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ON EXTREMAL LEAF STATUS AND INTERNAL STATUS

HaryaNn Guo! aAnD Bo ZHOU?*

Abstract. For a vertex u of a tree T, the leaf (internal, respectively) status of u is the sum of
the distances from u to all leaves (internal vertices, respectively) of 7. The minimum (maximum,
respectively) leaf status of a tree T" is the minimum (maximum, respectively) leaf statuses of all vertices
of T. The minimum (maximum, respectively) internal status of a tree T is the minimum (maximum,
respectively) internal statuses of all vertices of T'. We characterize those trees with the smallest (largest,
respectively) extremal (minimum and maximum) leaf status and extremal (minimum and maximum)
internal status, respectively. We also study the corresponding extremal problems for trees with given
parameters, including diameter or maximum degree.
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1. INTRODUCTION

Let G be a connected graph of order n > 2 with vertex set V(G). For u,v € V(G), the distance between
and v in G, denoted by dg(u,v), is the length of a shortest path connecting u and v in G. Let §§ # A C V(G).
For u € V(G), the A-status of u in G is defined as

G(ua A) = Z dG(u7 U).
vEA
The minimum A-status of G is $4(G) = min{sg(u, A) : u € V(G)}, while the maximum A-status of G is
Sa(G) = max{sg(u, A) : u € V(G)}. The A-centroid (or A-median) of G is defined as {u € V(G) : sg(u, A) =
SA(G)}

Let sg(u) = sa(u, V(G)) for u € V(G), 5(G) = sy (@) (G) and S(G) = Sy()(G). Then sg(u) is the status
(or transmission) of u in G [4,6,19], s(G) is the minimum status of G, and S(G) is the maximum status of G.
Both minimum and maximum statuses have been studied extensively, and it should be noted that the minimum
(maximum, respectively) status appeared also in its normalized form divided by n—1 that is called the proximity
(remoteness, respectively) of the graph, see, e.g., [1-3,5,7-9,11,12,15,16,21]. Some related works may be found
in [10,13,18,20].

Let T be a tree. For u € V(T), denote by Nr(u) the set of vertices adjacent to u in T and the cardinality of
Nr(u) is the degree of u in T, denoted by dr(u). A vertex of degree one in a tree is called a leaf and a vertex
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of degree at least two in a tree is called an internal vertex. Let L(T') and I(T) be the set of leaves and the set
of internal vertices of T, respectively.

Slater [17] studied the structure of the A-centroid of a tree 7" with ) # A C V(7). For example, it was shown
in Theorem 5 of [17] that the A-centroid induces a path in a tree for any subset A. Another related concept
is called A-center, which is defined to be the set {u € V(T) : ea(u,T) = min{ea(w,T) : w € V(T)}}, where
ea(u,T) = max{dr(u,v) : v € A}. It was shown in [17] that L(T)-center and L(T)-centroid have quite different
properties.

The minimum leaf status (internal status, respectively) of T is defined to be the minimum L(7T)-status
(I(T)-status, respectively), denoted by Is(T') (is(T'), respectively). That is,

Is(T) = spery(T) and is(T) = sy (T).

The maximum leaf status (internal status, respectively) of T is defined to be the maximum L(T)-status (I(7T')-
status, respectively), denoted by LS(T') (IS(T), respectively). That is,

LS(T) = Syr)(T) and IS(T) = Sy (T):

In this paper, we study the extremal (minimum, maximum) leaf status (internal status, respectively). The
structures of the trees with maximum and minimum extremal (minimum, maximum) leaf status (internal status,
respectively) are identified. A somewhat related but different extremal problem studied is the characterization
of the trees with maximum distance between the L(T')-centroid and the centroid or the I(T)-centroid, and
maximum distance between the I(T')-centroid and the centroid, respectively, where, for two subsets A and B of
vertices of a connected graph G, the distance between A and B is the smallest distance between a vertex from
A and a vertex from B in G, see [20].

In the context of communication networks, the status of a vertex is viewed as the cost of the vertex to the whole
network, which measures the closeness centrality of the vertex in the network. The leaf status (internal status,
respectively) of a vertex may be viewed as the cost of the vertex to the leaves (internal vertices, respectively) of
a network of tree structure. The minimum leaf status (internal status, respectively) models locating a central
facility in a network involving minimizing the sum of its distances from the leaf (internal, respectively) sources
of flow to it, where the distance may be appropriately weighted to reflect the associated flow volume and/or
cost.

2. PRELIMINARIES

The diameter of a connected graph G is the maximum distance between two vertices. Denote by S,, and P,
the star and the path of order n, respectively. A double star is a tree with diameter 3, which is obtainable by
adding an edge between the centers of two nontrivial stars.

For a vertex u of a nontrivial tree T, the components of T'—u are called the branches of T at u. For A C V(T),
the A-branch-weight of w in T', denoted by bwr(u, A), is defined to be

max{|ANV(B)|: B is a branch of T at u}.

For a tree T, a vertex in the A-centroid is called an A-centroid vertex. The following lemma is a restatement
of Theorem 8 from [17].

Lemma 2.1. Let T be a tree of order n > 2. Then u is an A-centroid vertez if and only if bwy (u, A) < bwr(v, A)
for any v € V(T).

For u,v € V(T), denote by nr(u,v|A) the number of vertices in A closer to u than to v. Let T be a tree with
uwe V(T). For A= L(T),1(T), Wang ([20], Prop. 3.1) stated that u is an A-centroid vertex of T if and only if
nr(u,v|A) > nr(v,ulA) for any v € Np(u).

We give a somewhat easier necessary and sufficient condition for a vertex of a tree T' to be an A-centroid
vertex for A = L(T), I(T).
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Lemma 2.2. Let T be a tree of order n > 3 with w € V(T). For A= L(T),I(T), u is an A-centroid vertex of
T if and only if bwr(u, A) < %.

Proof. Let r = dp(u) and Nr(u) = {u1,...,u.}. For i = 1,... r, let B; be the branch of T" at u containing u;
and let a; = |[ANV(B;)|. Assume that a; > --- > a,. Then, by definition, bwr(u, A) = a;.

