent to minimizing the following function

JTP(𝑗)
22 (𝑚,𝐾, 𝑇 ) = 𝜙221𝐾

2𝑇 − 𝜙222𝐾𝑇 − 𝜙223𝐾 + 𝜙224𝑇 +
𝜙225

𝑇
+ 𝜙226 (4.24)

where, 𝜙221, 𝜙222, 𝜙223, 𝜙224, 𝜙225, and 𝜙226 are given in Appendix A.
Similarly,

JTP′(𝑗)22 (𝑚, 1) =
√
𝜙225

(︂
2𝜙221 − 𝜙222√

𝜙221 − 𝜙222 + 𝜙224

)︂
− 𝜙223

=

√︂
𝐴𝑟 + 𝐹0 +

𝐴𝑠
𝑚

+
(ℎ𝑟 − ℎ0)𝑊 2

2𝐷

(︃ √
2𝐷(ℎ𝑟 + 𝑝𝐼𝑅𝑒)√︀

ℎ𝑟 + 𝑝𝐼𝑅𝑒 + 𝑐(ℎ𝑠 + 𝐼𝑆𝑝){(𝑚− 1)(1− 𝜌) + 𝜌}

)︃
− [(𝑝− 𝐹1 + 𝑐𝑔 − 𝑐)𝐷(1− 𝛽) + (ℎ𝑟 − ℎ0)𝑤 + (𝑝𝐼𝑅𝑒 − 𝑐𝑗𝐼𝑆𝑝)𝐷𝑀𝑗(1− 𝛽)]. (4.25)

From equation (4.25), JTP′(𝑗)22 (𝑚, 1) > 0 hold if and only if

𝛽 >

(𝑝− 𝐹1 + 𝑐𝑔 − 𝑐)𝐷 + (𝑝𝐼𝑅𝑒 − 𝑐𝑗𝐼𝑆𝑝)𝐷𝑀𝑗 + (ℎ𝑟 − ℎ0)𝑊 −
√︁

2𝐴𝑟 + 2𝐹0 + 2𝐴𝑠

𝑚 + (ℎ𝑟−ℎ0)𝑊 2

𝐷(︂ √
𝐷(ℎ𝑟+𝑝𝐼𝑅𝑒)√

ℎ𝑟+𝑝𝐼𝑅𝑒+𝑐(ℎ𝑠+𝐼𝑆𝑝){(𝑚−1)(1−𝜌)+𝜌}

)︂
(𝑝− 𝐹1 + 𝑐𝑔 − 𝑐)𝐷 + (𝑝𝐼𝑅𝑒 − 𝑐𝑗𝐼𝑆𝑝)𝐷𝑀𝑗

= 𝛽22· (4.26)

Consequently, if the inequality in equation (4.26) is established, JTP(𝑗)
22 (𝑚,𝐾) has a unique minimizer in the

open interval (0, 1), and the global optimum values of 𝑇22 and 𝐾22 can be obtained using equations (4.27) and
(4.28), respectively (see Appendix B). Otherwise, the global minimizer will lie on the boundary point 𝐾21 = 1
(see Appendix C).

𝑇22 =

√︃
4𝜙221𝜙225 − 𝜙2

223

4𝜙221𝜙224 − 𝜙2
222

(4.27)
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Table 2. Optimal solution, when 𝑇 and 𝐾 do not satisfy the condition.

Cases Possibility Optimal solution

Case 1-1
𝑀𝑗

𝐾11
> 𝑇11 𝑇 ′11 =

𝑀𝑗

𝐾′
11

𝐾′
11 =

√︃
𝜙114𝑀2

𝑗

𝑀2
𝑗 𝜙111 −𝑀𝑗𝜙113 + 𝜙115

𝐾𝑤

𝐾11
< 𝑇11 𝑇 ′11 =

𝑇𝑤

𝐾′
11

𝐾′
11 =

√︃
𝜙114𝑇 2

𝑤

𝑇 2
𝑤𝜙111 − 𝑇𝑤𝜙113 + 𝜙115

Case 1-2
min{𝑇𝑤, 𝑀𝑗}

𝐾12
< 𝑇12 𝑇 ′12 =

min{𝑇𝑤, 𝑀𝑗}
𝐾′

12

𝑇 ′12 =

√︃
𝜙124(min{𝑇𝑤, 𝑀𝑗})2

(min{𝑇𝑤, 𝑀𝑗})2𝜙121 −min{𝑇𝑤, 𝑀𝑗}𝜙123 + 𝜙125

Case 2-1
max{𝑇𝑤, 𝑀𝑗}

𝐾21
> 𝑇21 𝑇 ′21 =

max{𝑇𝑤, 𝑀𝑗}
𝐾′

21

𝐾′
21 =

√︃
𝜙214(max{𝑇𝑤, 𝑀𝑗})2

(max{𝑇𝑤, 𝑀𝑗})2𝜙211 −max{𝑇𝑤, 𝑀𝑗}𝜙213 + 𝜙215

Case 2-2
𝑀𝑗

𝐾22
< 𝑇22 𝑇 ′22 =

𝑀𝑗

𝐾′
22

𝐾′
22 =

√︃
𝜙224𝑀2

𝑗

𝑀2
𝑗 𝜙221 −𝑀𝑗𝜙223 + 𝜙225

𝐾𝑤

𝐾22
< 𝑇22 𝑇 ′22 =

𝑇𝑤

𝐾′
22

𝐾′
22 =

√︃
𝜙224𝑇 2

𝑤

𝑇 2
𝑤𝜙221 − 𝑇𝑤𝜙223 + 𝜙225

𝐾22 =
𝜙222

2𝜙221
+

𝜙223

2𝜙221

√︃
4𝜙221𝜙224 − 𝜙2

222

4𝜙221𝜙225 − 𝜙2
223

· (4.28)

Similarly, Appendices D and E are used to determine the optimal values of 𝑇 and 𝐾 if the solution is not
feasible (Tab. 2).

Algorithm: summarizing the above results, we can establish the following algorithm to find the optimal solution
(𝑚*,𝐾*, 𝑇 *).

Algorithm 4.1. Step 1. Set 𝑚 = 1.
Step 2. For each 𝑗, 𝑗 = 1, 2, . . . , 𝑘 − 1, 𝑘, perform Steps 3–5.
Step 3. Compare 𝑀𝑗 and 𝑇𝑤, if 𝑀𝑗 < 𝑇𝑤, go to Step 4; if not, go to Step 5.

Step 4. Execute Steps 4.1–4.4, and determine
(︁
𝐾**

(𝑗), 𝑇
**
(𝑗)

)︁
and JTP(𝑗)

(︁
𝑚,𝐾**

(𝑗), 𝑇
**
(𝑗)

)︁
.

Step 4.1. Determine (𝐾**
11 , 𝑇

**
11 ) and JTP(𝑗)

11 (𝑚,𝐾**
11 , 𝑇

**
11 ) using Algorithm A provided in Appendix F, and

go to Step 4.2.
Step 4.2. Determine (𝐾**

12 , 𝑇
**
12 ) and JTP(𝑗)

12 (𝑚,𝐾**
12 , 𝑇

**
12 ) using Algorithm B provided in Appendix G, and

go to Step 4.3.
Step 4.3. Determine (𝐾**

21 , 𝑇
**
21 ) and JTP(𝑗)

21 (𝑚,𝐾**
21 , 𝑇

**
21 ) using Algorithm C provided in Appendix H, and

go to Step 4.4.
Step 4.4. Set JTP(𝑗)

(︁
𝑚,𝐾**

(𝑗), 𝑇
**
(𝑗)

)︁
= max

{︁
JTP(𝑗)

11 (𝑚,𝐾**
11 , 𝑇

**
11 ), JTP(𝑗)

12 (𝑚,𝐾**
12 , 𝑇

**
12 ),

JTP(𝑗)
21 (𝑚,𝐾**

21 , 𝑇
**
21 )
}︁
.

Step 5. Execute Steps 5.1–5.4, and determine
(︁
𝐾**

(𝑗), 𝑇
**
(𝑗)

)︁
and JTP(𝑗)

(︁
𝑚,𝐾**

(𝑗), 𝑇
**
(𝑗)

)︁
.

Step 5.1. Determine (𝐾**
12 , 𝑇

**
12 ) and JTP(𝑗)

12 (𝑚,𝐾**
12 , 𝑇

**
12 ) using Algorithm B provided in Appendix G, and

go to Step 5.2.
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Step 5.2. Determine (𝐾**
21 , 𝑇

**
21 ) and JTP(𝑗)

21 (𝑚,𝐾**
21 , 𝑇

**
21 ) using Algorithm C provided in Appendix H, and

go to Step 5.3.
Step 5.3. Determine (𝐾**

22 , 𝑇
**
22 ) and JTP(𝑗)

22 (𝑚,𝐾**
22 , 𝑇

**
22 ) using Algorithm D provided in Appendix I, and

go to Step 5.4.
Step 5.4. Set JTP(𝑗)

(︁
𝑚,𝐾**

(𝑗), 𝑇
**
(𝑗)

)︁
= max

{︁
JTP(𝑗)

12 (𝑚,𝐾**
12 , 𝑇

**
12 ), JTP(𝑗)

21 (𝑚,𝐾**
21 , 𝑇

**
21 ),

JTP(𝑗)
22 (𝑚,𝐾**

22 , 𝑇
**
22 )
}︁

.

Step 6. Set JTP(𝑚,𝐾**
𝑚 , 𝑇

**
𝑚 ) = max𝑗=1,2,...,𝑘

{︁
JTP(𝑗)

(︁
𝑚,𝐾**

(𝑗), 𝑇
**
(𝑗)

)︁}︁
.

Step 7. Set 𝑚 = 𝑚+ 1, repeat Steps 2–6 to find JTP(𝑚,𝐾**
𝑚 , 𝑇

**
𝑚 ).

Step 8. If JTP(𝑚,𝐾**
𝑚 , 𝑇

**
𝑚 ) ≥ JTP

(︁
𝑚− 1,𝐾**

(𝑚−1), 𝑇
**
(𝑚−1)

)︁
, go to Step 7. Otherwise, go to Step 9.

