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PERFORMANCE ANALYSIS OF AN 𝑀/𝐺/1 QUEUE WITH BI-LEVEL
RANDOMIZED (𝑝, 𝑁1, 𝑁2)-POLICY

Xinyu Kuang1, Yinghui Tang1,*, Miaomiao Yu1 and Wenqing Wu2

Abstract. This paper proposes an 𝑀/𝐺/1 queueing model with bi-level randomized (𝑝, 𝑁1, 𝑁2)-policy.
That is, after all of the customers in the system are served, the server is closed down immediately.
If 𝑁1(≥ 1) customers are accumulated in the queue, the server is activated for service with probabil-
ity 𝑝(0 ≤ 𝑝 ≤ 1) or still left off with probability 1 − 𝑝. When the number of customers in the system
becomes 𝑁2(≥ 𝑁1), the server begins serving the waiting customers until the system becomes empty
again. Using the total probability decomposition technique and the Laplace transform, we study the
transient queue length distribution and obtain the expressions of the Laplace transform of the transient
queue-length distribution with respect to time 𝑡. Then, employing L’Hospital’s rule and some algebraic
operations, the explicit recursive formulas of the steady-state queue-length distribution, which can be
used to accurately evaluate the probabilities of queue length, are presented. Moreover, some other
important queuing performance indices, such as the explicit expressions of its probability generating
function of the steady-state queue-length distribution, the expected queue size and so on, are derived.
Meanwhile, we investigate the system capacity optimization design by the steady-state queue-length
distribution. Finally, an operating cost function is constructed, and by numerical calculation, we find
the minimum of the long-run average cost rate and the optimal bi-level threshold policy (𝑁*

1 , 𝑁*
2 ) that

satisfies the average waiting time constraints.

Mathematics Subject Classification. 60K25, 68M20, 90B22.

Received June 2, 2021. Accepted January 11, 2022.

1. Introduction

As we know, the most extensive research regarding queueing models is the optimal design and control of the
queue. The main objective of investigating controllable queueing systems is to economize the running cost and
improve operational efficiency. In general, the issue of controlling the service includes the 𝑁 -policy introduced
by Yadin and Naor [26], the 𝑇 -policy proposed by Heyman [1], and the 𝐷-policy presented by Balachandran [4].
Since their seminal works, considerable efforts have been devoted to study these types of controllable queueing
models, such as Teghem [20], Tian and Zhang [21], Tang and Tang [18]. Considering the customer’s sensitivity
to time delays and increasing the flexibility of the service system, some queueing systems with the joint control
policy have been presented. For example, Lee and Seo [13] considered the 𝑀/𝐺/1 queueing system with the
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dyadic Min(𝑁, 𝐷)-policy combined with the 𝑁 -policy and the 𝐷-policy, in which the server resumes its service
if either 𝑁 customers accumulate in the system or the sum of the service times of the waiting customers
exceeds 𝐷, whichever occurs first. And Lee et al. [15] further extended the model to the 𝑀𝐴𝑃/𝐺/1 system
with the Min(𝑁, 𝐷)-policy. Tang et al. [19] considered the 𝑀/𝐺/1 queueing system with the Min(𝑁, 𝑉 )-policy
combined with the 𝑁 -policy and server multiple vacations. To prolong the lifetime of wireless sensor nodes,
Jiang et al. [7] proposed a novel design strategy for mitigating the average power consumption of sensor nodes
using the 𝑀/𝐺/1 queueing model with Min(𝑁, 𝑇 )-policy. Lan and Tang [9] studied the optimal control strategy
for a discrete-time 𝐺𝑒𝑜/𝐺/1 queue in which the system operates under the control of multiple server vacations
and Min(𝑁, 𝑉 )-policy. Li and Liu [16] studied an 𝑀/𝐺/1 queue operating in a multi-phase random environment
with Min(𝑁, 𝑉 )-policy. Using the supplementary variable technique, the distribution of the stationary system
size at arbitrary epoch and the sojourn time distribution are derived. Lee and Park [12] considered a bi-level
threshold control policy with set-up time. That is, the server starts the system immediately if there are 𝑚(𝑚 ≥ 1)
customers accumulate in the system. When the system star up is complete, the server begins service at once if
the number of waiting customers is no less than another given positive integer threshold 𝑁(𝑁 ≥ 𝑚). Otherwise,
the server stays on standby until the number of waiting customers reaches 𝑁 . Lee et al. [14] extended the model
constructed by Lee and Park [12] to the batch arrival systems with/without server’s vacations. In discrete-time
case, Luo et al. [17] discussed the 𝐺𝑒𝑜/𝐺/1 queue with (𝑟, 𝑁)-policy and different input rates. Some other
research on queueing systems with joint control policy can be found in [3, 8, 11,24].

In the aforementioned papers about the 𝑁 -policy queue, it is generally assumed that the idle server must
resume service as soon as 𝑁 customers accumulate in the system. However, in a certain situation (e.g., the extra
work that he/she is engaged in cannot be interrupted immediately), even if the number of customers has exactly
accumulated to 𝑁 , the dormant server may also not provide service for customers. Motivated by such a queuing
phenomenon, Feinberg and Kim [2] first investigated an 𝑀/𝐺/1 queueing system with (𝑝, 𝑁)-policy, in which
the (𝑝, 𝑁)-policy means that when the number of customers in the system becomes 𝑁 , the server is turned on
with probability 𝑝(0 ≤ 𝑝 ≤ 1) or still left off with probability 1 − 𝑝. The server begins serving immediately if
there are more than 𝑁 customers in the system. Later, the (𝑝, 𝑁)-policy in the queueing system has a series of
in-depth research [5,6,10,22,23,25]. Wang and Huang [22] analyzed an 𝑀/𝐺/1 queue with (𝑝, 𝑁)-policy and
unreliable server, and the maximum entropy approach was employed to develop the approximate formulae for
the queue-length distribution. Wang and Ke [23] first introduced (𝑝, 𝑁)-policy into the discrete-time 𝐺𝑒𝑜/𝐺/1
queueing system. Jia and Chen [6] studied the 𝐺𝑒𝑜/𝐺/1 queue model with (𝑝, 𝑁)-policy, set-up time, multiple
vacation and disasters. Jain and Kaur [5] considered an 𝑀𝑥/𝐺/1 queueing model and studied the performance
of phase service queue along with realistic features of the unreliable server, vacation, balking and feedback.

In many real-world production systems, the precise setting of the threshold for starting service is one of the
most critical factors for the cost-effective operation of the systems. If the set threshold for starting service is
too small, it will generate a large amount of switching costs when the system frequently switches its state for
a long time. If the set threshold for starting service is too large, it will increase the waiting time of customers,
which will degrade the customers satisfaction and lead to the loss of customers. Based on the above situation,
this paper proposes a new 𝑀/𝐺/1 queueing model with the bi-level randomized (𝑝, 𝑁1, 𝑁2)-policy. That is,
whenever the system becomes empty, the server is closed down immediately. When the number of customers
arriving in the system reaches a given low threshold value 𝑁1(≥ 1), the server is activated for work with
probability 𝑝(0 ≤ 𝑝 ≤ 1) or still left off with probability 1−𝑝. If the number of customers arriving in the system
reaches a given high threshold value 𝑁2(≥ 𝑁1), the server begins serving the waiting customers until the system
becomes empty again. First of all, employing the total probability decomposition and the Laplace transform,
we study the transient queue-length distribution of the system starting from any initial state, and obtain the
expressions of the Laplace transform of the transient queue-length distribution. Secondly, applying L’Hospital’s
rule and using some algebraic operations, the recursive formulas of the steady-state queue-length distribution
and the average queue size are obtained. Thirdly, we use the recursive formulas to discuss the system capacity
optimization design. Finally, we establish the cost structure model and obtain the explicit expression of the long-
run expected cost rate of the system by the renewal reward theorem. Moreover, a numerical example is used to
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discuss the constrained optimization problem under the limit of the average waiting time. It is worthwhile to
point out that the analysis technique used in this paper is different from some traditional analysis techniques
(e.g., embedded Markov chain and supplementary variable techniques). Using the method proposed in our
paper, we can investigate the transient queue size distribution at any epoch 𝑡 of the system that starts from any
initial state. Based on the transient results, we can easily obtain the recursive formula of the steady-state queue
length distribution that is numerically tractable. Compared with our method, the traditional approaches such as
the supplementary variable technique and the embedded Markov chain method can only obtain the probability
generating function of the stationary queue size instead of the queue-length distribution. Moreover, to analyze
the evolution of the queueing process by using the supplementary variable technique, the difference-differential
equations governing the 𝑀/𝐺/1 queueing model can be established under the assumption that the service time
follows an arbitrary distribution with a probability density function.

The remainder of this paper is originated as follows. In the next section, we formulate the considered mathe-
matical model and give some definitions and lemmas. In Section 3, some queueing characteristics are analyzed.
Some special cases are given in Section 4. The system capacity optimization design is discussed in Section 5.
In Section 6, applying the renewal reward theorem, we obtain the explicit expression of the long-run expected
cost rate under a given cost model. Then, we construct a constrained optimization problem under the limit
of the average waiting time and discuss the optimal bi-level threshold policy that minimizes the expected cost
function by a numerical example. Finally, Section 7 provides the conclusions.

2. Model formulation and some preliminaries

In this paper, we investigate the 𝑀/𝐺/1 queueing model with bi-level randomized (𝑝, 𝑁1, 𝑁2)-policy by
making the following assumptions.

Assumption 2.1. The inter-arrival times 𝜏𝑛, 𝑛 = 1, 2, · · · , are independent identically distributed (i.i.d.) ran-
dom variables each with the exponential distribution 𝐹 (𝑡) = 1−𝑒−𝜆𝑡, 𝜆 > 0, 𝑡 ≥ 0. The customers are served one
by one. The service times 𝜒𝑛, 𝑛 = 1, 2, · · · , are also i.i.d. random variables each with the distribution 𝐺(𝑡), 𝑡 ≥ 0,
and the average service time is 1

𝜇 , 0 < 𝜇 < ∞. The inter-arrival time 𝜏 and service time 𝜒 are all independent
of each other.

Assumption 2.2. The bi-level randomized (𝑝, 𝑁1, 𝑁2)-policy: Whenever the system is empty, the server keeps
dormant in the system. If the number of customers reaches 𝑁1(≥ 1) in the system, the deactivated server is
turned on with probability 𝑝(0 ≤ 𝑝 ≤ 1) or is still left off with complementary probability 1 − 𝑝. If the number
of customers reaches 𝑁2(≥ 𝑁1) in the system, the service starts to serve customers immediately. Furthermore,
once the server is activated, it will keep rendering service until the system becomes empty.