Suppose that bwr(u, A) < ‘%l, e, a; < %. For any v € V(T)\ (V(B1)U{u}),say v € V(B;) with2 < i <,
as T — V(B,) is a subtree of a branch at v, we have bwp(v,A) > [AN(V(T)\ V(B;))| > 25:1 a; —a; > a1 =
bwr(u, A). If A = L(T), then 377_ a; = [A|, s0 >\ _ya; > |‘21|, and for any v € V(By), we have bwr(v, A) >
AN(V(D\V(BY)| > X7y a; > B > buwp(u, A). If A = I(T), then X, a; = [A| = 1,50 3 _,a; > 151 — 1,
and for any v € V/(By), we have bwr (v, 4) > [AN(V(T)\V(B1))| > 1+ 377 _ya; > % > bwr(u, A). Therefore
bwr(u, A) < bwr (v, A) for any v € V(T'), which implies that u is an A-centroid vertex of T' by Lemma 2.1.

Conversely, suppose that u is an A-centroid vertex of T'.

Case 1. A= L(T).
If |A] = 2, then T' = P, and u may be any vertex. Then bwp(u, A) = 1 < |‘;¥|. Suppose that |A| > 3. If
bwr(u, A) > %‘, i.e., a; > %, then >\ ,a; < |2|, so sp(u, L(T)) — sp(ui, L(T)) = a1 — Y ;_pa; > 0,
implying that sp(u, L(T)) > sr(u1, L(T)), a contradiction. It follows that bwp(u, A) < %'.
Case 2. A=I(T).
If |A] =1, then T'= S,, and u is the center. If |A| = 2, then T is a double star and u may be either of the
internal vertices. So we have bwr(u, A) = 0,1 < % if |A] = 1,2. Suppose that |A| > 3. If bwr(u, A) > %‘,
i.e., ay > ‘A‘ ,then Y7 ,a; < ﬂ —1, 50 sp(u, I(T)) — sp(u, [(T)) = a1 —1—=3"._, a; > 0, a contradiction.
It follows that bwr(u, A) < 'g".
By combining Cases 1 and 2, we have bwy(u, A) < %. O
A leaf peripherian vertex of a tree T on n vertices is a vertex of T' with maximum leaf status. Note that
every vertex of P, is a leaf peripherian vertex and LS(P,) = n — 1. In the following lemma, we show that a leaf
peripherian vertex of a tree that is not a path must be a leaf.

Lemma 2.3. Let T be a tree that is not a path. Let w € V(T). If u is a leaf peripherian vertex of T, then
u e L(T).

Proof. We prove the lemma by contradiction. Suppose that w is a leaf peripherian vertex of T but w ¢ L(T).
Then 07 (u) > 2. Let r = o7 (u) and Np(u) = {uy,...,u,}, where r > 2. For i = 1,...,r, let B; be the branch
of T at w containing u;, L; = L(T) NV (B;) and a; = |L;|. Assume that a1 < --- < a,.

Suppose first that r = 2 and as = a1. As T is not a path, we have as = a1 > 2. Let v € L1 and let z be the
unique vertex adjacent to v in 7. Then

st(u, L(T)) = Z dr(u, w) + dr(u,v) Z dr(u, w)

weLi\{v} we Lz
sp(o, LT) = Y dp(v,w)+ Y (dr(v,u) + dr(u,w)),
weLi\{v} we Ly

and so

st(v, L(T)) — s7(u, L(T)) = Z (dr(v,w) — dr(u,w)) — dr(u,v) Z dr(v,u)

weLi\{v} weELs

> Z (dr(z,w) — dr(u,w)) — dr(u,v) Z dr(v,u)

weLi\{v} weLs
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> — Z dT(Zvu) - dT(U,U) + Z dT('U,'LL)

weLi\{v} weL2

= - Z (dr(v,u) — 1) — dp(u,v) + ZdT(v,u)

weL\{v} we L2
= Z 1
weL\{v}
= aj] — 1
> 0.

Thus st (v, L(T)) > st(u, L(T)). This implies that u cannot be a leaf peripherian vertex of T, a contradiction.
Suppose next that » = 2 and as > ay, or r > 3. Then

and so

sr(u, L(T)) = Y dr(u,0)+ Y Y dr(u,v),

veELy j=2wv€ELj
sr(un, L(T) = Y (dr(u,v) = 1)+ > > (dp(u,v) + 1),
vel; j=2velL;

T

sp(ur, L(T)) — sr(u, L) = 3 (D + > Y1

vELy Jj=2v€EL;j

T
= E a; —ay
=2

> 0.

Thus st (u1, L(T)) > sr(u, L(T)). This implies that v is not a leaf peripherian vertex of T, also a contradiction.
Therefore, u € L(T), as desired.

An internal peripherian vertex of a tree T is a vertex of T' with maximum internal status.

Lemma 2.4. Let T be a tree. Suppose that u is an internal peripherian vertez of T. Then u € L(T).

Proof. We prove the lemma by contradiction. Suppose that u ¢ L(T). Then dp(u) > 2.

If there is a vertex v € Nr(u) with ér(v) = 1, then it is obvious that st (v, I(T)) > st (u, I(T)), a contradic-
tion. So dr(v) > 2 for any v € Ny(u). Let r = o7 (u) and Np(u) = {uy,...,ur}, where r > 2. For i = 1,...,r,
let B; be the branch of T' at u containing w;, I; = I(T) NV (B;) and a; = |I;|. Assume that a; < --- < a,. Let

z € I;. Then

and so

sr(u, I(T) = > dr(ww)+dr(u,z)+Y > dr(u,w),

wel\{z} i=2 wel;
sp(z (1) = Y dr(z,w)+dr(z,u)+ Y > (dr(z,u) + dp(u,w)),
wel\{z} =2 wel;

T

sr(z,1(T) = sp(u, I(T)) = > (dr(z,w) —dr(u,w)) + > dr(z,u)

weli\{z} =2 wel;

O
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> —dr(z,u)(ar — 1) + dr(z,u) Y a;

=2
=dp(z,u) (—a1 +1+ im)
> 0. -
Thus sp(z,I(T)) > sr(u, I(T)), a contradiction. O

A tree is starlike if it has at most one vertex of degree greater than 2. So, a star and a path are both particular
starlike trees.

A diametric path of a tree is a longest path in this tree (whose length equals the diameter). Evidently, the
terminal vertices of a diametric path of any nontrivial tree are leaves.

A caterpillar is a tree such that the deletion of all leaves outside a diametric path (if any exists) yields a path.

An edge uv in a tree T is a leaf edge of T at u if v is a leaf and u is an internal vertex of T'.