Step 9. Set (𝑚*,𝐾**, 𝑇 **) =
(︁
𝑚− 1,𝐾**

(𝑚−1), 𝑇
**
(𝑚−1)

)︁
.(𝑚*,𝐾**, 𝑇 **) is the optimal solution and 𝑄** =

𝐷𝑇 **[(1−𝐾**)𝛽 +𝐾**].

5. Numerical examples and sensitivity analysis

In this section, some examples are provided to illustrate the theoretical results and solution procedure obtained
in this paper. In addition, we also carry out a sensitivity analysis of major parameters.

Example 5.1. The input parameters are as follows: 𝐴𝑟 = $100/order, 𝐴𝑠 = $180/order, 𝐷 = 350 units/year,
𝐹0 = $50/shipment, 𝐹1 = $0.2/unit, 𝑅 = 500 units/year, ℎ𝑟 = $2/unit/year, ℎ0 = $1.4/unit/year, ℎ𝑠 =
$0.8/unit/year, 𝑐0𝑝 = $2/unit, 𝑐1𝑝 = $2.5/unit, 𝑐2𝑝 = $0.5/unit, 𝑝 = $15/unit,𝑊 = 150 units (hence, 𝑇𝑊 =
150/350 = 0.429 year) 𝐼𝑆𝑝 = 0.1, 𝐼𝑅𝑐 = 0.10, 𝐼𝑅𝑒 = 0.12, 𝑐𝑔 = 2, 𝑐𝑏 = 4, 𝛽 = 0.85.

In addition, the supplier offers an all-units quantity discounts schedule, which is 𝑐 = (𝑐1, 𝑐2, 𝑐3) =
$(10, 9.7, 9.4)/unit, 𝜂 = (𝜂1, 𝜂2, 𝜂3) = (1, 150, 500) unit, and the trade credit period schedule offered
by the supplier is 𝑁 = (𝑁1, 𝑁2, 𝑁3) = (0.30, 0.45, 0.60) year, 𝜗 = (𝜗1, 𝜗2, 𝜗3) = (1, 350, 600)
unit. Combining the two discount schedules above, we obtain a new schedule, namely, (𝑐,𝑀) =
{(𝑐1,𝑀1), (𝑐2,𝑀2), (𝑐3,𝑀3), (𝑐4,𝑀4), (𝑐5,𝑀5)} = ($, year) {(10, 0.30), (9.7, 0.30), (9.7, 0.45), (9.4, 0.45), (9.4,
0.60)}, 𝑞 = (𝑞1, 𝑞2, 𝑞3, 𝑞4) = (1, 150, 350, 500, 600) unit.

Applying Algorithm 4.1, the solution procedure is shown in Table 3. As can be seen from Table 3, when
𝑘 = 2, the joint total annual profit is the largest, i.e., JTP* = JTP(2)

21 = $4579.54. Furthermore, the optimal
solution is 𝑚** = 5, 𝐾** = 𝐾21 = 0.9101, 𝑇 ** = 𝑇21 = 0.4940 year, the retailer’s optimal order quantity is
𝑄** = 𝑄21 = 170.56 units, the supplier’s optimal production quantity is 𝑚**𝑄** = 852.8 units. Meanwhile, the
purchase price and trade credit chosen by the retailer is 𝑐2 = 9.7 and 𝑁1 = 0.3, respectively. Also, we notice
that 𝑊 = 150 < 157.36 = 0.9101 × 0.4940 × 350 = 𝐾**𝑇 **𝐷, which means the capacity of OW is insufficient
to store the ordered quantity, so an additional warehouse (RW) is necessary for the retailer.

Example 5.2. This example concerns the impact of the OW capacity and credit period on the optimal
solution. The parameter values are identical to those used in Example 5.1 except for 𝑊 and (𝑁1, 𝑁2, 𝑁3).
Table 4 shows the optimal solutions for each value of 𝑊 = {100, 200, 300, 400, 500} and (𝑁1, 𝑁2, 𝑁3) =
{(0.10, 0.20, 0.30), (0.30, 0.45, 0.60) , (0.40, 0.60, 0.80), (0.60, 0.70, 0.80)}.

Table 4 shows that when the OW capacity is relatively small (i.e., 𝑊 < 200), the retailer must rent a
warehouse to enjoy a longer credit period and a lower purchase price. However, we notice that when the value
of the credit period is relatively long (i.e., (𝑁1, 𝑁2, 𝑁3) = {(0.40, 0.60, 0.80)} , retailers typically orders larger
quantities to benefit from a longer credit period, such that a rented warehouse is necessary. Moreover, the
supplier’s optimal shipment number decreases for longer credit periods, and the joint total profit per unit time
increases with the increase the capacity of OW or the length of the credit. Based on the above results, we have
several managerial implications. First, trade credit linked to the order quantity is an effective tool or means if
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Table 3. Solution procedure of Example 5.1.

𝑘 Case 𝑚* 𝐾* 𝑇 * 𝑄* JTP*

1 Case 1-1
Case 1-2
Case 2-1

1
1
×

𝐾11 = 0
𝐾12 = 0
×

𝑇11 =inf
𝑇12 =inf
×

𝑄11 = 0
𝑄12 = 0
×

JTP
(1)
11 = −2450←

JTP
(1)
12 = −2450←

×
2 Case 1-1

Case 1-2
Case 2-1

5
5
5

𝐾11 = 0.9053
𝐾12 = 0.4072
𝐾21 = 0.9101

𝑇11 = 0.4734
𝑇12 = 0.7368
𝑇21 = 0.4940

𝑄11 = 163.33
𝑄12 = 234.95
𝑄21 = 170.56

JTP
(2)
11 = 4579.06←

JTP
(2)
12 = 4441.78←

JTP
(2)
21 = 4579.54←𝑎

3 Case 1-1
Case 2-1
Case 2-2

×
5
×

×
𝐾21 = 0.7154
×

×
𝑇21 = 1.0446
×

×
𝑄21 = 350
×

×
JTP

(3)
21 = 4573.94←

×
4 Case 1-1

Case 2-1
Case 2-2

×
5
×

×
𝐾21 = 0.6734
×

×
𝑇21 = 1.5022
×

×
𝑄21 = 500
×

×
JTP

(4)
21 = 4563.7←

×
5 Case 1-1

Case 2-1
Case 2-2

×
5
×

×
𝐾21 = 0.6464
×

×
𝑇21 = 1.8103
×

×
𝑄21 = 600
×

×.
JTP

(5)
21 = 4558.49←

×

Notes. “←” denote the optimal solution for given 𝑘. “×” denotes the problem is not feasible in this case. “←𝑎” denotes
the global optimal solution.

Table 4. The result of sensitivity analysis on 𝑊 and (𝑁1, 𝑁2, 𝑁3).

(𝑁1, 𝑁2, 𝑁3) 𝑊 𝑚* 𝐾* 𝑇 * 𝑄* JTP* Rented
warehouse

Credit
period

(0.10, 0.20, 0.30) 100
200
300
400
500

6
6
5
5
5

0.9208
0.9363
0.9363
0.9363
0.9363

0.4910
0.5189
0.5189
0.5189
0.5189

169.80
179.88
179.88
179.88
179.88

4479.02
4485.95
4485.95
4484.95
4485.95

Yes
No
No
No
No

𝑁1

𝑁1

𝑁1

𝑁1

𝑁1

(0.30, 0.45, 0.60) 100
200
300
400
500

4
4
4
3
3

0.8975
0.7280
0.7000
0.6825
0.6871

0.4741
1.0425
1.4960
1.8000
1.7987

163.38
349.99
500.04
600.00
600.00

4547.56
4581.22
4586.96
4592.86
4593.32

Yes
Yes
Yes
Yes
Yes

𝑁1

𝑁2

𝑁2

𝑁3

𝑁3

(0.40, 0.60, 0.80) 100
200
300
400
500

3
3
3
2
2

0.6294
0.6441
0.6586
0.6727
0.6764

1.8152
1.8110
1.8068
1.8028
1.8017

600.00
600.00
600.00
600.00
599.99

4649.27
4673.29
4688.67
4695.37
4695.68

Yes
Yes
Yes
Yes
Yes

𝑁3

𝑁3

𝑁3

𝑁3

𝑁3

the purpose of the supply chain system is to encourage the retailer to order more units or to lower the supplier’s
shipment number. Second, the longer credit period set the supplier provided or the larger capacity of OW, the
more benefit for the supply chain system will be. In a word, it is the best choice for the retailer to persuade
the supplier to offer a longer trade the credit period schedule or to choose the supplier with a longer trade
credit period. In addition, the joint total profit per unit time can be increased by expanding OW capacity
appropriately.
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Table 5. Sensitivity analysis on the retailer’s major parameters.