Assumption 2.3. The server will not adopt the control policy if the system is empty at initial time 𝑡 = 0, then
the server will stay in the system until the next customer arrives and starts its service immediately. If there are
𝑗(≥ 1) customers in the system at initial time 𝑡 = 0, the server begins serving the customers immediately.

For later discussions, we first present some definitions and lemmas as follows.

Definition 2.4. System idle period is a period of time during which the system is continuously idle (no cus-
tomers). Obviously, the system idle period is the remaining time of an arrival interval. Let 𝜏𝑗 represent the
length of the 𝑗th system idle period. Thus, 𝜏𝑗(𝑗 = 1, 2, · · · ) are independent mutually and satisfy the same
exponential distribution 𝐹 (𝑡) = 1− 𝑒−𝜆𝑡, 𝑡 ≥ 0.

Definition 2.5. System busy period is the time interval that starts at the instant at which the first customer
arriving at the idle system and ends at the instant when the system becomes empty again.

Definition 2.6. Server idle period is the time interval commences when the system is completely empty and
finishes when server begins to serve the waiting customers.
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Definition 2.7. Server busy period is the time interval from the server begins service until the system
becomes empty again. Let 𝑏 denote the server busy period that begins with only one customer, and let
𝐵(𝑡) = 𝑃{𝑏 ≤ 𝑡}, 𝑏(𝑠) =

∫︀∞
0

𝑒−𝑠𝑡d𝐵(𝑡). Then, similar to the discussing in Tang et al. [18], we have the following
lemma.

Lemma 2.8. For ℜ(𝑠) > 0, 𝑏(𝑠) is the root with the smallest absolute value of the equation 𝑧 = 𝑔(𝑠 + 𝜆− 𝜆𝑧)
within |𝑧| < 1, and

𝐵(𝑡) =
∞∑︁

𝑘=1

∫︁ 𝑡

0

𝑒−𝜆𝑥 (𝜆𝑥)𝑘−1

𝑘!
d𝐺(𝑘)(𝑥),

lim
𝑡→∞

𝐵(𝑡) =
{︂

1, 𝜌 ≤ 1,
𝜔 < 1, 𝜌 > 1,

𝐸(𝑏) =
{︂ 𝜌

𝜆(1−𝜌) , 𝜌 < 1,

∞, 𝜌 ≥ 1,

where g(𝑠) =
∫︀∞
0

𝑒−𝑠𝑡dG(𝑡), 𝜔(0 < 𝜔 < 1) is the root of the equation 𝑧 = 𝑔(𝜆− 𝜆𝑧). The traffic intensity of
system is given by 𝜌 = 𝜆

𝜇 . ℜ(𝑠) denotes the real part of the complex variable 𝑠. Furthermore, 𝐺(𝑘)(𝑡) is the 𝑘-fold

convolution of 𝐺(𝑘)(𝑡), i.e., 𝐺(𝑘)(𝑡) =
∫︀ 𝑡

0
𝐺(𝑘−1)(𝑡− 𝑥)d𝐺(𝑥), 𝑘 ≥ 1 and 𝐺(0)(𝑡) = 1.

Let 𝑏(𝑖) be the generalized server busy period initiated with 𝑖 customers. Because the arrival process is a
Poisson process, the probability distribution function of 𝑏(𝑖) is given by 𝑃

{︀
𝑏(𝑖) ≤ 𝑡

}︀
= 𝐵(𝑖)(𝑡), 𝑡 ≥ 0, 𝑖 ≥ 1.

We now define the joint distribution of the queue-length and the server busy period by

𝑄𝑗(𝑡) = 𝑃{𝑏 > 𝑡 ≥ 0; 𝑁(𝑡) = 𝑗}.

So that 𝑄𝑗(𝑡) denotes the transient probability of there being 𝑗 customers at epoch 𝑡 during the time interval
(0, 𝑏]. It implies that the state 𝑁(𝑡) = 𝑗 in 𝑄𝑗(𝑡) depends on the initial state 𝑁(0) = 1, (0, 𝑡] ⊂ (0, 𝑏] and the
epoch 𝑡 = 0 is the beginning of the server period 𝑏. We have boundary condition 𝑄1(0) = 1, 𝑄𝑗(0) = 0, 𝑗 > 1.
Similar to the discussing in Tang et al. [18], we have the following lemma.

Lemma 2.9. Let 𝑞*𝑗 (𝑠) =
∫︀∞
0

𝑒−𝑠𝑡𝑄𝑗(𝑡)d𝑡 be the Laplace transform of 𝑄𝑗(𝑡),then for ℜ(𝑠) > 0 and 𝑗 ≥ 1, we
have

𝑞*1(𝑠) =
𝑏(𝑠)[1− 𝑔(𝑠 + 𝜆)]
(𝑠 + 𝜆)𝑔(𝑠 + 𝜆)

,

𝑞*𝑗 (𝑠) =
𝑏(𝑠)

𝑔(𝑠 + 𝜆)

∫︁ ∞

0

𝑒−𝑠𝑡𝐺̄(𝑡)
(𝜆𝑡)𝑗−1

(𝑗 − 1)!
𝑒−𝜆𝑡d𝑡

+
1

𝑔(𝑠 + 𝜆)

𝑗−1∑︁
𝑘=1

𝑞*𝑗−𝑘(𝑠)
𝑏𝑘(𝑠)

{︃
𝑏(𝑠)−

𝑘∑︁
𝑖=0

∫︁ ∞

0

𝑒−(𝑠+𝜆)𝑡 [𝜆𝑏(𝑠)𝑡]𝑖

𝑖!
d𝐺(𝑡)

}︃
, 𝑗 > 1,

where 𝑏(𝑠) is defined by Lemma 2.8,
∑︀𝑗

𝑘=𝑖 = 0 if 𝑗 < 𝑖.

Proof. See Appendix A. �

3. Transient and steady-state distribution of system queue size

In this section, using the renewal theory, the law of total probability decomposition and the Laplace transform,
we first investigate the transient distribution of the queue-length and derive the expressions of the Laplace
transform of the transient queue-length distribution with respect to time 𝑡. Then, employing L’Hospital’s rule,
we obtain the recursive formulas of the steady-state queue-length distribution. Moreover, some other important
queueing performance indices are derived by some algebraic manipulations.
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Figure 1. When 𝑁1 customers arrive after the system becomes empty, the server is activated
for service with probability 𝑝.

Let

𝑝𝑖𝑗(𝑡) = 𝑃{𝑁(𝑡) = 𝑗|𝑁(0) = 𝑖}

denote the conditional probability that there are 𝑗 customers at time point 𝑡 under initial state 𝑁(0) = 𝑖(𝑖 =
0, 1, 2, · · · ), and

𝑝*𝑖𝑗(𝑠) =
∫︁ ∞

0

𝑒−𝑠𝑡𝑝𝑖𝑗(𝑡)d𝑡, 𝑖 ≥ 0, 𝑗 ≥ 0.

Theorem 3.1. For ℜ(s) > 0 and 𝑖 ≥ 1, we have

𝑝*00(𝑠) =
1− 𝑓(𝑠)

𝑠

[︂
1 +

𝑓(𝑠)𝑏(𝑠)
∆ (𝑠)

]︂
, (3.1)

𝑝*𝑖0(𝑠) =
1− 𝑓(𝑠)

𝑠
· 𝑏𝑖(𝑠)

∆ (𝑠)
, (3.2)

where ∆(𝑠) = 1− 𝑝𝑓𝑁1(𝑠)𝑏𝑁1(𝑠)− (1− 𝑝)𝑓𝑁2(𝑠)𝑏𝑁2(𝑠), and 𝑏(𝑠) is defined by Lemma 2.8.

Proof. Let 𝑙𝑛 =
∑︀𝑛

𝑖=1 𝜏𝑖,𝑛 ≥ 1, and 𝑙0 = 0. It is noted that 𝑝00(𝑡) indicates that there are no customers in the
system at time point t under initial state 𝑁(0) = 0, that is, the time point 𝑡 is located in the system idle period.
Since the beginning and ending epochs of the server busy period are renewal points, using the total probability
decomposition, it gets

𝑝00(𝑡) = 𝑃{𝜏1 > 𝑡}+ 𝑃{𝜏1 + 𝑏 ≤ 𝑡 < 𝜏1 + 𝑏 + 𝜏2}+ 𝑃{𝜏1 + 𝑏 + 𝜏2 ≤ 𝑡, 𝑁(𝑡) = 0}

= 𝐹 (𝑡) +
∫︁ 𝑡

0

𝐹 (𝑡− 𝑥)d[𝐹 (𝑥) *𝐵(𝑥)] + 𝑃{𝜏1 + 𝑏 + 𝜏2 ≤ 𝑡, 𝑁(𝑡) = 0}. (3.3)

The third term of equation (3.3) can be decomposed into the following two cases:

(i) When 𝑁1 customers arrive after the system becomes empty, the server is activated for service with proba-
bility 𝑝(0 ≤ 𝑝 ≤ 1) (see Fig. 1).

(ii) When 𝑁1 customers arrive after the system becomes empty, the server is not activated for service with
probability 1− 𝑝, and then the server is turned on by the arrival of the 𝑁2th customer in the system (see
Fig. 2).

So, the third term of equation (3.3) is given by

𝑃{𝜏1 + 𝑏 + 𝜏2 ≤ 𝑡, 𝑁(𝑡) = 0} = 𝑝𝑃{𝜏1 + 𝑏 + 𝜏2 + 𝑙𝑁1−1 ≤ 𝑡, 𝑁(𝑡) = 0}
+ (1− 𝑝)𝑃{𝜏1 + 𝑏 + 𝜏2 + 𝑙𝑁2−1 ≤ 𝑡, 𝑁(𝑡) = 0}

= 𝑝

∫︁ 𝑡

0

∫︁ 𝑡−𝑥

0

𝑝𝑁10(𝑡− 𝑥− 𝑦)d𝐹 (𝑁1)(𝑦)d[𝐹 (𝑥) *𝐵(𝑥)]
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Figure 2. The server is turned on by the arrival of the 𝑁2th customer.

