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A NOVEL APPROACH FOR THE SOLUTION OF MULTIOBJECTIVE
OPTIMIZATION PROBLEM USING HESITANT FUZZY AGGREGATION
OPERATOR

FIrRozZ AHMADY*®, AHMAD YUSUF ADHAMI?, BOBY JOHN! AND AMIT REZA?

Abstract. Many decision-making problems can solve successfully by traditional optimization methods
with a well-defined configuration. The formulation of such optimization problems depends on crisply
objective functions and a specific system of constraints. Nevertheless, in reality, in any decision-making
process, it is often observed that due to some doubt or hesitation, it is pretty tricky for decision-
maker(s) to specify the precise/crisp value of any parameters and compelled to take opinions from
different experts which leads towards a set of conflicting values regarding satisfaction level of decision-
maker(s). Therefore the real decision-making problem cannot always be deterministic. Various types of
uncertainties in parameters make it fuzzy. This paper presents a practical mathematical framework to
reflect the reality involved in any decision-making process. The proposed method has taken advantage
of the hesitant fuzzy aggregation operator and presents a particular way to emerge in a decision-making
process. For this purpose, we have discussed a couple of different hesitant fuzzy aggregation operators
and developed linear and hyperbolic membership functions under hesitant fuzziness, which contains
the concept of hesitant degrees for different objectives. Finally, an example based on a multiobjective
optimization problem is presented to illustrate the validity and applicability of our proposed models.

Mathematics Subject Classification. 03B52, 03F55, 62J05, 62J99.

Received September 1, 2021. Accepted January 9, 2022.

1. INTRODUCTION

Many decision-making processes inherently involve different conflicting objectives to be optimized (maxi-
mize/minimize) under given circumstances. In the present competitive era, it is indispensable for the decision-
maker(s) to obtain better possible outcomes/results when dealing with multiple objectives. Although it is pretty
challenging to have an optimal solution that satisfies all the goals efficiently, a compromise solution is possible,
which is accepted by the decision-maker(s) up to some extent. Literature reveals various approaches for multi-
objective optimization problems, and continuous effort is being made to obtain the best compromise solution. It
is often observed that the modeling and formulation of the problem arising in agriculture production planning,
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manufacturing system, transportation problem, supplier selection, etc., take the form of the multiobjective opti-
mization problem, which is realistic. Thus, a multiobjective optimization problem is also a challenging task due
to the existence of different Pareto-optimal solutions set, and it is pretty typical to select the best compromise
solutions set amongst them.

First [36] introduced the fuzzy programming approach for multiobjective optimization problems, and after
that, fuzzy techniques gained popularity among various real applications problems. Li and Lai [22] solved
multiobjective transportation problem by using fuzzy compromise programming approach. Zangiabadi and
Maleki [33] also solved the multiobjective transportation problem by using fuzzy goal programming techniques
with linear, exponential, and hyperbolic membership functions, respectively. Cheng et al. [20] solved the fuzzy
multiobjective linear programming problem using deviation degree measures and weighted max—min method.
Ahmad et al. [13] have formulated a pharmaceutical supply chain as a multiobjective programming problem
and solved it by using three approaches, namely; Zimmerman’s technique, ~v-operator and Min. bounded sum
operator with intuitionistic fuzzy parameters. Adhami and Ahmad [1], Adhami et al. [6] and Ahmad and John
[2] also presented the study on neutrosophic decision set theory and implemented it on real-life applications.

Zhang et al. [34] developed a new strategic multi-objective optimization model for designing the supply chain
network with multiple distribution channels and solved it by using a modified multi-objective artificial bee
colony algorithm. Biswas and Modak [19] also formulated a multi-objective fuzzy chance-constrained model
for land allocation in the agricultural sector and solved it by using fuzzy goal programming techniques. Xu
et al. [31] developed a hesitant fuzzy programming method based on the linear programming technique for
multidimensional analysis of preference to solve the hybrid, multiple attribute decision-making problems with
incomplete attribute weight information. Wan et al. [26] also investigated a new hesitant fuzzy mathematical
programming method for hybrid multicriteria group decision making with hesitant fuzzy truth degrees and
incomplete criteria weight information. Wan et al. [27] suggested a novel solution method named, Pythagorean
fuzzy (PF) mathematical programming method to solve multi-attribute group decision-making problems under
PF environments. Wan et al. [28] also investigated a hesitant fuzzy Preference Ranking Organization Method
for Enrichment Evaluations for multicriteria group decision-making and applied it to green supplier selection.
Ahmad [3,7] and Ahmad and Smarandache [4] also discussed the multi-objective programming problems under
neutrosophic environment.

Most of the existing methods discussed in the literature aggregate multiple objectives problems into a single
objective using real-valued and utility functions. The real-valued functions may take different forms, such as
weighted sum, max—min or weighted max—min, and the product form. The utility functions methods use the
decision-maker(s) preference typically. This preference is translated to mathematical expression by using some
utility function. For example, the weighted sum approach cannot guarantee that the achievement levels of fuzzy
goals are consistent with desirable relative weights or the decision-maker(s) expectations. Due to the triviality
in computation, Zimmermann [36] used the “min” operator in his proposed fuzzy programming approach, which
does not guarantee a non-dominated solution. To overcome the above drawback, Li and Lai [22] suggested the
weighted root-power mean aggregation operators and used them to evaluate the multiobjective transportation
problem globally. Liu et al. [23] also used weighted root mean power aggregation operator for the supplier
selection problem using modified s-curve membership function.