Parameters Values 𝑚* 𝐾* 𝑇 * 𝑄* JTP* Rented
warehouse

Credit
period

𝐴𝑟 80
90
100
110
120

6
6
5
5
5

0.9640
0.9414
0.6997
0.6994
0.6678

0.4309
0.4562
1.4960
1.4960
1.8042

150.00
158.27
500.01
499.99
600.00

4623.44
4600.60
4586.96
4580.27
4574.55

No
No
Yes
Yes
Yes

𝑁1

𝑁1

𝑁2

𝑁2

𝑁3

𝐷 150
250
350
450
550

5
6
5
5
6

0.7490
0.8393
0.6997
0.6889
0.7099

1.0391
0.6424
1.4960
1.3986
1.1405

150.00
156.73
500.01
600.00
599.98

3592.59
4078.27
4586.96
5180.35
5782.04

No
No
Yes
Yes
Yes

𝑁1

𝑁1

𝑁2

𝑁3

𝑁3

ℎ𝑟 1.6
1.8
2.0
2.2
2.4

5
5
6
6
6

0.6804
0.6742
0.6997
0.6960
0.6925

1.8006
1.8023
1.4960
1.4968
1.4976

600.00
599.98
500.01
499.99
499.98

4590.61
4588.05
4586.96
4586.14
4585.36

Yes
Yes
Yes
Yes
Yes

𝑁3

𝑁3

𝑁2

𝑁2

𝑁2

ℎ0 1.0
1.2
1.4
1.6
1.8

5
5
5
6
6

0.6984
0.7178
0.6997
0.8858
0.8615

1.7955
1.4917
1.4960
0.4910
0.4839

600.00
499.99
500.01
168.91
165.85

4639.05
4612.27
4586.96
4565.68
4552.66

Yes
Yes
Yes
No
No

𝑁2

𝑁2

𝑁2

𝑁1

𝑁1

𝑐𝑏 2.0
3.0
4.0
5.0
6.0

5
5
5
6
6

0.5359
0.6131
0.6997
0.9271
0.9382

1.8425
1.8199
1.4960
0.4911
0.4857

599.98
600.00
500.01
170.00
168.42

4669.13
4620.22
4586.96
4579.18
4578.85

Yes
Yes
Yes
No
No

𝑁3

𝑁3

𝑁2

𝑁1

𝑁1

𝑐𝑔 0.5
1.0
2.0
3.0
4.0

5
5
5
6
6

0.6480
0.6547
0.6997
0.9949
1.0000

1.8098
1.8079
1.4960
0.4602
0.4578

599.98
599.99
500.01
160.95
160.23

4612.56
4603.40
4586.96
4577.10
4577.10

Yes
Yes
Yes
No
No

𝑁3

𝑁3

𝑁2

𝑁1

𝑁1

𝑝 13
14
15
16
17

5
5
5
6
6

0.6766
0.6766
0.6997
0.9831
1.0000

1.5014
1.4987
1.4960
0.4605
0.4477

500.00
500.00
500.01
160.77
156.69

3904.01
4245.27
4586.96
4931.33
5285.44

Yes
Yes
Yes
No
No

𝑁2

𝑁2

𝑁2

𝑁1

𝑁1

𝛽 0.75
0.80
0.85
0.90
0.95

6
6
5
5
5

1.0000
1.0000
0.6997
0.6364
0.6059

0.4578
0.4578
1.4960
1.7790
1.7487

160.23
160.23
500.01
600.01
599.98

4577.10
4577.10
4586.96
4639.17
4696.54

No
No
Yes
Yes
Yes

𝑁1

𝑁1

𝑁2

𝑁3

𝑁3

𝐼𝑅𝑐 0.06
0.08
0.10
0.12
0.14

5
5
5
6
6

0.7238
0.7114
0.6997
0.7358
0.7267

1.4903
1.4932
1.4960
1.0413
1.0427

499.99
500.00
500.01
350.01
349.98

4603.49
4595.00
4586.96
4581.72
4578.55

Yes
Yes
Yes
No
No

𝑁2

𝑁2

𝑁2

𝑁2

𝑁2
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Table 5. Continued.

Parameters Values 𝑚* 𝐾* 𝑇 * 𝑄* JTP* Rented
warehouse

Credit
period

𝐼𝑅𝑒 0.08
0.10
0.12
0.14
0.16

6
6
5
5
5

0.9639
0.9371
0.6997
0.6549
0.6416

0.4996
0.5000
1.4960
1.8079
1.8117

173.91
173.35
500.01
600.00
600.00

4557.39
4568.17
4586.96
4614.22
4643.50

No
No
Yes
Yes
Yes

𝑁1

𝑁1

𝑁2

𝑁3

𝑁3

𝑐1, 𝑐2, 𝑐3 9, 8.7, 8.4
9.5, 9.25, 9.0
10, 9.7, 9.4
10.5, 10, 9.5
11, 10.6, 10.2

6
5
5
5
5

0.9967
0.7597
0.6997
0.6974
0.6536

0.4650
1.0374
1.4960
1.4965
1.8082

162.67
350.00
500.01
500.00
599.99

4928.08
4737.56
4586.96
4553.12
4317.14

No
No
Yes
Yes
Yes

𝑁1

𝑁2

𝑁2

𝑁2

𝑁3

Example 5.3. Using the same data as those in Example 5.1 except for 𝑊 = 300, this example outlines the
effects of changes in the retailer’s major parameters 𝐴𝑟, 𝐷, ℎ𝑟, ℎ0, 𝑐𝑏, 𝑔, 𝑝, 𝛽, 𝐼𝑅𝑐, 𝐼𝑅𝑒, 𝐹0, 𝐹1 and (𝑐1, 𝑐2, 𝑐3)
on the optimal solutions. The results are summarized in Table 5.

Based on Table 5, the main conclusions are as follows:

(i) The joint total annual profit increases with respect to the changes of the JTP* parameters 𝐷, 𝑝, 𝛽 and 𝐼𝑅𝑒
whereas it decreases with respect to 𝐴𝑟, ℎ𝑟, ℎ0, 𝑐𝑏, 𝑐𝑔, 𝐼𝑅𝑐 and (𝑐1, 𝑐2, 𝑐3). Understandably, the parameters
𝐷, 𝑝, 𝛽 and 𝐼𝑅𝑒 have a positive influence on the joint total annual profit JTP*, so the increase of their
values must bring more profits. On the contrary, the parameters 𝐴𝑟, ℎ𝑟, ℎ0, 𝑐𝑏, 𝑐𝑔, 𝐼𝑅𝑐 and (𝑐1, 𝑐2, 𝑐3) are all
cost structure parameters of inventory system, and the increase of their values must result in the decrease
of total annual profit JTP*. Moreover, we observe that the annual profit JTP* is highly sensitive to the
changes of parameters 𝐷, 𝑝 and (𝑐1, 𝑐2, 𝑐3).

(ii) Optimal order quantity 𝑄* increases when we increase the values of parameters 𝐴𝑟, 𝐷, 𝐼𝑅𝑒 and (𝑐1, 𝑐2, 𝑐3),
while it decreases with respect to changes of ℎ𝑟, ℎ0, 𝑐𝑏, 𝑐𝑔, and 𝑝. Hence, if ordering cost 𝐴𝑟 increases, the
retailer wants to decrease order frequency by increasing order quantity; if the demand parameter 𝐷 or the
backlogged parameter 𝛽 increases, customers’ demand also increases and consequently, the retailer needs
to make a large order size. In addition, the increase of parameter 𝐼𝑅𝑒 or (𝑐1, 𝑐2, 𝑐3) will motivate retailers
to order more goods to enjoy longer credit period and lower purchase price. On the other hand, if inventory
holding cost ℎ𝑟 or ℎ0 increases, the retailer will lessen order quantity to maintain a lower average inventory
level. If backlogging cost 𝑐𝑏, lost sale cost 𝑐𝑔 or unit selling price 𝑝 increases, the retailer wants to shorten
the replenishment cycle and the shortages period to reduce the shortage cost and the lost sales cost. As a
result, the retailer will make a small order size.

(iii) Optimal fraction of no shortage 𝐾* increases with respect to the changes of the parameters 𝑐𝑏, 𝑐𝑔 and
𝑝 whereas it decreases with respect to the change of parameters 𝐴𝑟, 𝛽, 𝐼𝑅𝑒, and (𝑐1, 𝑐2, 𝑐3). In fact, the
increase in the value of parameters 𝑐𝑏, 𝑐𝑔 and 𝑝 means that the retailer will pay more for shortages. So,
the retailer will shorten the shortage period, i.e., by increasing the fraction of no shortage. However, If the
value of parameters 𝐴𝑟, 𝛽, 𝐼𝑅𝑒, and (𝑐1, 𝑐2, 𝑐3) increases, the retailer will be encouraged to make a large
order size. Meanwhile, the retailer wants to lengthen the shortage period (i.e., reduce the fraction of no
shortage) to avoid paying excessive inventory holding costs. In addition, we observe that when the retailer
faces a discount schedule when purchase price and trade credit are both linked to the order quantity, there
is no specific monotonic relationship between 𝐾* and the value of parameters 𝐷, ℎ𝑟, ℎ0 and 𝐼𝑅𝑐.

(iv) Optimal replenishment cycle 𝑇 * increases if we change the values of the parameters 𝐴𝑟, 𝐼𝑅𝑒 and (𝑐1, 𝑐2, 𝑐3)
whereas decreases if we change the values of ℎ0, 𝑐𝑏, 𝑐𝑔, 𝐼𝑅𝑐 and 𝑝. Obviously, if the value of parameters 𝐴𝑟,
𝐼𝑅𝑒 and (𝑐1, 𝑐2, 𝑐3) increases, the retailer will make a large order size, and thus 𝑇 * also will be increased.
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Table 6. Sensitivity analysis on the supplier’s major parameters.

Parameters Values 𝑚* 𝐾* 𝑇 * 𝑄* 𝑚*𝑇 * 𝑚*𝑄* ATP* STP* JTP*

𝐴𝑠 160
170
180
190
200

6
6
5
5
5

0.9640
0.9414
0.6997
0.6994
0.6678

0.4309
0.4562
1.4960
1.4960
1.8042

150.00
158.27
500.01
499.99
600.00

2.5854
2.7372
7.4800
7.4800
9.0210

900.00
949.60
2500.07
2499.95
3000.01

1286.77
1295.42
1214.78
1214.79
1152.34

1971.26
1939.05
1106.06
1104.61
847.12

4558.03
4534.47
3820.84
3819.40
3299.46

ℎ𝑠 0.6
0.7
0.8
0.9
1.0

5
5
6
6
6

0.6804
0.6742
0.6997
0.6960
0.6925

1.8006
1.8023
1.4960
1.4968
1.4976

600.00
599.98
500.01
499.99
499.98

9.0030
9.0115
7.4800
8.9808
8.9856

2999.99
2999.89
2500.07
2999.95
2999.90

1152.84
1152.681
1214.78
1214.76
1214.69

1180.26
1015.07
1106.06
761.40
603.56

4633.10
4467.75
3620.84
3276.16
3118.26

𝐼𝑆𝑝 0.08
0.09
0.10
0.11
0.12

5
5
5
6
6

0.7238
0.7114
0.6997
0.7358
0.7267

1.4903
1.4932
1.4960
1.0413
1.0427

499.99
500.00
500.01
350.01
349.98

7.4515
7.4660
7.4800
6.2478
6.2562

2499.97
2499.98
2500.07
2100.07
2099.90

1214.01
1214.62
1214.78
1293.41
1293.26

1166.33
1136.03
1106.06
1328.30
1302.77

3680.34
3650.66
3620.84
3611.70
3601.03

Similarly, if the value of parameters of ℎ0, 𝑐𝑏, 𝑐𝑔, 𝐼𝑅𝑐 and 𝑝 increases, the retailer will reduce their order
quantity, and eventually 𝑇 * will be decreased. Moreover, optimal replenishment cycle 𝑇 * is highly sensitive
to the changes of parameters 𝐴𝑟, 𝐷, ℎ0, 𝑐𝑏, 𝑐𝑔, 𝑝, 𝛽, 𝐼𝑅𝑒 and (𝑐1, 𝑐2, 𝑐3).