For a tree T with vw € E(T) and vw ¢ E(T), if T" = T — uw + vw is a tree, then we also say that 7’ is
obtained from 7' by moving the edge uw from u to v.

A hanging path at a vertex u of a tree T is a path wuy ...uy with op(u) > 3, dr(ug) = 1 and if £ > 2,
or(u;))=2fori=1,...,0—1.

Let P be a path in a tree T. For v € V(T') \ V(P), the distance between v and P is defined to be dr(v, P) =
min{dr(v,w) : w € V(P)}.

3. MINIMUM LEAF STATUS

Theorem 3.1. Let T be a tree of order n > 2. Then
Is(Ty>n—-1
with equality if and only if T is starlike.

Proof. Let u be an L(T)-centroid vertex. Every vertex other than u lies on some path from u to a leaf (including
the leaves themselves), so sr(u, L(T)) > n — 1 with equality if and only if every edge of T' lies on exactly one
path from u to a leaf, equivalently, T is starlike. O

For integers n, a and b with 1 < a,b < "7*2, let T},.q,» be the tree of order n obtained from two stars Sg41

and Spy1 by connecting their centers by a path of length n —a — b — 1. For convenience, let T}, , = Th.q.q-

Theorem 3.2. Let T be a tree of order n with diameter d, where 3 < d < n —1. Then

@=d)d | | ifn—dis even.

W if n — d is odd,
Is(T)
2

If n — d is odd, then equality holds if and only if T =T, (,_ay1)/2- If n — d is even, then equality holds if and
only if T = Ty.(n—q)/2,(n—d+2)/2, o7 d > 4 and T is isomorphic to a tree obtained from T), 1 (,—q)/2 by adding
a leaf edge at a vertex of degree two.

Proof. If d =n — 1, then the result is trivial as n —d =1isodd, T = P, and Is(T) =n—1 = W.

Suppose that d < n — 2. Let T be a tree of order n with diameter d that maximizes the minimum leaf status.
Let « be an L(T)-centroid vertex. Let r = dp(z) and Np(z) = {y1,...,y-}. For ¢ = 1,...,7, let B; be the
branch of T' at x containing y; and let a; = |L(T) N V(B;)|.
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[L(T)] [L(T)]
2

Suppose that r = 2. By Lemma 2.2, a1, a2 < .So a1 = az = =5~ > 2. Choose a vertex z € V(B;) with
d7(z) > 3 such that dr(x, z) is as small as possible. Then bwr(z, L(T)) = as = \1;(2771)\ So z is an L(T)-centroid
vertex by Lemma 2.2. Therefore, we may assume that r > 3. Let P := xox;1 ...24 be an arbitrary diametric
path of T'.

Suppose that x lies outside any diametric path. By Lemma 2.2, z is not a leaf. So dr(z, P) = dp(z,x;) for
some 4 with 3 <4 < d — 3. Assume that x; € V(B,.). Let £ be the length of a longest path from a leaf of T in
U;;%V(Bj) to z;. Then ¢ < min{i —1,d —i—1}.

Claim 1. a; <a, foreach j =1,...,7r - 1.

Suppose that this is not true. Then a; > a, for some j with 1 < j < r — 1. Let T be the tree obtained
from T by moving the edges zy; with 1 < k <r —1 and k # j from z to y,. Note that the diameter of T” is
d and L(T") = L(T). As a; > a,, we have bwy (y,) = max{ai,...,a,-1} = bwr(x). By Lemma 2.2, y, is an
L(T")-centroid vertex. Denote by Ly the set of leaves of T in By, for k = j,r. Then

Is(T") = 1s(T) = s/ (yr, L(T")) = s7(x, L(T))
= Z 1+ Z (-1)

=a; —a, >0,

so Is(T") > Is(T), a contradiction. This proves Claim 1.
Let w be the vertex on the path from x to x; with degree at least three such that dr(w,x) is as small as
possible.

Claim 2. a; = --- = a,.

Suppose that this is not true. By Claim 1, a; < a, for each j = 1,...,7 — 1, so we have aj, < a, for some
jo=1,...,r — 1. Let T* be the tree obtained from T by moving the edges zy; with 1 < k <r —1 and k # jo
from x to y;,. As £ <min{i —1,d — i — 1}, the diameter of T* is d.

Case i. dr(yj,) > 2.
Let Ty be the maximal subtree of T' — zy;, containing y;,. Note that the branches of T* — y;, are By with
1<k <r—landk # jo, T[{z}UV(B,)], and the branches of Ty at y;,. As ay < a, foreachk =1,...,r—1, we
have by Lemma 2.2 that bwp-«(y;,) = max{ar : k=1,...,rk # jo} = ar = bwp(x) < @ = W and
80 yj, is an L(T*)-centroid vertex. Thus Is(T) = sp(x, L(T)) < sr(z, L(T)) + ar — aj, = s7+(yj,, L(T*)) =
Is(T*), a contradiction.

Case ii. dr(y;,) = 1.

Suppose that a, = @ Then w = z;, otherwise denote by (x the number of leaves of T in branches
at w not containing its neighbors in the path from z to z;, where k = 1,...,dp(w) — 2. Then bwr(w) =

max{ay + -+ ar—1,081,. .., Bsp(w)—2,0r — (B1 + -+ Bspuwy—2)} = a1 + -+ ar_1 = @, and w is an
L(T)-centroid vertex by Lemma 2.2. Let w’ be the neighbor of w in the branch of T at w containing x;. Let
T’ be the tree obtained from T' by moving the edges incident to w outside the path connecting x and z; from

w to w’. Then bwp (w') = |L(2T)‘ = w Thus w’ is an L(T")-centroid vertex by Lemma 2.2. It is easy to

see that sp (w', L(T")) = sp(w, L(T)) = a1+ - -+ ar_1—(ar — (Br+ -+ Bsp(w)—2)) = B+ +Bsp(w)y—2 > 0,
implying that {s(T") > Is(T), a contradiction. It thus follows that w = x;. Let T” = T — zy,, + z1Yj,- As
bwpr (z;) < ar = ‘L(27T)| = ‘L(zﬂ, x; is an L(T")-centroid vertex by Lemma 2.2. As dp(z,z;) < i — 1,
we have Is(T") = sy (i, L(T")) > sr(xi, L(T)) = sr(x, L(T)) = ls(T'), a contradiction. This shows that

ar < 1T
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Note that the branches of T* —y;, are By with 1 <k <r—1 and k # jo, T[{z} UV (B,)]. Then bwr-(y;,) =
ar < ‘L(T2)|71 = lL(g*)l. So yj, is an L(T*)-centroid vertex by Lemma 2.2. As a, > 2, we have Is(T) =
st(z, L(T)) < st(x, L(T)) + ar — 1 = sp-(yjo, L(T*)) = Is(T*), a contradiction.