In real life, hesitancy is the most trivial issue in the decision-making process. It is the situation when the
decision-maker(s) is (are) not sure about the exact values of the parameters, although there is some confusion
between a few different values. To deal with it, a hesitant fuzzy set (HFS) can be used as an appropriate tool
by assigning a set of different membership degrees for an element in the set. Ahmad et al. [35] and Zhang et al.
[8] developed a hesitant mathematical programming technique to solve MCDM problems within the decision
environment of hesitant fuzzy elements (HFEs). Bharati [18] presented a hesitant fuzzy computational algorithm
for production planning problems. Further, the aggregation operators extended based on hesitant fuzzy sets. Xia
et al. [30] discussed a new set of hesitant aggregation operators and presented its application in group decision-
making problems. Xia and Xu [29] also defined a series of hesitant aggregations operators and illustrated their
use in solving decision-making problems. Ye [32] and Ahmadini and Ahmad [15, 16] proposed two aggregation
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operators, namely; a single-valued neutrosophic hesitant fuzzy weighted averaging (SVNHFWA) operator and
a single-valued neutrosophic hesitant fuzzy weighted geometric (SVNHFWG) operator based on single-valued
neutrosophic hesitant fuzzy and developed a multiple-attribute decision-making method.

Literature reveals that hesitant fuzzy aggregations operators have been widely used in multi-criteria or multi-
attribute decision-making problems [4,5,29,30,32]. To the best of our knowledge, there is no such work available
for multi-objective optimization problems using a hesitant fuzzy aggregation operator. Therefore, the proposed
work fills this gap and provides the future research scope in a multi-objective optimization problem. The
summary of the rest of the paper is as follows: In Section 2, the preliminaries regarding hesitant fuzzy set have
been discussed while Section 3 represents the proposed model formulation and solution algorithm. In Section 4,
an experimental study has been presented to show the applicability and validity of the proposed computational
modeling approach. In Section 5, results and discussions have been presented. A comparative study has also
been done with other existing approaches. Finally, conclusions and future scope have been discussed based on
the present work in Section 6.

2. PRELIMINARIES

Hesitant fuzzy set (HFS)
Definition 2.1 ([25]). Let there be a fixed set X; a hesitant fuzzy set A on X is defined in terms of a function
ha(x) that when applied to X returns a finite subset of [0, 1] and mathematically can be represented as follows:

A={{z,hs(z))|z € X} (2.1)

where h4(x) is a set of some different values in [0, 1], denoting the possible membership degrees of the element
x € X to A. Also, we call hy(x) a hesitant fuzzy element.

Definition 2.2 ([25]). For a given hesitant fuzzy element h, its lower and upper bounds are defined as h™~(z) =
min h(z) and h™(x) = max h(z), respectively.

Definition 2.3 ([25]). Let h; and hg be two HFSs in a fixed set X; then their union can be defined as follows:
hiUhs = U, chy,aschy max{ay, as}. (2.2)

Definition 2.4 ([25]). Let hy and hg be two HFSs in a fixed set X; then their intersection can be defined as
follows:

hi N ha = Ua ey aseh, min{aq, as}t. (2.3)

Definition 2.5 ([25]). Let E = {hy, ha,...,h,} be a set of n HFEs, ¢ be a function on E, such that
¢ : [07 1]N - [07 1]7 then wE' = UJG{hl,hg,...,hn}{w(é)}'

3. FORMULATION OF MULTIOBJECTIVE MODEL UNDER DIFFERENT HESITANT FUZZY
AGGREGATION OPERATOR

3.1. Multiobjective optimization problem

Most of the real-life problems are not only confined to the optimization (maximization/minimization) of a
single objective, but a set of multiple conflicting and commensurable objectives have to optimize under given
circumstances. It is not always possible to have an optimal solution for every single objective at a time, but
to some extent, a compromise solution can be obtained that satisfies each objective marginally under certain
constraints. Nowadays, the effort is being made to obtain the best compromise solution for the multiobjective
optimization problem.
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Generally, the formulation of a multiobjective optimization problem with k objectives, m constraints, and ¢
variables is given as follows:

Optimize (21, Za,...,Z;) (k=1,2,...,K)

s.t. g;(z) < dj, 3=12,...,my;
g;(x) > d;, j=mi+1,m+2,...,mo;
g;i(x) = dj, j=me+1mo+2 ..., m;
x; 20, 1=1,2,3,...,¢; z;€X (3.1)

where Z, are a set of k different conflicting objectives, g; are real valued functions and d; are real numbers. z;
is ¢ dimensional decision variable vector and X is a feasible solution set.

Definition 3.1 ([9,12]). A feasible solution z* = {z}} € X is said to be non-dominated (efficient or Pareto-
optimal) solution for the multiobjective optimization problem if there does not exist any other feasible solution
x = {x;} such that

Zi{x} < or > Z{zf}, vV k=1,2,... K (3.2)

where < or > is used for optimization (minimization or maximization) of different objectives respectively.

Definition 3.2 ([9,10]). An optimal compromise solution of multiobjective optimization problem is a feasible
solution = {z;} € X at which decision maker’s preference value under the different multiple objectives, is
optimum (minimum or maximum).

3.2. Development of membership functions under hesitant fuzziness

Until recently, a simple membership function has been defined only in the context of marginal evalua-
tion for every single objective Zi(x) and without considering the acceptable degree of hesitation by different
experts. Hence, by the marginal evaluation for each single objective Z(x) under hesitation, we mean a mapping
wEn (Zp(x)) — [0,1] assigned by nth expert (E,,) which indicates that up to what extent the decision makers’
satisfaction degree is achieved with the involvement of different experts’ opinions [8,11,14]. Therefore, this kind
of membership function would be a handy tool when dealing with some hesitation degree simultaneously.

