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ON EXTREMAL LEAF STATUS AND INTERNAL STATUS

Haiyan Guo1 and Bo Zhou2,*

Abstract. For a vertex 𝑢 of a tree 𝑇 , the leaf (internal, respectively) status of 𝑢 is the sum of
the distances from 𝑢 to all leaves (internal vertices, respectively) of 𝑇 . The minimum (maximum,
respectively) leaf status of a tree 𝑇 is the minimum (maximum, respectively) leaf statuses of all vertices
of 𝑇 . The minimum (maximum, respectively) internal status of a tree 𝑇 is the minimum (maximum,
respectively) internal statuses of all vertices of 𝑇 . We characterize those trees with the smallest (largest,
respectively) extremal (minimum and maximum) leaf status and extremal (minimum and maximum)
internal status, respectively. We also study the corresponding extremal problems for trees with given
parameters, including diameter or maximum degree.
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1. Introduction

Let 𝐺 be a connected graph of order 𝑛 ≥ 2 with vertex set 𝑉 (𝐺). For 𝑢, 𝑣 ∈ 𝑉 (𝐺), the distance between 𝑢
and 𝑣 in 𝐺, denoted by 𝑑𝐺(𝑢, 𝑣), is the length of a shortest path connecting 𝑢 and 𝑣 in 𝐺. Let ∅ ≠ 𝐴 ⊆ 𝑉 (𝐺).
For 𝑢 ∈ 𝑉 (𝐺), the 𝐴-status of 𝑢 in 𝐺 is defined as

𝑠𝐺(𝑢, 𝐴) =
∑︁
𝑣∈𝐴

𝑑𝐺(𝑢, 𝑣).

The minimum 𝐴-status of 𝐺 is 𝑠𝐴(𝐺) = min{𝑠𝐺(𝑢, 𝐴) : 𝑢 ∈ 𝑉 (𝐺)}, while the maximum 𝐴-status of 𝐺 is
𝑆𝐴(𝐺) = max{𝑠𝐺(𝑢, 𝐴) : 𝑢 ∈ 𝑉 (𝐺)}. The 𝐴-centroid (or 𝐴-median) of 𝐺 is defined as {𝑢 ∈ 𝑉 (𝐺) : 𝑠𝐺(𝑢, 𝐴) =
𝑠𝐴(𝐺)}.

Let 𝑠𝐺(𝑢) = 𝑠𝐺(𝑢, 𝑉 (𝐺)) for 𝑢 ∈ 𝑉 (𝐺), 𝑠(𝐺) = 𝑠𝑉 (𝐺)(𝐺) and 𝑆(𝐺) = 𝑆𝑉 (𝐺)(𝐺). Then 𝑠𝐺(𝑢) is the status
(or transmission) of 𝑢 in 𝐺 [4, 6, 19], 𝑠(𝐺) is the minimum status of 𝐺, and 𝑆(𝐺) is the maximum status of 𝐺.
Both minimum and maximum statuses have been studied extensively, and it should be noted that the minimum
(maximum, respectively) status appeared also in its normalized form divided by 𝑛−1 that is called the proximity
(remoteness, respectively) of the graph, see, e.g., [1–3,5,7–9,11,12,15,16,21]. Some related works may be found
in [10,13,18,20].

Let 𝑇 be a tree. For 𝑢 ∈ 𝑉 (𝑇 ), denote by 𝑁𝑇 (𝑢) the set of vertices adjacent to 𝑢 in 𝑇 and the cardinality of
𝑁𝑇 (𝑢) is the degree of 𝑢 in 𝑇 , denoted by 𝛿𝑇 (𝑢). A vertex of degree one in a tree is called a leaf and a vertex
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of degree at least two in a tree is called an internal vertex. Let 𝐿(𝑇 ) and 𝐼(𝑇 ) be the set of leaves and the set
of internal vertices of 𝑇 , respectively.

Slater [17] studied the structure of the 𝐴-centroid of a tree 𝑇 with ∅ ≠ 𝐴 ⊆ 𝑉 (𝑇 ). For example, it was shown
in Theorem 5 of [17] that the 𝐴-centroid induces a path in a tree for any subset 𝐴. Another related concept
is called 𝐴-center, which is defined to be the set {𝑢 ∈ 𝑉 (𝑇 ) : 𝑒𝐴(𝑢, 𝑇 ) = min{𝑒𝐴(𝑤, 𝑇 ) : 𝑤 ∈ 𝑉 (𝑇 )}}, where
𝑒𝐴(𝑢, 𝑇 ) = max{𝑑𝑇 (𝑢, 𝑣) : 𝑣 ∈ 𝐴}. It was shown in [17] that 𝐿(𝑇 )-center and 𝐿(𝑇 )-centroid have quite different
properties.

The minimum leaf status (internal status, respectively) of 𝑇 is defined to be the minimum 𝐿(𝑇 )-status
(𝐼(𝑇 )-status, respectively), denoted by 𝑙𝑠(𝑇 ) (𝑖𝑠(𝑇 ), respectively). That is,

𝑙𝑠(𝑇 ) = 𝑠𝐿(𝑇 )(𝑇 ) and 𝑖𝑠(𝑇 ) = 𝑠𝐼(𝑇 )(𝑇 ).

The maximum leaf status (internal status, respectively) of 𝑇 is defined to be the maximum 𝐿(𝑇 )-status (𝐼(𝑇 )-
status, respectively), denoted by 𝐿𝑆(𝑇 ) (𝐼𝑆(𝑇 ), respectively). That is,

𝐿𝑆(𝑇 ) = 𝑆𝐿(𝑇 )(𝑇 ) and 𝐼𝑆(𝑇 ) = 𝑆𝐼(𝑇 )(𝑇 ).

In this paper, we study the extremal (minimum, maximum) leaf status (internal status, respectively). The
structures of the trees with maximum and minimum extremal (minimum, maximum) leaf status (internal status,
respectively) are identified. A somewhat related but different extremal problem studied is the characterization
of the trees with maximum distance between the 𝐿(𝑇 )-centroid and the centroid or the 𝐼(𝑇 )-centroid, and
maximum distance between the 𝐼(𝑇 )-centroid and the centroid, respectively, where, for two subsets 𝐴 and 𝐵 of
vertices of a connected graph 𝐺, the distance between 𝐴 and 𝐵 is the smallest distance between a vertex from
𝐴 and a vertex from 𝐵 in 𝐺, see [20].

In the context of communication networks, the status of a vertex is viewed as the cost of the vertex to the whole
network, which measures the closeness centrality of the vertex in the network. The leaf status (internal status,
respectively) of a vertex may be viewed as the cost of the vertex to the leaves (internal vertices, respectively) of
a network of tree structure. The minimum leaf status (internal status, respectively) models locating a central
facility in a network involving minimizing the sum of its distances from the leaf (internal, respectively) sources
of flow to it, where the distance may be appropriately weighted to reflect the associated flow volume and/or
cost.

2. Preliminaries

The diameter of a connected graph 𝐺 is the maximum distance between two vertices. Denote by 𝑆𝑛 and 𝑃𝑛

the star and the path of order 𝑛, respectively. A double star is a tree with diameter 3, which is obtainable by
adding an edge between the centers of two nontrivial stars.

For a vertex 𝑢 of a nontrivial tree 𝑇 , the components of 𝑇−𝑢 are called the branches of 𝑇 at 𝑢. For 𝐴 ⊆ 𝑉 (𝑇 ),
the 𝐴-branch-weight of 𝑢 in 𝑇 , denoted by 𝑏𝑤𝑇 (𝑢, 𝐴), is defined to be

max{|𝐴 ∩ 𝑉 (𝐵)| : 𝐵 is a branch of 𝑇 at 𝑢}.

For a tree 𝑇 , a vertex in the 𝐴-centroid is called an 𝐴-centroid vertex. The following lemma is a restatement
of Theorem 8 from [17].

Lemma 2.1. Let 𝑇 be a tree of order 𝑛 ≥ 2. Then 𝑢 is an 𝐴-centroid vertex if and only if 𝑏𝑤𝑇 (𝑢, 𝐴) ≤ 𝑏𝑤𝑇 (𝑣, 𝐴)
for any 𝑣 ∈ 𝑉 (𝑇 ).

For 𝑢, 𝑣 ∈ 𝑉 (𝑇 ), denote by 𝑛𝑇 (𝑢, 𝑣|𝐴) the number of vertices in 𝐴 closer to 𝑢 than to 𝑣. Let 𝑇 be a tree with
𝑢 ∈ 𝑉 (𝑇 ). For 𝐴 = 𝐿(𝑇 ), 𝐼(𝑇 ), Wang ([20], Prop. 3.1) stated that 𝑢 is an 𝐴-centroid vertex of 𝑇 if and only if
𝑛𝑇 (𝑢, 𝑣|𝐴) ≥ 𝑛𝑇 (𝑣, 𝑢|𝐴) for any 𝑣 ∈ 𝑁𝑇 (𝑢).

We give a somewhat easier necessary and sufficient condition for a vertex of a tree 𝑇 to be an 𝐴-centroid
vertex for 𝐴 = 𝐿(𝑇 ), 𝐼(𝑇 ).
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Lemma 2.2. Let 𝑇 be a tree of order 𝑛 ≥ 3 with 𝑢 ∈ 𝑉 (𝑇 ). For 𝐴 = 𝐿(𝑇 ), 𝐼(𝑇 ), 𝑢 is an 𝐴-centroid vertex of
𝑇 if and only if 𝑏𝑤𝑇 (𝑢, 𝐴) ≤ |𝐴|

2 .

Proof. Let 𝑟 = 𝛿𝑇 (𝑢) and 𝑁𝑇 (𝑢) = {𝑢1, . . . , 𝑢𝑟}. For 𝑖 = 1, . . . , 𝑟, let 𝐵𝑖 be the branch of 𝑇 at 𝑢 containing 𝑢𝑖

and let 𝑎𝑖 = |𝐴 ∩ 𝑉 (𝐵𝑖)|. Assume that 𝑎1 ≥ · · · ≥ 𝑎𝑟. Then, by definition, 𝑏𝑤𝑇 (𝑢, 𝐴) = 𝑎1.
Suppose that 𝑏𝑤𝑇 (𝑢, 𝐴) ≤ |𝐴|

2 , i.e., 𝑎1 ≤ |𝐴|
2 . For any 𝑣 ∈ 𝑉 (𝑇 )∖(𝑉 (𝐵1)∪{𝑢}), say 𝑣 ∈ 𝑉 (𝐵𝑖) with 2 ≤ 𝑖 ≤ 𝑟,

as 𝑇 − 𝑉 (𝐵𝑖) is a subtree of a branch at 𝑣, we have 𝑏𝑤𝑇 (𝑣, 𝐴) ≥ |𝐴 ∩ (𝑉 (𝑇 ) ∖ 𝑉 (𝐵𝑖))| ≥
∑︀𝑟

𝑗=1 𝑎𝑗 − 𝑎𝑖 ≥ 𝑎1 =

𝑏𝑤𝑇 (𝑢, 𝐴). If 𝐴 = 𝐿(𝑇 ), then
∑︀𝑟

𝑗=1 𝑎𝑗 = |𝐴|, so
∑︀𝑟

𝑗=2 𝑎𝑗 ≥ |𝐴|
2 , and for any 𝑣 ∈ 𝑉 (𝐵1), we have 𝑏𝑤𝑇 (𝑣, 𝐴) ≥

|𝐴∩ (𝑉 (𝑇 ) ∖𝑉 (𝐵1))| ≥
∑︀𝑟

𝑗=2 𝑎𝑗 ≥ |𝐴|
2 ≥ 𝑏𝑤𝑇 (𝑢, 𝐴). If 𝐴 = 𝐼(𝑇 ), then

∑︀𝑟
𝑗=1 𝑎𝑗 = |𝐴|− 1, so

∑︀𝑟
𝑗=2 𝑎𝑗 ≥ |𝐴|

2 − 1,

and for any 𝑣 ∈ 𝑉 (𝐵1), we have 𝑏𝑤𝑇 (𝑣, 𝐴) ≥ |𝐴∩ (𝑉 (𝑇 ) ∖𝑉 (𝐵1))| ≥ 1 +
∑︀𝑟

𝑗=2 𝑎𝑗 ≥ |𝐴|
2 ≥ 𝑏𝑤𝑇 (𝑢, 𝐴). Therefore

𝑏𝑤𝑇 (𝑢, 𝐴) ≤ 𝑏𝑤𝑇 (𝑣, 𝐴) for any 𝑣 ∈ 𝑉 (𝑇 ), which implies that 𝑢 is an 𝐴-centroid vertex of 𝑇 by Lemma 2.1.
Conversely, suppose that 𝑢 is an 𝐴-centroid vertex of 𝑇 .