+ (1− 𝑝)
∫︁ 𝑡

0

∫︁ 𝑡−𝑥

0

𝑝𝑁20(𝑡− 𝑥− 𝑦)d𝐹 (𝑁2)(𝑦)d[𝐹 (𝑥) *𝐵(𝑥)]. (3.4)

Substituting equation (3.4) into equation (3.3) and applying the Laplace transform to equation (3.3), 𝑝*00(𝑠) is
given by

𝑝*00(𝑠) =
[1− 𝑓(𝑠)][1 + 𝑏(𝑠)𝑓(𝑠)]

𝑠
+ 𝑝𝑏(𝑠)𝑓𝑁1+1(𝑠)𝑝*𝑁10(𝑠) + (1− 𝑝)𝑏(𝑠)𝑓𝑁2+1(𝑠)𝑝*𝑁20(𝑠). (3.5)

For 𝑖 > 0, similar to the discussion of 𝑝00(𝑡), we have

𝑝𝑖0(𝑡) = 𝑃
{︁

𝑏(𝑖) ≤ 𝑡 < 𝑏(𝑖) + 𝜏1

}︁
+ 𝑃

{︁
𝑏(𝑖) + 𝜏1 ≤ 𝑡, 𝑁(𝑡) = 0

}︁
=

∫︁ 𝑡

0

𝐹 (𝑡− 𝑥)d𝐵(𝑖)(𝑥) + 𝑝

∫︁ 𝑡

0

∫︁ 𝑡−𝑥

0

𝑝𝑁10(𝑡− 𝑥− 𝑦)d𝐹 (𝑁1)(𝑦)d𝐵(𝑖)(𝑥)

+ (1− 𝑝)
∫︁ 𝑡

0

∫︁ 𝑡−𝑥

0

𝑝𝑁20(𝑡− 𝑥− 𝑦)d𝐹 (𝑁2)(𝑦)d𝐵(𝑖)(𝑥). (3.6)

By taking the Laplace transform of equation (3.6), we obtain

𝑝*𝑖0(𝑠) =
[1− 𝑓(𝑠)]𝑏𝑖(𝑠)

𝑠
+ 𝑝𝑏𝑖(𝑠)𝑓𝑁1(𝑠)𝑝*𝑁10(𝑠) + (1− 𝑝)𝑏𝑖(𝑠)𝑓𝑁2(𝑠)𝑝*𝑁20(𝑠). (3.7)

From equations (3.5) and (3.7), the relationship between 𝑝*00(𝑠) and 𝑝*𝑖0(𝑠) can be obtained as follows

𝑝*𝑖0(𝑠) =
𝑏𝑖(𝑠)

𝑏(𝑠)𝑓(𝑠)

{︂
𝑝*00(𝑠)− 1− 𝑓(𝑠)

𝑠

}︂
, 𝑖 ≥ 1. (3.8)

Substituting equation (3.8) back to equation (3.5) and solving equation (3.5) gives equation (3.1). Substituting
equation (3.1) into equation (3.7) leads to equation (3.2). �

Theorem 3.2. For ℜ(s) > 0 and 𝑖 ≥ 1, we have

(1) If 𝑗 = 1, 2, · · · , 𝑁1 − 1, then

𝑝*0𝑗(𝑠) = 𝑞*𝑗 (𝑠)𝑓(𝑠) +
[1− 𝑓(𝑠)]𝑓 𝑗+1(𝑠)𝑏(𝑠) + 𝑠𝑓(𝑠)𝛿𝑗(𝑠)

𝑠∆(𝑠)
, (3.9)

𝑝*𝑖𝑗(𝑠) =
𝑖∑︁

𝑘=1

𝑞*𝑗−𝑖+𝑘(𝑠)𝑏𝑘−1(𝑠) +
[1− 𝑓(𝑠)]𝑓 𝑗(𝑠)𝑏𝑖(𝑠) + 𝑠𝑏𝑖−1(𝑠)𝛿𝑗(𝑠)

𝑠∆(𝑠)
· (3.10)

(2) If 𝑗 = 𝑁1, · · · , 𝑁2 − 1, then

𝑝*0𝑗(𝑠) = 𝑞*𝑗 (𝑠)𝑓(𝑠) +
(1− 𝑝)[1− 𝑓(𝑠)]𝑓 𝑗+1(𝑠)𝑏(𝑠) + 𝑠𝑓(𝑠)𝛿𝑗(𝑠)

𝑠∆(𝑠)
, (3.11)

𝑝*𝑖𝑗(𝑠) =
𝑖∑︁

𝑘=1

𝑞*𝑗−𝑖+𝑘(𝑠)𝑏𝑘−1(𝑠) +
(1− 𝑝)[1− 𝑓(𝑠)]𝑓 𝑗(𝑠)𝑏𝑖(𝑠) + 𝑠𝑏𝑖−1(𝑠)𝛿𝑗(𝑠)

𝑠∆(𝑠)
· (3.12)
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Figure 3. The time point 𝑡 is located in the server idle period with 𝑗 customers.

(3) If 𝑗 = 𝑁2, 𝑁2 + 1, 𝑁2 + 2, · · · , then

𝑝*0𝑗(𝑠) = 𝑞*𝑗 (𝑠)𝑓(𝑠) +
𝑓(𝑠)𝛿𝑗(𝑠)

∆(𝑠)
, (3.13)

𝑝*𝑖𝑗(𝑠) =
𝑖∑︁

𝑘=1

𝑞*𝑗−𝑖+𝑘(𝑠)𝑏𝑘−1(𝑠) +
𝑏𝑖−1(𝑠)𝛿𝑗(𝑠)

∆(𝑠)
, (3.14)

where ∆(𝑠) is given in Theorem 3.1, and 𝛿𝑗(𝑠) = 𝑝𝑓𝑁1(𝑠)
∑︀𝑁1

𝑘=1 𝑞*𝑗−𝑁1+𝑘(𝑠)𝑏𝑘(𝑠) +
(1− 𝑝)𝑓𝑁2(𝑠)

∑︀𝑁2
𝑘=1 𝑞*𝑗−𝑁2+𝑘(𝑠)𝑏𝑘(𝑠).

Proof. (1) When 𝑗 = 1, 2, · · · , 𝑁1− 1, it is noted that 𝑝0𝑗(𝑡) indicates that there are 𝑗 customers in the system
at time point 𝑡 under initial state 𝑁(0) = 0. Therefore, the event {𝑁𝑡 = 𝑗} must satisfy one of the following
conditions:
(i) The time point 𝑡 is located in the server busy period and there are 𝑗 customers in the system at time

point 𝑡.
(ii) The time point 𝑡 is located in the server idle period and there are 𝑗 customers in the system at time

point 𝑡.
Thus

𝑝0𝑗(𝑡) = 𝑃{𝜏1 ≤ 𝑡 < 𝜏1 + 𝑏1, 𝑁(𝑡) = 𝑗}+ 𝑃{𝜏1 + 𝑏1 + 𝜏2 + 𝑙𝑗−1 ≤ 𝑡 < 𝜏1 + 𝑏1 + 𝜏2 + 𝑙𝑗}
+ 𝑝𝑃{𝜏1 + 𝑏1 + 𝜏2 + 𝑙𝑁1−1 < 𝑡,𝑁(𝑡) = 𝑗}+ (1− 𝑝)𝑃{𝜏1 + 𝑏1 + 𝜏2 + 𝑙𝑁2−1 < 𝑡,𝑁(𝑡) = 𝑗}. (3.15)

The first term of equation (3.15) indicates that the time point 𝑡 is located in the first server busy period
with 𝑗 customers (see Fig. 3).
So, it yields

𝑃{𝜏1 ≤ 𝑡 < 𝜏1 + 𝑏1, 𝑁(𝑡) = 𝑗} =
∫︁ 𝑡

0

𝑄𝑗(𝑡− 𝑥)d𝐹 (𝑥). (3.16)

The second term of equation (3.15) indicates that the time point 𝑡 is located in the server idle period with 𝑗
customers (see Fig. 4).
So that

𝑃{𝜏1 + 𝑏1 + 𝜏2 + 𝑙𝑗−1 ≤ 𝑡 < 𝜏1 + 𝑏1 + 𝜏2 + 𝑙𝑗} =
∫︁ 𝑡

0

𝐹 (𝑡− 𝑥)d
[︁
𝐹 (𝑗+1)(𝑥) *𝐵(𝑥)

]︁
. (3.17)

The third term of equation (3.15) indicates that the server is activated for service with probability 𝑝
when 𝑁1 customers arrive after the system becomes empty, and the time point 𝑡 is located in after the
start of the second server busy period with 𝑗 customers (see Fig. 5).
It yields

𝑝𝑃{𝜏1 + 𝑏1 + 𝜏2 + 𝑙𝑁1−1 < 𝑡,𝑁(𝑡) = 𝑗} = 𝑝

∫︁ 𝑡

0

∫︁ 𝑡−𝑥

0

𝑝𝑁1𝑗(𝑡− 𝑥− 𝑦)d𝐹 (𝑁1)(𝑦)d[𝐹 (𝑥) *𝐵(𝑥)]. (3.18)
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Figure 4. The time point 𝑡 is located in the first server busy period with 𝑗 customers.

Figure 5. The server is activated for service with probability 𝑝 when 𝑁1 customers arrive, and
the time point 𝑡 is located in after the start of the second server busy period with 𝑗 customers.

Figure 6. The server is not activated for service with probability 1 − 𝑝 when 𝑁1 customers
arrive, and the time point 𝑡 is located in after the start of the second server busy period with 𝑗
customers.

The fourth term of equation (3.15) indicates that the server is not activated for service with probability
1− 𝑝 when 𝑁1 customers arrive after the system becomes empty, but the server is turned on by the arrival
of the 𝑁2th customer, and the time point 𝑡 is located in after the start of the second server busy period
with 𝑗 customers (see Fig. 6).
Therefore

(1− 𝑝)𝑃{𝜏1 + 𝑏1 + 𝜏2 + 𝑙𝑁2−1 < 𝑡,𝑁(𝑡) = 𝑗} = (1− 𝑝)
∫︁ 𝑡

0

∫︁ 𝑡−𝑥

0

𝑝𝑁2𝑗(𝑡− 𝑥− 𝑦)d𝐹 (𝑁2)(𝑦)d[𝐹 (𝑥) *𝐵(𝑥)].