Now Claim 2 follows by combining Cases i and ii.

Claim 3. Any internal vertex in the path from = to x; has degree two in T.

Suppose that this is not true. Assume that the path from x to z; is x...wjwws...x;. Let Np(w) =

{w1,...,w;}. Let B be the number of leaves of T' in the branches of T at w not containing w; and w;. Then
B2t—2>1.Let T" =T —{ww; :2<i<t—1}—{zy; :2<i<r—1}+{ww; : 2 <i <t —1} +{wy; :
2 <i<r—1}. By Claim 2, a1 = -+ = a,. So bwr(w) = max{ay,...,a,_1,a, — B} = a1 = a,, and w; is an

L(T")-centroid vertex by Lemma 2.2. Thus

1s(T) — 1s(T) = sp:(wy, L(T")) — sp(z, L(T))
= a1(dr(z,w) + 1) — dr(z,w)B — (dr(z,w) + 1)(a; — 3)
=p
> 0,

implying that Is(T") > 1s(T), a contradiction. Thus Claim 3 follows.

Let z1,...,zs be all the neighbors of x; outside the path P, where z; lies on the path from z; to x in T.
Let ny (ng, respectively) be the number of leaves in the branch of T at x; containing x;_1 (x;11, respectively).
Assume that ny; > no.

Claim 4. n; = ns.

Suppose that this is not true. Then ny > no. Let Th = T—{zy; : 2 < j <r—1}—{x;z; : 1 < j < s}+{zi1y; :
2<j<r—1}+A{ziy1z; : 1 <j < s}. By Lemma 2.2 and Claim 3 and noting that no < n1 < a,, we have

< ‘Lg—T)l = w, and so x;11 is an L(T})-centroid vertex.

bwr, (x;41) = max{a,...,ar—1,n1} = a1 = bwr(x) 5
Thus Is(T1) = sp, (@iy1, L(Th)) = sp(x, L(T)) + n1 — ng > sp(x;, L(T)) = Is(T'). This proves Claim 4.

Let Ty =T — {zya,xiz1} + {xic121, Tig1y2} if dr(x) =r =3 and Ty = T — {zy1, 2y2} + {@ic1y1, Tiv1y2}
otherwise. Note that there are n; + a1 leaves of T in the branch of T, at x; containing xzy and no + aso
leaves in the branch of Ty at x; containing z4. By Claim 4, we have n; = ns, so n1 + a3 = nas + as. Thus
bwr, (z;) = a1 +np < lL(zi)l, implying that z; is an L(T%)-centroid vertex by Lemma 2.2. It follows that
Is(T) = sty (i, L(T2)) > sp(x, L(T)) + 2a1 > sr(x, L(T)) = Is(T), a contradiction. This shows that z lies on
some diametric path. Assume that z; = x, where 1 < ¢ < d— 1. Denote by a the number of leaves in the branch
of T" at x; containing x;_1.

Suppose that T is not a caterpillar. Let z be any leaf of T outside P with dr(z, P) > 2.

Claim 5. dp(z, P) = dr(z, ;).

Suppose that this is not true. Then dr(z,2;) = dr(z, P) for some j # i. Assume that j < i. Choose j such
that ¢ — j is as small as possible.

We show that dp(zj41) = -+ = ér(z;-1) = 2 if j < ¢ — 1. Suppose to the contrary that j < ¢ — 1 and
O (zx) > 3 for some k with j < k < i. By moving the leaf edges at xy, from xy to x1, we get a tree T” for which
x is still an L(T")-centroid vertex by Lemma 2.2, so Is(T") > Is(T'), which is a contradiction. Thus we indeed
have 5T(1'j+1) == 6’]‘(%1‘_1) =2 lf] <1—1.

Let u be the unique neighbor vertex of z. Let T” the tree obtained from T by moving the leaf edges at u
from w to x1. If z; is also an L(T”)-centroid vertex, then, as dr(x1,z;) > dr(u,z;) and v € L(T"), we have
Is(T") = sp(xi, L(T")) > sr(z;, L(T)) = 1s(T), a contradiction. Thus x; is not an L(T”)-centroid vertex. Note
that the branches of 7" at x; not containing x; are just the branches of T at ; not containing x;, and that z; is
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an L(T')-centroid vertex. By Lemma 2.2, a+1 = bwy (z) > w and a < ‘L(QT)l. So ‘L(TQ)Hl — \L(g/)l <a+l<
@—l—l, i.e.,a= ‘L(QiT)l Then bwr(xj, L(T)) = bwp/ (x;, L(T")) = |L(T)|—a = @, so x; is an L(T')-centroid
vertex and also an L(T")-centroid vertex by Lemma 2.2. Thus Is(T") = s7/(x;, L(T")) > sp(z;, L(T)) = ls(T),
also a contradiction. Now Claim 5 follows.

By Claim 5, if an internal vertex, say x4, of T' on P different from z1,z4_1,z; has degree more than two in
T, then it is incident to dr(xs) — 2 leaf edges. In this case, move the leaf edges at x5 from z, to xy if s < i
and to x4—1 if s > i to form a tree T”. By Lemma 2.2, x; is an L(T")-centroid vertex, so Is(T") > 1s(T), a
contradiction. Thus each internal vertex of T on P different from x1,x4_1,x; has degree two in T'.

Note that the number of leaves in the branch of T' at z; containing x;_; is a. Let p = dr(u) — 1. Let k be the
number of leaves in the branch of T' at x; containing w. Let ng be the maximum number of leaves in a branch
of T" at x; containing neither x;_; nor w.

(T)|+1
2

Suppose that a + p < L . Let T" be the tree obtained from T by moving the leaf edges at u from u

|L(T)] |L(T)|+1
(DI} < 1

to x1. By Lemma 2.2, bwy(z;) = max{a +p,k —p+ 1,no} < max{a + p,
L(T")-centroid vertex. Then we have Is(T") = spv(z;, L(T")) > sp(z;, L(T)) = 1s(T), a contradiction.
L(T)|+1 L(T)|+1 L(T)|+1
Supposethata+p>| ()I , i€, p>‘ ()l %J

, and so x; is an

—a. We form a tree 7" by moving { — a leaf edges

at u from u to z1 and the remaining leaf edges at u from u to x4—1. Note that bwpr (z;) = IL(TQ)‘H < ‘L(gn)‘ .