(v) As the value of 𝐴𝑟, 𝐷, 𝛽, 𝐼𝑅𝑒 and (𝑐1, 𝑐2, 𝑐3) increases, the retailer prefers to rent an additional warehouse,
while as the value of ℎ𝑟, ℎ0, 𝑐𝑏, 𝑐𝑔, 𝑝 and 𝐼𝑅𝑐 increases, the retailer tends to choose not to rent an additional
warehouse.

Example 5.4. This example highlights the effects of changes in the supplier’s major parameters 𝐴𝑠, ℎ𝑠, and
𝐼𝑆𝑝 on the optimal solution.

The results in Table 6 show that JTP* (𝑚*𝑇 * and 𝑚*𝑄*) decreases (increase) as 𝐴𝑠 increases. The results
show that the supplier has a longer production cycle length and higher production quantity at higher setup
cost. Furthermore, JTP*, 𝑚*𝑇 *, and 𝑚*𝑄* decrease as ℎ𝑠 or 𝐼𝑆𝑝 increase. It is clear that the supplier has a
shorter production cycle length and smaller production quantity at higher holding cost and capital opportunity
cost.

6. Conclusion

In this paper, we develop an integrated inventory model with capacity constraint under order-size dependent
trade credit, all-units discount and partial backordering. In order to obtain the global optimal solution, the
conditions of the objective functions to have interior minimizers are established and then a closed-form optimal
solution is found. An algorithm is proposed to reveal the optimal solutions. Furthermore, numerical examples
are given to demonstrate the solution procedures and a sensitivity analysis of the optimal solutions with respect
to major parameters are presented and meaningful insights are gained. This study provides a useful managerial
insight, for instance, that it is the best choice for the retailer to convince the supplier to offer a longer trade
credit period schedule or choose the supplier with a longer trade credit period. The retailer also can increase
their profits by expanding OW capacity appropriately.

Future research could modify or extend the present model in several ways. First, in this study a single-supplier
and a single- retailer for a single product were considered. This foundation could be further extended to more
practical situations, such as considering multiple retailers or multiple items, or taking raw material supply into
account. Other possible extensions are to formulate the demand as a function of the length of the allowable
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payment delay time and the other factors, or to examine the interactions between the supplier and the retailer
from the perspective of game theory. Finally, it would be of significant interest to relax the deterministic
assumptions, such as demand rate, defective rate, and backorder rate; and thus extend the methodology to
operate in an uncertain or stochastic environment.

Appendix A.

𝜙111 =
𝐷

2
[ℎ0 + 𝑐𝑏𝛽 + 𝑐𝑗𝐼𝑅𝑐], 𝜙112 = 𝑐𝑏𝛽𝐷,

𝜙113 = [(𝑝− 𝐹1 + 𝑐𝑔 − 𝑐)𝐷(1− 𝛽)− 𝑐𝑗𝐼𝑆𝑝𝑀𝑗𝐷(1− 𝛽) + (𝑐𝑗𝐼𝑅𝑐 − 𝑝𝛽𝐼𝑅𝑒)𝐷𝑀𝑗 ],

𝜙114 =
𝐷

2
[𝑐𝑏𝛽 + 𝑐(ℎ𝑠 + 𝐼𝑆𝑝){(𝑚− 1)(1− 𝜌) + 𝜌}], 𝜙115 =

{︃
𝐴𝑟 + 𝐹0 +

𝐴𝑠
𝑚

+
(𝑐𝑗𝐼𝑅𝑐 − 𝑝𝐼𝑅𝑒)𝐷𝑀2

𝑗

2

}︃
, and

𝜙116 = 𝑐𝑔𝐷(1− 𝛽) + (𝑐+ 𝐹1 − 𝑝)𝐷𝛽 + (𝑐𝑗𝐼𝑆𝑝 − 𝑝𝐼𝑅𝑒)𝐷𝛽𝑀𝑗 .

𝜙121 =
𝐷

2
[ℎ0 + 𝑐𝑏𝛽 + 𝑝𝐼𝑅𝑒]

𝜙122 = 𝑐𝑏𝛽𝐷

𝜙123 = [(𝑝− 𝐹1 + 𝑐𝑔 − 𝑐)𝐷(1− 𝛽) + (𝑝𝐼𝑅𝑒 − 𝑐𝑗𝐼𝑆𝑝)𝐷𝑀𝑗(1− 𝛽)]𝜙124

=
𝐷

2
[𝑐𝑏𝛽 + 𝑐(ℎ𝑠 + 𝐼𝑆𝑝){(𝑚− 1)(1− 𝜌) + 𝜌}]

𝜙125 =
{︂
𝐴𝑟 + 𝐹0 +

𝐴𝑠
𝑚

}︂
𝜙126 = 𝑐𝑔𝐷(1− 𝛽) + (𝑐+ 𝐹1 − 𝑝)𝐷𝛽 + (𝑐𝑗𝐼𝑆𝑝 − 𝑝𝐼𝑅𝑒)𝐷𝛽𝑀𝑗

𝜙211 =
𝐷

2
[ℎ𝑟 + 𝑐𝑏𝛽 + 𝑐𝑗𝐼𝑅𝑐]

𝜙212 = 𝑐𝑏𝛽𝐷

𝜙213 = [(𝑝− 𝐹1 + 𝑐𝑔 − 𝑐)𝐷(1− 𝛽) + (ℎ𝑟 − ℎ0)𝑤 − 𝑐𝑗𝐼𝑆𝑝𝑀𝑗𝐷(1− 𝛽) + (𝑐𝑗𝐼𝑅𝑐 − 𝑝𝛽𝐼𝑅𝑒)𝐷𝑀𝑗 ]

𝜙214 =
𝐷

2
[𝑐𝑏𝛽 + 𝑐(ℎ𝑠 + 𝐼𝑆𝑝){(𝑚− 1)(1− 𝜌) + 𝜌}]

𝜙215 =

{︃
𝐴𝑟 + 𝐹0 +

𝐴𝑠
𝑚

+
(𝑐𝑗𝐼𝑅𝑐 − 𝑝𝐼𝑅𝑒)𝐷𝑀2

𝑗

2
+

(ℎ𝑟 − ℎ𝑜)𝑊 2

2𝐷

}︃
𝜙216 = 𝑐𝑔𝐷(1− 𝛽) + (𝑐+ 𝐹1 − 𝑝)𝐷𝛽 + (𝑐𝑗𝐼𝑆𝑝 − 𝑝𝐼𝑅𝑒)𝐷𝛽𝑀𝑗

𝜙221 =
𝐷

2
[ℎ𝑟 + 𝑐𝑏𝛽 + 𝑝𝐼𝑅𝑒]

𝜙222 = 𝑐𝑏𝛽𝐷

𝜙223 = [(𝑝− 𝐹1 + 𝑐𝑔 − 𝑐)𝐷(1− 𝛽) + (ℎ𝑟 − ℎ0)𝑤 + (𝑝𝐼𝑅𝑒 − 𝑐𝑗𝐼𝑆𝑝)𝐷𝑀𝑗(1− 𝛽)]

𝜙224 =
𝐷

2
[𝑐𝑏𝛽 + 𝑐(ℎ𝑠 + 𝐼𝑆𝑝){(𝑚− 1)(1− 𝜌) + 𝜌}], 𝜙225 =

{︂
𝐴𝑟 + 𝐹0 +

𝐴𝑠
𝑚

+
(ℎ𝑟 − ℎ𝑜)𝑊 2

2𝐷

}︂
𝜙226 = 𝑐𝑔𝐷(1− 𝛽) + (𝑐+ 𝐹1 − 𝑝)𝐷𝛽 + (𝑐𝑗𝐼𝑆𝑝 − 𝑝𝐼𝑅𝑒)𝐷𝛽𝑀𝑗 .
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Appendix B. Find the roots (𝐾11, 𝑇11), (𝐾12, 𝑇12), (𝐾21, 𝑇21), and (𝐾22, 𝑇22)

Case 1-1: 𝑀𝑗 ≤ 𝐾𝑇 ≤ 𝑇𝑤

From equation (4.2), differentiating JTP(𝑗)
11 (𝑚,𝐾, 𝑇 ) with respect to 𝐾 and 𝑇 , we have

𝜕JTP(𝑗)
11 (𝑚,𝐾, 𝑇 )
𝜕𝐾

= 2𝜙111𝐾𝑇 − 𝜙112𝑇 − 𝜙113 −→ 𝐾 =
𝜙112𝑇 + 𝜙113

2𝜙111𝑇
(B.1)

𝜕JTP(𝑗)
11 (𝑚,𝐾, 𝑇 )
𝜕𝑇

= 𝜙111𝐾
2 − 𝜙112𝐾 + 𝜙114 −

𝜙115

𝑇 2
−→ 𝑇 2 =

𝜙115

𝜙111𝐾2 − 𝜙112𝐾 + 𝜙114
· (B.2)

After some algebra

𝑇11 =

√︃
4𝜙111𝜙115 − 𝜙2

113

4𝜙111𝜙114 − 𝜙2
112

(B.3)

and 𝐾11 =
𝜙112

2𝜙111
+

𝜙113

2𝜙111

√︃
4𝜙111𝜙114 − 𝜙2

112

4𝜙111𝜙115 − 𝜙2
113

· (B.4)

Similarly, for Case 1-2, Case 2-1 and Case 2-2, the roots (𝐾12, 𝑇12), (𝐾21, 𝑇21), and (𝐾22, 𝑇22) can be obtained
easily.