(3.19)

Substituting equations (3.16)–(3.19) into equation (3.15), and applying the Laplace transform to equation
(3.15), 𝑝*0𝑗(𝑠) is given by

𝑝*0𝑗(𝑠) = 𝑞*𝑗 (𝑠)𝑓(𝑠) +
[1− 𝑓(𝑠)]𝑓 𝑗+1(𝑠)𝑏(𝑠)

𝑠
+ 𝑝𝑏(𝑠)𝑓𝑁1+1(𝑠)𝑝*𝑁1𝑗(𝑠) + (1− 𝑝)𝑏(𝑠)𝑓𝑁2+1(𝑠)𝑝*𝑁2𝑗(𝑠). (3.20)

For 𝑖 > 0, similar to the discussion of 𝑝0𝑗(𝑡), we have

𝑝𝑖𝑗(𝑡) = 𝑃
{︁

𝑡 ≤ 𝑏(𝑖), 𝑁(𝑡) = 𝑗
}︁

+ 𝑃
{︁

𝑏(𝑖) + 𝜏1 + 𝑙𝑗−1 ≤ 𝑡 < 𝑏(𝑖) + 𝜏1 + 𝑙𝑗

}︁
+ 𝑝𝑃

{︁
𝑏(𝑖) + 𝑙𝑁1 < 𝑡,𝑁(𝑡) = 𝑗

}︁
+ (1− 𝑝)𝑃

{︁
𝑏(𝑖) + 𝑙𝑁2 < 𝑡,𝑁(𝑡) = 𝑗

}︁
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=
𝑖∑︁

𝑘=1

∫︁ 𝑡

0

𝑄𝑗−𝑖+𝑘(𝑡− 𝑥)d𝐵(𝑘−1)(𝑥) +
∫︁ 𝑡

0

𝐹 (𝑡− 𝑥)d
[︁
𝐹 (𝑗)(𝑥) *𝐵(𝑖)(𝑥)

]︁
+ 𝑝

∫︁ 𝑡

0

∫︁ 𝑡−𝑥

0

𝑝𝑁1𝑗(𝑡− 𝑥− 𝑦)d𝐹 (𝑁1)(𝑦)d𝐵(𝑖)(𝑥)

+ (1− 𝑝)
∫︁ 𝑡

0

∫︁ 𝑡−𝑥

0

𝑝𝑁2𝑗(𝑡− 𝑥− 𝑦)d𝐹 (𝑁2)(𝑦)d𝐵(𝑖)(𝑥). (3.21)

By taking the Laplace transform of equation (3.21), we obtain

𝑝*𝑖𝑗(𝑠) =

𝑖∑︁

𝑘=1

𝑞*𝑗−𝑖+𝑘(𝑠)𝑏𝑘−1(𝑠) +
[1− 𝑓(𝑠)]𝑓 𝑗(𝑠)𝑏𝑖(𝑠)

𝑠
+ 𝑝𝑏𝑖(𝑠)𝑓𝑁1+1(𝑠)𝑝*𝑁1𝑗(𝑠) + (1− 𝑝)𝑏𝑖(𝑠)𝑓𝑁2+1(𝑠)𝑝*𝑁2𝑗(𝑠).

(3.22)

From equations (3.20) and (3.22), the relationship between 𝑝*0𝑗(𝑠) and 𝑝*𝑖𝑗(𝑠) can be obtained as

𝑝*𝑖𝑗(𝑠) =
𝑖∑︁

𝑘=1

𝑞*𝑗−𝑖+𝑘(𝑠)𝑏𝑘−1(𝑠) +
𝑏𝑖−1(𝑠)
𝑓(𝑠)

{︀
𝑝*0𝑗(𝑠)− 𝑞*𝑗 (𝑠)𝑓(𝑠)

}︀
, 𝑖 ≥ 1. (3.23)

Substituting equation (3.23) back to equation (3.20) and solving equation (3.20) gives equation (3.9).
Substituting equation (3.9) into equation (3.22) leads to equation (3.10).

(2) For 𝑗 = 𝑁1, · · · , 𝑁2 − 1, we have

𝑝0𝑗(𝑡) = 𝑃{𝜏1 ≤ 𝑡 < 𝜏1 + 𝑏1, 𝑁(𝑡) = 𝑗}+ (1− 𝑝)𝑃{𝜏1 + 𝑏1 + 𝜏2 + 𝑙𝑁1−1 + 𝑙𝑗−𝑁1 ≤ 𝑡 < 𝜏1 + 𝑏1 + 𝜏2 + 𝑙𝑁1−1

+ 𝑙𝑗−𝑁1+1}+ 𝑝𝑃{𝜏1 + 𝑏1 + 𝑙𝑁1 < 𝑡,𝑁(𝑡) = 𝑗}+ (1− 𝑝)𝑃{𝜏1 + 𝑏1 + 𝑙𝑁2 < 𝑡,𝑁(𝑡) = 𝑗}

=
∫︁ 𝑡

0

𝑄𝑗(𝑡− 𝑥)d𝐹 (𝑥) + (1− 𝑝)
∫︁ 𝑡

0

∫︁ 𝑡−𝑥

0

𝐹 (𝑡− 𝑥− 𝑦)d𝐹 (𝑗−𝑁1)(𝑦)d
[︁
𝐹 (𝑁1+1)(𝑥) *𝐵(𝑥)

]︁
+ 𝑝

∫︁ 𝑡

0

∫︁ 𝑡−𝑥

0

𝑝𝑁1𝑗(𝑡− 𝑥− 𝑦)d𝐹 (𝑁1)(𝑦)d[𝐹 (𝑥) *𝐵(𝑥)]

+ (1− 𝑝)
∫︁ 𝑡

0

∫︁ 𝑡−𝑥

0

𝑝𝑁2𝑗(𝑡− 𝑥− 𝑦)d𝐹 (𝑁2)(𝑦)d[𝐹 (𝑥) *𝐵(𝑥)] (3.24)

𝑝𝑖𝑗(𝑡) = 𝑃
{︁

𝑡 ≤ 𝑏(𝑖), 𝑁(𝑡) = 𝑗
}︁

+ (1− 𝑝)𝑃
{︁

𝑏(𝑖) + 𝜏1 + 𝑙𝑁1−1 + 𝑙𝑗−𝑁1 ≤ 𝑡 < 𝑏(𝑖) + 𝜏1 + 𝑙𝑁1−1 + 𝑙𝑗−𝑁1+1

}︁
+ 𝑝𝑃

{︁
𝑏(𝑖) + 𝑙𝑁1 < 𝑡,𝑁(𝑡) = 𝑗

}︁
+ (1− 𝑝)𝑃

{︁
𝑏(𝑖) + 𝑙𝑁2 < 𝑡,𝑁(𝑡) = 𝑗

}︁
=

𝑖∑︁
𝑘=1

∫︁ 𝑡

0

𝑄𝑗−𝑖+𝑘(𝑡− 𝑥)d𝐵(𝑘−1)(𝑥) + (1− 𝑝)
∫︁ 𝑡

0

∫︁ 𝑡−𝑥

0

𝐹 (𝑡− 𝑥− 𝑦)d𝐹 (𝑗−𝑁1)(𝑦)d
[︁
𝐹 (𝑁1)(𝑥) *𝐵(𝑖)(𝑥)

]︁
+ 𝑝

∫︁ 𝑡

0

∫︁ 𝑡−𝑥

0

𝑝𝑁1𝑗(𝑡− 𝑥− 𝑦)d𝐹 (𝑁1)(𝑦)d𝐵(𝑖)(𝑥)

+ (1− 𝑝)
∫︁ 𝑡

0

∫︁ 𝑡−𝑥

0

𝑝𝑁2𝑗(𝑡− 𝑥− 𝑦)d𝐹 (𝑁2)(𝑦)d𝐵(𝑖)(𝑥). (3.25)

Taking the Laplace transform of equations (3.24) and (3.25), we have

𝑝*0𝑗(𝑠) = 𝑞*𝑗 (𝑠)𝑓(𝑠) +
(1− 𝑝)[1− 𝑓(𝑠)]𝑓 𝑗+1(𝑠)𝑏(𝑠)

𝑠
+ 𝑝𝑏(𝑠)𝑓𝑁1+1(𝑠)𝑝*𝑁1𝑗(𝑠)

+ (1− 𝑝)𝑏(𝑠)𝑓𝑁2+1(𝑠)𝑝*𝑁2𝑗(𝑠), (3.26)
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𝑝*𝑖𝑗(𝑠) =
𝑖∑︁

𝑘=1

𝑞*𝑗−𝑖+𝑘(𝑠)𝑏𝑘−1(𝑠) +
(1− 𝑝)[1− 𝑓(𝑠)]𝑓 𝑗(𝑠)𝑏𝑖(𝑠)

𝑠
+ 𝑝𝑏𝑖(𝑠)𝑓𝑁1+1(𝑠)𝑝*𝑁1𝑗(𝑠)

+ (1− 𝑝)𝑏𝑖(𝑠)𝑓𝑁2+1(𝑠)𝑝*𝑁2𝑗(𝑠). (3.27)

From equations (3.26) and (3.27), we obtain the relationship between 𝑝*0𝑗(𝑠) and 𝑝*𝑖𝑗(𝑠) as follows

𝑝*𝑖𝑗(𝑠) =
𝑖∑︁

𝑘=1

𝑞*𝑗−𝑖+𝑘(𝑠)𝑏𝑘−1(𝑠) +
𝑏𝑖−1(𝑠)
𝑓(𝑠)

{︀
𝑝*0𝑗(𝑠)− 𝑞*𝑗 (𝑠)𝑓(𝑠)

}︀
, 𝑖 ≥ 1. (3.28)

Substituting equation (3.28) back to equation (3.26) and solving equation (3.26) gives equation (3.11).
Substituting equation (3.11) into equation (3.27) leads to equation (3.12).

(3) For 𝑗 = 𝑁2, 𝑁2 + 1, 𝑁2 + 2, · · · , we have

𝑝0𝑗(𝑡) = 𝑃{𝜏1 ≤ 𝑡 < 𝜏1 + 𝑏1, 𝑁(𝑡) = 𝑗}+ 𝑝𝑃{𝜏1 + 𝑏1 + 𝑙𝑁1 < 𝑡,𝑁(𝑡) = 𝑗}
+ (1− 𝑝)𝑃{𝜏1 + 𝑏1 + 𝑙𝑁2 < 𝑡,𝑁(𝑡) = 𝑗}

=
∫︁ 𝑡

0

𝑄𝑗(𝑡− 𝑥)d𝐹 (𝑥) + 𝑝

∫︁ 𝑡

0

∫︁ 𝑡−𝑥

0

𝑝𝑁1𝑗(𝑡− 𝑥− 𝑦)d𝐹 (𝑁1)(𝑦)d[𝐹 (𝑥) *𝐵(𝑥)]

+ (1− 𝑝)
∫︁ 𝑡

0

∫︁ 𝑡−𝑥

0

𝑝𝑁2𝑗(𝑡− 𝑥− 𝑦)d𝐹 (𝑁2)(𝑦)d[𝐹 (𝑥) *𝐵(𝑥)] (3.29)