Thus z; is also an L(T")-centroid vertex by Lemma 2.2. So Is(T") = spu(x;, L(T")) > sp(xz;, L(T)) = 1s(T),
also a contradiction.
It follows that T is a caterpillar, so |L(T)| =n—d + 1.

Claim 6. Each vertex from zs, ..., x4_o different from x; has degree two in T if d > 4.

Suppose that this is not true with d > 4. Then dr(z;) > 2 for some j with 2 < j < d —2 and j # i. Assume
that j > 4. Let N be the set of neighbors of z; outside P in T'. Let 7' =T — {z;z: 2 € N} + {z4_12: 2 € N}.
As T is a caterpillar, the diameter of T" is d. It is easy to see that x; is an L(T")-centroid vertex, so we have
Is(T") > 1s(T), a contradiction. Thus Claim 6 follows.

By Claim 6, each vertex from xs, ..., x4 o different from x; has degree two in T if d > 4. If i = 1,d — 1, then
by Lemma 2.2, we have T' = T}, (,_q41)/2, and so [s(T) = W if n—dis odd, and T' = T}, (n—a)/2,(n—d+2) /25
and so Is(T) = W +1if n—dis even.

Suppose that i #£ 1,d — 1.

Case 1. n —d is odd.
If 67(a;) > 3, then there are ér(x1) — 1 leaves in the branch at z; of T containing ¢ and ér(x4—1) — 1 leaves
in the branch at x; of T containing z4. Suppose without loss of generality, d7(z1) < d7(zq4—1). We form a
tree T by moving a leaf edge at z; from z; to 1. Evidently, ls(T") = sp(x;, L(T")) > sy (x4, L(T)) = 1s(T),
a contradiction. Thus 7 (x;) = 2. By Lemma 2.2, we have T'= T}, (,,_441)/2, and so Is(T) = (”7%1)[1.
Case 2. n —d is even.
If 67 (a;) > 4, then there are ér(x1) — 1 leaves in the branch at z; of T' containing ¢ and ér(x4—1) — 1 leaves
in the branch at z; of T containing z4. Suppose without loss of generality, d7(z1) < dp(zq4—1). We form a
tree T by moving a leaf edge at z; from z; to 1. Evidently, ls(T") = sy (x;, L(T")) > sy (i, L(T)) = 1s(T),
a contradiction. Thus é7(z;) < 3. By Lemma 2.2, we have T' = T, (,_a)/2,(n—d+2)/2 if 07(%;) = 2 and T is
isomorphic to a tree obtained from T),_; (,_q)/2 by adding a leaf edge at x; if é7(x;) = 3. In either case,

1s(T) = (e 4 g,
The result follows by combining the above two cases. ]

As an immediate consequence of the previous theorem, we have
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Corollary 3.3. Let T be a tree of order n > 6. Then

I5(T) < V”E”J

with equality if and only if T = T, rn/47 if n is even or n = 3 (mod 4), and T = T, (,_1)/4, Ty, (nt3)/2 if
n=1 (mod 4).

Proof. Let d be the diameter of T. If d = 2, then Is(T) =n—-1< {@J Suppose that d > 3. If n — d is
even, then by Theorem 3.2, we have

ls(T)S@+l§%2+l< V”;UQJ

Suppose that n — d is odd. By Theorem 3.2, we have

IS(T) < F(d) = (n— d2+ 1)d
F() = (”21)2 if d and ! are even
<L f(25E) = () = ”2+§"’3 if d is even and 241 is odd
f(%) :f(ngl):"Z%?" if n is even
_ |+ 1)2J
. 8

with equalities if and only if 7" = T}, (,,_441)/2 With d = "TH if "TH is even, d = "7*1, ”T*S if ”7“ is odd, and

d= 3,5 +1if nis even. O

4. MAXIMUM LEAF STATUS
Theorem 4.1. Let T be a tree of order n > 2. Then
LS(T)>n—-1
with equality if and only if T = P, .
Proof. Let x be a leaf peripherian vertex of T. Every vertex other than = lies on some path from z to a leaf

(including the leaves themselves), so sp(x, L(T)) > n — 1 with equality if and only if every edge of T lies on
exactly one path from z to a leaf, equivalently, T & P,. O

For integers n, a with 1 < a <n — 2, let P, , be the tree of order n obtained by identifying the center of a
star S,41 and a terminal vertex of a path P,_,. In particular, P,y = P, and P, ,_2 = S,.

Theorem 4.2. Let T be a tree of order n > 4. Then

ssiry< 2]

with equality if and only if T = P, ,, /5 for even n, and T' = P, (,_1)/2, Py, (n41)/2 for odd n.
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Proof. If n =4, then T = Py or Sy (= Ps2) and LS(Py) =3 <4 =LS(Py2). If n =5, then T'= P5, P55 or S5
(= Ps3) and LS(P5) =4 <6 =LS(Ps2) = LS(Ps.3). So the result holds if n = 4, 5.
Suppose that n > 6. Let T be a tree of order n that maximizes the maximum leaf status. Note that the
’I’L2

maximum leaf status of P, ,/; for even n, and P, (,_1)/2 or Py, (ny1)/2 for odd n is {TJ' If T P,, then

LS(T)=n—-1< {%QJ IfT=85,, then LS(T) =2(n—2) < V{J So T is neither a path nor a star.

Let x be a leaf peripherian vertex of T. By Lemma 2.3, € L(T). Let P := xq...2, be a longest path of T'
starting from z¢g = z. Then 3 < r < n — 2. Note that ér(x;) > 3 for some i with 1 <i < r — 1. By the choice of
T, or(x;) =2fori =1,...,r — 2, as, otherwise, by moving an edge outside P from x; to xz,_1 we get a tree T”,
for which we have LS(T") > sy (x, L(T")) > sy (x, L(T)) = LS(T), which is a contradiction. As P is a longest
path from z, all neighbors of x,_1 except x,_o are leaves. Let a = dp(x,—1) — 1. Then T = P, ,, and

LS(T) = sp(z, L(T)) = a(n — a)

. . . . 2 . . . . — . .
which is maximized to |2-| if and only if a = % if n is even, and a = 251, 2 if n is odd. O

Theorem 4.3. Let T be a tree of order n with diameter d, where 2 < d <n —1. Let t = P("%_d)—‘ for even

d and t = [222Z0] for odd d. Then

sz s[4

with equality if and only if T is a tree with a diametric path between two leaves x and y and exactly t hanging
paths at vertices of the diametric path such that LS(T) = st(x, L(T)) = st(y, L(T)) for even dt and LS(T) =
max{sr(z, L(T)), sr(y, L(T))} and |sr(x, L(T)) — s (y, L(T))| = 1 for odd dt.