On Solving each objective functions individually, we have k solutions set, X', X2 ..., X*. Then the obtained
solutions are substituted into each objective function in order to determine the lower and upper bound for each
objective as given below:

U = max[Z;(z)] and Ly = min[Z;(x)] Vk=1,2,3,..., K. (3.3)

1. Linear membership function: the linear membership function is the most commonly used membership
function due to its simple structure and has gained wide range of applicability under uncertainty. The linear
membership function under hesitancy is defined as follows [8]:

1, if Zp < Ly;
En _ Uy —Z, .
pr(Zi(x) = § On—F— if Ly < Z < Uy; (3.4)
U, — Ly
0, if Zp > Uy

where §, € [0,1] is a set of hesitant values assigned by nth expert (F,). The values of parameters ¢, is
suggessted by the different experts based on his/her previous knowledge and experiences.

2. Hyperbolic membership function: the hyperbolic membership function shows the flexible characteristic
behavior with respect to objective function. It is convex over a part of the objective function values and is
concave over the remaining part. When the decision maker is worse off with respect to a goal, the decision
maker tends to have a higher marginal rate of satisfaction with respect to that goal. A convex shape part of
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the membership function captures that behavior. On the other hand, when decision maker is better off with
respect to a goal, the decision maker tends to have a smaller marginal rate of satisfaction. Such behavior is
modeled using the concave portion of the membership function [11]. The hyperbolic membership function
under hesitancy is defined as follows:

1, if Zi < L;

5 PRI o ) L

H ( ( )) 2 2 e{iU’“;Lk *Zk}ak +67{L€;Lk ka}ak ¥ » F ( )
0, if Z > Uy

where o = ka I and d,, € [0,1] is a set of hesitant values assigned by nth expert (E,). The values of

parameters d,, 1s suggessted by the different experts based on his/her previous knowledge and experiences.

This membership function holds the following systematic properties:

(1) pp(Zik(x)) is strictly monotonically decreasing function with respect to Zj(x).

(2) pu(Zi(x) = 3 & Zi(x) = Dfhe,
p(Zi(x)) is strictly convex function of Zy(z) for Zx(xz) > =5£2=E and strictly concave function of Zy(z

3) uu(Zy(z)) is strictl function of Z(z) for Z YetLi and strictl function of Z
for Zy,(z) < Yatle,

(4) pu(Zk(x))satisties 0 < pp(Zi(z)) < 1for L < Zi(x) < Uy and approaches asymptotically. 1 (Zi(z)) =0
and pp(Zi(x)) =1 as Zg(x) — oo and —oo respectively.

In this sub-section, we have defined linear (Eq. (3.4)) and non-linear (Hyperbolic, Eq. (3.5)) membership
functions under a hesitant fuzzy environment. A linear membership function is perhaps the simplest and most
common one, as it bounds the upper and lower acceptance levels. In the case of non-linear membership functions,
the marginal rate of increase or decrease of membership values as a function of model parameters is not constant.
Hence, it reflects the practical situations better than the linear case, and it will be preferable to formulate a
non-linear membership function-based model which may reflect the optimal solution.

3.3. Global evaluation of multiple objectives using hesitant fuzzy aggregation operators

Based on the Definition 2.5, Xia and Xu [29] proposed some operations on hesitant fuzzy sets and discussed
hesitant fuzzy aggregation operators. Weighted averaging and weighted geometric are two important class of
hesitant fuzzy aggregation operator.

Definition 3.3 ([29]). For a collection of the hesitant fuzzy elements F,, (n =1,2,..., N), a generalized form
of hesitant fuzzy weighted averaging (GHFWA) operator family is a mapping GHFWA: E™ — FE such that

L
A

N
GHFWA™ (HE17ME27 S ME") = Uai€E1,00€E,....an€E, (1 - H (1 - ai\z)w"> (3.6)
n=1
where (0 < [A\| < o0) and w,, = (w1, wa, ..., w,) be the weight vector assigned to each hesitant fuzzy elements,

with w,, € [0,1] and ZnN:1 wy, = 1 in the set.

Definition 3.4 ([29]). Let E, (n=1,2,...,N) be a collection of the hesitant fuzzy elements, then a hesitant
fuzzy weighted averaging (HFWA) operator is a mapping E™ — E such that

N
HFWA (uElqu2a s 7p’En) = U016E17a2€E27~--7(¥n€En (1 - H (1 - aﬂ)“’n) (37)
n=1
where w,, = (w1, ws,...,w,) be the weight vector assigned to each hesitant fuzzy element, with w,, € [0,1]

and Zgzl w, = 1 in the set. Especially, A = 1 transformed a GHFWA to a hesitant fuzzy weighted averaging
(HFWA) operator.
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Definition 3.5 ([29]). Let £, (n=1,2,...,N) be a collection of the hesitant fuzzy elements, then a hesitant
fuzzy quadratic weighted averaging (HFQWA) operator is a mapping E” — E such that

N 2
HFQWA (‘LLEH’ME?7 - ,ILLE'H,) = UaleEl,QQEEQ,---,anGEn (1 — H (1 — ai)“”b) (38)
n=1
where w,, = (w1, ws,...,w,) be the weight vector assigned to each hesitant fuzzy element, with w, € [0,1]

and ZnN:1 w, = 1 in the set. Especially, if we put A\ = 2 in GHFWA then GHFWA reduces to hesitant fuzzy
quadratic weighted averaging (HFQWA) operator.

Definition 3.6 ([29]). For a collection of the hesitant fuzzy elements F,, (n =1,2,..., N), a generalized form
of hesitant fuzzy weighted geometric (GHFWG) operator family is a mapping GHFWG: E" — F such that

N X
GHFWGW (B pP2 . pfn) =1~ (1 -JJ-@a- ag))w"> (3.9)
n=1
where (0 < |A| < 00) and wy, = (wy,wa,...,w,) be the weight vector assigned to each hesitant fuzzy elements,

with w, € [0,1] and 25:1 wy, =1 in the set.