𝑝𝑖𝑗(𝑡) = 𝑃
{︁

𝑡 ≤ 𝑏(𝑖), 𝑁(𝑡) = 𝑗
}︁

+ 𝑝𝑃
{︁

𝑏(𝑖) + 𝑙𝑁1 < 𝑡,𝑁(𝑡) = 𝑗
}︁

+ (1− 𝑝)𝑃
{︁

𝑏(𝑖) + 𝑙𝑁2 < 𝑡,𝑁(𝑡) = 𝑗
}︁

=
𝑖∑︁

𝑘=1

∫︁ 𝑡

0

𝑄𝑗−𝑖+𝑘(𝑡− 𝑥)d𝐵(𝑘−1)(𝑥) + 𝑝

∫︁ 𝑡

0

∫︁ 𝑡−𝑥

0

𝑝𝑁1𝑗(𝑡− 𝑥− 𝑦)d𝐹 (𝑁1)(𝑦)d𝐵(𝑖)(𝑥)

+ (1− 𝑝)
∫︁ 𝑡

0

∫︁ 𝑡−𝑥

0

𝑝𝑁2𝑗(𝑡− 𝑥− 𝑦)d𝐹 (𝑁2)(𝑦)d𝐵(𝑖)(𝑥). (3.30)

By taking the Laplace transform of equations (3.29) and (3.30), we have

𝑝*0𝑗(𝑠) = 𝑞*𝑗 (𝑠)𝑓(𝑠) + 𝑝𝑏(𝑠)𝑓𝑁1+1(𝑠)𝑝*𝑁1𝑗(𝑠) + (1− 𝑝)𝑏(𝑠)𝑓𝑁2+1(𝑠)𝑝*𝑁2𝑗(𝑠), (3.31)

𝑝*𝑖𝑗(𝑠) =
𝑖∑︁

𝑘=1

𝑞*𝑗−𝑖+𝑘(𝑠)𝑏𝑘−1(𝑠) + 𝑝𝑏𝑖(𝑠)𝑓𝑁1+1(𝑠)𝑝*𝑁1𝑗(𝑠) + (1− 𝑝)𝑏𝑖(𝑠)𝑓𝑁2+1(𝑠)𝑝*𝑁2𝑗(𝑠). (3.32)

From equations (3.31) and (3.32), we obtain the relationship between 𝑝*0𝑗(𝑠) and 𝑝*𝑖𝑗(𝑠) as follows

𝑝*𝑖𝑗(𝑠) =
𝑖∑︁

𝑘=1

𝑞*𝑗−𝑖+𝑘(𝑠)𝑏𝑘−1(𝑠) +
𝑏𝑖−1(𝑠)
𝑓(𝑠)

{︀
𝑝*0𝑗(𝑠)− 𝑞*𝑗 (𝑠)𝑓(𝑠)

}︀
, 𝑖 ≥ 1. (3.33)

Substituting equation (3.33) back to equation (3.31) and solving equation (3.31) gives equation (3.13).
Substituting equation (3.13) into equation (3.32) leads to equation (3.14).

�

On the basis of the expressions of the Laplace transform of the transient queue-length distribution obtained
in Theorems 3.1 and 3.2 above, employing L’Hospital’s rule, we obtain the explicit recursive formulas of the
steady-state queue-length distribution. Moreover, some other important queueing performance indices, such as
the explicit expressions of its probability generating function of the steady-state queue-length distribution, the
expected queue size, the stochastic decomposition structure of the steady-state queue size and so on, are derived
by some algebraic manipulations.
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Theorem 3.3. Let 𝑝𝑗 = lim𝑡→∞ 𝑝{𝑁(𝑡) = 𝑗}, 𝑗 = 0, 1, 2 · · · , we have

(1) When 𝜌 = 𝜆
𝜇 ≥ 1, 𝑝𝑗 = 0, 𝑗 = 0, 1, 2 · · · . Therefore, {𝑝𝑗 , 𝑗 ≥ 0} do not constitute a probability distribution.

(2) When 𝜌 < 1, the recursive expressions of {𝑝𝑗 , 𝑗 = 0, 1, 2, · · · } are listed as follows

𝑝0 =
(1− 𝜌)

𝑝𝑁1 + (1− 𝑝)𝑁2
, (3.34)

𝑝𝑗 =
(1− 𝜌)(1 + 𝜆𝛿𝑗)
𝑝𝑁1 + (1− 𝑝)𝑁2

, 𝑗 = 1, 2, · · · , 𝑁1 − 1, (3.35)

𝑝𝑗 =
(1− 𝜌)(1− 𝑝 + 𝜆𝛿𝑗)

𝑝𝑁1 + (1− 𝑝)𝑁2
, 𝑗 = 𝑁1, 𝑁1 + 1, · · · , 𝑁2 − 1, (3.36)

𝑝𝑗 =
(1− 𝜌)𝜆𝛿𝑗

𝑝𝑁1 + (1− 𝑝)𝑁2
, 𝑗 ≥ 𝑁2, (3.37)

and {𝑝𝑗 , 𝑗 = 0, 1, 2, · · · } forms a probability distribution, where 𝛿𝑗 =
𝑝

∑︀𝑁1
𝑘=1 𝑞𝑗−𝑁1+𝑘 + (1− 𝑝)

∑︀𝑁2
𝑘=1 𝑞𝑗−𝑁2+𝑘, 𝑗 ≥ 1, 𝑞𝑗 = 1

𝑔(𝜆)

∫︀∞
0

𝑒−𝜆𝑡 (𝜆𝑡)𝑗−1

(𝑗−1)! 𝐺̄(𝑡)d𝑡 +
1

𝑔(𝜆)

∑︀𝑗−1
𝑘=1 𝑞𝑗−𝑘

{︁
1−

∑︀𝑘
𝑖=0

∫︀∞
0

𝑒−𝜆𝑡 (𝜆𝑡)𝑖

𝑖! d𝐺(𝑡)
}︁

, 𝑗 ≥ 1.

Proof. It is noted that 𝑝𝑗 =
∑︀∞

𝑖=0 𝑝{𝑁(0) = 𝑖} · lim
𝑡→∞

𝑝𝑖𝑗(𝑡), and

lim
𝑡→∞

𝑝𝑖𝑗(𝑡) = lim
𝑡→∞

∫︁ 𝑥

0

d𝑝𝑖𝑗(𝑥) + 𝑝𝑖𝑗(0)

= lim
𝑡→∞

lim
𝑠→0+

∫︁ 𝑥

0

𝑒−𝑠𝑥d𝑝𝑖𝑗(𝑥) + 𝑝𝑖𝑗(0)

= lim
𝑠→0+

∫︁ ∞

0

𝑒−𝑠𝑥d𝑝𝑖𝑗(𝑥) + 𝑝𝑖𝑗(0) = lim
𝑠→0+

𝑠𝑝*𝑖𝑗(𝑠). (3.38)

So we only need to calculate lim
𝑠→0+

𝑠𝑝*𝑖𝑗(𝑠).

(1) When 𝜌 = 𝜆
𝜇 > 1, we know lim

𝑠→0+
𝑏(𝑠) = 𝜔(0 < 𝜔 < 1) from Lemma 2.8. So we have

lim
𝑠→0+

∆(𝑠) = 1− 𝑝𝜔𝑁1 − (1− 𝑝)𝜔𝑁2 ̸= 0.

Therefore, by combining the expressions of Theorem 3.1 and 3.2, we obtain lim
𝑠→0+

𝑠𝑝*𝑖𝑗(𝑠) = 0 (𝑖, 𝑗 =

0, 1, 2, · · · ). So that 𝑝𝑗 = 0, 𝑗 = 0, 1, 2 · · · .
(2) When 𝜌 = 𝜆

𝜇 = 1, we know lim
𝑠→0+

𝑏(𝑠) = 1 and 𝐸[𝑏] = ∞. From Lemma 2.8, we get

lim
𝑠→0+

∆(𝑠) = 1− 𝑝− (1− 𝑝) = 0, (3.39)

and

lim
𝑠→0+

∆′(𝑠) = 𝑝𝑁1𝐸[𝑏] +
𝑝

𝜆
𝑁1 + 𝑝𝑁2𝐸[𝑏] +

𝑝

𝜆
𝑁2 = ∞. (3.40)

Using L’Hospital’s rule leads to lim
𝑠→0+

𝑠𝑝*𝑖𝑗(𝑠) = 0 (𝑖, 𝑗 = 0, 1, 2, · · · ). Therefore, for 𝜌 = 𝜆
𝜇 = 1, we obtain

𝑝𝑗 = 0, 𝑗 = 0, 1, 2 · · · .
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(3) When 𝜌 = 𝜆
𝜇 < 1, we know lim

𝑠→0+
𝑏(𝑠) = 1 and 𝐸[𝑏] = 𝜌

𝜆(1−𝜌) from Lemma 2.8, so we get

lim
𝑠→0+

∆′(𝑠) = 𝑝𝑁1

[︂
𝐸[𝑏] +

1
𝜆

]︂
+ (1− 𝑝)𝑁2

[︂
𝐸[𝑏] +

1
𝜆

]︂
=

𝑝𝑁1 + (1− 𝑝)𝑁2

𝜆(1− 𝜌)
· (3.41)

Applying L’Hospital’s rule again, the recursive expressions of {𝑝𝑗 , 𝑗 = 0, 1, 2, · · · } can be obtained by a
direct calculation.

When 𝜌 = 𝜆
𝜇 < 1, since

∞∑︁
𝑗=0

𝑝𝑗 =
(1− 𝜌)

𝑝𝑁1 + (1− 𝑝)𝑁2

⎡⎣𝑝𝑁1 + (1− 𝑝)𝑁2 + 𝜆

∞∑︁
𝑗=1

𝛿𝑗

⎤⎦. (3.42)

By a calculation, we have that the following formulas

𝜆

∞∑︁
𝑗=1

𝛿𝑗 = 𝜆

⎡⎣𝑝

∞∑︁
𝑗=1

𝑁1∑︁
𝑘=1

𝑞𝑗−𝑁1+𝑘 + (1− 𝑝)
∞∑︁

𝑗=1

𝑁2∑︁
𝑘=1

𝑞𝑗−𝑁2+𝑘

⎤⎦
= 𝜆[𝑝𝑁1𝐸[𝑏] + (1− 𝑝)𝑁2𝐸[𝑏]] (3.43)

and
∞∑︁

𝑗=1

𝑞𝑗 =
1

𝜇− 𝜆
= 𝐸[𝑏] (3.44)

hold. Substituting equations (3.43) and (3.44) into equation (3.42) lead to
∑︀∞

𝑗=0 𝑝𝑗 = 1. That is, for 𝜌 = 𝜆
𝜇 < 1,

the equilibrium distribution {𝑝𝑗 , 𝑗 = 0, 1, 2, · · · } at epoch 𝑡 exists and forms a probability distribution. �

Theorem 3.4. When 𝜌 < 1, let 𝑃 (𝑧) denote the probability generating function of {𝑝𝑗 , 𝑗 = 0, 1, 2, · · · }, then

𝑃 (𝑧) =
(1− 𝜌)(1− 𝑧)𝑔(𝜆(1− 𝑧))

𝑔(𝜆(1− 𝑧))− 𝑧
·
(︀
1− 𝑧𝑁2

)︀
+ 𝑝

(︀
𝑧𝑁2 − 𝑧𝑁1

)︀
(1− 𝑧)[𝑝𝑁1 + (1− 𝑝)𝑁2]

, |𝑧| < 1. (3.45)

And the average queue-length, denoted by 𝐿, is presented by

𝐿 = 𝜌 +
𝜆2𝐸

[︀
𝜒2

]︀
2(1− 𝜌)

+
𝑝𝑁1(𝑁1 − 1) + (1− 𝑝)𝑁2(𝑁2 − 1)

2[𝑝𝑁1 + (1− 𝑝)𝑁2]
, (3.46)

where 𝑔(𝜆(1− 𝑧)) =
∫︀∞
0

𝑒−𝜆(1−𝑧)𝑡d𝐺(𝑡).