Proof. Let P := vgvy...vq be a diametric path in T. Let L*(T) = L(T) \ {vo,v4}. Since every vertex in
V(T) \ V(P) lies on some path from a vertex in P to a vertex in L*(T'), we have

> dr(w,P)>|E(T)|—d=n—1-d
weL*(T)

with equality if and only if every edge of T" outside P lies on a unique shortest path connecting a leaf and a

vertex of P, that is, each vertex outside P has degree one or two in 7. For convenience, write ¢ = [2("77;%)-‘

for even d and ¢ = [W—‘ for odd d. By a result of Qiao and Zhan [14], |L(T)| > t + 2. So |L*(T)| > t.
Then

LS(T) = max{sr(vo, L(T)), s (va, L(T))}
ST(U(), L(T)) + ST(Uda L(T))

>
- 2
dp(vo, w) + dr(vg, w)
=d
+ Y 5
weL*(T)
|IL*(T)|d
= d + T + Z dT(w7 P)
weL*(T)
dt
>d+ o tn—1-d
dt
=n—1+—- (4.1)

2
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So

sz a1+ %]

Suppose that LS(T) =n — 1+ {%W By the proof of (4.1), each vertex outside P has degree one or two in
T. Note also that |L*(T)| = ¢. Otherwise, |L*(T)| >t + 1. So, by (4.1),

ot [8) - sy s a Oy
zn—1+d(t;1),

a contradiction. So T is a tree with a diametric path P and exactly ¢t hanging paths at vertices of P.
If dt is even, then the three inequalities in (4.1) must be equalities, so LS(T) = st (vo, L(T)) = st (va, L(T)).
Suppose next that dt is odd. From (4.1), we have
L(T L(T
mac{sr(vo, L(T)), sr (v, L(1))} — 20 EED +orve LET)
i.e., |sT(vo, L(T)) — s7(vg, L(T))| = 0,1. As |L*(T)| = t, we have |st(vo, L(T)) — st(vq, L(T))| = 1 by (4.1).
From (4.1), we also have LS(T) = max{sr(vo, L(T)), s7(vaq, L(T))}, as otherwise,

<

)

N | =

n—1+ [‘ﬂ = LS(T)

> max{sr(vo, L(T)), sT(va, L(T))}
_ s7(vo, L(T)) + s (va, L(T)) + 1

B 2

dt
—n—1+|=
a contradiction.

Conversely, if T is a tree with a diametric path between two leaves x and y and exactly ¢ hanging paths at
vertices of the diametric path such that LS(T) = sp(z, L(T)) = sr(y, L(T)) for even dt and |sp(x, L(T)) —
st(y, L(T))| = 1 and LS(T) = max{syp(z, L(T)), sr(y, L(T))} for odd dt, then

LS(T) = max{sz(x, L(T)), sz (y, L(T))}

_ FT(%L(T)) ;’ST(?J’L(T))-‘

dt
= —1 —
el

as desired. O

To illustrate the above theorem, we give three trees 11,75, T3 on n vertices of diameter d to show that trees
for which the lower bound in Theorem 4.3 is attained exist for all values of n and d for 2 < d < n — 1. Let t be
defined as in Theorem 4.3. Let P := xqy...x4 be a path, where x = x(, x4 = y. For even d, let T} be the tree
obtained from P by attaching ¢t — 1 hanging paths of length % and one hanging path of length n—d—1— %(t -1)
at x4/2. For odd d and even ¢, let T3 be the tree obtained from P by attaching % hanging paths of length % at
(d-1)t _ d+3

2

5= at Z(gy1)/2- For

odd d and odd t, let T3 be the tree obtained from P by attaching % hanging paths of length % at T(g_1)/2
and % hanging paths of length % and one hanging path of length n —d — 1 — W at T(q41)/2-

We also give in Figure 1 the only trees that minimize the maximum leaf status among trees of order 15 with
diameter 8.

T(g-1)/2 and % — 1 hanging paths of length % and one hanging path of length n —
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FIGURE 1. The order 15 diameter 8 trees with minimized maximum leaf status.

Theorem 4.4. Let T be a tree of order n with diameter d, where 2 < d <n — 1. Then
LS(T) <d(n—d)
with equality if and only if T =2 P, 4.

Proof. The result is trivial if d = 2,n — 1. Suppose that 3 < d < n — 2. Note that |L(T)| < n —d + 1 with
equality if and only if T is a caterpillar. Let = be a leaf peripherian vertex of T. By Lemma 2.3, € L(T'). Thus

LS(T) =sp(z, L(T)) = Y dp(z,y)<d > 1<d(n-—d),
yeL(T)\{=} yeL(T)\{=}
with equalities if and only if |L(T)| = n — d + 1 and the distance between z and any other leaf is d, equiva-

lently, T is a caterpillar with a vertex, say v, of maximum degree n — d + 1 such that dr(x,v) = d —1, i.e.,
TPy O

5. MINIMUM INTERNAL STATUS

Proposition 5.1. Let T' be a tree of order n > 3.
(i) is(T) > 0 with equality if and only if T =2 S,,.
(ii) If T 2 Sy, then is(T) > 1 with equality if and only if T is a double star.
(i) If T 2 Sy, and T is not a double star, then is(T) > 2 with equality if and only if T is a caterpillar of
diameter 4.

Proof. Ttem (i) follows from the fact that S, is the only tree with exactly one internal vertex. Item (ii) follows
as the double stars are the only trees with exactly two (adjacent) internal vertices. Item (iii) follows as any tree
T of diameter at least 4 contains three internal vertices inducing a path P3 in T, and if T" has more than 3
internal vertices, then the subtree induced by internal vertices in T' contains Sy or Py so that is(T) > 3. O

Furthermore, we have

Proposition 5.2. Suppose that T is a tree of order n with diameter d, where 2 < d <n — 1. Then

is(T) > W;”QJ

with equality if and only if T is a caterpillar.