Definition 3.7 ([29]). Let E, (n=1,2,...,N) be a collection of the hesitant fuzzy elements, then a hesitant
fuzzy weighted geometric (HFWG) operator is a mapping E” — E such that

N
HFWG (ME17ME2a s 7/J’En) = UalEEI;(¥2€E27---1(¥716E71 <1 - <1 - H(l - (1 - aﬂ))“%)) (310)

n=1

where w,, = (w1, ws,...,w,) be the weight vector assigned to each hesitant fuzzy element, with w, € [0,1]
and 25:1 w, = 1 in the set. Especially, if we put A = 1 in GHFWG then GHFWG reduces to hesitant fuzzy
weighted geometric (HFWG) operator.

Definition 3.8 ([29]). Let E,, (n=1,2,...,N) be a collection of the hesitant fuzzy elements, then a hesitant
fuzzy quadratic weighted geometric (HFQWG) operator is a mapping E" — E such that

N 3
HFQWG (NElaNE2a s a,uEn) = Ua1€E1,a2€E2,...,an€En, 1- <1 - H (1 - (1 - a%))“’?%) (311)

n=1
where w,, = (w1, wa,...,w,) be the weight vector assigned to each hesitant fuzzy element, with w, € [0,1]

and 25:1 w, = 1 in the set. Especially, if we put A = 2 in GHFWG then GHFWG reduces to hesitant fuzzy
quadratic weighted geometric (HFQWG) operator.

Based on the above discussed hesitant fuzzy aggregation operator (HFAQO), a new general form of achievement
or utility function for multiobjective optimization problem may be presented as follows:

=

Max (HFAO)™N (2, .. ) =3 W, (HFAO) (3.12)
k=1

where (0 < |A] < 00), HFAO represents the family of hesitant fuzzy aggregation operator (i.e., averaging or
geometric) which has been used to maximize the achievement function and Wy (Vk =1,2,..., K), such that
Zszl Wi, =1 is the weight assigned to each objectives by decision maker(s).



MULTIOBJECTIVE OPTIMIZATION PROBLEM USING HESITANT FUZZY AGGREGATION OPERATOR 281

Here, some new computational models using hesitant fuzzy aggregation operators based on the hesitant fuzzy
set have been investigated to solve the multiobjective optimization problem. It allows the decision-maker(s) to
express his/her(their) degree of hesitation about the value of parameters and overcome by using the proposed
computational model technique efficiently. According to Bellman and Zadeh [17], the fuzzy set includes three
concepts, namely, fuzzy decision (D), fuzzy goal (G), and fuzzy constraints (C) and incorporated these concepts
in many real-life applications of decision-making under fuzzy environment. So, the fuzzy decision set is defined
as follows:

D=GnNnC= UﬁnGG,nneC min{(ﬁnv nn)} (313)

Consequently, the hesitant fuzzy decision set Dy, with hesitant fuzzy objectives (Z) and constraints (C), is
defined as follows:
Dy, =2ZNC = (Ni—Zy) (griyely
= {‘T7 U min{(ﬂlﬂh)’ (623 772)3 BERE) (5n7ﬂn)}(x)‘x € X}
= {x, {uEl,ME2,...,uE"}(:E)|x € X}
= min(ﬂlv 771)
= min(fz, n2)

E,

>

P = min(By, ny,)

where, uPr are a set of degree of acceptance of hesitant fuzzy decision solution under hesitant fuzzy decision
set by nth experts.

3.4. Proposed models

We have designed a hesitant fuzzy environment for the multi-objective optimization problem stated in equa-
tion (3.1). Since equation (3.1) depicts the multi-objective optimization problem, it can be solved only after
converting into a single objective programming problem. For this purpose, we have taken advantage of the HFAO
(3.12). Thus, we can transform the objective functions of the optimization problem (Eq. (3.1)) as a maximization
on hesitant fuzzy aggregation operator shown in equation (3.12) with the constraints on hesitant membership
functions corresponding to each objective function. In equation (3.14), the weighted sum of hesitant fuzzy aggre-
gation operator is summarized and also transformed the multi-objective optimization problem (Eq. (3.1)) into
a single objective function (Eq. (3.14)). Therefore, in general, one can reformulate the equation (3.1) as follows
(Eq. (3.14)):

K
Max HFAO (,ﬂjl,uﬁz, . ,,ﬂjn) =" Wi(HFAO) (3.14)
k=1

under the constraints
Wi (Z(x)) = an,
PR (Z(x)) = age,

Wi (Zi(@)) = ke,
gj(‘r)gd]7 j:172a"'7m17
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g;(x) > dj, j=mi+1,mi+2,...,ma,
gj(x):dja j=mo+1ma+2,...,m,
x>0, 0<agi,ar, ..., <1, Vn (3.15)

where A represents the type of membership function (i.e., linear or hyperbolic) used by decision maker(s). The
decision maker(s) defines the priority among objective functions by assigning crisp weight Wy, (Vk =1,2,..., K),
such that Zi{:l Wy = 1 which takes the maximum value to the most desired objective function. w, =
(w1, wa, ..., wy) be the weight vector assigned to each hesitant fuzzy element, with w,, € [0, 1] and 25:1 w, = 1.
In equation (3.15), each ay, represents the minimum satisfaction degrees corresponding to each hesitant mem-
bership function and can be directly obtained while solving the problems; as a result, output. The only restric-
tions are applied that each ay, can lie between 0 and 1.

15 (Zi(z)) : degree of acceptance assigned by 1st expert to the kth objective
15? (Zi(z)) : degree of acceptance assigned by 2nd expert to the kth objective

15" (Zi(z)) : degree of acceptance assigned by nth expert to the kth objective.