Proof. According to 𝑃 (𝑧) =
∑︀∞

𝑗=0 𝑝𝑗𝑧
𝑗 and the expression of 𝑝𝑗 given in Theorem 3.3, we get

𝑃 (𝑧) =
(1− 𝜌)

𝑝𝑁1 + (1− 𝑝)𝑁2

⎡⎣1− 𝑧𝑁1

1− 𝑧
+ (1− 𝑝)

𝑧𝑁1 − 𝑧𝑁2

1− 𝑧
+ 𝜆

∞∑︁
𝑗=1

𝛿𝑗𝑧
𝑗

⎤⎦. (3.47)

By a calculation, we can obtain

∞∑︁
𝑗=1

𝛿𝑗𝑧
𝑗 = 𝑝

∞∑︁
𝑗=1

𝑧𝑗
𝑁1∑︁
𝑘=1

𝑞𝑗−𝑁1+𝑘 + (1− 𝑝)
∞∑︁

𝑗=1

𝑧𝑗
𝑁2∑︁
𝑘=1

𝑞𝑗−𝑁2+𝑘
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= 𝑝

⎛⎝ ∞∑︁
𝑗=1

𝑧𝑗𝑞𝑗

⎞⎠ · 1− 𝑧𝑁1

1− 𝑧
+ (1− 𝑝)

⎛⎝ ∞∑︁
𝑗=1

𝑧𝑗𝑞𝑗

⎞⎠ · 1− 𝑧𝑁2

1− 𝑧

=

⎛⎝ ∞∑︁
𝑗=1

𝑧𝑗𝑞𝑗

⎞⎠ ·
[︂
𝑝

1− 𝑧𝑁1

1− 𝑧
+ (1− 𝑝)

1− 𝑧𝑁2

1− 𝑧

]︂
(3.48)

∞∑︁
𝑗=1

𝑧𝑗𝑞𝑗 =
𝑧[1− 𝑔(𝜆(1− 𝑧))]
𝜆[𝑔(𝜆(1− 𝑧))− 𝑧]

· (3.49)

Thus, substituting equations (3.48) and (3.49) into equation (3.47) to get equation (3.45), and then the equation
(3.46) can be derived by using 𝐿 = d

d𝑧 [𝑃 (𝑧)]
⃒⃒
𝑧=1

. �

Corollary 3.5 (Stochastic decomposition structure of queue size). For 𝜌 = 𝜆
𝜇 < 1, the steady-state queue size

𝐿 of the queueing system studied in this paper can be decomposed into the sum of two independent parts: one
is the steady-state queue size of the classic 𝑀/𝐺/1 queueing system considered by Tang et al. [18], and the
other is that the additional queue size 𝐿d caused by the bi-level randomized (𝑝, 𝑁1, 𝑁2)-policy. Furthermore, the
additional queue size 𝐿d has the following discrete distribution

𝑃{𝐿d = 𝑚} =
1

𝑝𝑁1 + (1− 𝑝)𝑁2
, 𝑚 = 0, 1, 2, · · · , 𝑁1 − 1,

𝑃{𝐿d = 𝑚} =
1-𝑝

𝑝𝑁1 + (1− 𝑝)𝑁2
, 𝑚 = 𝑁1, 𝑁1 + 1, · · · , 𝑁2 − 1.

Corollary 3.6. For 𝜌 = 𝜆
𝜇 < 1, the average waiting time of customer, denoted by 𝑊̄𝑞, is given by

𝑊̄𝑞 =
𝜆𝐸

[︀
𝜒2

]︀
2(1− 𝜌)

+
𝑝𝑁1(𝑁1 − 1) + (1− 𝑝)𝑁2(𝑁2 − 1)

2𝜆[𝑝𝑁1 + (1− 𝑝)𝑁2]
· (3.50)

Proof. In the queuing system studied in this paper, customers are served by first-come-first-served rule.
Therefore, the Little’s law holds. Then, employing the Little’s law, the equation (3.50) can be derived by
𝑊̄𝑞 = 𝐿̄

𝜆 −
1
𝜇 . �

4. Some special cases

Special cases 4.1. If the service time 𝜒 of each customer obeys the exponential distribution 𝐺(𝑡) = 1− 𝑒−𝜇𝑡,
then some more concise expressions of the queuing performance indices of the system studied in this paper are
as follows:

(1) The expressions of {𝑝𝑗 , 𝑗 = 0, 1, 2, · · · } are given by

𝑝0 =
(1− 𝜌)

𝑝𝑁1 + (1− 𝑝)𝑁2
,

𝑝𝑗 =
(1− 𝜌)+𝛿𝑗

𝑝𝑁1 + (1− 𝑝)𝑁2
, 𝑗 = 1, 2, · · · , 𝑁1 − 1,

𝑝𝑗 =
(1− 𝜌)(1− 𝑝)+𝛿𝑗

𝑝𝑁1 + (1− 𝑝)𝑁2
, 𝑗 = 𝑁1, 𝑁1 + 1, · · · , 𝑁2 − 1,

𝑝𝑗 =
𝛿𝑗

𝑝𝑁1 + (1− 𝑝)𝑁2
, 𝑗 ≥ 𝑁2,

where 𝛿𝑗 = 𝑝
(︀
1− 𝜌𝑁1

)︀
𝜌𝑗−𝑁1+1 + (1− 𝑝)

(︀
1− 𝜌𝑁2

)︀
𝜌𝑗−𝑁2+1, 𝑗 ≥ 1.
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(2) The probability generating function of {𝑝𝑗 , 𝑗 = 0, 1, 2, · · · }

𝑃 (𝑧) =
(1− 𝜌)(1− 𝑧)𝜌

𝜌− 𝜆2𝑧(1 + 𝜌− 𝑧)
·
(︀
1− 𝑧𝑁2

)︀
+ 𝑝

(︀
𝑧𝑁2 − 𝑧𝑁1

)︀
(1− 𝑧)[𝑝𝑁1 + (1− 𝑝)𝑁2]

, |𝑧| < 1.

And the average queue size is

𝐿 =
𝜌

(1− 𝜌)
+

𝑝𝑁1(𝑁1 − 1) + (1− 𝑝)𝑁2(𝑁2 − 1)
2[𝑝𝑁1 + (1− 𝑝)𝑁2]

·

Special cases 4.2. When 𝑝 = 1 or 𝑝 = 0 or 𝑁1 = 𝑁2=N, the 𝑀/𝐺/1 queueing system studied in this paper is
equivalent to the 𝑀/𝐺/1 queueing system with the classic 𝑁 -policy studied in the references [21,26].

Special cases 4.3. When 𝑁2 = 𝑁1 + 1, the 𝑀/𝐺/1 queueing system studied in this paper is equivalent to
the 𝑀/𝐺/1 queueing system with (𝑝, 𝑁)-policy studied by Feinberg and Kim [2]. The probability generating
function of steady-state queue-length distribution is

𝑃 (𝑧) =
(1− 𝜌)(1− 𝑧)𝑔(𝜆(1− 𝑧))

𝑔(𝜆(1− 𝑧))− 𝑧
· 1− 𝑝𝑧𝑁1 − (1− 𝑝)𝑧𝑁1+1

(1− 𝑧)(1− 𝑝 + 𝑁1)
, 𝜌 < 1, |𝑧| < 1,

and the average queue-length is

𝐿 = 𝜌 +
𝜆2𝐸

[︀
𝜒2

]︀
2(1− 𝜌)

+
𝑝𝑁1(𝑁1 − 1) + (1− 𝑝)𝑁1(𝑁1+1)

2(1− 𝑝 + 𝑁1)
, 𝜌 < 1.

Special cases 4.4. When 𝑝 = 1 and 𝑁1 = 1, or 𝑝 = 0 and 𝑁2 = 1, or 𝑁1 = 𝑁2 = 1, the 𝑀/𝐺/1 queueing
system studied in this paper becomes the classic 𝑀/𝐺/1 queuing system studied by Tang et al. [18].

5. The system capacity optimization design

In practice, the capacity of the system will directly affect the cost and benefit of the system. If the capacity
of the system is too large, it will lead to an increase in construction cost and operation cost. If the capacity
of the system is too small, it will lead to the loss of customers. Therefore, it is very important to design a
reasonable system capacity. In most occasions, the decision-makers design the buffer space by employing the
mean steady-state queue size. In fact, the great irrationality of the modus operandi can be seen from the
following example.

Example 5.1. When the service time 𝜒 of customer is the exponential distribution 𝐺(𝑡) = 1 − 𝑒−𝜇𝑡, we
select 𝜆 = 0.6, 𝜇 = 2.8, 𝑝 = 0.6, 𝑁1 = 5, 𝑁2 = 12, and use 𝑀𝐴𝑇𝐿𝐴𝐵 program to calculate the values of
{𝑝𝑗 , 𝑗 = 0, 1, 2, · · · } and the mean queue size 𝐿̄ by Special case 4.1. See Table 1.

From the numerical results in Table 1, we know that the value of 𝑝𝑗 is close to 0 when 𝑗 exceeds a certain
value. Therefore, the system capacity does not need to be designed to be infinite at all. After some calculations,
we can get

𝑃
{︀
𝐿 > 𝐿

}︀
= 1−

𝐿̄∑︁
𝑗=0

𝑝𝑗 = 1−
4∑︁

𝑗=0

𝑝𝑗 = 0.3941 (5.1)

𝑃
{︀
𝐿 > 𝐿 + 1

}︀
= 1−

𝐿̄+1∑︁
𝑗=0

𝑝𝑗 = 1−
5∑︁

𝑗=0

𝑝𝑗 = 0.3264. (5.2)
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Table 1. When 𝜆 = 0.6, 𝜇 = 2.8, 𝑝 = 0.6, 𝑁1 = 5, 𝑁2 = 12, numerical results of the steady-state
queue-length distribution.