Proof. By Lemma 2.2, an I(T')-centroid vertex is an internal vertex of T

Let P := vg...vq be a diametric path in T. Obviously, {vi,...,v4-1} induces a path P;_; in T. If T is
a caterpillar, then is(T) = s(P;_1). Suppose that T is not a caterpillar, i.e., I(T)\ V(P) # . For any i =
1,...,d=1, we have sp(v;, [(T) > s(Pa-1)+ 2 yer(ryv(p) dr(w,vi) > s(Pg—1). Suppose that w € I(T)\V(P).
Assume that dp(w,v;) = dr(w, P) for some 2 < j < d — 2. Then we have

sr(w, I(T)) > sp(w, [(T) N V(P)) > sr(v;, [(T) N V(P)) > s(Pa_1).

Therefore, is(T) > s(Py—1) = {%J with equality if and only if T is a caterpillar. O
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Theorem 5.3. Let T be a tree of order n > 3. Then

is(T) < {WJ

with equality if and only if T = P, .

Proof. By Lemma 2.2, an I(T)-centroid vertex is an internal vertex of T, so is(T) is equal to the minimum
status of T”, i.e., is(T) = s(T"), where T" is the tree obtained from T by deleting all leaves. Let k = |L(T)|. By
Proposition 2.1 in [1], we have

is(T) = s(T") < {(”—4’?)1 - {(n—42)2J

with equalities if and only if K =2 and T & P,. O

6. MAXIMUM INTERNAL STATUS

Similar to Proposition 5.1, we have

Proposition 6.1. Let T be a tree of order n > 3. The following statements are true.

(i) IS(T) > 1 with equality if and only if T = S,,.
(ii) If T 2 S,, then IS(T) > 3 with equality if and only if T is a double star.
(iil) If T 2 Sp, and T is not a double star, then IS(T) > 6 with equality if and only if T is a caterpillar of
diameter 4.

Furthermore, we have

Proposition 6.2. Suppose that T is a tree of order n with diameter d, where 2 < d <n—1. Then IS(T) >

d(d—1) . L o ‘
== with equality if and only if T is a caterpillar.

Proof. Let P :=vgv; ...vq be a diametric path in T. Let I*(T) = I(T) \ {v1,...,v4-1}. Then

IS(T) =z max{sy(vo, I(T)), s (va, I(T))}
ST(Uo, I(T)) + ST(’Ud, I(T))
2
2251;11 i+ Zwej*(T)(dT(UOa w) + dr(va, w))
2

>

- d(d—1)
- 2
with equality if and only if I*(T) = @, i.e., T' is a caterpillar. O

Let T be a tree with u € V(T'). For positive integer p, we denote by Ty, the tree consisting of 7" and a path
P :=wuuy ... uy such that u is the only common vertex of 7" and the path P. In this case, we also say that P is
a “hanging” path of length p at v in T, though it is really a hanging path of length p at w in 7),;, only when
5T(u) > 2.

Let G0 = G. For nonnegative integer p and ¢, let Gu.p g = (Guip)usq-

Lemma 6.3. Let T be a nontrivial tree with uw € V(T). Let p and q be positive integers with p > q. Then
IS(Tupt1,g-1) = IS(Tupp,q) tf ¢ > 2 and T is a star with center u, otherwise I1.S(Typt1,g-1) > 1S (Tuip,q)-
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Proof. Let H = Ty 4 and H = wip+1,qg—1- Let uouy ... up and vgvy ... vg be the two “hanging” paths at u
in H, where ug = vg = u. Let = be an internal peripherian vertex of H. Let L*(T) = L(T),I*(T) = I(T)
ifu¢g L(T) and L*(T) = L(T) \ {u}, I*(T) = I(T) U {u} otherwise. Then « € L(H) = L*(T) U {up, vy} by
Lemma 2.4. As p > ¢, we have sy (uy, [(H)) > sy (vy, I(H)). So we may assume that € L*(T) U {u,}.

Case 1. x € L*(T).

If ¢ > 2, then
qg—1
sz, I(H)) = Z dy(xz,w) —|—Z dy(x,u) + 1) +Z(dH(x,u)+i)
wel*(T) i=1
p—1 q—1
= > du(ww)+du(zu)ptq—2)+> i+ i,
wel*(T) i=1 i=1
and
P q—2
sp(e, IH) = Y dg(w)+ > (do(,u) +i)+ Y (da(z,u) +1)
wel*(T) i=1 i=1
P q—2
> du(,w) +d(zu)(p+q—2)+ D it > i
wel*(T) i=1 i=1

Then sp/(x, [(H'))—su(x,[(H)) = p—q+1 > 0 and thus IS(H') > sy (x, I(H")) > sy(x,[(H)) = IS(H).
If ¢ =1, then

sp(x Zdew—l—Zdeu—i—z
wel*(T)

p—1
Z dy(z,w) +dg(z,u)(p—1) + Zi,
i=1

wel*(T)
and
SH/ x, I Z dH/ JJ w Z(dHr(:v,u) —I-Z)
wel*(T) i=1
Z Ay (z,w) + dp (x up—l—Zz
wel*(T)

Then sy (z, [(H")) — sg(z,I(H)) = dg(x,u) +p > 0 and thus IS(H') > sy (z, I(H")) > sy(x,I(H)) =
IS(H).

Case 2. z = up.
Let ¢ > 2. Then

sp(x, I(H) = > (+da(uw,w)+> i+ > (p+i)
wel*(T) i=1 =1

= > +de(ww)+plg-1)+Y i+ i

wel*(T) i=1 i=1
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and
p q—2
spo(e, I(H)) = Y (p+1+dg(u,w)+Y i+Y (p+1+1)
wel*(T) i=1 i=1
p q—2
= Y (pHl+dp(ww)+@E+)g-2)+> it+» i
wel*(T) i=1 i=1

Then sy (z, I(H"))—sg(x, I(H)) = |I*(T)|-1. I |I*(T)| > 2, then IS(H') > sp/(x, [(H')) > sp(z, I(H)) =
IS(H). It |I*(T)| =1, then IS(H') = sy/(x, I(H')) = sg(z,I(H)) = IS(H).
Let ¢ = 1. Then

p—1
sp(z, I(H)) = Z (p—i—dH(u,w))—i—Zi,
wel(T) i=1
and
P
su(z, I(H")) = Z (p—l—l—i—dH/(u,w))—i—Zi.
wel(T) i=1

Then sy (x, I(H"))—sy(z, I(H)) = |I*(T)|+p > 0,and so IS(H') > spy(x, I(H")) > sy (x,[(H)) = IS(H).