Case 1. 𝐴 = 𝐿(𝑇 ).
If |𝐴| = 2, then 𝑇 ∼= 𝑃𝑛 and 𝑢 may be any vertex. Then 𝑏𝑤𝑇 (𝑢, 𝐴) = 1 ≤ |𝐴|

2 . Suppose that |𝐴| ≥ 3. If
𝑏𝑤𝑇 (𝑢, 𝐴) > |𝐴|

2 , i.e., 𝑎1 > |𝐴|
2 , then

∑︀𝑟
𝑖=2 𝑎𝑖 < |𝐴|

2 , so 𝑠𝑇 (𝑢, 𝐿(𝑇 )) − 𝑠𝑇 (𝑢1, 𝐿(𝑇 )) = 𝑎1 −
∑︀𝑟

𝑖=2 𝑎𝑖 > 0,
implying that 𝑠𝑇 (𝑢, 𝐿(𝑇 )) > 𝑠𝑇 (𝑢1, 𝐿(𝑇 )), a contradiction. It follows that 𝑏𝑤𝑇 (𝑢, 𝐴) ≤ |𝐴|

2 .
Case 2. 𝐴 = 𝐼(𝑇 ).

If |𝐴| = 1, then 𝑇 ∼= 𝑆𝑛 and 𝑢 is the center. If |𝐴| = 2, then 𝑇 is a double star and 𝑢 may be either of the
internal vertices. So we have 𝑏𝑤𝑇 (𝑢, 𝐴) = 0, 1 ≤ |𝐴|

2 if |𝐴| = 1, 2. Suppose that |𝐴| ≥ 3. If 𝑏𝑤𝑇 (𝑢, 𝐴) > |𝐴|
2 ,

i.e., 𝑎1 > |𝐴|
2 , then

∑︀𝑟
𝑖=2 𝑎𝑖 < |𝐴|

2 − 1, so 𝑠𝑇 (𝑢, 𝐼(𝑇 ))− 𝑠𝑇 (𝑢1, 𝐼(𝑇 )) = 𝑎1− 1−
∑︀𝑟

𝑖=2 𝑎𝑖 > 0, a contradiction.
It follows that 𝑏𝑤𝑇 (𝑢, 𝐴) ≤ |𝐴|

2 .

By combining Cases 1 and 2, we have 𝑏𝑤𝑇 (𝑢, 𝐴) ≤ |𝐴|
2 . �

A leaf peripherian vertex of a tree 𝑇 on 𝑛 vertices is a vertex of 𝑇 with maximum leaf status. Note that
every vertex of 𝑃𝑛 is a leaf peripherian vertex and 𝐿𝑆(𝑃𝑛) = 𝑛− 1. In the following lemma, we show that a leaf
peripherian vertex of a tree that is not a path must be a leaf.

Lemma 2.3. Let 𝑇 be a tree that is not a path. Let 𝑢 ∈ 𝑉 (𝑇 ). If 𝑢 is a leaf peripherian vertex of 𝑇 , then
𝑢 ∈ 𝐿(𝑇 ).

Proof. We prove the lemma by contradiction. Suppose that 𝑢 is a leaf peripherian vertex of 𝑇 but 𝑢 /∈ 𝐿(𝑇 ).
Then 𝛿𝑇 (𝑢) ≥ 2. Let 𝑟 = 𝛿𝑇 (𝑢) and 𝑁𝑇 (𝑢) = {𝑢1, . . . , 𝑢𝑟}, where 𝑟 ≥ 2. For 𝑖 = 1, . . . , 𝑟, let 𝐵𝑖 be the branch
of 𝑇 at 𝑢 containing 𝑢𝑖, 𝐿𝑖 = 𝐿(𝑇 ) ∩ 𝑉 (𝐵𝑖) and 𝑎𝑖 = |𝐿𝑖|. Assume that 𝑎1 ≤ · · · ≤ 𝑎𝑟.

Suppose first that 𝑟 = 2 and 𝑎2 = 𝑎1. As 𝑇 is not a path, we have 𝑎2 = 𝑎1 ≥ 2. Let 𝑣 ∈ 𝐿1 and let 𝑧 be the
unique vertex adjacent to 𝑣 in 𝑇 . Then

𝑠𝑇 (𝑢, 𝐿(𝑇 )) =
∑︁

𝑤∈𝐿1∖{𝑣}

𝑑𝑇 (𝑢, 𝑤) + 𝑑𝑇 (𝑢, 𝑣) +
∑︁

𝑤∈𝐿2

𝑑𝑇 (𝑢, 𝑤),

𝑠𝑇 (𝑣, 𝐿(𝑇 )) =
∑︁

𝑤∈𝐿1∖{𝑣}

𝑑𝑇 (𝑣, 𝑤) +
∑︁

𝑤∈𝐿2

(𝑑𝑇 (𝑣, 𝑢) + 𝑑𝑇 (𝑢, 𝑤)),

and so

𝑠𝑇 (𝑣, 𝐿(𝑇 ))− 𝑠𝑇 (𝑢, 𝐿(𝑇 )) =
∑︁

𝑤∈𝐿1∖{𝑣}

(𝑑𝑇 (𝑣, 𝑤)− 𝑑𝑇 (𝑢, 𝑤))− 𝑑𝑇 (𝑢, 𝑣) +
∑︁

𝑤∈𝐿2

𝑑𝑇 (𝑣, 𝑢)

>
∑︁

𝑤∈𝐿1∖{𝑣}

(𝑑𝑇 (𝑧, 𝑤)− 𝑑𝑇 (𝑢, 𝑤))− 𝑑𝑇 (𝑢, 𝑣) +
∑︁

𝑤∈𝐿2

𝑑𝑇 (𝑣, 𝑢)
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≥ −
∑︁

𝑤∈𝐿1∖{𝑣}

𝑑𝑇 (𝑧, 𝑢)− 𝑑𝑇 (𝑢, 𝑣) +
∑︁

𝑤∈𝐿2

𝑑𝑇 (𝑣, 𝑢)

= −
∑︁

𝑤∈𝐿1∖{𝑣}

(𝑑𝑇 (𝑣, 𝑢)− 1)− 𝑑𝑇 (𝑢, 𝑣) +
∑︁

𝑤∈𝐿2

𝑑𝑇 (𝑣, 𝑢)

=
∑︁

𝑤∈𝐿1∖{𝑣}

1

= 𝑎1 − 1
> 0.

Thus 𝑠𝑇 (𝑣, 𝐿(𝑇 )) > 𝑠𝑇 (𝑢, 𝐿(𝑇 )). This implies that 𝑢 cannot be a leaf peripherian vertex of 𝑇 , a contradiction.
Suppose next that 𝑟 = 2 and 𝑎2 > 𝑎1, or 𝑟 ≥ 3. Then

𝑠𝑇 (𝑢, 𝐿(𝑇 )) =
∑︁
𝑣∈𝐿1

𝑑𝑇 (𝑢, 𝑣) +
𝑟∑︁

𝑗=2

∑︁
𝑣∈𝐿𝑗

𝑑𝑇 (𝑢, 𝑣),

𝑠𝑇 (𝑢1, 𝐿(𝑇 )) =
∑︁
𝑣∈𝐿1

(𝑑𝑇 (𝑢, 𝑣)− 1) +
𝑟∑︁

𝑗=2

∑︁
𝑣∈𝐿𝑗

(𝑑𝑇 (𝑢, 𝑣) + 1),

and so

𝑠𝑇 (𝑢1, 𝐿(𝑇 ))− 𝑠𝑇 (𝑢, 𝐿(𝑇 )) =
∑︁
𝑣∈𝐿1

(−1) +
𝑟∑︁

𝑗=2

∑︁
𝑣∈𝐿𝑗

1

=
𝑟∑︁

𝑖=2

𝑎𝑖 − 𝑎1

> 0.

Thus 𝑠𝑇 (𝑢1, 𝐿(𝑇 )) > 𝑠𝑇 (𝑢, 𝐿(𝑇 )). This implies that 𝑢 is not a leaf peripherian vertex of 𝑇 , also a contradiction.
Therefore, 𝑢 ∈ 𝐿(𝑇 ), as desired. �

An internal peripherian vertex of a tree 𝑇 is a vertex of 𝑇 with maximum internal status.

Lemma 2.4. Let 𝑇 be a tree. Suppose that 𝑢 is an internal peripherian vertex of 𝑇 . Then 𝑢 ∈ 𝐿(𝑇 ).

Proof. We prove the lemma by contradiction. Suppose that 𝑢 /∈ 𝐿(𝑇 ). Then 𝛿𝑇 (𝑢) ≥ 2.
If there is a vertex 𝑣 ∈ 𝑁𝑇 (𝑢) with 𝛿𝑇 (𝑣) = 1, then it is obvious that 𝑠𝑇 (𝑣, 𝐼(𝑇 )) > 𝑠𝑇 (𝑢, 𝐼(𝑇 )), a contradic-

tion. So 𝛿𝑇 (𝑣) ≥ 2 for any 𝑣 ∈ 𝑁𝑇 (𝑢). Let 𝑟 = 𝛿𝑇 (𝑢) and 𝑁𝑇 (𝑢) = {𝑢1, . . . , 𝑢𝑟}, where 𝑟 ≥ 2. For 𝑖 = 1, . . . , 𝑟,
let 𝐵𝑖 be the branch of 𝑇 at 𝑢 containing 𝑢𝑖, 𝐼𝑖 = 𝐼(𝑇 ) ∩ 𝑉 (𝐵𝑖) and 𝑎𝑖 = |𝐼𝑖|. Assume that 𝑎1 ≤ · · · ≤ 𝑎𝑟. Let
𝑧 ∈ 𝐼1. Then

𝑠𝑇 (𝑢, 𝐼(𝑇 )) =
∑︁

𝑤∈𝐼1∖{𝑧}

𝑑𝑇 (𝑢, 𝑤) + 𝑑𝑇 (𝑢, 𝑧) +
𝑟∑︁

𝑖=2

∑︁
𝑤∈𝐼𝑖

𝑑𝑇 (𝑢, 𝑤),

𝑠𝑇 (𝑧, 𝐼(𝑇 )) =
∑︁

𝑤∈𝐼1∖{𝑧}

𝑑𝑇 (𝑧, 𝑤) + 𝑑𝑇 (𝑧, 𝑢) +
𝑟∑︁

𝑖=2

∑︁
𝑤∈𝐼𝑖

(𝑑𝑇 (𝑧, 𝑢) + 𝑑𝑇 (𝑢, 𝑤)),

and so

𝑠𝑇 (𝑧, 𝐼(𝑇 ))− 𝑠𝑇 (𝑢, 𝐼(𝑇 )) =
∑︁

𝑤∈𝐼1∖{𝑧}

(𝑑𝑇 (𝑧, 𝑤)− 𝑑𝑇 (𝑢, 𝑤)) +
𝑟∑︁

𝑖=2

∑︁
𝑤∈𝐼𝑖

𝑑𝑇 (𝑧, 𝑢)
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≥ −𝑑𝑇 (𝑧, 𝑢)(𝑎1 − 1) + 𝑑𝑇 (𝑧, 𝑢)
𝑟∑︁

𝑖=2

𝑎𝑖

= 𝑑𝑇 (𝑧, 𝑢)

(︃
−𝑎1 + 1 +

𝑟∑︁
𝑖=2

𝑎𝑖

)︃
> 0.