𝑝0 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6

0.1007 0.1223 0.1269 0.1279 0.1281 0.0677 0.0548
𝑝7 𝑝8 𝑝9 𝑝10 𝑝11 𝑝12 𝑝13

0.0520 0.0514 0.0513 0.0512 0.0510 0.0110 0.0024

𝑝14 𝑝15 𝑝16 𝑝17 𝑝18 𝑝19 𝐿
0.0005 0.0001 0.0000 0.0000 0.0000 0.0000 4.4266

That is to say, if the system capacity is designed by the average queue- length 𝐿, the probability of loss of
customer will reach 39.41% due to no waiting space available for new arrivals. Even if we increase one unit on
the mean queue size to design the system capacity, the probability of loss as presented in (5.2) is also up to
32.64%. Therefore, designing the system capacity only by using the mean queue size is very unsuitable.

Thus, in an attempt to reduce the loss probability of arrivals and increase system’s profit, the decision-
makers can design the system capacity according to the following case. Let 𝑀 denote the system capacity to
be determined. If it requires that the loss probability of new arrivals should be no more than 0.0001, that is,

𝑃{𝐿 > 𝑀} =
∞∑︁

𝑗=𝑀+1

𝑝𝑗 = 1−
𝑀∑︁

𝑗=0

𝑝𝑗 ≤ 0.0001.

Using the numerical results in Table 1, we can obtain 𝑀 ≥ 15, namely, the system capacity is designed to
be at least 𝑀 = 15. Form the discussing above, it can be seen that the steady-state queue-length distribution
{𝑝𝑗 , 𝑗 = 0, 1, 2, · · · }may play an important role in designing the system capacity, which also reflects the potential
application value of Theorem 3.3.

6. Control strategy of the system under the constraint of customers
waiting time

In this section, we first consider a cost structure that consists of linear waiting cost with rate ℎ and fixed
startup cost 𝑅 for each busy period. Using the renewal reward theorem for a cycle period that is defined as the
finite interval between two consecutive server busy period ending instants and the average queue length 𝐿̄, we
can obtain the long-run expected cost rate given by

𝐹 = ℎ · 𝐿 +
𝑅

𝐸[𝐶]
,

where 𝐶 denotes a busy cycle, it consists of a server idle period and a server busy period, denoted by 𝐼 and 𝐵,
respectively.

Since long wait times cause customer frustration and system revenue losses, making it a lose-lose situation
for all concerned. Thus, our aim here is to determine the optimal joint policy (𝑁*

1 , 𝑁*
2 ) such that the expected

cost rate function 𝐹 is minimized under the premise that the average waiting time of customers does not exceed
the predetermined threshold 𝑊̄𝑞0 . Hence, the optimization problem can be stated as{︂

min 𝐹 = ℎ · 𝐿̄ + 𝑅
𝐸[𝐶] ,

s.t. 𝑊̄𝑞 ≤ 𝑊̄𝑞0

(6.1)

where 𝑊̄𝑞 is given in Corollary 3.6.
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Next, we will find the expression of the expected busy cycle 𝐸[𝐶] in the objective function. Let 𝑉 denote
the number of customers in the system at the beginning of a server busy period. Clearly, for 𝜌 < 1, the average
number of customers in the system is given

𝐸[𝑉 ] = 𝑝𝑁1 + (1− 𝑝)𝑁2.

Thus, it follows that

𝐸[𝐵] = 𝐸[𝑏] · 𝐸[𝑉 ] =
𝜌𝐸[𝑉 ]

𝜆(1− 𝜌)
, 𝜌 < 1.

Since the number of customers in the system at the beginning of a busy period is equal to the number of
customers who arrived during the server idle period, and the arrival process is a Poisson process with rate 𝜆,
then the expected length of the server idle period is given by

𝐸[𝐼] =
𝐸[𝑉 ]

𝜆
=

𝑝𝑁1 + (1− 𝑝)𝑁2

𝜆
· (6.2)

Therefore, we can obtain the expected length of the busy cycle as below

𝐸[𝐶] = 𝐸[𝐼] + 𝐸[𝐵] =
𝐸[𝑉 ]

𝜆(1− 𝜌)
, 𝜌 < 1. (6.3)

Substituting equations (3.46), (3.50) and (6.3) into equation (6.1), the constrained optimization problem can
be rewritten as ⎧⎪⎨⎪⎩min 𝐹 = ℎ ·

{︂
𝜌 +

𝜆2𝐸[𝜒2]
2(1−𝜌) + 𝑝𝑁1(𝑁1−1)+(1−𝑝)𝑁2(𝑁2−1)

2[𝑝𝑁1+(1−𝑝)𝑁2]

}︂
+ 𝑅(1−𝜌)

𝑝𝑁1+(1−𝑝)𝑁2
,

s.t. 𝑊̄𝑞 =
𝜆𝐸[𝜒2]
2(1−𝜌) + 𝑝𝑁1(𝑁1−1)+(1−𝑝)𝑁2(𝑁2−1)

2𝜆[𝑝𝑁1+(1−𝑝)𝑁2]
≤ 𝑊̄𝑞0 .

(6.4)

From equation (6.4) we can observe that 𝐹 and 𝑊̄𝑞 are extremely complex and non-linear with respect to the
decision variables 𝑁1 and 𝑁2, which poses a hard task to achieve the analytic results for the optimum values 𝑁1

*

and 𝑁2
*. Thus, to solve the optimization problem, we will utilize the direct search method to find the optimum

values of 𝑁1 and 𝑁2. The following numerical experiments are performed on a PC having 𝐶𝑜𝑟𝑒𝑖7 processor
using 𝑀𝐴𝑇𝐿𝐴𝐵 software package in Windows 10 environment, and the numerical results are reported in tables
up to six decimal places because of lack of space.

Example 6.1. Assume that customers arrive at the service facility according to a Poisson process with a mean
rate 𝜆, and the service time follows an exponential distribution having a mean service rate 𝜇. Under these
assumptions, equation (6.4) can be reduced to the following minimization problem:⎧⎨⎩min 𝐹 = ℎ ·

{︁
𝜌

1−𝜌 + 𝑝𝑁1(𝑁1−1)+(1−𝑝)𝑁2(𝑁2−1)
2[𝑝𝑁1+(1−𝑝)𝑁2]

}︁
+ 𝑅(1−𝜌)

𝑝𝑁1+(1−𝑝)𝑁2
,

s.t. 𝑊̄𝑞= 𝜌
𝜇(1−𝜌) + 𝑝𝑁1(𝑁1−1)+(1−𝑝)𝑁2(𝑁2−1)

2𝜆[𝑝𝑁1+(1−𝑝)𝑁2]
≤ 𝑊̄𝑞0 .

(6.5)

Furthermore, we choose 𝑅 = 1500, ℎ = 15, 𝑝 = 0.7, 𝜆 = 0.2, 𝜇 = 2 and vary the values of 𝑁1 and 𝑁2, the
corresponding expected cost rate and the average waiting time for different values of 𝑁1 and 𝑁2 are detailed
reported in Table 2. From Table 2, we may reveal that

(1) If the upper bound of the mean waiting time is set to be 5, namely 𝑊̄𝑞0 = 5, we find that 𝐹 = 119.9359
is the minimum of the long-run average cost rate, and (𝑁1

*, 𝑁2
*) = (2, 4) is the optimal bi-level threshold

policy that satisfies constraints of the average waiting time 𝑊̄𝑞0 = 5.
(2) If the upper bound of the mean waiting time is set to be 10, namely 𝑊̄𝑞0 = 10, we may observe that

𝐹 = 88.7319 is the minimum of the long-run average cost rate, and (𝑁1
*, 𝑁2

*) = (4, 6) is the optimal
bi-level threshold policy that satisfies constraints of the average waiting time 𝑊̄𝑞0 = 10.

(3) If the upper bound of the mean waiting time is set to be 12, namely 𝑊̄𝑞0 = 12, we may observe that
𝐹 = 88.7319 is the minimum of the long-run average cost rate, and (𝑁1

*, 𝑁2
*) = (5, 6) is the optimal

bi-level threshold policy that satisfies constraints of the average waiting time 𝑊̄𝑞0 = 12.
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Table 2. The changes of 𝐹 and 𝑊̄𝑞 with different values of 𝑁1 and 𝑁2.