In general, the hesitant fuzzy aggregation operator can be classified into four different categories such as
hesitant fuzzy weighted averaging operator, hesitant fuzzy quadratic weighted averaging operator, hesitant fuzzy
weighted geometric operator, hesitant fuzzy quadratic weighted geometric operator. Therefore our proposed
model can also be classified into four different categories based on these operators. The formulation of proposed
computational models for multiobjective optimization problems under hesitant fuzzy environment is given as
follows:

Model 1: Based on hesitant fuzzy weighted operator

K N
Max HFWA (uﬁl,uﬁz, . uﬁ) =3 Wi (1 ~[Ja- akn)“’"). (3.16)
k=1

n=1
Under the constraints provided in equation (3.15).

Model 2: Based on hesitant fuzzy quadratic weighted averaging operator

2

K N
Max HFQWA (Mﬁl,uﬁa . Mﬁ) =3 Wi (1 ~-T1a- aﬁn)“’“> : (3.17)
k=1 n=1

Under the constraints provided in equation (3.15).

Model 3: Based on hesitant fuzzy weighted geometric operator

K N
Max HFWG (uﬁl,@?, . uﬁ) =3 Wi (1 - (1 ~[Ja-a- a,m))”")). (3.18)
k=1

n=1
Under the constraints provided in equation (3.15).

Model 4: Based on hesitant fuzzy quadratic weighted geometric operator

K 2

N
Max HFQWG (uﬁuﬁuﬁ) => Wi|1- (1 -[[a-q@ ai))w”) , (3.19)
n=1

k=1
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Under the constraints provided in equation (3.15).

All the above four models differ only concerning different hesitant fuzzy aggregation operators for global
evaluation of the multiobjective optimization problem. The aggregation operator used in model 1 is the hesitant
fuzzy weighted averaging (HFWA) operator, whereas the hesitant fuzzy quadratic weighted averaging (HFQWA)
operator has been used in model 2 to get the best compromise solution. In models 3 and 4, the hesitant fuzzy
weighted geometric (HFWG) and hesitant fuzzy quadratic weighted geometric (HFQWG) have been used to
obtain the overall best possible solution.

3.5. Solution procedure

To transform the optimization model (3.1) into a hesitant fuzzy model (3.12) (with the hesitant fuzzy envi-
ronment), one needs to solve each objective function individually and has to determine the bounds Uy and
L. By using Uy and Ly, construct the preferred membership functions under hesitant fuzzy environment as
given in equations (3.4) and (3.5) respectively. The optimal choice of membership function can be varied with
practical problems, and one can choose a specific one from a set of well-defined membership functions (Linear,
Triangular, Trapezoidal, Exponential, Parabolic, Hyperbolic, etc.). For this study, we have specifically chosen
linear and non-linear (hyperbolic membership) functions to demonstrate the efficacy of our proposed method.
After considering a specific membership function, the different hesitant values can be assigned based on experts’
choices. The expert can provide the value of d,, defined in equations (3.4) and (3.5). One can select the desired
hesitant fuzzy aggregation operator and formulate the computational models under a hesitant fuzzy environ-
ment as shown in equations (3.16)—(3.19). The constructed model can be solved using suitable techniques or
some optimizing software packages [21] to obtain a compromise solution. The solution process can be shown in
the following algorithm form.

Algorithm 1: Hesitant Fuzzy Aggregation operators based solution scheme.

1 Solve the objective functions

2 Calculate Uy, L. // Use equation (3.3)

3 Construct a preferred membership function. // Use equations (3.4) and (3.5)
4 Choose different hesitant values.

5 Select a desired hesitant fuzzy aggregation operator.

6 Formulate a model under hesitant fuzzy environment.

7 Solve the model numerically.

4. EXPERIMENTAL STUDY

We have adopted the numerical example of manufacturing system presented in Ahmad et al. [24] and Singh
and Yadav [8]. The decision-maker(s) of the company intends to maximize the total profit incurred over products
and minimize the total time required for each product, and also, the decision-maker(s) seeks three experts’
opinions in the decision-making process. Therefore, the crisp nonlinear multiobjective programming problem
formulation is defined as follows:

Max Zi () = 99.87527 — 8z, + 119.87523 — 10.125x5 + 95.12523 — 8
Min Zs(z) = 3.87521 + 512522 + 5.9375x
5.t. 2.062521 + 3.875z5 + 2.9375z5 < 333.125
3.87521 + 2.062515 + 2.0625z5 < 365.625
2.93752, + 2.062525 + 2.937525 > 360

x1,%2,23 > 0.

A~~~ o~ o~
Ll o

S T A W N
= I D D = —
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One can solve each objective function individually to obtain the individual best solution, along with lower
and upper bound for each of the objective function.

X! = (57.82,13.09,55.53), X2 = (62.26,0,60.28) along with L; = 180.72, U; = 516.70, Ly = 599.23 and
U, = 620.84.

Three experts assigned their hesitant values as 6; = 0.96, 62 = 0.98 and 3 = 1 respectively.

For this multiobjective nonlinear programming problem under hesitant fuzzy environment, one can formulate
the following model based on different choice of fuzzy membership function.