Thus 𝑠𝑇 (𝑧, 𝐼(𝑇 )) > 𝑠𝑇 (𝑢, 𝐼(𝑇 )), a contradiction. �

A tree is starlike if it has at most one vertex of degree greater than 2. So, a star and a path are both particular
starlike trees.

A diametric path of a tree is a longest path in this tree (whose length equals the diameter). Evidently, the
terminal vertices of a diametric path of any nontrivial tree are leaves.

A caterpillar is a tree such that the deletion of all leaves outside a diametric path (if any exists) yields a path.
An edge 𝑢𝑣 in a tree 𝑇 is a leaf edge of 𝑇 at 𝑢 if 𝑣 is a leaf and 𝑢 is an internal vertex of 𝑇 .
For a tree 𝑇 with 𝑢𝑤 ∈ 𝐸(𝑇 ) and 𝑣𝑤 ̸∈ 𝐸(𝑇 ), if 𝑇 ′ = 𝑇 − 𝑢𝑤 + 𝑣𝑤 is a tree, then we also say that 𝑇 ′ is

obtained from 𝑇 by moving the edge 𝑢𝑤 from 𝑢 to 𝑣.
A hanging path at a vertex 𝑢 of a tree 𝑇 is a path 𝑢𝑢1 . . . 𝑢ℓ with 𝛿𝑇 (𝑢) ≥ 3, 𝛿𝑇 (𝑢ℓ) = 1 and if ℓ ≥ 2,

𝛿𝑇 (𝑢𝑖) = 2 for 𝑖 = 1, . . . , ℓ− 1.
Let 𝑃 be a path in a tree 𝑇 . For 𝑣 ∈ 𝑉 (𝑇 ) ∖ 𝑉 (𝑃 ), the distance between 𝑣 and 𝑃 is defined to be 𝑑𝑇 (𝑣, 𝑃 ) =

min{𝑑𝑇 (𝑣, 𝑤) : 𝑤 ∈ 𝑉 (𝑃 )}.

3. Minimum leaf status

Theorem 3.1. Let 𝑇 be a tree of order 𝑛 ≥ 2. Then

𝑙𝑠(𝑇 ) ≥ 𝑛− 1

with equality if and only if 𝑇 is starlike.

Proof. Let 𝑢 be an 𝐿(𝑇 )-centroid vertex. Every vertex other than 𝑢 lies on some path from 𝑢 to a leaf (including
the leaves themselves), so 𝑠𝑇 (𝑢, 𝐿(𝑇 )) ≥ 𝑛 − 1 with equality if and only if every edge of 𝑇 lies on exactly one
path from 𝑢 to a leaf, equivalently, 𝑇 is starlike. �

For integers 𝑛, 𝑎 and 𝑏 with 1 ≤ 𝑎, 𝑏 ≤ 𝑛−2
2 , let 𝑇𝑛;𝑎,𝑏 be the tree of order 𝑛 obtained from two stars 𝑆𝑎+1

and 𝑆𝑏+1 by connecting their centers by a path of length 𝑛− 𝑎− 𝑏− 1. For convenience, let 𝑇𝑛,𝑎 = 𝑇𝑛;𝑎,𝑎.

Theorem 3.2. Let 𝑇 be a tree of order 𝑛 with diameter 𝑑, where 3 ≤ 𝑑 ≤ 𝑛− 1. Then

𝑙𝑠(𝑇 ) ≤

{︃
(𝑛−𝑑+1)𝑑

2 if 𝑛− 𝑑 is odd,
(𝑛−𝑑)𝑑

2 + 1 if 𝑛− 𝑑 is even.

If 𝑛 − 𝑑 is odd, then equality holds if and only if 𝑇 ∼= 𝑇𝑛,(𝑛−𝑑+1)/2. If 𝑛 − 𝑑 is even, then equality holds if and
only if 𝑇 ∼= 𝑇𝑛;(𝑛−𝑑)/2,(𝑛−𝑑+2)/2, or 𝑑 ≥ 4 and 𝑇 is isomorphic to a tree obtained from 𝑇𝑛−1,(𝑛−𝑑)/2 by adding
a leaf edge at a vertex of degree two.

Proof. If 𝑑 = 𝑛− 1, then the result is trivial as 𝑛− 𝑑 = 1 is odd, 𝑇 ∼= 𝑃𝑛 and 𝑙𝑠(𝑇 ) = 𝑛− 1 = (𝑛−𝑑+1)𝑑
2 .

Suppose that 𝑑 ≤ 𝑛− 2. Let 𝑇 be a tree of order 𝑛 with diameter 𝑑 that maximizes the minimum leaf status.
Let 𝑥 be an 𝐿(𝑇 )-centroid vertex. Let 𝑟 = 𝛿𝑇 (𝑥) and 𝑁𝑇 (𝑥) = {𝑦1, . . . , 𝑦𝑟}. For 𝑖 = 1, . . . , 𝑟, let 𝐵𝑖 be the
branch of 𝑇 at 𝑥 containing 𝑦𝑖 and let 𝑎𝑖 = |𝐿(𝑇 ) ∩ 𝑉 (𝐵𝑖)|.
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Suppose that 𝑟 = 2. By Lemma 2.2, 𝑎1, 𝑎2 ≤ |𝐿(𝑇 )|
2 . So 𝑎1 = 𝑎2 = |𝐿(𝑇 )|

2 ≥ 2. Choose a vertex 𝑧 ∈ 𝑉 (𝐵1) with
𝛿𝑇 (𝑧) ≥ 3 such that 𝑑𝑇 (𝑥, 𝑧) is as small as possible. Then 𝑏𝑤𝑇 (𝑧, 𝐿(𝑇 )) = 𝑎2 = |𝐿(𝑇 )|

2 . So 𝑧 is an 𝐿(𝑇 )-centroid
vertex by Lemma 2.2. Therefore, we may assume that 𝑟 ≥ 3. Let 𝑃 := 𝑥0𝑥1 . . . 𝑥𝑑 be an arbitrary diametric
path of 𝑇 .

Suppose that 𝑥 lies outside any diametric path. By Lemma 2.2, 𝑥 is not a leaf. So 𝑑𝑇 (𝑥, 𝑃 ) = 𝑑𝑇 (𝑥, 𝑥𝑖) for
some 𝑖 with 3 ≤ 𝑖 ≤ 𝑑 − 3. Assume that 𝑥𝑖 ∈ 𝑉 (𝐵𝑟). Let ℓ be the length of a longest path from a leaf of 𝑇 in
∪𝑟−1

𝑗=1𝑉 (𝐵𝑗) to 𝑥𝑖. Then ℓ ≤ min{𝑖− 1, 𝑑− 𝑖− 1}.

Claim 1. 𝑎𝑗 ≤ 𝑎𝑟 for each 𝑗 = 1, . . . , 𝑟 − 1.

Suppose that this is not true. Then 𝑎𝑗 > 𝑎𝑟 for some 𝑗 with 1 ≤ 𝑗 ≤ 𝑟 − 1. Let 𝑇 ′ be the tree obtained
from 𝑇 by moving the edges 𝑥𝑦𝑘 with 1 ≤ 𝑘 ≤ 𝑟 − 1 and 𝑘 ̸= 𝑗 from 𝑥 to 𝑦𝑟. Note that the diameter of 𝑇 ′ is
𝑑 and 𝐿(𝑇 ′) = 𝐿(𝑇 ). As 𝑎𝑗 > 𝑎𝑟, we have 𝑏𝑤𝑇 ′(𝑦𝑟) = max{𝑎1, . . . , 𝑎𝑟−1} = 𝑏𝑤𝑇 (𝑥). By Lemma 2.2, 𝑦𝑟 is an
𝐿(𝑇 ′)-centroid vertex. Denote by 𝐿𝑘 the set of leaves of 𝑇 in 𝐵𝑘 for 𝑘 = 𝑗, 𝑟. Then

𝑙𝑠(𝑇 ′)− 𝑙𝑠(𝑇 ) = 𝑠𝑇 ′(𝑦𝑟, 𝐿(𝑇 ′))− 𝑠𝑇 (𝑥, 𝐿(𝑇 ))

=
∑︁
𝑧∈𝐿𝑗

1 +
∑︁
𝑧∈𝐿𝑟

(−1)

= 𝑎𝑗 − 𝑎𝑟 > 0,

so 𝑙𝑠(𝑇 ′) > 𝑙𝑠(𝑇 ), a contradiction. This proves Claim 1.
Let 𝑤 be the vertex on the path from 𝑥 to 𝑥𝑖 with degree at least three such that 𝑑𝑇 (𝑤, 𝑥) is as small as

possible.

Claim 2. 𝑎1 = · · · = 𝑎𝑟.

Suppose that this is not true. By Claim 1, 𝑎𝑗 ≤ 𝑎𝑟 for each 𝑗 = 1, . . . , 𝑟 − 1, so we have 𝑎𝑗0 < 𝑎𝑟 for some
𝑗0 = 1, . . . , 𝑟 − 1. Let 𝑇 * be the tree obtained from 𝑇 by moving the edges 𝑥𝑦𝑘 with 1 ≤ 𝑘 ≤ 𝑟 − 1 and 𝑘 ̸= 𝑗0
from 𝑥 to 𝑦𝑗0 . As ℓ ≤ min{𝑖− 1, 𝑑− 𝑖− 1}, the diameter of 𝑇 * is 𝑑.

Case i. 𝛿𝑇 (𝑦𝑗0) ≥ 2.
Let 𝑇0 be the maximal subtree of 𝑇 − 𝑥𝑦𝑗0 containing 𝑦𝑗0 . Note that the branches of 𝑇 * − 𝑦𝑗0 are 𝐵𝑘 with
1 ≤ 𝑘 ≤ 𝑟−1 and 𝑘 ̸= 𝑗0, 𝑇 [{𝑥}∪𝑉 (𝐵𝑟)], and the branches of 𝑇0 at 𝑦𝑗0 . As 𝑎𝑘 ≤ 𝑎𝑟 for each 𝑘 = 1, . . . , 𝑟−1, we
have by Lemma 2.2 that 𝑏𝑤𝑇*(𝑦𝑗0) = max{𝑎𝑘 : 𝑘 = 1, . . . , 𝑟, 𝑘 ̸= 𝑗0} = 𝑎𝑟 = 𝑏𝑤𝑇 (𝑥) ≤ |𝐿(𝑇 )|

2 = |𝐿(𝑇*)|
2 and

so 𝑦𝑗0 is an 𝐿(𝑇 *)-centroid vertex. Thus 𝑙𝑠(𝑇 ) = 𝑠𝑇 (𝑥, 𝐿(𝑇 )) < 𝑠𝑇 (𝑥, 𝐿(𝑇 )) + 𝑎𝑟 − 𝑎𝑗0 = 𝑠𝑇*(𝑦𝑗0 , 𝐿(𝑇 *)) =
𝑙𝑠(𝑇 *), a contradiction.