𝑁1

𝑁2 1 2 3 4 5 6 7

1
𝐹 = 271.6667
𝑊̄𝑞 =0.0556

– – – – – –

2
𝐹 = 212.8205
𝑊̄𝑞 =1.2094

𝐹 = 144.166
𝑊̄𝑞 =2.5556

– – – – –

3
𝐹 = 178.8542
𝑊̄𝑞 =2.8681

𝐹 = 129.4928
𝑊̄𝑞 =3.5338

𝐹 = 106.6667
𝑊̄𝑞 =5.0556

– – – –

4
𝐹 = 157.9825
𝑊̄𝑞 =4.7924

𝐹 = 119.9359
𝑊̄𝑞 =4.8632

𝐹 = 101.2121
𝑊̄𝑞 =5.9646

𝐹 = 91.6667
𝑊̄𝑞 =7.5556

– – –

5
𝐹 = 144.8485
𝑊̄𝑞 =6.8737

𝐹 = 113.9080
𝑊̄𝑞 =6.4349

𝐹 = 97.9167
𝑊̄𝑞 =7.1389

𝐹 = 89.5736
𝑊̄𝑞 =8.4276

𝐹 = 85.6667
𝑊̄𝑞 =10.0556

– –

6
𝐹 = 136.6667
𝑊̄𝑞 =9.0556

𝐹 = 110.4167
𝑊̄𝑞 =8.1806

𝐹 = 96.2821
𝑊̄𝑞 =8.5171

𝐹 = 88.7319
𝑊̄𝑞 =9.5121

𝐹 = 85.1572
𝑊̄𝑞 =10.9046

𝐹 = 84.1667
𝑊̄𝑞 =12.5556

–

7
𝐹 = 131.8452
𝑊̄𝑞 =11.3056

𝐹 = 108.8095
𝑊̄𝑞 =10.0556

𝐹 = 95.9524
𝑊̄𝑞 =10.0556

𝐹 = 88.9116
𝑊̄𝑞 =10.7698

𝐹 = 85.5060
𝑊̄𝑞 =11.9306

𝐹 = 84.5238
𝑊̄𝑞 =13.3889

𝐹 = 85.2381
𝑊̄𝑞 =15.0556

8
𝐹 = 129.4086
𝑊̄𝑞 =13.6039

𝐹 = 108.6404
𝑊̄𝑞 =12.0292

𝐹 = 96.6667
𝑊̄𝑞 =11.7222

𝐹 = 89.9359
𝑊̄𝑞 =12.1709

𝐹 = 86.5819
𝑊̄𝑞 =13.1064

𝐹 = 85.5303
𝑊̄𝑞 =14.3737

𝐹 = 86.1187
𝑊̄𝑞 =15.8775

9
𝐹 = 128.7255
𝑊̄𝑞 =15.9379

𝐹 = 109.5935
𝑊̄𝑞 =14.0799

𝐹 = 98.2292
𝑊̄𝑞 =13.4931

𝐹 = 91.6667
𝑊̄𝑞 =13.6919

𝐹 = 88.2796
𝑊̄𝑞 =14.4104

𝐹 = 87.1014
𝑊̄𝑞 =15.4903

𝐹 = 87.5219
𝑊̄𝑞 =16.8319

10
𝐹 = 129.3694
𝑊̄𝑞 =18.2988

𝐹 = 111.4394
𝑊̄𝑞 =16.1919

𝐹 = 100.4902
𝑊̄𝑞 =15.3497

𝐹 = 93.9943
𝑊̄𝑞 =15.3142

𝐹 = 90.5128
𝑊̄𝑞 =15.8248

𝐹 = 89.1667
𝑊̄𝑞 =16.7222

𝐹 = 89.3882
𝑊̄𝑞 =17.9037

11
𝐹 = 131.0417
𝑊̄𝑞 =20.6806

𝐹 = 114.0071
𝑊̄𝑞 =18.3534

𝐹 = 103.3333
𝑊̄𝑞 =17.2778

𝐹 = 96.8306
𝑊̄𝑞 =17.0228

𝐹 = 93.2108
𝑊̄𝑞 =17.3350

𝐹 = 91.6667
𝑊̄𝑞 =18.0556

𝐹 = 91.6667
𝑊̄𝑞 =19.0799

12
𝐹 = 133.5271
𝑊̄𝑞 =23.0788

𝐹 = 117.1667
𝑊̄𝑞 =20.5556

𝐹 = 106.6667
𝑊̄𝑞 =19.2661

𝐹 = 100.1042
𝑊̄𝑞 =18.8056

𝐹 = 96.3146
𝑊̄𝑞 =18.9288

𝐹 = 94.5513
𝑊̄𝑞 =19.4786

𝐹 = 94.3137
𝑊̄𝑞 =20.3497

7. Conclusions

The present investigation explored a new 𝑀/𝐺/1 queueing model with bi-level randomized (𝑝, 𝑁1, 𝑁2)-
policy. The queueing model proposed in this paper is not only an extension of mathematical meaning, but also
makes the structure of the queueing model richer and more practical, which makes the operation and control
of the system more flexible. Employing the total probability decomposition and the Laplace transform, some
important queuing performance indices were obtained. Then, the probability generating function of steady-
state queue-length and the expression of average queue-length were obtained by the obtained results in some
special cases. Furthermore, a numerical example was used to discussed the optimal design of system capacity,
which showed the importance of obtaining the specific expression of the stable length distribution in the design
of system capacity. Finally, on the basis of the establishment of the cost structure model, we constructed
a constrained optimization problem under the limit of the average waiting time and discussed the optimal
double threshold policy that minimizes the expected cost function under the limit of the average waiting time
by a numerical example. The analysis of this paper will provide a potentially practical application for system
managers in related application areas such as telecommunication systems, flexible manufacturing systems, and so
forth.

Appendix A.

Proof of Lemma 2.9. Consider the first customer served in the server busy period 𝑏. Let 𝜒 denote the service
time of this customer and the number of customers arriving during 𝜒. We regard these customers who arrive
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during 𝜒 as primary customers, and the others who arrive after the primary customers as secondary customers.
Furthermore, let 𝐴1, 𝐴2, · · · , 𝐴𝑣 denote primary customers. Since the order of server for arriving customers
is irrelevant to the length of server busy period, we consider the following service order: Primary customers
are served in order of 𝐴1, 𝐴2, · · · , 𝐴𝑣. After serving each primary customer, however, the server will serve any
secondary customers that are present until there are no secondary customers present. So we have that 𝑏 =
𝜒 + 𝐿1 + · · ·+ 𝐿𝑣, where 𝐿𝑣(𝑖 = 1, 2, · · ·, 𝑣) denotes the time interval from the epoch when the server begins to
serve 𝑖th primary customer until the next time point when the service of the (𝑖+ 1)th primary customer begins.
Hence, 𝐿1, 𝐿2, · · · , 𝐿𝑣 are independent of each other with the same distribution as 𝑏, and also independent of 𝜒
and 𝑣. Let 𝐿1 + 𝐿2 + · · ·+ 𝐿𝑣 = 0 only if 𝑣 = 0. Since the inter-arrivals are generated by Poisson process, and
the ending epoch of every server busy period is a renewal epoch, we have

𝑄𝑗(𝑡) = 𝑃{𝜒 + 𝐿1 + · · ·+ 𝐿𝑣 > 𝑡 ≥ 0; 𝑁(𝑡) = 𝑗}

= 𝑃{𝜒 > 𝑡 ≥ 0; 𝑁(𝑡) = 𝑗}+
∞∑︁

𝑖=0

∫︁ 𝑡

0

(𝜆𝑥)𝑖

𝑖!
e−𝜆𝑥𝑃{𝐿1 + · · ·+ 𝐿𝑖 > 𝑡− 𝑥; 𝑁(𝑡− 𝑥) = 𝑗}d𝐺(𝑥)

= 𝐺̄(𝑡)
(𝜆𝑡)𝑗−1

(𝑗 − 1)!
e−𝜆𝑡 +

∞∑︁
𝑖=1

∫︁ 𝑡

0

(𝜆𝑥)𝑖

𝑖!
e−𝜆𝑥𝑃{𝐿1 + · · ·+ 𝐿𝑖 > 𝑡− 𝑥; 𝑁(𝑡− 𝑥) = 𝑗}d𝐺(𝑥), 𝑗 ≥ 1. (A.1)

It is important to note that each 𝐿𝑖 follows the same stochastic laws as the server busy period 𝑏, 𝑖 = 1, 2, · · · .
According to the service order of primary customer mentioned above, there are 𝑗 − (𝑖 − 𝑘) primary customers
waiting for service. That is, at the time point 𝑡− 𝑥, the number of primary customers waiting for service in the
system is equal to 𝑗 − (𝑖− 𝑘). Hence,

𝑃{𝐿1 + · · ·+ 𝐿𝑖 > 𝑡− 𝑥; 𝑁(𝑡− 𝑥) = 𝑗} =
𝑖∑︁

𝑘=1

𝑃{𝐿1 + · · ·+ 𝐿𝑘 > 𝑡− 𝑥; 𝐿1 + · · ·+ 𝐿𝑘−1 ≤ 𝑡− 𝑥;

𝑁(𝑡− 𝑥) = 𝑗 − (𝑖− 𝑘)}

=
𝑖∑︁

𝑘=1

𝑄𝑗−(𝑖−𝑘)(𝑡) *𝐵(𝑘−1)(𝑡), 𝑗 ≥ 1, (A.2)

where 𝑄𝑗(𝑡) = 0 if 𝑗 ≤ 0, “*” denotes the convolution. Substituting equation (A.2) into equation (A.1), it gets

𝑄𝑗(𝑡) = 𝐺̄(𝑡)
(𝜆𝑡)𝑗−1

(𝑗 − 1)!
e−𝜆𝑡 +

∞∑︁
𝑖=1

∫︁ 𝑡

0

(𝜆𝑥)𝑖

𝑖!
e−𝜆𝑥

𝑖∑︁
𝑘=1

𝑄𝑗−(𝑖−𝑘)(𝑡− 𝑥) *𝐵(𝑘−1)(𝑡− 𝑥)d𝐺(𝑥), 𝑗 ≥ 1. (A.3)

The Laplace transform of equation (A.3) is given by

𝑞*𝑗 (𝑠) =
∫︁ ∞

0

𝑒−𝑠𝑡𝐺̄(𝑡)
(𝜆𝑡)𝑗−1

(𝑗 − 1)!
e−𝜆𝑡d𝑡 +

∞∑︁
𝑖=1

𝑖∑︁
𝑘=1

𝑞*𝑗−(𝑖−𝑘)(𝑠)𝑏𝑘−1(𝑠)
∫︁ 𝑡

0

(𝜆𝑡)𝑖

𝑖!
e−(𝑠+𝜆)𝑥d𝐺(𝑥)

=
∫︁ ∞

0

𝑒−𝑠𝑡𝐺̄(𝑡)
(𝜆𝑡)𝑗−1

(𝑗 − 1)!
e−𝜆𝑡d𝑡 +

∞∑︁
𝑘=1

𝑏𝑘−1(𝑠)
𝑗+𝑘−1∑︁

𝑖=𝑘

𝑞*𝑗−(𝑖−𝑘)(𝑠)
∫︁ 𝑡

0

(𝜆𝑡)𝑖

𝑖!
e−(𝑠+𝜆)𝑥d𝐺(𝑥)

=
∫︁ ∞

0

𝑒−𝑠𝑡𝐺̄(𝑡)
(𝜆𝑡)𝑗−1

(𝑗 − 1)!
e−𝜆𝑡d𝑡 +

𝑞*𝑗 (𝑠)
𝑏(𝑠)

{𝑔(𝑠 + 𝜆− 𝜆𝑏(𝑠))− 𝑔(𝑠 + 𝜆)}

+
𝑞*𝑗−1(𝑠)
𝑏2(𝑠)

{︃
𝑔(𝑠 + 𝜆− 𝜆𝑏(𝑠))−

1∑︁
𝑖=0

∫︁ ∞

0

𝑒−(𝑠+𝜆)𝑡 [𝜆𝑏(𝑠)𝑡]𝑖

𝑖!
d𝐺(𝑡)

}︃
+ · · ·

+
𝑞*1(𝑠)
𝑏𝑗(𝑠)

{︃
𝑔(𝑠 + 𝜆− 𝜆𝑏(𝑠))−

𝑗−1∑︁
𝑖=0

∫︁ ∞

0

𝑒−(𝑠+𝜆)𝑡 [𝜆𝑏(𝑠)𝑡]𝑖

𝑖!
d𝐺(𝑡)

}︃
, 𝑗 ≥ 1. (A.4)
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Noting 𝑏(𝑠) = 𝑔(𝑠 + 𝜆− 𝜆𝑏(𝑠)), it yields the conclusion given by Lemma 2.9. �
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