1. Using linear membership function

Model 1:
2 3
Max HFWA (ufl,ufa - ,ufn) =3 Wi <1 ~TJa- a;m)“’">
k=1 n=1
71 (x) — 180.72
4. 0.96 21 T 2002
° 516.70 — 180.72 =
71 (z) — 180.72
0.98 2L 0L 02
516.70 — 180.72 = 12
Zi(x) ~180.72 _
516.70 — 180.72 — ~ **
620.84 — Zs(z)
0.96 —2 02 = £21T)
620.84 — 599.23 = %
620.84 — Zo ()
0.98 o= Z21F)
620.84 — 599.23 = 4?2
620.84— Zo(w) _
620.84 — 599.23 = %3
2.062521 + 3.87525 + 2.937525 < 333.125
387521 + 2.062525 + 2.062525 < 365.625
2.937521 + 2.062525 + 2937525 > 360
r1,T,23 > 0,0 < ag, <1 Vk=1,2;, n=1,2,3. (4.7)

Model 2:

N|=

2 3
Max HFQWA (HEI ) ,U527 sy NEJ") = Z Wk (1 - (1 - O‘i'rL)wn)
k=1

n=1
s.t. (4.7).
Model 3:
2 3
Max HFWG (ufl,,ufz, . ,uf") = ZWk (1 — (1 — H(l -(1- Ockn))w"))
k=1 n=1
s.t. (4.7).
Model 4:
) ]
Max HFQWG (4, uf?,....nf") = > Wi | 1 (1 -0 a5>>w”>
k=1 n=1

s.t. (4.7).
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2. Using hyperbolic membership function

Model 1:

2 3
Max HFWA (ufll,ugz, . ,,ug") = Z Wi (1 — H (1- Oélm)wn>
k=1 n=1

0.96 0.96 ¢121—348.7130.0178 _ ,—{Z1—348.71}0.0178

—_— >
5 T (71 —3487130.0178 | o—{Z:-348.71}0.0178 — M1

0.98 .98 ¢121—348.7130.0178 _ ,—{Z1—348.71}0.0178

s.t.

>
2 + 9 {Z1-348.71}0.0178 | o—{Z,—348.71}0.0178 = Q12
1 1el#1—-348.7130.0178 _ ,—{Z1—348.71}0.0178

-4 = >
2 " 9 e{Z1-348.71}0.0178 | —{Z1—348.71}0.0178 = 13
0.96 (.96 ¢{610.035—2:}0.2776 _ ,—{610.035—25}0.2776

_ >

2 9 ¢{610.035-22}0.2776 1 —{610.035—22}0.2776 — Q21
0.98 (.98 ¢{610.035—25}0.2776 _ ,—{610.035—25}0.2776

. . <

2 9 {610.035-25}0.2776 | ,—{610.035—2}0.2776 — Q22

610.035—Z5}0.2776 _ ,—{610.035— Z2}0.2776
1 le e

9 " 9 ¢{610.035-22}0.2776 | —{610.035—Z5}0.2776 > Qo3
2.0625x1 + 3.875x15 + 2.9375x3 < 333.125

3.875x1 + 2.0625x5 + 2.0625x3 < 365.625

2.9375x1 + 2.0625x5 + 2.9375x3 > 360

Ty, 29,23 > 0,0 < ap, <1 Vk=1,2; n=1,2,3. (4.8)
Model 2:
3 3
Max HFQWA (,ugl , u%, cee ,ug") Z Wi ( H akn )
= n=1
s.t. (4.8).
Model 3:
2 3
Max HFWG (uﬁl,u%, e ,u%‘) = Z Wy <1 — ( H (I1-(1- akn))w'”))
k=1 n=1
s.t. (4.8).
Model 4:
2 3 3
Max HFQWG (ﬁl,ﬁ?,...,@n):ZWk 1—( [Ta-(-a2) )”")
k=1 n=1
s.t. (4.8).
wy, = (w1, ws,...,w,) be the weight vector assigned to each hesitant fuzzy element, with w, € [0,1] and
25:1 w, = 1.

At wy = wy = w3z = % and by tuning the different pairs of weight Wi, Wy = (1 — W;) assigned to each
objective functions, the optimal solutions set are obtained and summarized in Tables 1 and 2.

All the proposed models have been written in AMPL language and solved using available solvers on NEOS
server on-line facility provided by Wisconsin Institutes for Discovery at the University of Wisconsin in Madison
for solving Optimization problems, see Dolan [21].
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TABLE 1. The optimal compromise objective values using linear membership function.

Weight Optimal objective values: (Z1, Z2)

(W1, W2) Model 1 Model 2 Model 3 Model 4
(0.1,0.9)  (184.56,599.47) (184.69,599.22) (210.56,599.73) (215.53,599.86)
(0.8,0.2) (236.65,599.43)  (236.74,599.34)  (243.45,599.37)  (247.87,599.65)
(0.3,0.7) (279.87,600.54)  (279.36,600.75)  (281.34,600.34)  (283.40,600.29)
(0.4,0.6)  (323.34,602.95) (323.74,602.91)  (324.64,602.84) (324.32,602.76)
(0.5,0.5) (372.39,604.76)  (372.49,604.89) (373.45,604.59) (373.28,604.69)
(0.6,0.4)  (428.37,609.69) (428.43,609.22)  (428.32,609.74)  (428.93,609.75)
(0.7,0.3) (516.50,620.27)  (516.81,620.26)  (490.45,616.23)  (490.18,616.35)
(0.8,0.2) (516.64,620.24) (516.48,620.67) (516.87,620.29) (516.46,620.74)
(0.9,0.1) (516.29,620.65) (516.49,620.64) (516.28,620.76) (516.35,620.56)

TABLE 2. The optimal compromise objective values using hyperbolic membership function.