Case ii. 𝛿𝑇 (𝑦𝑗0) = 1.
Suppose that 𝑎𝑟 = |𝐿(𝑇 )|

2 . Then 𝑤 = 𝑥𝑖, otherwise denote by 𝛽𝑘 the number of leaves of 𝑇 in branches
at 𝑤 not containing its neighbors in the path from 𝑥 to 𝑥𝑖, where 𝑘 = 1, . . . , 𝛿𝑇 (𝑤) − 2. Then 𝑏𝑤𝑇 (𝑤) =
max{𝑎1 + · · · + 𝑎𝑟−1, 𝛽1, . . . , 𝛽𝛿𝑇 (𝑤)−2, 𝑎𝑟 − (𝛽1 + · · · + 𝛽𝛿𝑇 (𝑤)−2)} = 𝑎1 + · · · + 𝑎𝑟−1 = |𝐿(𝑇 )|

2 , and 𝑤 is an
𝐿(𝑇 )-centroid vertex by Lemma 2.2. Let 𝑤′ be the neighbor of 𝑤 in the branch of 𝑇 at 𝑤 containing 𝑥𝑖. Let
𝑇 ′ be the tree obtained from 𝑇 by moving the edges incident to 𝑤 outside the path connecting 𝑥 and 𝑥𝑖 from
𝑤 to 𝑤′. Then 𝑏𝑤𝑇 ′(𝑤′) = |𝐿(𝑇 )|

2 = |𝐿(𝑇 ′)|
2 . Thus 𝑤′ is an 𝐿(𝑇 ′)-centroid vertex by Lemma 2.2. It is easy to

see that 𝑠𝑇 ′(𝑤′, 𝐿(𝑇 ′))−𝑠𝑇 (𝑤, 𝐿(𝑇 )) = 𝑎1+ · · ·+𝑎𝑟−1−(𝑎𝑟−(𝛽1+ · · ·+𝛽𝛿𝑇 (𝑤)−2)) = 𝛽1+ · · ·+𝛽𝛿𝑇 (𝑤)−2 > 0,
implying that 𝑙𝑠(𝑇 ′) > 𝑙𝑠(𝑇 ), a contradiction. It thus follows that 𝑤 = 𝑥𝑖. Let 𝑇 ′′ = 𝑇 − 𝑥𝑦𝑗0 + 𝑥1𝑦𝑗0 . As
𝑏𝑤𝑇 ′′(𝑥𝑖) ≤ 𝑎𝑟 = |𝐿(𝑇 )|

2 = |𝐿(𝑇 ′′)|
2 , 𝑥𝑖 is an 𝐿(𝑇 ′′)-centroid vertex by Lemma 2.2. As 𝑑𝑇 (𝑥, 𝑥𝑖) < 𝑖 − 1,

we have 𝑙𝑠(𝑇 ′′) = 𝑠𝑇 ′′(𝑥𝑖, 𝐿(𝑇 ′′)) > 𝑠𝑇 (𝑥𝑖, 𝐿(𝑇 )) = 𝑠𝑇 (𝑥, 𝐿(𝑇 )) = 𝑙𝑠(𝑇 ), a contradiction. This shows that
𝑎𝑟 < |𝐿(𝑇 )|

2 .
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Note that the branches of 𝑇 *− 𝑦𝑗0 are 𝐵𝑘 with 1 ≤ 𝑘 ≤ 𝑟− 1 and 𝑘 ̸= 𝑗0, 𝑇 [{𝑥}∪𝑉 (𝐵𝑟)]. Then 𝑏𝑤𝑇*(𝑦𝑗0) =
𝑎𝑟 ≤ |𝐿(𝑇 )|−1

2 = |𝐿(𝑇*)|
2 . So 𝑦𝑗0 is an 𝐿(𝑇 *)-centroid vertex by Lemma 2.2. As 𝑎𝑟 ≥ 2, we have 𝑙𝑠(𝑇 ) =

𝑠𝑇 (𝑥, 𝐿(𝑇 )) < 𝑠𝑇 (𝑥, 𝐿(𝑇 )) + 𝑎𝑟 − 1 = 𝑠𝑇*(𝑦𝑗0 , 𝐿(𝑇 *)) = 𝑙𝑠(𝑇 *), a contradiction.
Now Claim 2 follows by combining Cases i and ii.

Claim 3. Any internal vertex in the path from 𝑥 to 𝑥𝑖 has degree two in 𝑇 .

Suppose that this is not true. Assume that the path from 𝑥 to 𝑥𝑖 is 𝑥 . . . 𝑤1𝑤𝑤𝑡 . . . 𝑥𝑖. Let 𝑁𝑇 (𝑤) =
{𝑤1, . . . , 𝑤𝑡}. Let 𝛽 be the number of leaves of 𝑇 in the branches of 𝑇 at 𝑤 not containing 𝑤1 and 𝑤𝑡. Then
𝛽 ≥ 𝑡 − 2 ≥ 1. Let 𝑇 ′ = 𝑇 − {𝑤𝑤𝑖 : 2 ≤ 𝑖 ≤ 𝑡 − 1} − {𝑥𝑦𝑖 : 2 ≤ 𝑖 ≤ 𝑟 − 1} + {𝑤𝑡𝑤𝑖 : 2 ≤ 𝑖 ≤ 𝑡 − 1} + {𝑤𝑡𝑦𝑖 :
2 ≤ 𝑖 ≤ 𝑟 − 1}. By Claim 2, 𝑎1 = · · · = 𝑎𝑟. So 𝑏𝑤𝑇 ′(𝑤𝑡) = max{𝑎1, . . . , 𝑎𝑟−1, 𝑎𝑟 − 𝛽} = 𝑎1 = 𝑎𝑟, and 𝑤𝑡 is an
𝐿(𝑇 ′)-centroid vertex by Lemma 2.2. Thus

𝑙𝑠(𝑇 ′)− 𝑙𝑠(𝑇 ) = 𝑠𝑇 ′(𝑤𝑡, 𝐿(𝑇 ′))− 𝑠𝑇 (𝑥, 𝐿(𝑇 ))
= 𝑎1(𝑑𝑇 (𝑥, 𝑤) + 1)− 𝑑𝑇 (𝑥, 𝑤)𝛽 − (𝑑𝑇 (𝑥, 𝑤) + 1)(𝑎𝑟 − 𝛽)
= 𝛽

> 0,

implying that 𝑙𝑠(𝑇 ′) > 𝑙𝑠(𝑇 ), a contradiction. Thus Claim 3 follows.
Let 𝑧1, . . . , 𝑧𝑠 be all the neighbors of 𝑥𝑖 outside the path 𝑃 , where 𝑧1 lies on the path from 𝑥𝑖 to 𝑥 in 𝑇 .

Let 𝑛1 (𝑛2, respectively) be the number of leaves in the branch of 𝑇 at 𝑥𝑖 containing 𝑥𝑖−1 (𝑥𝑖+1, respectively).
Assume that 𝑛1 ≥ 𝑛2.

Claim 4. 𝑛1 = 𝑛2.

Suppose that this is not true. Then 𝑛1 > 𝑛2. Let 𝑇1 = 𝑇−{𝑥𝑦𝑗 : 2 ≤ 𝑗 ≤ 𝑟−1}−{𝑥𝑖𝑧𝑗 : 1 ≤ 𝑗 ≤ 𝑠}+{𝑥𝑖+1𝑦𝑗 :
2 ≤ 𝑗 ≤ 𝑟 − 1} + {𝑥𝑖+1𝑧𝑗 : 1 ≤ 𝑗 ≤ 𝑠}. By Lemma 2.2 and Claim 3 and noting that 𝑛2 < 𝑛1 < 𝑎𝑟, we have
𝑏𝑤𝑇1(𝑥𝑖+1) = max{𝑎1, . . . , 𝑎𝑟−1, 𝑛1} = 𝑎1 = 𝑏𝑤𝑇 (𝑥) ≤ |𝐿(𝑇 )|

2 = |𝐿(𝑇1)|
2 , and so 𝑥𝑖+1 is an 𝐿(𝑇1)-centroid vertex.

Thus 𝑙𝑠(𝑇1) = 𝑠𝑇1(𝑥𝑖+1, 𝐿(𝑇1)) = 𝑠𝑇 (𝑥, 𝐿(𝑇 )) + 𝑛1 − 𝑛2 > 𝑠𝑇 (𝑥𝑖, 𝐿(𝑇 )) = 𝑙𝑠(𝑇 ). This proves Claim 4.
Let 𝑇2 = 𝑇 − {𝑥𝑦2, 𝑥𝑖𝑧1} + {𝑥𝑖−1𝑧1, 𝑥𝑖+1𝑦2} if 𝛿𝑇 (𝑥) = 𝑟 = 3 and 𝑇2 = 𝑇 − {𝑥𝑦1, 𝑥𝑦2} + {𝑥𝑖−1𝑦1, 𝑥𝑖+1𝑦2}

otherwise. Note that there are 𝑛1 + 𝑎1 leaves of 𝑇 in the branch of 𝑇2 at 𝑥𝑖 containing 𝑥0 and 𝑛2 + 𝑎2

leaves in the branch of 𝑇2 at 𝑥𝑖 containing 𝑥𝑑. By Claim 4, we have 𝑛1 = 𝑛2, so 𝑛1 + 𝑎1 = 𝑛2 + 𝑎2. Thus
𝑏𝑤𝑇2(𝑥𝑖) = 𝑎1 + 𝑛1 ≤ |𝐿(𝑇2)|

2 , implying that 𝑥𝑖 is an 𝐿(𝑇2)-centroid vertex by Lemma 2.2. It follows that
𝑙𝑠(𝑇2) = 𝑠𝑇2(𝑥𝑖, 𝐿(𝑇2)) ≥ 𝑠𝑇 (𝑥, 𝐿(𝑇 )) + 2𝑎1 > 𝑠𝑇 (𝑥, 𝐿(𝑇 )) = 𝑙𝑠(𝑇 ), a contradiction. This shows that 𝑥 lies on
some diametric path. Assume that 𝑥𝑖 = 𝑥, where 1 ≤ 𝑖 ≤ 𝑑− 1. Denote by 𝑎 the number of leaves in the branch
of 𝑇 at 𝑥𝑖 containing 𝑥𝑖−1.

Suppose that 𝑇 is not a caterpillar. Let 𝑧 be any leaf of 𝑇 outside 𝑃 with 𝑑𝑇 (𝑧, 𝑃 ) ≥ 2.

Claim 5. 𝑑𝑇 (𝑧, 𝑃 ) = 𝑑𝑇 (𝑧, 𝑥𝑖).

Suppose that this is not true. Then 𝑑𝑇 (𝑧, 𝑥𝑗) = 𝑑𝑇 (𝑧, 𝑃 ) for some 𝑗 ̸= 𝑖. Assume that 𝑗 < 𝑖. Choose 𝑗 such
that 𝑖− 𝑗 is as small as possible.

We show that 𝛿𝑇 (𝑥𝑗+1) = · · · = 𝛿𝑇 (𝑥𝑖−1) = 2 if 𝑗 < 𝑖 − 1. Suppose to the contrary that 𝑗 < 𝑖 − 1 and
𝛿𝑇 (𝑥𝑘) ≥ 3 for some 𝑘 with 𝑗 < 𝑘 < 𝑖. By moving the leaf edges at 𝑥𝑘 from 𝑥𝑘 to 𝑥1, we get a tree 𝑇 ′ for which
𝑥 is still an 𝐿(𝑇 ′)-centroid vertex by Lemma 2.2, so 𝑙𝑠(𝑇 ′) > 𝑙𝑠(𝑇 ), which is a contradiction. Thus we indeed
have 𝛿𝑇 (𝑥𝑗+1) = · · · = 𝛿𝑇 (𝑥𝑖−1) = 2 if 𝑗 < 𝑖− 1.