Appendix C. Find the optimal values of 𝑇# when 𝐾 = 1

Case 1-1: 𝑀𝑗 ≤ 𝐾𝑇 ≤ 𝑇𝑤

Substituting 𝐾11 = 1 into equation (4.2) leads to

JTP(𝑗)
11 (𝑚, 1, 𝑇 ) = 𝜙111𝑇 − 𝜙112𝑇 − 𝜙113 + 𝜙114𝑇 +

𝜙115

𝑇
+ 𝜙116. (C.1)

Taking the first and second derivatives of equation (B.1) with respect to 𝑇 , we have

d𝐽𝑇𝑃 (𝑗)
11 (𝑚, 1, 𝑇 )
d𝑇

= 𝜙111 − 𝜙112 + 𝜙114 −
𝜙115

𝑇 2
(C.2)

d2JTP(𝑗)
11 (𝑚, 1, 𝑇 )
d𝑇 2

=
2𝜙115

𝑇 3
· (C.3)

Obviously, if 𝜙115 > 0, then JTP(𝑗)
11 (𝑚, 1, 𝑇 ) is a strictly convex function of 𝑇 . Setting JTP′(𝑗)11 (𝑚, 1, 𝑇 ) = 0

yields

𝑇#
11 =

√︂
𝜙115

𝜙111 − 𝜙112 + 𝜙114
· (C.4)

Similarly, for the other cases, 𝑇# can be obtained when 𝐾12 = 1, 𝐾21 = 1, and 𝐾22 = 1,

𝑇#
12 =

√︂
𝜙125

𝜙121 − 𝜙122 + 𝜙124
(C.5)

𝑇#
21 =

√︂
𝜙215

𝜙211 − 𝜙212 + 𝜙214
(C.6)

𝑇#
11 =

√︂
𝜙225

𝜙221 − 𝜙222 + 𝜙224
· (C.7)
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Appendix D. Find the optimal values of 𝑇 ′ and 𝐾 ′

For the solution of 𝐾11 and 𝑇11 derived for Case 1-1, if the relationship 𝐾11𝑇11 < 𝑀𝑗 is established, it shows
that the optimal values will be obtained on the boundary point. Thus, we may set 𝑇 = 𝑀𝑗

𝐾11
and then substitute

it into equation (4.2), which leads to

JTP(𝑗)
11

(︂
𝑚,𝐾11,

𝑀𝑗

𝐾11

)︂
= 𝜙111𝐾

2
11

𝑀𝑗

𝐾11
− 𝜙112𝐾11

𝑀𝑗

𝐾11
− 𝜙113𝐾11 + 𝜙114

𝑀𝑗

𝐾11
+
𝜙115𝐾11

𝑀𝑗
+ 𝜙116. (D.1)

Taking the first and second derivatives of equation (C.1) with respect to 𝐾11, we have

dJTP(𝑗)
11

(︁
𝑚,𝐾11,

𝑀𝑗

𝐾11

)︁
d𝐾11

= 𝜙111𝑀𝑗 − 𝜙113 − 𝜙114
𝑀𝑗

𝐾2
11

+
𝜙115

𝑀𝑗
(D.2)

d2JTP(𝑗)
11

(︁
𝑚,𝐾11,

𝑀𝑗

𝐾11

)︁
d𝐾2

11

=
2𝜙114𝑀𝑗

𝐾3
11

> 0. (D.3)

From equation (C.3), JTP(𝑗)
11

(︁
𝑚,𝐾11,

𝑀𝑗

𝐾11

)︁
is a strictly convex function of 𝐾11. Setting JTP′(𝑗)11

(︁
𝑚,𝐾11,

𝑀𝑗

𝐾11

)︁
=

0 yields

𝐾 ′
11 =

√︃
𝜙114𝑀2

𝑗

𝜙111𝑀2
𝑗 − 𝜙113𝑀𝑗 + 𝜙115

· (D.4)

Noticing that, if 𝐾 ′
11 is feasible, the optimal solution in this case is (𝑇11,𝐾11) =

(︁
𝑀𝑗

𝐾′
11
,𝐾 ′

11

)︁
. Otherwise the

optimal solution is (𝑇11,𝐾11) = (𝑀𝑗 , 1).
In addition, if the relationship 𝐾11𝑇11 > 𝑇𝑤 is established, use the same approach to develop 𝐾 ′

11, 𝐾 ′
11 =√︁

𝜙114𝑇 2
𝑤

𝜙111𝑇 2
𝑤−𝜙113𝑇𝑤+𝜙115

.
In the same way, we can analyze Case 1-2, Case 2-1, Case 2-2. The specific computational results are sum-

marized in Table 2.

Appendix E. Find the optimal values of 𝑇 ′′ and 𝐾 ′′ when optimal order
quantity 𝑄𝑗 ̸∈ [𝑞𝑗, 𝑞𝑗+1)

If 𝑄𝑗 ̸∈ [𝑞𝑗 , 𝑞𝑗+1), there are two situations:

(1) if 𝑄𝑗 ≥ 𝑞𝑗+1, the optimal solution does not exist and then the retailer needs to adjust the order quantity;
(2) if 𝑄𝑗 < 𝑞𝑗 , the optimal values will be obtained at point 𝑇 = 𝑞𝑗

𝐷[(1−𝛽)𝐾+𝛽] .

Based on the analysis above, we only need to discuss the case of 𝑄𝑗 < 𝑞𝑗 .
First, for Case 1-1, substituting 𝑇 = 𝑞𝑗

𝐷[(1−𝛽)𝐾+𝛽] into equation (4.2) leads to

JTP(𝑗)
11 (𝑚,𝐾) = [{ℎ0 + 𝑐𝑏𝛽 + 𝑐𝑗𝐼𝑅𝑐}𝐾2 − 2𝑐𝑏𝛽𝐾 + [𝑐𝑏𝛽 + 𝑐(ℎ𝑠 + 𝐼𝑆𝑝){(𝑚− 1)(1− 𝜌)+𝜌}]]

×
(︂

𝑞𝑗
2[(1− 𝛽)𝐾 + 𝛽]

)︂
− [(𝑝− 𝑐𝑗 + 𝑐𝑔)𝐷(1− 𝛽) + (𝑐𝑗𝐼𝑅𝑐 − 𝑝𝛽𝐼𝑅𝑒)𝐷𝑀𝑗 ]𝐾

+
𝐷[(1− 𝛽)𝐾 + 𝛽]

𝑞𝑗

{︃
𝐴𝑟 + 𝐹0 +

𝐴𝑠
𝑚

+
(𝑐𝑗𝐼𝑅𝑐 − 𝑝𝐼𝑅𝑒)𝐷𝑀2

𝑗

2

}︃
+ {(𝑐𝑔 − 𝑐𝑗)𝐷(1− 𝛽)− 𝑝𝐷𝛽 + 𝐹1𝐷 + (𝑐𝑗𝐼𝑆𝑝 − 𝑝𝛽𝐼𝑅𝑒)𝐷𝑀𝑗 + 𝑐𝐷}. (E.1)
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Taking the first and second derivatives of equation (E.1) with respect to 𝐾, we have

dJTP(𝑗)
11 (𝑚,𝐾)
d𝐾

=
−𝑞𝑗(1− 𝛽)

2[(1− 𝛽)𝐾 + 𝛽]2
[︀
{ℎ0 + 𝑐𝑏𝛽 + 𝑐𝑗𝐼𝑅𝑐}𝐾2 − 2𝑐𝑏𝛽𝐾 + [𝑐𝑏𝛽 + 𝑐(ℎ𝑠 + 𝐼𝑆𝑝){(𝑚− 1)

× (1− 𝜌) + 𝜌}]
]︀

+
𝑞𝑗

[(1− 𝛽)𝐾 + 𝛽]
[𝐾{ℎ0 + 𝑐𝑏𝛽 + 𝑐𝑗𝐼𝑅𝑐} − 𝑐𝑏𝛽]− [(𝑝− 𝑐𝑗 + 𝑐𝑔)𝐷(1− 𝛽)

+(𝑐𝑗𝐼𝑅𝑐 − 𝑝𝛽𝐼𝑅𝑒)𝐷𝑀𝑗 ] +
𝐷(1− 𝛽)

𝑞𝑗

{︃
𝐴𝑟 + 𝐹0 +

𝐴𝑠
𝑚

+
(𝑐𝑗𝐼𝑅𝑐 − 𝑝𝐼𝑅𝑒)𝐷𝑀2

𝑗

2

}︃
(E.2)

d2JTP(𝑗)
11 (𝑚,𝐾)

d𝐾2
=

𝑞𝑗(1− 𝛽)2

[(1− 𝛽)𝐾 + 𝛽]3
[︀
{ℎ0 + 𝑐𝑏𝛽 + 𝑐𝑗𝐼𝑅𝑐}𝐾2 − 2𝑐𝑏𝛽K + [𝑐𝑏𝛽 + 𝑐(ℎ𝑠 + 𝐼𝑆𝑝){(𝑚− 1)

× (1− 𝜌) + 𝜌}]
]︀

+
𝑞𝑗{ℎ0 + 𝑐𝑏𝛽 + 𝑐𝑗𝐼𝑅𝑐}

[(1− 𝛽)𝐾 + 𝛽]

+
𝑞𝑗(1− 𝛽)

[(1− 𝛽)𝐾 + 𝛽]2
{𝑐𝑏𝛽 −𝐾(ℎ0 + 𝑐𝑏𝛽 + 𝑐𝑗𝐼𝑅𝑐)}. (E.3)

From equation (E.3), we know that JTP(𝑗)
11 (𝑚,𝐾) is convex. Setting dJTP(𝑗)