Weight Optimal objective values: (Z1, Z2)

(W1, W2) Model 1 Model 2 Model 3 Model 4
(0.1,0.9) (358.46,603.56)  (358.87,603.34)  (359.63,603.24)  (360.34,603.21)
(0.8,0.2)  (375.32,604.34) (375.34,604.34) (375.23,604.24)  (375.23,604.98)
(0.3,0.7) (384.24,605.34)  (384.67,605.23)  (384.34,605.65) (385.38,605.45)
(0.4,0.6) (391.74,605.73)  (391.28,605.87) (391.84,605.97) (392.45,605.87)
(0.5,0.5) (398.56,606.37)  (397.52,606.62) (398.82,606.12) (398.32,606.92)
(0.6,0.4) (404.43,606.29)  (404.68,606.45)  (404.28,606.93)  (404.45,606.46)
(0.7,0.3)  (411.78,607.45) (411.18,607.98) (410.48,607.87) (410.47,607.45)
(0.8,0.2) (419.27,608.86)  (419.45,608.56)  (419.48,608.29)  (419.57,608.76)
(0.9,0.1) (435.56,609.39)  (435.45,609.48)  (434.69,609.45) (434.39,609.65)

5. RESULTS AND DISCUSSIONS

The compromise solution has been obtained using linear and hyperbolic membership functions under four
models with different crisp weights, as shown in Figures 1 and 2, respectively. The weights given to the first
objective are chosen randomly between 0 to 1 and assigned by the decision-maker(s) according to his/her(their)
satisfaction level, whereas weights given to the second objective complement the weight given to the first
objective function, respectively. The sensitivity analysis has also been performed by tuning the weight parameter,
and the obtained results can be revealed in the following three aspects:

1. Based on assigned individual weight to each objective function

The solution results obtained by using the linear membership function has been interpreted as follows:

In model 1; at weights (0.1,0.9) assigned to first and second objective function, the value of each objectives
are (184.47,599.23), while at (0.5,0.5), the values are (372.92,604.62) and at (0.9,0.1), the objective values
reaches to (516.37,620.84) respectively.

As the assigned weight is increasing for the first objective, the value of the first objective is increasing and
reaches almost its best solution while at the same time the assigned weight is decreasing for the second objective
and the value of the second objective is also increasing and reached to almost its worst solution.

In model 2; at weights (0.1,0.9) assigned to first and second objective function, the value of each objectives
are (184.50,599.23), while at (0.5,0.5), the values are (372.92,604.62) and at (0.9,0.1), the objective values
reaches to (516.37,620.84) which is almost individual best and worst solution of each objectives respectively.
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FIGURE 1. Solution results using linear membership function with different weights.
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FIGURE 2. Solution results using hyperbolic membership function with different weights.
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It is found that with the increase(decrease) in the weights of the first(second) objective function, the values
are approaching towards its best(worst) solution.

In model 3; at weights (0.1, 0.9) assigned to first and second objective function, the value of each objectives
are (210.27,599.33), while at (0.5,0.5), the values are (373.09,604.64) and at (0.9,0.1), the objective values
reaches to (516.37,620.84) which is almost individual best and worst solution of each objectives respectively.

It is noted that with the increase(decrease) in the weights of the first(second) objective function, the values
tend towards their best(worst) solution.

In model 4; at weights (0.1, 0.9) assigned to first and second objective function, the value of each objectives
are (215.35,599.33), while at (0.5,0.5), the values are (373.24,604.64) and at (0.9,0.1), the values reaches to
(516.37,620.84) which is almost individual best and worst solution of each objectives respectively.

It is concluded that with the increase(decrease) in the weights of the first(second) objective function, the
values are reaching their best(worst) solution.

The solution results obtained by using the hyperbolic membership function has been interpreted as follows:

In model 1; at weights (0.1,0.9) assigned to first and second objective function, the value of each objectives
are (358.03,603.72), while at (0.5,0.5), the values are (398.01,606.38) and at (0.9,0.1), the objective values
reaches to (435.97,609.68) respectively.

As the assigned weight is increasing for the first objective, the value of the first objective is also increasing
and reaching its best solution while at the same time the assigned weight is decreasing for the second objective,
the value of the second objective is also increasing and reaching to its worst solution.

In model 2; at weights (0.1,0.9) assigned to first and second objective function, the value of each objectives
are (358.03,603.72), while at (0.5,0.5), the values are (397.88,606.39) and at (0.9,0.1), the objective values
reaches to (435.15,609.70). It is noted that with the increase(decrease) in the weights of first(second) objective
function, the values are approaching towards its best(worst) solution.

In model 3; at weights (0.1,0.9) assigned to first and second objective function, the value of each objectives are
(359.41,603.80), while at (0.5,0.5), the values are (398.09, 606.40) and at (0.9,0.1), the objective values reaches
to (434.42,609.62). It is concluded that with the increase(decrease) in the weights of first(second) objective
function, the values are reaching towards its best(worst) solution.

In model 4; at weights (0.1,0.9) assigned to first and second objective function, the value of each objectives
are (360.72,603.80), while at (0.5,0.5), the values are (398.94,606.40) and at (0.9,0.1), the values reaches to
(434.69,609.55). It is observed that with the increase(decrease) in the weights of first(second) objective function,
the values are tending towards its best(worst) solution.

2. Based on the performance of hesitant fuzzy aggregation operators

To develop our computational scheme, we have used two distinct hesitant fuzzy aggregation operator fam-
ilies, namely; (a) weighted averaging and (b) weighted geometric. One can use any values of A, but we have
demonstrated results by considering A = 1 and A = 2 for both the families.

In the case of the linear membership function, the compromise solution obtained by using HFQWA is better
than HFWA, i.e., (HFQWA > HFWA) and likewise, the performance of HFQWG is better than HFWG, i.e.,
(HFQWG > HFWG) for all different combination of weight assigned to both objectives. Whereas in the case
of the hyperbolic membership function, the compromise solution obtained by using HFWA is better than
HFQWA, i.e., (HFWA > HFQWA) and similarly, the performance of HFQWG is better than HFWG, i.e.,
(HFQWG > HFWG) for all different values of weight assigned to both objectives. Therefore, the best selection
of aggregation operator depends on the decision-maker(s) choice because each aggregation operator is well
enough to provide an efficient solution based on different preference criteria.