The result follows by combing the above two cases and noting that |I*(7')| = 1 if and only if T is a star with
center u. 0

Theorem 6.4. Let T be a tree of order n > 3. Then

2 _
IS(T) < %

with equality if and only if T = P, .

Proof. Let T be a tree of order n that maximizes the maximum internal status. Suppose that T is not a path. Let
x € L(T'). Then we choose a vertex of degree at least three, say u, such that dr(x,u) is as large as possible. Then
there are two hanging paths P and @ at u in T. By Lemma 6.3, we can obtain a tree 7" so that I.5(7") > I5(T),
a contradiction. Thus T & P,. Evidently, IS(P,) = Y172 = ni=3n42. O

Theorem 6.5. Let T be a tree of order n with maximum degree A, where 2 < A < n — 1. Then IS(T) <
%(n — A)(n— A+ 1) with equality if and only if T is a starlike tree with at least A — 2 hanging paths of length
one.

Proof. Tt is trivial if A = 2. Suppose that A > 3. Let T be a tree of order n with maximum degree A that
maximizes the maximum internal status. Let v be a vertex of degree A. If there is a vertex different from u with
degree at least three, then we may choose such a vertex v by requiring that dr(u,v) is as large as possible. This
implies that there are two hanging paths at v in T. By Lemma 6.3, there is a tree of order n with maximum
degree A having larger maximum internal status, which is a contradiction. That is, u is the only vertex of degree
at least three. In other words, T is a starlike tree. By Lemma 6.3 again, A — 2 hanging paths are of length one.
Thus T is a starlike tree with at least A — 2 hanging paths being of length one. The result follows by noting
that 1.S(T) = IS(Pya_1) = Y1 i=L(n— A)(n— A +1). 0

Acknowledgements. We thank the referees for valuable comments and constructive suggestions. This work was supported
by National Natural Science Foundation of China (No. 12071158).



430 H. GUO AND B. ZHOU

REFERENCES

[1] M. Aouchiche and P. Hansen, Proximity and remoteness in graphs: results and conjectures. Networks 58 (2011) 95-102.

[2] M. Aouchiche and P. Hansen, Proximity, remoteness and distance eigenvalues of a graph. Discrete Appl. Math. 213 (2016)
17-25.

[3] M. Aouchiche and P. Hansen, Proximity, remoteness and girth in graphs. Discrete Appl. Math. 222 (2017) 31-39.
[4] F. Buckley and F. Harary, Distance in Graphs. Addison-Wesley Publishing Company, Redwood City, CA (1990).
[5] M. Cheng, H. Lin and B. Zhou, Minimum status of series-reduced trees with given parameters. Bull. Braz. Math. Soc. (N.S.)
(2021) DOI: 10.1007/s00574-021-00278-1.
[6] A.A. Dobrynin and R. Sharafdini, Stepwise transmission irregular graphs. Appl. Math. Comput. 371 (2020) 124949.
[7] K. Durant and S. Wagner, On the centroid of increasing trees. Discrete Math. Theor. Comput. Sci. 21 (2019) Paper 8.
[8] A.N.C. Kang and D.A. Ault, Some properties of a centroid of a free tree. Information Process. Lett. 4 (1975) 18-20.
[9] C. Liang, B. Zhou and H. Guo, Minimum status, matching and domination of graphs. Comput. J. 64 (2021) 1384-1392.
[10] H. Lin and B. Zhou, Which numbers are status differences? Appl. Math. Comput. 399 (2021) 126004.
[11] C. Lin, W.H. Tsai, J.L. Shang and Y.J. Zhang, Minimum statuses of connected graphs with fixed maximum degree and order.
J. Comb. Optim. 24 (2012) 147-161.
[12] Z. Peng and B. Zhou, Minimun status of trees with given parameters. RAIRO: Oper. Res. 55 (2021) S765-S785.
[13] K. Pravas and A. Vijayakumar, The median problem on k-partite graphs. Discuss. Math. Graph Theory 35 (2015) 439-446.

[14] P. Qiao and X. Zhan, The relation between the number of leaves of a tree and its diameter. Czechoslovak Math. J. (2021)
DOI: 10.21136/CMJ.2021.0492-20.

[15] R. Rissner and R.E. Burkard, Bounds on the radius and status of graphs. Networks 64 (2014) 76-83.

[16] J. Sedlar, Remoteness, proximity and few other distance invariants in graphs. Filomat 27 (2013) 1425-1435.

[17] P.J. Slater, Centers to centroids in graphs. J. Graph Theory 2 (1978) 209-222.

[18] H. Smith, L. Székely, H. Wang and S. Yuan, On different “middle parts” of a tree. Electron. J. Combin. 25 (2018) Paper 3.17.

[19] D. Vukicevi¢ and G. Caporossi, Network descriptors based on betweenness centrality and transmission and their extremal
values. Discrete Appl. Math. 161 (2013) 2678-2686.

[20] H. Wang, Centroid, leaf-centroid, and internal-centroid. Graphs Combin. 31 (2015) 783-793.

[21] B. Zelinka, Medians and peripherians of trees. Arch. Math. (Brno) 4 (1968) 87-95.

Subscribe to Open (S20)

A fair and sustainable open access model

This journal is currently published in open access under a Subscribe-to-Open model (S20). S20 is a transformative
model that aims to move subscription journals to open access. Open access is the free, immediate, online availability of
research articles combined with the rights to use these articles fully in the digital environment. We are thankful to our
subscribers and sponsors for making it possible to publish this journal in open access, free of charge for authors.

Please help to maintain this journal in open access!

Check that your library subscribes to the journal, or make a personal donation to the S20 programme, by contacting
subscribers@edpsciences.org

More information, including a list of sponsors and a financial transparency report, available at: https://www.
edpsciences.org/en/maths-s2o0-programme



https://doi.org/10.1007/s00574-021-00278-1
https://doi.org/10.21136/CMJ.2021.0492-20
mailto:subscribers@edpsciences.org
https://www.edpsciences.org/en/maths-s2o-programme
https://www.edpsciences.org/en/maths-s2o-programme

	Introduction
	Preliminaries
	Minimum leaf status
	Maximum leaf status
	Minimum internal status
	Maximum internal status
	References