11 (𝑚,𝐾)/d𝐾 = 0 yields

−𝑞𝑗(1− 𝛽)
2[(1− 𝛽)𝐾 + 𝛽]2

[︀
{ℎ0 + 𝑐𝑏𝛽 + 𝑐𝑗𝐼𝑅𝑐}𝐾2 − 2𝑐𝑏𝛽𝐾 + [𝑐𝑏𝛽 + 𝑐(ℎ𝑠 + 𝐼𝑆𝑝){(𝑚− 1)(1− 𝜌) + 𝜌}]

]︀
+

𝑞𝑗
[(1− 𝛽)𝐾 + 𝛽]

[𝐾{ℎ0 + 𝑐𝑏𝛽 + 𝑐𝑗𝐼𝑅𝑐} − 𝑐𝑏𝛽]− [(𝑝− 𝑐𝑗 + 𝑐𝑔)𝐷(1− 𝛽)

+ (𝑐𝑗𝐼𝑅𝑐 − 𝑝𝛽𝐼𝑅𝑒)𝐷𝑀𝑗 ] +
𝐷(1− 𝛽)

𝑞𝑗

{︃
𝐴𝑟 + 𝐹0 +

𝐴𝑠
𝑚

+
(𝑐𝑗𝐼𝑅𝑐 − 𝑝𝐼𝑅𝑒)𝐷𝑀2

𝑗

2

}︃
= 0. (E.4)

After some transformation, the equation (E.4) can be simplified to

𝜇111𝐾
2 + 𝜇112𝐾 + 𝜇113 = 0 (E.5)

where,

𝜇111 = 2(1− 𝛽)2𝜔111 − 𝑞𝑗(1− 𝛽)(ℎ0 + 𝑐𝑏𝛽 + 𝑐𝑗𝐼𝑅𝑐) (E.5a)
𝜇112 = 4𝛽(1− 𝛽)𝜔111 − 2𝑞𝑗𝛽(ℎ0 + 𝑐𝑏𝛽 + 𝑐𝑗𝐼𝑅𝑐) (E.5b)
𝜇113 = 2𝜔111𝛽

2 + 𝑞𝑗(1− 𝛽) + 𝑞𝑗(1− 𝛽){𝑐𝑏𝛽 + 𝑐(ℎ𝑠 + 𝐼𝑆𝑝){(𝑚− 1)(1− 𝜌) + 𝜌}}+ 2𝑞𝑗𝑐𝑏𝛽2 (E.5c)
𝜔111 = [(𝑝− 𝑐𝑗 + 𝑐𝑔)𝐷(1− 𝛽) +(𝑐𝑗𝐼𝑅𝑐 − 𝑝𝛽𝐼𝑅𝑒)𝐷𝑀𝑗 ]

− 𝐷(1− 𝛽)
𝑞𝑗

{︃
𝐴𝑟 + 𝐹0 +

𝐴𝑠
𝑚

+
(𝑐𝑗𝐼𝑅𝑐 − 𝑝𝐼𝑅𝑒)𝐷𝑀2

𝑗

2

}︃
· (E.5d)

For the quadratic equation (E.5), if it has roots (𝑖.𝑒.,∆ = 𝜇112 − 4𝜇111𝜇113 ≥ 0), then we have

𝐾 ′′
11 =

−𝜇112 +
√︀
𝜇2

112 − 4𝜇111𝜇113

2𝜇111
· (E.6)

If 𝐾 ′′
11 is feasible, then we obtain the retailer’s replenishment cycle

𝑇 ′′11 =
𝑞𝑗

𝐷[(1− 𝛽)𝐾 ′′
11 + 𝛽]

· (E.7)

If 𝐾 ′′
11 is not feasible or equation (E.5) has no root, we may set 𝐾 ′′

11 = 0 or 𝐾 ′′
11 = 1.
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In summary, for the solution of 𝐾 ′′
11 and 𝑇 ′′11 derived for Case 1-1, we also need to check whether the constraint

𝑀𝑗 ≤ 𝐾 ′′
11𝑇

′′
11 ≤ 𝑇𝑤 is satisfied. If the constraint is valid, the optimal solution is obtained. Otherwise, the optimal

solution does not exist.
Following the same steps used in Case 1-1, we can analyze Case 1-2, Case 2-1 and Case 2-2 separately.

𝐾 ′′
12 =

−𝜇122 +
√︀
𝜇2

122 − 4𝜇121𝜇123

2𝜇121
(E.8)

where,

𝜇121 = 2(1− 𝛽)2𝜔121 − 𝑞𝑗(1− 𝛽)(ℎ0 + 𝑐𝑏𝛽 + 𝑝𝐼𝑅𝑒) (E.8a)
𝜇122 = 4𝛽(1− 𝛽)𝜔121 − 2𝑞𝑗𝛽(ℎ0 + 𝑐𝑏𝛽 + 𝑝𝐼𝑅𝑒) (E.8b)
𝜇123 = 2𝜔121𝛽

2 + 𝑞𝑗(1− 𝛽){𝑐𝑏𝛽 + 𝑐(ℎ𝑠 + 𝐼𝑆𝑝){(𝑚− 1)(1− 𝜌) + 𝜌}}+ 2𝑞𝑗𝑐𝑏𝛽2 (E.8c)

𝜔121 = [(𝑝− 𝑐𝑗 + 𝑐𝑔)𝐷(1− 𝛽) + (1− 𝛽)𝑝 𝐷𝐼𝑅𝑒𝑀𝑗 ]−
𝐷(1− 𝛽)

𝑞𝑗

{︂
𝐴𝑟 + 𝐹0 +

𝐴𝑠
𝑚

}︂
(E.8d)

𝐾 ′′
21 =

−𝜇212 +
√︀
𝜇2

212 − 4𝜇211𝜇213

2𝜇211
(E.9)

where,

𝜇211 = 2(1− 𝛽)2𝜔211 − 𝑞𝑗(1− 𝛽)(ℎ𝑟 + 𝑐𝑏𝛽 + 𝑐𝑗𝐼𝑅𝑐) (E.9a)
𝜇212 = 4𝛽(1− 𝛽)𝜔211 − 2𝑞𝑗𝛽(ℎ𝑟 + 𝑐𝑏𝛽 + 𝑐𝑗𝐼𝑅𝑐) (E.9b)
𝜇213 = 2𝜔211𝛽

2 + 𝑞𝑗(1− 𝛽){𝑐𝑏𝛽 + 𝑐(ℎ𝑠 + 𝐼𝑆𝑝){(𝑚− 1)(1− 𝜌) + 𝜌}}+ 2𝑞𝑗𝑐𝑏𝛽2 (E.9c)
𝜔211 = [(𝑝− 𝑐𝑗 + 𝑐𝑔)𝐷(1− 𝛽) +(ℎ𝑟 − ℎ0)𝑊 + (𝑐𝑗𝐼𝑅𝑐 − 𝑝𝛽𝐼𝑅𝑒)𝐷𝑀𝑗 ]

− 𝐷(1− 𝛽)
𝑞𝑗

{︃
𝐴𝑟 + 𝐹0 +

𝐴𝑠
𝑚

+
(𝑐𝑗𝐼𝑅𝑐 − 𝑝𝐼𝑅𝑒)𝐷𝑀2

𝑗

2
+

(ℎ𝑟 − ℎ0)𝑊 2

2𝐷

}︃
(E.9d)

𝐾 ′′
22 =

−𝜇222 +
√︀
𝜇2

222 − 4𝜇221𝜇223

2𝜇221
(E.10)

where,

𝜇221 = 2(1− 𝛽)2𝜔221 − 𝑞𝑗(1− 𝛽)(ℎ𝑟 + 𝑐𝑏𝛽 + 𝑝𝐼𝑅𝑒) (E.10a)
𝜇222 = 4𝛽(1− 𝛽)𝜔221 − 2𝑞𝑗𝛽(ℎ𝑟 + 𝑐𝑏𝛽 + 𝑝𝐼𝑅𝑒) (E.10b)
𝜇223 = 2𝜔221𝛽

2 + 𝑞𝑗(1− 𝛽){𝑐𝑏𝛽 + 𝑐(ℎ𝑠 + 𝐼𝑆𝑝){(𝑚− 1)(1− 𝜌) + 𝜌}}+ 2𝑞𝑗𝑐𝑏𝛽2 (E.10c)
𝜔221 = [(𝑝− 𝑐𝑗 + 𝑐𝑔)𝐷(1− 𝛽) + (ℎ𝑟 − ℎ0)𝑊 + (1− 𝛽)𝑝 𝐷𝐼𝑅𝑒𝑀𝑗 ]

− 𝐷(1− 𝛽)
𝑞𝑗

{︂
𝐴𝑟 + 𝐹0 +

𝐴𝑠
𝑚

+
(ℎ𝑟 − ℎ0)𝑊 2

2𝐷

}︂
· (E.10d)

Appendix F. Algorithm A: Determine (𝐾**
11 , 𝑇

**
11 ) and JTP

(𝑗)
11 (𝑚, 𝐾**

11 , 𝑇
**
11 )

A1. Calculate 𝜙11𝑖(𝑖 = 1, 2, . . . , 6) from equations (4.3) to (4.9). If 𝜙115 > 0, go to step A2; if not, go to step
A6.

A2. Calculate 𝛽11 from equation (4.18), if 𝛽 ≤ 𝛽11, go to step A4; else if 𝛽 > 𝛽11, calculate 𝑇11 from equation
(4.19). If 𝑇11 is feasible, go to step A3; if not, go to step A4.

A3. Compute 𝐾11 from equation (4.20), if 𝐾11 ≤ 1, go to step A5; if not, go to step A4.
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A4. Set 𝐾11 = 1, determine 𝑇#
11 from equations in Appendix A. If 𝑇#

11 > 𝑇𝑤, set (𝐾*
11, 𝑇

*
11) = (1, 𝑇𝑤) and go to

step A7; else if 𝑇#
11 < 𝑀𝑗 , set (𝐾*

11, 𝑇
*
11) = (1,𝑀𝑗) and go to step A7; otherwise, set (𝐾*

11, 𝑇
*
11) =

(︁
1, 𝑇#

11

)︁
and go to step A7.