3. Comparison between the performance of linear and hyperbolic membership functions

Under hesitancy, the linear and hyperbolic membership function concept is a benefit because it allows the
decision-maker(s) to seek opinions from different experts in any decision-making process. In the case of the linear
membership function, after combining all four models, it can be observed that the best and worst solution value



MULTIOBJECTIVE OPTIMIZATION PROBLEM USING HESITANT FUZZY AGGREGATION OPERATOR 289

of the first objective is 516.37 and 184.47, whereas the best and worst solution value of the second objective is
599.23 and 620.84. Therefore, it provides a wide range of optimal solutions set by tuning the weight parameter
assigned to each objective function.

For the hyperbolic membership function, the best and worst solution value (combining all four different
models) of the first objective is 435.97 and 358.03, whereas the second objective’s best and worst solution
value is 603.72 and 609.70. It comparatively (comparison to linear membership) a narrow range of the optimal
solutions set for both the objective functions by tuning the weight parameters. Therefore, the use of linear
membership function under hesitancy provides more flexibility to generate the different optimal solutions and
covers a wide range of decision-making solution spectrum, which offers an opportunity to the decision-maker(s)
to select the most desired set compared to hyperbolic membership function.

Comparative study with other existing approaches

The plausible solution of the experimental study presented in Section 4 can also obtain using three other crite-
ria, namely; Zimmerman’s technique, vy-operator and Min. bounded sum operator (see [24]). The optimal compro-
mise solution using these three methods are (409.70, 607.28), (288.86,599.64), and (416.58,607.88), respectively.
All these three solutions set also lie in the same coverage spectrum of solution set obtained by our proposed com-
putational scheme with linear membership function with a combination of different values of weights. A variation
on the weight parameters helps achieve a better solution compared to the other existing methods. Therefore,
one can conclude that the proposed computational modeling scheme provides a generalized framework for get-
ting different optimal solutions set by tuning the weight parameters. Apart from this specific contribution, the
following points reveal the superiority of the proposed computational modeling approach over the method used
by Singh and Yadav [24].

(1) To the best of our knowledge, the hesitant fuzzy aggregation operator has not been used for the global
evaluation of the multiobjective optimization problem under a hesitant fuzzy environment. Therefore, this
work filled this gap and laid down the new base of future research scope in the hesitant fuzzy domain.

(2) The representation of linear and hyperbolic membership function under hesitancy for marginal evaluation
of different objective functions provides an opportunity for the decision-maker(s) to express his/her(their)
degree of hesitation effectively. It also provides a more general framework for the involvement of different
experts’ opinions in the decision-making process. The method used in [24] does not consider these vantages.

(3) The proposed computational models offer an opportunity of selecting the most desired/preferred optimal
solutions set by tuning the weight parameter, whereas the method used in Singh and Yadav [24] has no
such facility.

6. CONCLUSIONS

This study investigated a new optimal computational scheme for solving a multiobjective optimization prob-
lem in a hesitant fuzzy environment. The proposed scheme comprises different hesitant fuzzy aggregation opera-
tors for obtaining the global solution of the multiobjective optimization problem. Under hesitancy, the utilization
of linear and hyperbolic membership functions provides a practical framework and computes the marginal eval-
uation of decision-maker(s) satisfaction and the different experts’ opinions. It also enables the decision-maker(s)
to execute his/her strategy to generate the most desired solutions. The sensitivity analysis for the optimal
solution has been performed by adjusting different weight parameters, resulting in conflicting optimal solutions.
Therefore, the proposed scheme would be helpful as it allows the active involvement of different experts’ opin-
ions, especially when the decision-maker(s) is(are) not sure about the values of parameters and having some
confusion in implementing his/her strategy directly in any decision-making process.
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6.1. Supplementary material

Remark 6.1. « N
HEFWA (ugl,uﬁz,...,ugn) :ZWk< H 1—agy)®” ) (6.1)
k=1 n=1
The above equation (6.1) can be lower bounded as follows:
K
HFWA (uﬁl,,ﬂja . ,uﬁn) >3 Wil — (14 CMy,)"™) (6.2)
k=1

where, C = va:l ¢ and ¢ = 27]:]:1 (=1)"0p, c2 = ij:l’#j 805, ..y en = (—=)"6162...0n.

Proof. Considering the fact that
wa" (Zi(@) = arn

and For a fixed k = kg one can rewrite the above relation as:
E,
A" (Zro (%)) = ko
It is clearly shown that
—Qkgn > —an (Zko (1‘))
Therefore,
(1 - akon)wn 2

1 n

=
=

(1= i (Zaga))) (6.3)

n

1

The above equations (6.3) can be generalized as

K N w,
Z Wi <1 - H akon)w”> >3 Wi (1 -1I (1 — B (Z, (:c))) ) (6.4)

n=1 k=1 n=1

Now opening the each product term from the right hand side of the equation (6.4), one can write as follows:

wy

ﬂ (1= @) = (1= Zag @) (1= 15 (@) ot (1= 1Y (Ze @)
= (1= 5 Zno@) (1= 12 o))+ (1= 5 (Ziy )

Here we have considered, equal weights i.e., w1 = ws = ... = wy
The above equation (6.5) finally simplified as

N
I1 (1 — s (Z, (90))) D= (1 (<0 My,)) (14 (=02 M) . (1 + (—0n5 My, )™
n=1

N N N
( Z " (8; Mp,) Z 1) (8:0;My) + > (—=1)*" (810,06 My,) + ..
n=1 n=1 n=1
N WN
+ 3 (=1)"(8:0;0k . . 5NMkO)>
n=1

=1+ (a+ec+...+en) M) =1+ C Mg,)"™
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Here we have defined C =¢; +co+ ...+ ¢y and §; = 6162 ... 0. Finally,

K N Wn K
Sowi( 1= TL(1 -5 @) | =D Wall = (1+C My)"™). (6.5)
k=1 n=1 k=1
Combining equations (6.4) and (6.5), we can state that,
K N K
S Wi 1= [T = k)™ ) =D Wi(1 = (14 CMy,)").
k=1 n=1 k=1
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