Let 𝑢 be the unique neighbor vertex of 𝑧. Let 𝑇 ′ the tree obtained from 𝑇 by moving the leaf edges at 𝑢
from 𝑢 to 𝑥1. If 𝑥𝑖 is also an 𝐿(𝑇 ′)-centroid vertex, then, as 𝑑𝑇 (𝑥1, 𝑥𝑖) ≥ 𝑑𝑇 (𝑢, 𝑥𝑖) and 𝑢 ∈ 𝐿(𝑇 ′), we have
𝑙𝑠(𝑇 ′) = 𝑠𝑇 ′(𝑥𝑖, 𝐿(𝑇 ′)) > 𝑠𝑇 (𝑥𝑖, 𝐿(𝑇 )) = 𝑙𝑠(𝑇 ), a contradiction. Thus 𝑥𝑖 is not an 𝐿(𝑇 ′)-centroid vertex. Note
that the branches of 𝑇 ′ at 𝑥𝑖 not containing 𝑥𝑗 are just the branches of 𝑇 at 𝑥𝑖 not containing 𝑥𝑗 , and that 𝑥𝑖 is



422 H. GUO AND B. ZHOU

an 𝐿(𝑇 )-centroid vertex. By Lemma 2.2, 𝑎+1 = 𝑏𝑤𝑇 ′(𝑥) > |𝐿(𝑇 ′)|
2 and 𝑎 ≤ |𝐿(𝑇 )|

2 . So |𝐿(𝑇 )|+1
2 = |𝐿(𝑇 ′)|

2 < 𝑎+1 ≤
|𝐿(𝑇 )|

2 +1, i.e., 𝑎 = |𝐿(𝑇 )|
2 . Then 𝑏𝑤𝑇 (𝑥𝑗 , 𝐿(𝑇 )) = 𝑏𝑤𝑇 ′(𝑥𝑗 , 𝐿(𝑇 ′)) = |𝐿(𝑇 )|−𝑎 = |𝐿(𝑇 )|

2 , so 𝑥𝑗 is an 𝐿(𝑇 )-centroid
vertex and also an 𝐿(𝑇 ′)-centroid vertex by Lemma 2.2. Thus 𝑙𝑠(𝑇 ′) = 𝑠𝑇 ′(𝑥𝑗 , 𝐿(𝑇 ′)) > 𝑠𝑇 (𝑥𝑗 , 𝐿(𝑇 )) = 𝑙𝑠(𝑇 ),
also a contradiction. Now Claim 5 follows.

By Claim 5, if an internal vertex, say 𝑥𝑠, of 𝑇 on 𝑃 different from 𝑥1, 𝑥𝑑−1, 𝑥𝑖 has degree more than two in
𝑇 , then it is incident to 𝛿𝑇 (𝑥𝑠) − 2 leaf edges. In this case, move the leaf edges at 𝑥𝑠 from 𝑥𝑠 to 𝑥1 if 𝑠 < 𝑖
and to 𝑥𝑑−1 if 𝑠 > 𝑖 to form a tree 𝑇 ′′. By Lemma 2.2, 𝑥𝑖 is an 𝐿(𝑇 ′′)-centroid vertex, so 𝑙𝑠(𝑇 ′′) > 𝑙𝑠(𝑇 ), a
contradiction. Thus each internal vertex of 𝑇 on 𝑃 different from 𝑥1, 𝑥𝑑−1, 𝑥𝑖 has degree two in 𝑇 .

Note that the number of leaves in the branch of 𝑇 at 𝑥𝑖 containing 𝑥𝑖−1 is 𝑎. Let 𝑝 = 𝛿𝑇 (𝑢)− 1. Let 𝑘 be the
number of leaves in the branch of 𝑇 at 𝑥𝑖 containing 𝑤. Let 𝑛0 be the maximum number of leaves in a branch
of 𝑇 at 𝑥𝑖 containing neither 𝑥𝑖−1 nor 𝑤.

Suppose that 𝑎 + 𝑝 ≤ |𝐿(𝑇 )|+1
2 . Let 𝑇 ′ be the tree obtained from 𝑇 by moving the leaf edges at 𝑢 from 𝑢

to 𝑥1. By Lemma 2.2, 𝑏𝑤𝑇 ′(𝑥𝑖) = max{𝑎 + 𝑝, 𝑘 − 𝑝 + 1, 𝑛0} ≤ max
{︁

𝑎 + 𝑝, |𝐿(𝑇 )|
2

}︁
≤ |𝐿(𝑇 )|+1

2 , and so 𝑥𝑖 is an
𝐿(𝑇 ′)-centroid vertex. Then we have 𝑙𝑠(𝑇 ′) = 𝑠𝑇 ′(𝑥𝑖, 𝐿(𝑇 ′)) > 𝑠𝑇 (𝑥𝑖, 𝐿(𝑇 )) = 𝑙𝑠(𝑇 ), a contradiction.

Suppose that 𝑎 + 𝑝 > |𝐿(𝑇 )|+1
2 , i.e., 𝑝 > |𝐿(𝑇 )|+1

2 − 𝑎. We form a tree 𝑇 ′′ by moving
⌊︁
|𝐿(𝑇 )|+1

2

⌋︁
− 𝑎 leaf edges

at 𝑢 from 𝑢 to 𝑥1 and the remaining leaf edges at 𝑢 from 𝑢 to 𝑥𝑑−1. Note that 𝑏𝑤𝑇 ′′(𝑥𝑖) =
⌊︁
|𝐿(𝑇 )|+1

2

⌋︁
≤ |𝐿(𝑇 ′′)|

2 .
Thus 𝑥𝑖 is also an 𝐿(𝑇 ′′)-centroid vertex by Lemma 2.2. So 𝑙𝑠(𝑇 ′′) = 𝑠𝑇 ′′(𝑥𝑖, 𝐿(𝑇 ′′)) > 𝑠𝑇 (𝑥𝑖, 𝐿(𝑇 )) = 𝑙𝑠(𝑇 ),
also a contradiction.

It follows that 𝑇 is a caterpillar, so |𝐿(𝑇 )| = 𝑛− 𝑑 + 1.

Claim 6. Each vertex from 𝑥2, . . . , 𝑥𝑑−2 different from 𝑥𝑖 has degree two in 𝑇 if 𝑑 ≥ 4.

Suppose that this is not true with 𝑑 ≥ 4. Then 𝛿𝑇 (𝑥𝑗) > 2 for some 𝑗 with 2 ≤ 𝑗 ≤ 𝑑− 2 and 𝑗 ̸= 𝑖. Assume
that 𝑗 > 𝑖. Let 𝑁 be the set of neighbors of 𝑥𝑗 outside 𝑃 in 𝑇 . Let 𝑇 ′ = 𝑇 − {𝑥𝑗𝑧 : 𝑧 ∈ 𝑁}+ {𝑥𝑑−1𝑧 : 𝑧 ∈ 𝑁}.
As 𝑇 is a caterpillar, the diameter of 𝑇 ′ is 𝑑. It is easy to see that 𝑥𝑖 is an 𝐿(𝑇 ′)-centroid vertex, so we have
𝑙𝑠(𝑇 ′) > 𝑙𝑠(𝑇 ), a contradiction. Thus Claim 6 follows.

By Claim 6, each vertex from 𝑥2, . . . , 𝑥𝑑−2 different from 𝑥𝑖 has degree two in 𝑇 if 𝑑 ≥ 4. If 𝑖 = 1, 𝑑− 1, then
by Lemma 2.2, we have 𝑇 ∼= 𝑇𝑛,(𝑛−𝑑+1)/2, and so 𝑙𝑠(𝑇 ) = (𝑛−𝑑+1)𝑑

2 if 𝑛−𝑑 is odd, and 𝑇 ∼= 𝑇𝑛;(𝑛−𝑑)/2,(𝑛−𝑑+2)/2,
and so 𝑙𝑠(𝑇 ) = (𝑛−𝑑)𝑑

2 + 1 if 𝑛− 𝑑 is even.
Suppose that 𝑖 ̸= 1, 𝑑− 1.

Case 1. 𝑛− 𝑑 is odd.
If 𝛿𝑇 (𝑥𝑖) ≥ 3, then there are 𝛿𝑇 (𝑥1)−1 leaves in the branch at 𝑥𝑖 of 𝑇 containing 𝑥0 and 𝛿𝑇 (𝑥𝑑−1)−1 leaves
in the branch at 𝑥𝑖 of 𝑇 containing 𝑥𝑑. Suppose without loss of generality, 𝛿𝑇 (𝑥1) ≤ 𝛿𝑇 (𝑥𝑑−1). We form a
tree 𝑇 ′ by moving a leaf edge at 𝑥𝑖 from 𝑥𝑖 to 𝑥1. Evidently, 𝑙𝑠(𝑇 ′) = 𝑠𝑇 ′(𝑥𝑖, 𝐿(𝑇 ′)) > 𝑠𝑇 (𝑥𝑖, 𝐿(𝑇 )) = 𝑙𝑠(𝑇 ),
a contradiction. Thus 𝛿𝑇 (𝑥𝑖) = 2. By Lemma 2.2, we have 𝑇 ∼= 𝑇𝑛,(𝑛−𝑑+1)/2, and so 𝑙𝑠(𝑇 ) = (𝑛−𝑑+1)𝑑

2 .
Case 2. 𝑛− 𝑑 is even.

If 𝛿𝑇 (𝑥𝑖) ≥ 4, then there are 𝛿𝑇 (𝑥1)−1 leaves in the branch at 𝑥𝑖 of 𝑇 containing 𝑥0 and 𝛿𝑇 (𝑥𝑑−1)−1 leaves
in the branch at 𝑥𝑖 of 𝑇 containing 𝑥𝑑. Suppose without loss of generality, 𝛿𝑇 (𝑥1) ≤ 𝛿𝑇 (𝑥𝑑−1). We form a
tree 𝑇 ′ by moving a leaf edge at 𝑥𝑖 from 𝑥𝑖 to 𝑥1. Evidently, 𝑙𝑠(𝑇 ′) = 𝑠𝑇 ′(𝑥𝑖, 𝐿(𝑇 ′)) > 𝑠𝑇 (𝑥𝑖, 𝐿(𝑇 )) = 𝑙𝑠(𝑇 ),
a contradiction. Thus 𝛿𝑇 (𝑥𝑖) ≤ 3. By Lemma 2.2, we have 𝑇 ∼= 𝑇𝑛;(𝑛−𝑑)/2,(𝑛−𝑑+2)/2 if 𝛿𝑇 (𝑥𝑖) = 2 and 𝑇 is
isomorphic to a tree obtained from 𝑇𝑛−1,(𝑛−𝑑)/2 by adding a leaf edge at 𝑥𝑖 if 𝛿𝑇 (𝑥𝑖) = 3. In either case,
𝑙𝑠(𝑇 ) = (𝑛−𝑑)𝑑

2 + 1.

The result follows by combining the above two cases. �

As an immediate consequence of the previous theorem, we have
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Corollary 3.3. Let 𝑇 be a tree of order 𝑛 ≥ 6. Then

𝑙𝑠(𝑇 ) ≤
⌊︂

(𝑛 + 1)2

8

⌋︂
with equality if and only if 𝑇 ∼= 𝑇𝑛,⌈𝑛/4⌉ if 𝑛 is even or 𝑛 ≡ 3 (mod 4), and 𝑇 ∼= 𝑇𝑛,(𝑛−1)/4, 𝑇𝑛,(𝑛+3)/4 if
𝑛 ≡ 1 (mod 4).

Proof. Let 𝑑 be the diameter of 𝑇 . If 𝑑 = 2, then 𝑙𝑠(𝑇 ) = 𝑛 − 1 <
⌊︁

(𝑛+1)2

8

⌋︁
. Suppose that 𝑑 ≥ 3. If 𝑛 − 𝑑 is

even, then by Theorem 3.2, we have

𝑙𝑠(𝑇 ) ≤ (𝑛− 𝑑)𝑑
2

+ 1 ≤ 𝑛2

8
+ 1 <

⌊︂
(𝑛 + 1)2

8

⌋︂
·

Suppose that 𝑛− 𝑑 is odd. By Theorem 3.2, we have

𝑙𝑠(𝑇 ) ≤ 𝑓(𝑑) :=
(𝑛− 𝑑 + 1)𝑑

2

≤

⎧⎪⎪⎨⎪⎪⎩
𝑓
(︀

𝑛+1
2

)︀
= (𝑛+1)2

8 if 𝑑 and 𝑛+1
2 are even

𝑓
(︀

𝑛−1
2

)︀
= 𝑓

(︀
𝑛+3

2

)︀
= 𝑛2+2𝑛−3

8 if 𝑑 is even and 𝑛+1
2 is odd

𝑓
(︀

𝑛
2

)︀
= 𝑓

(︀
𝑛
2 + 1

)︀
= 𝑛2+2𝑛

8 if 𝑛 is even

=
⌊︂

(𝑛 + 1)2

8

⌋︂
with equalities if and only if 𝑇 ∼= 𝑇𝑛,(𝑛−𝑑+1)/2 with 𝑑 = 𝑛+1

2 if 𝑛+1
2 is even, 𝑑 = 𝑛−1

2 , 𝑛+3
2 if 𝑛+1

2 is odd, and
𝑑 = 𝑛

2 , 𝑛
2 + 1 if 𝑛 is even. �

4. Maximum leaf status

Theorem 4.1. Let 𝑇 be a tree of order 𝑛 ≥ 2. Then

𝐿𝑆(𝑇 ) ≥ 𝑛− 1

with equality if and only if 𝑇 ∼= 𝑃𝑛.