A5. If 𝑀𝑗 ≤ 𝐾11𝑇11 ≤ 𝑇𝑤, set (𝐾*
11, 𝑇

*
11) = (𝐾11, 𝑇11) and go to step A7; if not, go to step A6.

A6. If 𝐾11𝑇11 > 𝑇𝑤, obtain (𝐾*
11, 𝑇

*
11) = (𝐾 ′

11, 𝑇
′
11) by employing Table 2. Then if 𝑇 *11 and 𝐾*

11 are feasible, go
to step A7; if not, go to step A4. On the other hand, if 𝐾11𝑇11 < 𝑀𝑗 , obtain (𝐾*

11, 𝑇
*
11) = (𝐾 ′

11, 𝑇
′
11) using

Table 2. Now, if 𝑇 *11 and 𝐾*
11 are feasible, go to step A7; if not, go to step A4.

A7. Calculate order quantity 𝑄𝑗 = 𝐷𝑇 *11[(1−𝐾*
11)𝛽 +𝐾*

11] from equation (4.21), and go to step A8.
A8. Determine the relationship between 𝑄𝑗 and [𝑞𝑗 , 𝑞𝑗+1) using the following sub-steps.

A8.1. If 𝑞𝑗 ≤ 𝑄𝑗 < 𝑞𝑗+1, set (𝐾**
11 , 𝑇

**
11 ) = (𝐾*

11, 𝑇
*
11). Calculate the retailer’s annual profit

JTP(𝑗)
11 (𝑚,𝐾**

11 , 𝑇
**
11 ) using equation (3.13) and go to step A9.

A8.2. If 𝑄𝑗 ≥ 𝑞𝑗+1, then 𝑇 *11 and 𝐾*
11 are not feasible solutions, set JTP(𝑗)

11 (𝑚,𝐾, 𝑇 ) = −inf.
A8.3. If 𝑄𝑗 < 𝑞𝑗 , then 𝑇 *11 and 𝐾*

11 are not feasible solutions. However, JTP(𝑗)
11 (𝑚,𝐾, 𝑇 ) at point 𝑇 =

𝑞𝑗

𝐷[(1−𝛽)𝐾+𝛽] has a maximum value. Thus, calculate 𝐾 ′′
11 from equations in Appendix D. If 𝐾 ′′

11 is feasible,
go to step A8.3.1; if not, go to step A8.3.2.
A8.3.1. If 𝑀𝑗 ≤ 𝐾 ′′

11𝑇
′′
11 ≤ 𝑇𝑤, set (𝐾**

11 , 𝑇
**
11 ) = (𝐾 ′′

11, 𝑇
′′
11), and calculate the retailer’s annual profit

JTP(𝑗)
11 (𝑚,𝐾**

11 , 𝑇
**
11 ) using equation (3.13), go to step A9. Otherwise, 𝑇 ′′11 and 𝐾 ′′

11 are not feasible
solutions, set JTP(𝑗)

11 (𝑚,𝐾, 𝑇 ) = −inf, go to step A9.
A8.3.2. Let 𝐾 ′′

11 = 1 and 𝑇 ′′11 = 𝑞𝑗/𝐷. If 𝑀𝑗 ≤ 𝐾 ′′
11𝑇

′′
11 ≤ 𝑇𝑤, set (𝐾**

11 , 𝑇
**
11 ) = (1, 𝑞𝑗/𝐷), and calculate

the retailer’s annual profit JTP(𝑗)
11 (𝑚,𝐾**

11 , 𝑇
**
11 ) using equation (3.13) and go to step A9. Otherwise,

𝑇 ′′11 and 𝐾 ′′
11 are not feasible solutions, set JTP(𝑗)

11 (𝑚,𝐾, 𝑇 ) = −inf, go to step A9.
A9. If JTP(𝑗)

11 (𝑚,𝐾**
11 , 𝑇

**
11 ) ≥ −𝑐𝑗𝐷, the optimal solutions 𝐾**

11 and 𝑇 **11 are found and stop. Otherwise, go to
step A10.

A10. Set (𝐾**
11 , 𝑇

**
11 ) = (0,∞), JTP(𝑗)

11 (𝑚,𝐾**
11 , 𝑇

**
11 ) = −𝑐𝑗𝐷.

Appendix G. Algorithm B: Determine (𝐾**
12 , 𝑇

**
12 ) and JTP

(𝑗)
12 (𝑚, 𝐾**

12 , 𝑇
**
12 )

B1. Calculate 𝜙12𝑖(𝑖 = 1, 2, . . . , 6) from equations (4.23) to (4.28), go to step B2.
B2. Calculate 𝛽12 from equation (B.2), if 𝛽 ≤ 𝛽12, go to step B4; else if 𝛽 > 𝛽12, calculate 𝑇12 from equation

(4.17). If 𝑇12 is feasible, go to step B3; if not, go to step B4.
B3. Compute 𝐾12 from equation (B.4), if 𝐾12 ≤ 1, go to step B5; if not, go to step B4.
B4. Set 𝐾12 = 1, determine 𝑇#

12 from equations in Appendix B. If 𝑇#
12 > min{𝑇𝑤,𝑀𝑗}, set (𝐾*

12, 𝑇
*
12) =

(1,min{𝑇𝑤,𝑀𝑗}) and go to step B7; otherwise, set (𝐾*
12, 𝑇

*
12) =

(︁
1, 𝑇#

12

)︁
and go to step B7.

B5. If 𝐾12𝑇12 ≤ min{𝑇𝑤,𝑀𝑗}, set (𝐾*
12, 𝑇

*
12) = (𝐾12, 𝑇12) and go to step B7; if not, go to step B6.

B6. If 𝐾12𝑇12 > min{𝑇𝑤,𝑀𝑗}, obtain (𝐾*
12, 𝑇

*
12) = (𝐾 ′

12, 𝑇
′
12) by employing Table 2. Then if 𝑇 *12 and 𝐾*

12 are
feasible, go to step B7; if not, go to step B4.

B7. Calculate order quantity 𝑄𝑗 = 𝐷𝑇 *12[(1−𝐾*
12)𝛽 +𝐾*

12], and go to step B8.
B8. Determine the relationship between 𝑄𝑗 and [𝑞𝑗 , 𝑞𝑗+1) using the following sub-steps.

B8.1. If 𝑞𝑗 ≤ 𝑄𝑗 < 𝑞𝑗+1, set (𝐾**
12 , 𝑇

**
12 ) = (𝐾*

12, 𝑇
*
12). Calculate the retailer’s annual profit

JTP(𝑗)
12 (𝑚,𝐾**

12 , 𝑇
**
12 ) using equation (3.14) and go to step B9.

B8.2. If 𝑄𝑗 ≥ 𝑞𝑗+1, then 𝑇 *12 and 𝐾*
12 are not feasible solutions, set JTP(𝑗)

12 (𝑚,𝐾*
12, 𝑇

*
12) = −inf.

B8.3. If 𝑄𝑗 < 𝑞𝑗 , then 𝑇 *12 and 𝐾*
12 are not feasible solutions. However, JTP(𝑗)

12 (𝑚,𝐾, 𝑇 ) at point 𝑇 =
𝑞𝑗

𝐷[(1−𝛽)𝐾+𝛽] has a maximum value. Thus, calculate 𝐾 ′′
12 from equations in Appendix D. If 𝐾 ′′

12 is feasible,
go to step B8.3.1; if not, go to step B8.3.2.
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B8.3.1. If 𝐾 ′′
12𝑇

′′
12 ≤ min{𝑇𝑤,𝑀𝑗}, set (𝐾**

12 , 𝑇
**
12 ) = (𝐾 ′′

12, 𝑇
′′
12), and calculate the retailer’s annual profit

JTP(𝑗)
12 (𝑚,𝐾**

12 , 𝑇
**
12 ) using equation (3.14), go to step B9. Otherwise, 𝑇 ′′12 and 𝐾 ′′

12 are not feasible
solutions, set JTP(𝑗)

12 (𝑚,𝐾**
12 , 𝑇

**
12 ) = −inf, go to step B9.

B8.3.2. Let 𝐾 ′′
12 = 1 and 𝑇 ′′12 = 𝑞𝑗/𝐷. If 𝐾 ′′

12𝑇
′′
12 ≤ min{𝑇𝑤,𝑀𝑗}, set (𝐾**

12 , 𝑇
**
12 ) = (1, 𝑞𝑗/𝐷), and

calculate the retailer’s annual profit JTP(𝑗)
12 (𝑚,𝐾**

12 , 𝑇
**
12 ) using equation (3.14) and go to step B9.

Otherwise, 𝑇 ′′11 and 𝐾 ′′
11 are not feasible solutions, set JTP(𝑗)

12 (𝑚,𝐾**
12 , 𝑇

**
12 ) = −inf, go to step B9.

B9. If JTP(𝑗)
12 (𝑚,𝐾**

12 , 𝑇
**
12 ) ≥ −𝑐𝑗𝐷, the optimal solutions 𝐾**

12 and 𝑇 **12 are found and stop. Otherwise, go to
step B10.

B10. Set (𝐾**
12 , 𝑇

**
12 ) = (0,∞), JTP(𝑗)

12 (𝑚,𝐾**
12 , 𝑇

**
12 ) = −𝑐𝑗𝐷.

Appendix H. Algorithm C: Determine (𝐾**
21 , 𝑇

**
21 ) and JTP

(𝑗)
21 (𝑚, 𝐾**

21 , 𝑇
**
21 )

C1. Calculate 𝜙21𝑖(𝑖 = 1, 2, . . . , 6) from equations (C.2)–(C.7). If 𝜙215 > 0, go to step C2; if not, go to step C6.
C2. Calculate 𝛽21 from equation (D.2), if 𝛽 ≤ 𝛽21, go to step C4; else if 𝛽 > 𝛽21, calculate 𝑇21 from equation

(4.22). If 𝑇21 is feasible, go to step C3; if not, go to step C4.
C3. Compute 𝐾21 from equation (D.4), if 𝐾21 ≤ 1, go to step C5; if not, go to step C4.
C4. Set 𝐾21 = 1, determine 𝑇#

21 from equations in Appendix D. If 𝑇#
21 < max{𝑇𝑤,𝑀𝑗}, set (𝐾*

21, 𝑇
*
21) =

(1,max{𝑇𝑤,𝑀𝑗}) and go to step C7. Otherwise, set (𝐾*
21, 𝑇

*
21) =

(︁
1, 𝑇#

21

)︁
and go to step C7.