Proof. Let 𝑥 be a leaf peripherian vertex of 𝑇 . Every vertex other than 𝑥 lies on some path from 𝑥 to a leaf
(including the leaves themselves), so 𝑠𝑇 (𝑥, 𝐿(𝑇 )) ≥ 𝑛 − 1 with equality if and only if every edge of 𝑇 lies on
exactly one path from 𝑥 to a leaf, equivalently, 𝑇 ∼= 𝑃𝑛. �

For integers 𝑛, 𝑎 with 1 ≤ 𝑎 ≤ 𝑛 − 2, let 𝑃𝑛,𝑎 be the tree of order 𝑛 obtained by identifying the center of a
star 𝑆𝑎+1 and a terminal vertex of a path 𝑃𝑛−𝑎. In particular, 𝑃𝑛,1 = 𝑃𝑛 and 𝑃𝑛,𝑛−2 = 𝑆𝑛.

Theorem 4.2. Let 𝑇 be a tree of order 𝑛 ≥ 4. Then

𝐿𝑆(𝑇 ) ≤
⌊︂

𝑛2

4

⌋︂
with equality if and only if 𝑇 ∼= 𝑃𝑛,𝑛/2 for even 𝑛, and 𝑇 ∼= 𝑃𝑛,(𝑛−1)/2, 𝑃𝑛,(𝑛+1)/2 for odd 𝑛.
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Proof. If 𝑛 = 4, then 𝑇 ∼= 𝑃4 or 𝑆4 (= 𝑃4,2) and 𝐿𝑆(𝑃4) = 3 < 4 = 𝐿𝑆(𝑃4,2). If 𝑛 = 5, then 𝑇 ∼= 𝑃5, 𝑃5,2 or 𝑆5

(= 𝑃5,3) and 𝐿𝑆(𝑃5) = 4 < 6 = 𝐿𝑆(𝑃5,2) = 𝐿𝑆(𝑃5,3). So the result holds if 𝑛 = 4, 5.
Suppose that 𝑛 ≥ 6. Let 𝑇 be a tree of order 𝑛 that maximizes the maximum leaf status. Note that the

maximum leaf status of 𝑃𝑛,𝑛/2 for even 𝑛, and 𝑃𝑛,(𝑛−1)/2 or 𝑃𝑛,(𝑛+1)/2 for odd 𝑛 is
⌊︁

𝑛2

4

⌋︁
. If 𝑇 ∼= 𝑃𝑛, then

𝐿𝑆(𝑇 ) = 𝑛− 1 <
⌊︁

𝑛2

4

⌋︁
. If 𝑇 ∼= 𝑆𝑛, then 𝐿𝑆(𝑇 ) = 2(𝑛− 2) <

⌊︁
𝑛2

4

⌋︁
. So 𝑇 is neither a path nor a star.

Let 𝑥 be a leaf peripherian vertex of 𝑇 . By Lemma 2.3, 𝑥 ∈ 𝐿(𝑇 ). Let 𝑃 := 𝑥0 . . . 𝑥𝑟 be a longest path of 𝑇
starting from 𝑥0 = 𝑥. Then 3 ≤ 𝑟 ≤ 𝑛− 2. Note that 𝛿𝑇 (𝑥𝑖) ≥ 3 for some 𝑖 with 1 ≤ 𝑖 ≤ 𝑟− 1. By the choice of
𝑇 , 𝛿𝑇 (𝑥𝑖) = 2 for 𝑖 = 1, . . . , 𝑟− 2, as, otherwise, by moving an edge outside 𝑃 from 𝑥𝑖 to 𝑥𝑟−1 we get a tree 𝑇 ′,
for which we have 𝐿𝑆(𝑇 ′) ≥ 𝑠𝑇 ′(𝑥, 𝐿(𝑇 ′)) > 𝑠𝑇 (𝑥, 𝐿(𝑇 )) = 𝐿𝑆(𝑇 ), which is a contradiction. As 𝑃 is a longest
path from 𝑥, all neighbors of 𝑥𝑟−1 except 𝑥𝑟−2 are leaves. Let 𝑎 = 𝛿𝑇 (𝑥𝑟−1)− 1. Then 𝑇 ∼= 𝑃𝑛,𝑎, and

𝐿𝑆(𝑇 ) = 𝑠𝑇 (𝑥, 𝐿(𝑇 )) = 𝑎(𝑛− 𝑎)

which is maximized to ⌊𝑛2

4 ⌋ if and only if 𝑎 = 𝑛
2 if 𝑛 is even, and 𝑎 = 𝑛−1

2 , 𝑛+1
2 if 𝑛 is odd. �

Theorem 4.3. Let 𝑇 be a tree of order 𝑛 with diameter 𝑑, where 2 ≤ 𝑑 ≤ 𝑛− 1. Let 𝑡 =
⌈︁

2(𝑛−1−𝑑)
𝑑

⌉︁
for even

𝑑 and 𝑡 =
⌈︁

2(𝑛−1−𝑑)
𝑑−1

⌉︁
for odd 𝑑. Then

𝐿𝑆(𝑇 ) ≥ 𝑛− 1 +
⌈︂

𝑑𝑡

2

⌉︂
with equality if and only if 𝑇 is a tree with a diametric path between two leaves 𝑥 and 𝑦 and exactly 𝑡 hanging
paths at vertices of the diametric path such that 𝐿𝑆(𝑇 ) = 𝑠𝑇 (𝑥, 𝐿(𝑇 )) = 𝑠𝑇 (𝑦, 𝐿(𝑇 )) for even 𝑑𝑡 and 𝐿𝑆(𝑇 ) =
max{𝑠𝑇 (𝑥, 𝐿(𝑇 )), 𝑠𝑇 (𝑦, 𝐿(𝑇 ))} and |𝑠𝑇 (𝑥, 𝐿(𝑇 ))− 𝑠𝑇 (𝑦, 𝐿(𝑇 ))| = 1 for odd 𝑑𝑡.

Proof. Let 𝑃 := 𝑣0𝑣1 . . . 𝑣𝑑 be a diametric path in 𝑇 . Let 𝐿*(𝑇 ) = 𝐿(𝑇 ) ∖ {𝑣0, 𝑣𝑑}. Since every vertex in
𝑉 (𝑇 ) ∖ 𝑉 (𝑃 ) lies on some path from a vertex in 𝑃 to a vertex in 𝐿*(𝑇 ), we have∑︁

𝑤∈𝐿*(𝑇 )

𝑑𝑇 (𝑤, 𝑃 ) ≥ |𝐸(𝑇 )| − 𝑑 = 𝑛− 1− 𝑑

with equality if and only if every edge of 𝑇 outside 𝑃 lies on a unique shortest path connecting a leaf and a
vertex of 𝑃 , that is, each vertex outside 𝑃 has degree one or two in 𝑇 . For convenience, write 𝑡 =

⌈︁
2(𝑛−1−𝑑)

𝑑

⌉︁
for even 𝑑 and 𝑡 =

⌈︁
2(𝑛−1−𝑑)

𝑑−1

⌉︁
for odd 𝑑. By a result of Qiao and Zhan [14], |𝐿(𝑇 )| ≥ 𝑡 + 2. So |𝐿*(𝑇 )| ≥ 𝑡.

Then

𝐿𝑆(𝑇 ) ≥ max{𝑠𝑇 (𝑣0, 𝐿(𝑇 )), 𝑠𝑇 (𝑣𝑑, 𝐿(𝑇 ))}

≥ 𝑠𝑇 (𝑣0, 𝐿(𝑇 )) + 𝑠𝑇 (𝑣𝑑, 𝐿(𝑇 ))
2

= 𝑑 +
∑︁

𝑤∈𝐿*(𝑇 )

𝑑𝑇 (𝑣0, 𝑤) + 𝑑𝑇 (𝑣𝑑, 𝑤)
2

= 𝑑 +
|𝐿*(𝑇 )|𝑑

2
+

∑︁
𝑤∈𝐿*(𝑇 )

𝑑𝑇 (𝑤, 𝑃 )

≥ 𝑑 +
𝑑𝑡

2
+ 𝑛− 1− 𝑑

= 𝑛− 1 +
𝑑𝑡

2
· (4.1)
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So

𝐿𝑆(𝑇 ) ≥ 𝑛− 1 +
⌈︂

𝑑𝑡

2

⌉︂
·

Suppose that 𝐿𝑆(𝑇 ) = 𝑛 − 1 +
⌈︀

𝑑𝑡
2

⌉︀
. By the proof of (4.1), each vertex outside 𝑃 has degree one or two in

𝑇 . Note also that |𝐿*(𝑇 )| = 𝑡. Otherwise, |𝐿*(𝑇 )| ≥ 𝑡 + 1. So, by (4.1),

𝑛− 1 +
⌈︂

𝑑𝑡

2

⌉︂
= 𝐿𝑆(𝑇 ) ≥ 𝑑 +

|𝐿*(𝑇 )|𝑑
2

+ 𝑛− 1− 𝑑

≥ 𝑛− 1 +
𝑑(𝑡 + 1)

2
,

a contradiction. So 𝑇 is a tree with a diametric path 𝑃 and exactly 𝑡 hanging paths at vertices of 𝑃 .
If 𝑑𝑡 is even, then the three inequalities in (4.1) must be equalities, so 𝐿𝑆(𝑇 ) = 𝑠𝑇 (𝑣0, 𝐿(𝑇 )) = 𝑠𝑇 (𝑣𝑑, 𝐿(𝑇 )).
Suppose next that 𝑑𝑡 is odd. From (4.1), we have

max{𝑠𝑇 (𝑣0, 𝐿(𝑇 )), 𝑠𝑇 (𝑣𝑑, 𝐿(𝑇 ))} − 𝑠𝑇 (𝑣0, 𝐿(𝑇 )) + 𝑠𝑇 (𝑣𝑑, 𝐿(𝑇 ))
2

≤ 1
2
,

i.e., |𝑠𝑇 (𝑣0, 𝐿(𝑇 ))− 𝑠𝑇 (𝑣𝑑, 𝐿(𝑇 ))| = 0, 1. As |𝐿*(𝑇 )| = 𝑡, we have |𝑠𝑇 (𝑣0, 𝐿(𝑇 ))− 𝑠𝑇 (𝑣𝑑, 𝐿(𝑇 ))| = 1 by (4.1).
From (4.1), we also have 𝐿𝑆(𝑇 ) = max{𝑠𝑇 (𝑣0, 𝐿(𝑇 )), 𝑠𝑇 (𝑣𝑑, 𝐿(𝑇 ))}, as otherwise,

𝑛− 1 +
⌈︂

𝑑𝑡

2

⌉︂
= 𝐿𝑆(𝑇 )

> max{𝑠𝑇 (𝑣0, 𝐿(𝑇 )), 𝑠𝑇 (𝑣𝑑, 𝐿(𝑇 ))}

=
𝑠𝑇 (𝑣0, 𝐿(𝑇 )) + 𝑠𝑇 (𝑣𝑑, 𝐿(𝑇 )) + 1

2

= 𝑛− 1 +
⌈︂

𝑑𝑡

2

⌉︂
,

a contradiction.
Conversely, if 𝑇 is a tree with a diametric path between two leaves 𝑥 and 𝑦 and exactly 𝑡 hanging paths at

vertices of the diametric path such that 𝐿𝑆(𝑇 ) = 𝑠𝑇 (𝑥, 𝐿(𝑇 )) = 𝑠𝑇 (𝑦, 𝐿(𝑇 )) for even 𝑑𝑡 and |𝑠𝑇 (𝑥, 𝐿(𝑇 )) −
𝑠𝑇 (𝑦, 𝐿(𝑇 ))| = 1 and 𝐿𝑆(𝑇 ) = max{𝑠𝑇 (𝑥, 𝐿(𝑇 )), 𝑠𝑇 (𝑦, 𝐿(𝑇 ))} for odd 𝑑𝑡, then

𝐿𝑆(𝑇 ) = max{𝑠𝑇 (𝑥, 𝐿(𝑇 )), 𝑠𝑇 (𝑦, 𝐿(𝑇 ))}

=
⌈︂

𝑠𝑇 (𝑥, 𝐿(𝑇 )) + 𝑠𝑇 (𝑦, 𝐿(𝑇 ))
2

⌉︂
= 𝑛− 1 +

⌈︂
𝑑𝑡

2

⌉︂
,

as desired. �

To illustrate the above theorem, we give three trees 𝑇1, 𝑇2, 𝑇3 on 𝑛 vertices of diameter 𝑑 to show that trees
for which the lower bound in Theorem 4.3 is attained exist for all values of 𝑛 and 𝑑 for 2 ≤ 𝑑 ≤ 𝑛− 1. Let 𝑡 be
defined as in Theorem 4.3. Let 𝑃 := 𝑥0 . . . 𝑥𝑑 be a path, where 𝑥 = 𝑥0, 𝑥𝑑 = 𝑦. For even 𝑑, let 𝑇1 be the tree
obtained from 𝑃 by attaching 𝑡−1 hanging paths of length 𝑑

2 and one hanging path of length 𝑛−𝑑−1− 𝑑
2 (𝑡−1)

at 𝑥𝑑/2. For odd 𝑑 and even 𝑡, let 𝑇2 be the tree obtained from 𝑃 by attaching 𝑡
2 hanging paths of length 𝑑−1

2 at
𝑥(𝑑−1)/2 and 𝑡

2 −1 hanging paths of length 𝑑−1
2 and one hanging path of length 𝑛− (𝑑−1)𝑡

2 − 𝑑+3
2 at 𝑥(𝑑+1)/2. For

odd 𝑑 and odd 𝑡, let 𝑇3 be the tree obtained from 𝑃 by attaching 𝑡−1
2 hanging paths of length 𝑑−1

2 at 𝑥(𝑑−1)/2

and 𝑡−1
2 hanging paths of length 𝑑−1

2 and one hanging path of length 𝑛− 𝑑− 1− (𝑑−1)(𝑡−1)
2 at 𝑥(𝑑+1)/2.

We also give in Figure 1 the only trees that minimize the maximum leaf status among trees of order 15 with
diameter 8.
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Figure 1. The order 15 diameter 8 trees with minimized maximum leaf status.

Theorem 4.4. Let 𝑇 be a tree of order 𝑛 with diameter 𝑑, where 2 ≤ 𝑑 ≤ 𝑛− 1. Then

𝐿𝑆(𝑇 ) ≤ 𝑑(𝑛− 𝑑)

with equality if and only if 𝑇 ∼= 𝑃𝑛,𝑛−𝑑.

Proof. The result is trivial if 𝑑 = 2, 𝑛 − 1. Suppose that 3 ≤ 𝑑 ≤ 𝑛 − 2. Note that |𝐿(𝑇 )| ≤ 𝑛 − 𝑑 + 1 with
equality if and only if 𝑇 is a caterpillar. Let 𝑥 be a leaf peripherian vertex of 𝑇 . By Lemma 2.3, 𝑥 ∈ 𝐿(𝑇 ). Thus

𝐿𝑆(𝑇 ) = 𝑠𝑇 (𝑥, 𝐿(𝑇 )) =
∑︁

𝑦∈𝐿(𝑇 )∖{𝑥}

𝑑𝑇 (𝑥, 𝑦) ≤ 𝑑
∑︁

𝑦∈𝐿(𝑇 )∖{𝑥}

1 ≤ 𝑑(𝑛− 𝑑),

with equalities if and only if |𝐿(𝑇 )| = 𝑛 − 𝑑 + 1 and the distance between 𝑥 and any other leaf is 𝑑, equiva-
lently, 𝑇 is a caterpillar with a vertex, say 𝑣, of maximum degree 𝑛 − 𝑑 + 1 such that 𝑑𝑇 (𝑥, 𝑣) = 𝑑 − 1, i.e.,
𝑇 ∼= 𝑃𝑛,𝑛−𝑑. �

5. Minimum internal status

Proposition 5.1. Let 𝑇 be a tree of order 𝑛 ≥ 3.

(i) 𝑖𝑠(𝑇 ) ≥ 0 with equality if and only if 𝑇 ∼= 𝑆𝑛.
(ii) If 𝑇 � 𝑆𝑛, then 𝑖𝑠(𝑇 ) ≥ 1 with equality if and only if 𝑇 is a double star.
(iii) If 𝑇 � 𝑆𝑛, and 𝑇 is not a double star, then 𝑖𝑠(𝑇 ) ≥ 2 with equality if and only if 𝑇 is a caterpillar of

diameter 4.

Proof. Item (i) follows from the fact that 𝑆𝑛 is the only tree with exactly one internal vertex. Item (ii) follows
as the double stars are the only trees with exactly two (adjacent) internal vertices. Item (iii) follows as any tree
𝑇 of diameter at least 4 contains three internal vertices inducing a path 𝑃3 in 𝑇 , and if 𝑇 has more than 3
internal vertices, then the subtree induced by internal vertices in 𝑇 contains 𝑆4 or 𝑃4 so that 𝑖𝑠(𝑇 ) ≥ 3. �

Furthermore, we have

Proposition 5.2. Suppose that 𝑇 is a tree of order 𝑛 with diameter 𝑑, where 2 ≤ 𝑑 ≤ 𝑛− 1. Then

𝑖𝑠(𝑇 ) ≥
⌊︂

(𝑑− 1)2

4

⌋︂
with equality if and only if 𝑇 is a caterpillar.

Proof. By Lemma 2.2, an 𝐼(𝑇 )-centroid vertex is an internal vertex of 𝑇 .
Let 𝑃 := 𝑣0 . . . 𝑣𝑑 be a diametric path in 𝑇 . Obviously, {𝑣1, . . . , 𝑣𝑑−1} induces a path 𝑃𝑑−1 in 𝑇 . If 𝑇 is

a caterpillar, then 𝑖𝑠(𝑇 ) = 𝑠(𝑃𝑑−1). Suppose that 𝑇 is not a caterpillar, i.e., 𝐼(𝑇 ) ∖ 𝑉 (𝑃 ) ̸= ∅. For any 𝑖 =
1, . . . , 𝑑−1, we have 𝑠𝑇 (𝑣𝑖, 𝐼(𝑇 )) ≥ 𝑠(𝑃𝑑−1)+

∑︀
𝑤∈𝐼(𝑇 )∖𝑉 (𝑃 ) 𝑑𝑇 (𝑤, 𝑣𝑖) > 𝑠(𝑃𝑑−1). Suppose that 𝑤 ∈ 𝐼(𝑇 )∖𝑉 (𝑃 ).

Assume that 𝑑𝑇 (𝑤, 𝑣𝑗) = 𝑑𝑇 (𝑤, 𝑃 ) for some 2 ≤ 𝑗 ≤ 𝑑− 2. Then we have

𝑠𝑇 (𝑤, 𝐼(𝑇 )) ≥ 𝑠𝑇 (𝑤, 𝐼(𝑇 ) ∩ 𝑉 (𝑃 )) > 𝑠𝑇 (𝑣𝑗 , 𝐼(𝑇 ) ∩ 𝑉 (𝑃 )) ≥ 𝑠(𝑃𝑑−1).

Therefore, 𝑖𝑠(𝑇 ) ≥ 𝑠(𝑃𝑑−1) =
⌊︁

(𝑑−1)2

4

⌋︁
with equality if and only if 𝑇 is a caterpillar. �
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Theorem 5.3. Let 𝑇 be a tree of order 𝑛 ≥ 3. Then

𝑖𝑠(𝑇 ) ≤
⌊︂

(𝑛− 2)2

4

⌋︂
with equality if and only if 𝑇 ∼= 𝑃𝑛.

Proof. By Lemma 2.2, an 𝐼(𝑇 )-centroid vertex is an internal vertex of 𝑇 , so 𝑖𝑠(𝑇 ) is equal to the minimum
status of 𝑇 ′, i.e., 𝑖𝑠(𝑇 ) = 𝑠(𝑇 ′), where 𝑇 ′ is the tree obtained from 𝑇 by deleting all leaves. Let 𝑘 = |𝐿(𝑇 )|. By
Proposition 2.1 in [1], we have

𝑖𝑠(𝑇 ) = 𝑠(𝑇 ′) ≤
⌊︂

(𝑛− 𝑘)2

4

⌋︂
≤
⌊︂

(𝑛− 2)2

4

⌋︂
with equalities if and only if 𝑘 = 2 and 𝑇 ∼= 𝑃𝑛. �

6. Maximum internal status

Similar to Proposition 5.1, we have

Proposition 6.1. Let 𝑇 be a tree of order 𝑛 ≥ 3. The following statements are true.

(i) 𝐼𝑆(𝑇 ) ≥ 1 with equality if and only if 𝑇 ∼= 𝑆𝑛.
(ii) If 𝑇 � 𝑆𝑛, then 𝐼𝑆(𝑇 ) ≥ 3 with equality if and only if 𝑇 is a double star.
(iii) If 𝑇 � 𝑆𝑛, and 𝑇 is not a double star, then 𝐼𝑆(𝑇 ) ≥ 6 with equality if and only if 𝑇 is a caterpillar of

diameter 4.

Furthermore, we have

Proposition 6.2. Suppose that 𝑇 is a tree of order 𝑛 with diameter 𝑑, where 2 ≤ 𝑑 ≤ 𝑛 − 1. Then 𝐼𝑆(𝑇 ) ≥
𝑑(𝑑−1)

2 with equality if and only if 𝑇 is a caterpillar.

Proof. Let 𝑃 := 𝑣0𝑣1 . . . 𝑣𝑑 be a diametric path in 𝑇 . Let 𝐼*(𝑇 ) = 𝐼(𝑇 ) ∖ {𝑣1, . . . , 𝑣𝑑−1}. Then

𝐼𝑆(𝑇 ) ≥ max{𝑠𝑇 (𝑣0, 𝐼(𝑇 )), 𝑠𝑇 (𝑣𝑑, 𝐼(𝑇 ))}

≥ 𝑠𝑇 (𝑣0, 𝐼(𝑇 )) + 𝑠𝑇 (𝑣𝑑, 𝐼(𝑇 ))
2

=
2
∑︀𝑑−1

𝑖=1 𝑖 +
∑︀

𝑤∈𝐼*(𝑇 )(𝑑𝑇 (𝑣0, 𝑤) + 𝑑𝑇 (𝑣𝑑, 𝑤))

2

≥ 𝑑(𝑑− 1)
2

with equality if and only if 𝐼*(𝑇 ) = ∅, i.e., 𝑇 is a caterpillar. �

Let 𝑇 be a tree with 𝑢 ∈ 𝑉 (𝑇 ). For positive integer 𝑝, we denote by 𝑇𝑢;𝑝 the tree consisting of 𝑇 and a path
𝑃 := 𝑢𝑢1 . . . 𝑢𝑝 such that 𝑢 is the only common vertex of 𝑇 and the path 𝑃 . In this case, we also say that 𝑃 is
a “hanging” path of length 𝑝 at 𝑢 in 𝑇𝑢;𝑝, though it is really a hanging path of length 𝑝 at 𝑢 in 𝑇𝑢;𝑝 only when
𝛿𝑇 (𝑢) ≥ 2.