C5. If max{𝑇𝑤,𝑀𝑗} ≤ 𝐾21𝑇21, set (𝐾*
21, 𝑇

*
21) = (𝐾21, 𝑇21) and go to step C7; if not, go to step C6.

C6. If 𝐾21𝑇21 < max{𝑇𝑤,𝑀𝑗}, obtain (𝐾*
21, 𝑇

*
21) = (𝐾 ′

21, 𝑇
′
21) by employing Table 2. Then if 𝑇 *21 and 𝐾*

21 are
feasible, go to step C7; if not, go to step C4.

C7. Calculate order quantity 𝑄𝑗 = 𝐷𝑇 *21[(1−𝐾*
21)𝛽 +𝐾*

21], and go to step C8.
C8. Determine the relationship between 𝑄𝑗 and [𝑞𝑗 , 𝑞𝑗+1) using the following sub-steps.

C8.1. If 𝑞𝑗 ≤ 𝑄𝑗 < 𝑞𝑗+1, set (𝐾**
21 , 𝑇

**
21 ) = (𝐾*

21, 𝑇
*
21). Calculate the retailer’s annual profit

JTP(𝑗)
21 (𝑚,𝐾**

21 , 𝑇
**
21 ) using equation (3.15) and go to step C9.

C8.2. If 𝑄𝑗 ≥ 𝑞𝑗+1, then 𝑇 *21 and 𝐾*
21 are not feasible solutions, set JTP(𝑗)

21 (𝑚,𝐾*
21, 𝑇

*
21) = −inf.

C8.3. If 𝑄𝑗 < 𝑞𝑗 , then 𝑇 *21 and 𝐾*
21 are not feasible solutions. However, JTP(𝑗)

21 (𝑚,𝐾, 𝑇 ) at point 𝑇 =
𝑞𝑗

𝐷[(1−𝛽)𝐾+𝛽] has a maximum value. Thus, calculate 𝐾 ′′
21 from Algorithm A in Appendix F. If 𝐾 ′′

21 is
feasible, go to step C8.3.1; if not, go to step C8.3.2.
C8.3.1. If max{𝑇𝑤,𝑀𝑗} ≤ 𝐾 ′′

21𝑇
′′
21, set (𝐾**

21 , 𝑇
**
21 ) = (𝐾 ′′

21, 𝑇
′′
21), and calculate the retailer’s annual profit

JTP(𝑗)
21 (𝑚,𝐾**

21 , 𝑇
**
21 ) using equation (3.15), go to step C9. Otherwise, 𝑇 ′′21 and 𝐾 ′′

21 are not feasible
solutions, set JTP(𝑗)

21 (𝑚,𝐾**
21 , 𝑇

**
21 ) = −inf, go to step C9.

C8.3.2. Let 𝐾 ′′
21 = 1 and 𝑇 ′′21 = 𝑞𝑗/𝐷. If max{𝑇𝑤,𝑀𝑗} ≤ 𝐾 ′′

21𝑇
′′
21, set (𝐾**

21 , 𝑇
**
21 ) = (1, 𝑞𝑗/𝐷), and

calculate the retailer’s annual profit JTP(𝑗)
21 (𝑚,𝐾**

21 , 𝑇
**
21 ) using equation (3.15) and go to step C9.

Otherwise, 𝑇 ′′21 and 𝐾 ′′
21 are not feasible solutions, set JTP(𝑗)

21 (𝑚,𝐾**
21 , 𝑇

**
21 ) = −inf, go to step C9.

C9. If JTP(𝑗)
21 (𝑚,𝐾**

21 , 𝑇
**
21 ) ≥ −𝑐𝑗𝐷, the optimal solutions 𝐾**

21 and 𝑇 **21 are found and stop. Otherwise, go to
step C10.

C10. Set (𝐾**
21 , 𝑇

**
21 ) = (0,∞), JTP(𝑗)

21 (𝑚,𝐾**
21 , 𝑇

**
21 ) = −𝑐𝑗𝐷.

Appendix I. Algorithm D: Determine (𝐾**
22 , 𝑇

**
22 ) and JTP

(𝑗)
22 (𝑚, 𝐾**

22 , 𝑇
**
22 )

D1. Calculate 𝜙22𝑖(𝑖 = 1, 2, . . . , 6) from equations (E.2)–(E.7), go to step D6.
D2. Calculate 𝛽22 from equation (E.8), if 𝛽 ≤ 𝛽22, go to step D4; else if 𝛽 > 𝛽22, calculate 𝑇22 from equation

(E.9). If 𝑇22 is feasible, go to step D3; if not, go to step D4.
D3. Compute 𝐾22 from equation (E.10), if 𝐾22 ≤ 1, go to step D5; if not, go to step-D4.



AN INTEGRATED INVENTORY MODEL WITH CAPACITY CONSTRAINT 1621

D4. Set 𝐾22 = 1, determine 𝑇#
22 from equation (D7) in Appendix D. If 𝑇#

22 < 𝑇𝑤, set (𝐾*
22, 𝑇

*
22) = (1, 𝑇𝑤) and go

to step D7; else if 𝑇 ♯22 > 𝑀𝑗 , set (𝐾*
22, 𝑇

*
22) = (1,𝑀𝑗) and go to step D7; Otherwise, set (𝐾*

22, 𝑇
*
22) =

(︁
1, 𝑇 ♯22

)︁
and go to step D7.

D5. If 𝑇𝑤 ≤ 𝐾22𝑇22 ≤𝑀𝑗 , set (𝐾*
22, 𝑇

*
22) = (𝐾22, 𝑇22) and go to step D7; if not, go to step D6.

D6. If 𝐾22𝑇22 < 𝑇𝑤, obtain (𝐾*
22, 𝑇

*
22) = (𝐾 ′

22, 𝑇
′
22) by employing Table 2. Then if 𝑇 *22 and 𝐾*

22 are feasible, go
to step D7; if not, go to step D4. On the other hand, if 𝐾22𝑇22 > 𝑀𝑗 , obtain (𝐾*

22, 𝑇
*
22) = (𝐾 ′

22, 𝑇
′
22) using

Table 2. Now, if 𝑇 *22 and 𝐾*
22 are feasible, go to step D7; if not, go to step D4.

D7. Calculate order quantity 𝑄𝑗 = 𝐷𝑇 *22[(1−𝐾*
22)𝛽 +𝐾*

22], and go to step D8.
D8. Determine the relationship between 𝑄𝑗 and [𝑞𝑗 , 𝑞𝑗+1) using the following sub-steps.

D8.1. If 𝑞𝑗 ≤ 𝑄𝑗 < 𝑞𝑗+1, set (𝐾**
22 , 𝑇

**
22 ) = (𝐾*

22, 𝑇
*
22). Calculate the retailer’s annual profit

JTP(𝑗)
22 (𝑚,𝐾**

22 , 𝑇
**
22 ) using equation (3.16) and go to step D9.

D8.2. If 𝑄𝑗 ≥ 𝑞𝑗+1, then 𝑇 *22 and 𝐾*
22 are not feasible solutions, set JTP(𝑗)

22 (𝑚,𝐾*
22, 𝑇

*
22) = −inf.

D8.3. If 𝑄𝑗 < 𝑞𝑗 , then 𝑇 *22 and 𝐾*
22 are not feasible solutions. However, JTP(𝑗)

22 (𝑚,𝐾*
22, 𝑇

*
22) at point 𝑇 =

𝑞𝑗

𝐷[(1−𝛽)𝐾+𝛽] has a maximum value. Thus, calculate 𝐾 ′′
22 from algorithms in Appendix F. If 𝐾 ′′

22 is feasible,
go to step D8.3.1; if not, go to step D8.3.2.
D8.3.1. If 𝑇𝑤 ≤ 𝐾 ′′

22𝑇
′′
22 ≤ 𝑀𝑗 , set (𝐾**

22 , 𝑇
**
22 ) = (𝐾 ′′

22, 𝑇
′′
22), and calculate the retailer’s annual profit

JTP(𝑗)
22 (𝑚,𝐾**

22 , 𝑇
**
22 ) using equation (3.16), go to step D9. Otherwise, 𝑇 ′′22 and 𝐾 ′′

22 are not feasible
solutions, set JTP(𝑗)

22 (𝑚,𝐾**
22 , 𝑇

**
22 ) = −inf, go to step D9.

D8.3.2. Let 𝐾 ′′
22 = 1 and 𝑇 ′′22 = 𝑞𝑗/𝐷. If 𝑇𝑤 ≤ 𝐾 ′′

22𝑇
′′
22 ≤ 𝑀𝑗 , set (𝐾**

22 , 𝑇
**
22 ) = (1, 𝑞𝑗/𝐷), and calculate

the retailer’s annual profit JTP(𝑗)
22 (𝑚,𝐾**

22 , 𝑇
**
22 ) using equation (3.16) and go to step D9. Otherwise,

𝑇 ′′22 and 𝐾 ′′
22 are not feasible solutions, set JTP(𝑗)

22 (𝑚,𝐾**
22 , 𝑇

**
22 ) = −inf, go to step D9.

D9. If JTP(𝑗)
22 (𝑚,𝐾**

22 , 𝑇
**
22 ) ≥ 𝑐𝑗𝐷, the optimal solutions 𝐾**

22 and 𝑇 **22 are found and stop. Otherwise, go to
step D10.

D10. Set (𝐾**
22 , 𝑇

**
22 ) = (0,∞), JTP(𝑗)

22 (𝑚,𝐾**
22 , 𝑇

**
22 ) = 𝑐𝑗𝐷.
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