Let 𝐺𝑢;0 = 𝐺. For nonnegative integer 𝑝 and 𝑞, let 𝐺𝑢;𝑝,𝑞 = (𝐺𝑢;𝑝)𝑢;𝑞.

Lemma 6.3. Let 𝑇 be a nontrivial tree with 𝑢 ∈ 𝑉 (𝑇 ). Let 𝑝 and 𝑞 be positive integers with 𝑝 ≥ 𝑞. Then
𝐼𝑆(𝑇𝑢;𝑝+1,𝑞−1) = 𝐼𝑆(𝑇𝑢;𝑝,𝑞) if 𝑞 ≥ 2 and 𝑇 is a star with center 𝑢, otherwise 𝐼𝑆(𝑇𝑢;𝑝+1,𝑞−1) > 𝐼𝑆(𝑇𝑢;𝑝,𝑞).
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Proof. Let 𝐻 = 𝑇𝑢;𝑝,𝑞 and 𝐻 ′ = 𝑇𝑢;𝑝+1,𝑞−1. Let 𝑢0𝑢1 . . . 𝑢𝑝 and 𝑣0𝑣1 . . . 𝑣𝑞 be the two “hanging” paths at 𝑢
in 𝐻, where 𝑢0 = 𝑣0 = 𝑢. Let 𝑥 be an internal peripherian vertex of 𝐻. Let 𝐿*(𝑇 ) = 𝐿(𝑇 ), 𝐼*(𝑇 ) = 𝐼(𝑇 )
if 𝑢 ̸∈ 𝐿(𝑇 ) and 𝐿*(𝑇 ) = 𝐿(𝑇 ) ∖ {𝑢}, 𝐼*(𝑇 ) = 𝐼(𝑇 ) ∪ {𝑢} otherwise. Then 𝑥 ∈ 𝐿(𝐻) = 𝐿*(𝑇 ) ∪ {𝑢𝑝, 𝑣𝑞} by
Lemma 2.4. As 𝑝 ≥ 𝑞, we have 𝑠𝐻(𝑢𝑝, 𝐼(𝐻)) ≥ 𝑠𝐻(𝑣𝑞, 𝐼(𝐻)). So we may assume that 𝑥 ∈ 𝐿*(𝑇 ) ∪ {𝑢𝑝}.

Case 1. 𝑥 ∈ 𝐿*(𝑇 ).
If 𝑞 ≥ 2, then

𝑠𝐻(𝑥, 𝐼(𝐻)) =
∑︁

𝑤∈𝐼*(𝑇 )

𝑑𝐻(𝑥, 𝑤) +
𝑝−1∑︁
𝑖=1

(𝑑𝐻(𝑥, 𝑢) + 𝑖) +
𝑞−1∑︁
𝑖=1

(𝑑𝐻(𝑥, 𝑢) + 𝑖)

=
∑︁

𝑤∈𝐼*(𝑇 )

𝑑𝐻(𝑥, 𝑤) + 𝑑𝐻(𝑥, 𝑢)(𝑝 + 𝑞 − 2) +
𝑝−1∑︁
𝑖=1

𝑖 +
𝑞−1∑︁
𝑖=1

𝑖,

and

𝑠𝐻′(𝑥, 𝐼(𝐻 ′)) =
∑︁

𝑤∈𝐼*(𝑇 )

𝑑𝐻′(𝑥, 𝑤) +
𝑝∑︁

𝑖=1

(𝑑𝐻′(𝑥, 𝑢) + 𝑖) +
𝑞−2∑︁
𝑖=1

(𝑑𝐻′(𝑥, 𝑢) + 𝑖)

=
∑︁

𝑤∈𝐼*(𝑇 )

𝑑𝐻′(𝑥, 𝑤) + 𝑑𝐻′(𝑥, 𝑢)(𝑝 + 𝑞 − 2) +
𝑝∑︁

𝑖=1

𝑖 +
𝑞−2∑︁
𝑖=1

𝑖.

Then 𝑠𝐻′(𝑥, 𝐼(𝐻 ′))−𝑠𝐻(𝑥, 𝐼(𝐻)) = 𝑝−𝑞+1 > 0 and thus 𝐼𝑆(𝐻 ′) ≥ 𝑠𝐻′(𝑥, 𝐼(𝐻 ′)) > 𝑠𝐻(𝑥, 𝐼(𝐻)) = 𝐼𝑆(𝐻).
If 𝑞 = 1, then

𝑠𝐻(𝑥, 𝐼(𝐻)) =
∑︁

𝑤∈𝐼*(𝑇 )

𝑑𝐻(𝑥, 𝑤) +
𝑝−1∑︁
𝑖=1

(𝑑𝐻(𝑥, 𝑢) + 𝑖)

=
∑︁

𝑤∈𝐼*(𝑇 )

𝑑𝐻(𝑥, 𝑤) + 𝑑𝐻(𝑥, 𝑢)(𝑝− 1) +
𝑝−1∑︁
𝑖=1

𝑖,

and

𝑠𝐻′(𝑥, 𝐼(𝐻 ′)) =
∑︁

𝑤∈𝐼*(𝑇 )

𝑑𝐻′(𝑥, 𝑤) +
𝑝∑︁

𝑖=1

(𝑑𝐻′(𝑥, 𝑢) + 𝑖)

=
∑︁

𝑤∈𝐼*(𝑇 )

𝑑𝐻′(𝑥, 𝑤) + 𝑑𝐻′(𝑥, 𝑢)𝑝 +
𝑝∑︁

𝑖=1

𝑖.

Then 𝑠𝐻′(𝑥, 𝐼(𝐻 ′)) − 𝑠𝐻(𝑥, 𝐼(𝐻)) = 𝑑𝐻(𝑥, 𝑢) + 𝑝 > 0 and thus 𝐼𝑆(𝐻 ′) ≥ 𝑠𝐻′(𝑥, 𝐼(𝐻 ′)) > 𝑠𝐻(𝑥, 𝐼(𝐻)) =
𝐼𝑆(𝐻).

Case 2. 𝑥 = 𝑢𝑝.
Let 𝑞 ≥ 2. Then

𝑠𝐻(𝑥, 𝐼(𝐻)) =
∑︁

𝑤∈𝐼*(𝑇 )

(𝑝 + 𝑑𝐻(𝑢, 𝑤)) +
𝑝−1∑︁
𝑖=1

𝑖 +
𝑞−1∑︁
𝑖=1

(𝑝 + 𝑖)

=
∑︁

𝑤∈𝐼*(𝑇 )

(𝑝 + 𝑑𝐻(𝑢, 𝑤)) + 𝑝(𝑞 − 1) +
𝑝−1∑︁
𝑖=1

𝑖 +
𝑞−1∑︁
𝑖=1

𝑖,
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and

𝑠𝐻′(𝑥, 𝐼(𝐻 ′)) =
∑︁

𝑤∈𝐼*(𝑇 )

(𝑝 + 1 + 𝑑𝐻′(𝑢, 𝑤)) +
𝑝∑︁

𝑖=1

𝑖 +
𝑞−2∑︁
𝑖=1

(𝑝 + 1 + 𝑖)

=
∑︁

𝑤∈𝐼*(𝑇 )

(𝑝 + 1 + 𝑑𝐻′(𝑢, 𝑤)) + (𝑝 + 1)(𝑞 − 2) +
𝑝∑︁

𝑖=1

𝑖 +
𝑞−2∑︁
𝑖=1

𝑖.

Then 𝑠𝐻′(𝑥, 𝐼(𝐻 ′))−𝑠𝐻(𝑥, 𝐼(𝐻)) = |𝐼*(𝑇 )|−1. If |𝐼*(𝑇 )| ≥ 2, then 𝐼𝑆(𝐻 ′) ≥ 𝑠𝐻′(𝑥, 𝐼(𝐻 ′)) > 𝑠𝐻(𝑥, 𝐼(𝐻)) =
𝐼𝑆(𝐻). If |𝐼*(𝑇 )| = 1, then 𝐼𝑆(𝐻 ′) = 𝑠𝐻′(𝑥, 𝐼(𝐻 ′)) = 𝑠𝐻(𝑥, 𝐼(𝐻)) = 𝐼𝑆(𝐻).
Let 𝑞 = 1. Then

𝑠𝐻(𝑥, 𝐼(𝐻)) =
∑︁

𝑤∈𝐼*(𝑇 )

(𝑝 + 𝑑𝐻(𝑢, 𝑤)) +
𝑝−1∑︁
𝑖=1

𝑖,

and

𝑠𝐻′(𝑥, 𝐼(𝐻 ′)) =
∑︁

𝑤∈𝐼*(𝑇 )

(𝑝 + 1 + 𝑑𝐻′(𝑢, 𝑤)) +
𝑝∑︁

𝑖=1

𝑖.

Then 𝑠𝐻′(𝑥, 𝐼(𝐻 ′))−𝑠𝐻(𝑥, 𝐼(𝐻)) = |𝐼*(𝑇 )|+𝑝 > 0, and so 𝐼𝑆(𝐻 ′) ≥ 𝑠𝐻′(𝑥, 𝐼(𝐻 ′)) > 𝑠𝐻(𝑥, 𝐼(𝐻)) = 𝐼𝑆(𝐻).

The result follows by combing the above two cases and noting that |𝐼*(𝑇 )| = 1 if and only if 𝑇 is a star with
center 𝑢. �

Theorem 6.4. Let 𝑇 be a tree of order 𝑛 ≥ 3. Then

𝐼𝑆(𝑇 ) ≤ 𝑛2 − 3𝑛 + 2
2

with equality if and only if 𝑇 ∼= 𝑃𝑛.

Proof. Let 𝑇 be a tree of order 𝑛 that maximizes the maximum internal status. Suppose that 𝑇 is not a path. Let
𝑥 ∈ 𝐿(𝑇 ). Then we choose a vertex of degree at least three, say 𝑢, such that 𝑑𝑇 (𝑥, 𝑢) is as large as possible. Then
there are two hanging paths 𝑃 and 𝑄 at 𝑢 in 𝑇 . By Lemma 6.3, we can obtain a tree 𝑇 ′ so that 𝐼𝑆(𝑇 ′) > 𝐼𝑆(𝑇 ),
a contradiction. Thus 𝑇 ∼= 𝑃𝑛. Evidently, 𝐼𝑆(𝑃𝑛) =

∑︀𝑛−2
𝑖=1 𝑖 = 𝑛2−3𝑛+2

2 . �

Theorem 6.5. Let 𝑇 be a tree of order 𝑛 with maximum degree ∆, where 2 ≤ ∆ ≤ 𝑛 − 1. Then 𝐼𝑆(𝑇 ) ≤
1
2 (𝑛−∆)(𝑛−∆ + 1) with equality if and only if 𝑇 is a starlike tree with at least ∆− 2 hanging paths of length
one.

Proof. It is trivial if ∆ = 2. Suppose that ∆ ≥ 3. Let 𝑇 be a tree of order 𝑛 with maximum degree ∆ that
maximizes the maximum internal status. Let 𝑢 be a vertex of degree ∆. If there is a vertex different from 𝑢 with
degree at least three, then we may choose such a vertex 𝑣 by requiring that 𝑑𝑇 (𝑢, 𝑣) is as large as possible. This
implies that there are two hanging paths at 𝑣 in 𝑇 . By Lemma 6.3, there is a tree of order 𝑛 with maximum
degree ∆ having larger maximum internal status, which is a contradiction. That is, 𝑢 is the only vertex of degree
at least three. In other words, 𝑇 is a starlike tree. By Lemma 6.3 again, ∆− 2 hanging paths are of length one.
Thus 𝑇 is a starlike tree with at least ∆ − 2 hanging paths being of length one. The result follows by noting
that 𝐼𝑆(𝑇 ) = 𝐼𝑆(𝑃𝑛,Δ−1) =

∑︀𝑛−Δ
𝑖=1 𝑖 = 1

2 (𝑛−∆)(𝑛−∆ + 1). �
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