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TWO NEW HAGER-ZHANG ITERATIVE SCHEMES WITH IMPROVED
PARAMETER CHOICES FOR MONOTONE NONLINEAR SYSTEMS AND
THEIR APPLICATIONS IN COMPRESSED SENSING

MOHAMMED YUSUF WAZIRI'®, KABIRU AHMED!*,
ABUBAKAR SANI HALILU?**® AND JAMILU SABI'U3#

Abstract. Notwithstanding its efficiency and nice attributes, most research on the Hager-Zhang (HZ)
iterative scheme are focused on unconstrained minimization problems. Inspired by this and recent
extensions of the one-parameter HZ scheme to system of nonlinear monotone equations, two new HZ-
type iterative methods are developed in this paper for solving system of monotone equations with convex
constraint. This is achieved by developing two HZ-type search directions with new parameter choices
combined with the popular projection method. The first parameter choice is obtained by minimizing the
condition number of a modified HZ direction matrix, while the second choice is realized using singular
value analysis and minimizing the spectral condition number of a nonsingular HZ search direction
matrix. Interesting properties of the schemes include solving non-smooth problems and satisfying the
inequality that is vital for global convergence. Using standard assumptions, global convergence of the
schemes are proven and numerical experiments with recent methods in the literature, indicate that the
methods proposed are promising. The effectiveness of the schemes are further demonstrated by their
applications to sparse signal and image reconstruction problems, where they outperform some recent
schemes in the literature.
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1. INTRODUCTION

The fields of sciences, engineering, industry and other important areas of human endeavor employ vital
applications with models in the form of system of nonlinear equations. Various examples have been considered
in this areas in recent years.

Generally, the system of monotone nonlinear equations is formulated by:

g(z) =0, zeR", (1.1)
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where ¢ : R" — R" represents a continuous nonlinear mapping, which satisfies the monotonicity condition
(g(x) — g(y))T(x —y) >0, for all vectors z,y € R". (1.2)

This paper focuses on the constrained version of (1.1), where the vector x lies in a nonempty closed convex set,
say © C R". A number of applications involve the monotone equations in (1.1) and its constrained version.
For example, in radiative transfer and transport theory [38], the popular Chandrasekhar integral equation, is
decretized and presented as (1.1). In signal and image processing problems [36, 78], monotone equations are
presented as ¢1-norm optimization problems. For more on the applications, see [52, 63, 86]. Several iterative
schemes for finding solutions of monotone equations exists, and the most popular ones are the Newton and
quasi-Newton schemes [12, 17,45, 69], which possess rapid convergence properties. These methods, however
require huge matrix storage at each iterations, which makes them unpopular when engaging problems with
large dimensions. As a result, derivative-free methods have been introduced [1,32,33,50,74,77].

Conjugate gradient (CG) method for unconstrained optimization problems is the preferable choice and most
appropriate alternative to the aforementioned schemes, when dealing with problems with large dimensions. This
is due to the fact that the scheme requires less memory to implement and possess strong convergence properties
[7,49]. The CG iterative schemes are mostly applied to solve the following minimization problem:

i 1.3

min y(z), (1.3)

with 1) : R" — R representing a real-valued nonlinear mapping, whose gradient is attainable. If the merit
function + is defined by 1 := (3)|lg()||*, where || - || represents the Euclidean norm, then (1.1) is clearly
equivalent to the global optimization problem represented in (1.3). The CG method is implemented using the

following recursive formula
0 €ER", xpy1 =wp +tpdy, k>0. (1.4)

In (1.4), zx denotes the current iterate, t; a step length obtained using any proper line search procedure, and
dy, represents the CG search direction given by

d() = —V’(/J(l‘o), k = 07
dp = —V’(/J(%k) + Brdi_1, k>1, (1.5)

where [ is an essential parameter, which distinguishes the CG schemes [3]. Over the decades, numerous CG
algorithms conforming to various types of 8 in (1.5) were presented (see [8,9,15,21,51,65,71]). Although these
methods often display numerical efficiency (see [6, 10, 14, 25,26, 40]), in most cases the search directions they
generate are not descent directions, namely, the condition

Vi (zp) dy < —®||Vo(zp) >, @ >0, V. (1.6)

may not be satisfied by the methods. In order to remedy this deficiency, researchers in recent years have engaged
more on CG methods with descent directions. By exploiting Perry’s approach [56], Liu and Shang [47] developed
a CG method with descent search directions, that yield prototypes on which other specified versions of the Perry
scheme such as Hestenes—Stiefel [37] method and the Dai and Liao method [14] are developed. In [48], a new
Perry CG method, which generates descent search directions irrespective of the line search used, was developed
by Liu and Xu. By considering the self-scaling memoryless BEGS update, Andrei [4] proposed an adaptive class
of Perry-type CG algorithms with descent search directions that are obtained as a result of symmetrization of
the CG direction in [56].

Motivated by the nice properties of CG methods for unconstrained optimization, researchers have proposed
their extensions for solving (1.1) and its constrained version. By combining a Polak-Ribieré-Polyak (PRP)
scheme [57, 58] with the projection method [64], Cheng [13] developed a CG algorithm for solving monotone
nonlinear equations, which converges globally to solutions of the given problems. The authors, however indicated
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that global convergence of the method is dependent on its monotonicity and Lipschitz continuous property only.
Also, Yu [81] presented a version of the classical PRP [57,58] method for solving nonlinear systems of equations.
As with typical CG methods, the scheme is derivative-free and utilizes the line search procedure, modified by
Grippo et al. [27] and Li-Fukushima [44]. Furthermore, Dai et al. [16] also proposed a derivative-free method for
solving monotone nonlinear equations by combining the modified Perry method [49] with the projection method
[64]. The scheme converges globally and is considered as an improvement of the classical Perry method [49]. By
employing a modified secant equation and carrying out eigenvalue study of a modified Dai-Liao search direction
matrix, Waziri et al. [72] proposed an effective CG method, which converges globally for nonlinear systems
of equations. Using a similar approach as in [72], Waziri et al. [70] derived suitable approximations for the
unmodified HZ parameter in [29]. The new parameter choices were used to develop effective search directions,
which were subsequently combined with the projection scheme [64] to develop effective methods for solving
(1.1), which converge globally. Sabi’u et al. [60] improved on the work in [70] by obtaining other choices for the
HZ parameter in [29], which were employed to develop other versions of the scheme in [70]. Recently, Sabi’u
et al. [61] extended the HZ scheme to solve system of monotone nonlinear equations with convex constraint, by
obtaining two other choices for the HZ parameter using singular value approach. For other recent advances in
the literature, the reader is referred to [2,34,35,39,68,71,73,75,76,84]. For this article, two other adaptations
of HZ method, which are extension of the works in [60,61,70] are presented for solving convex constrained
monotone nonlinear equations. This research is embarked upon due to the following considerations:

(i) The HZ method [29] has been well-researched in unconstrained minimization, but its study in constrained
monotone nonlinear equations is rare.

(ii) Only few recent study of the HZ scheme for unconstrained as well as constrained monotone system of
nonlinear equations considers its applications to real life problems and situations.

Attributes of the new methods include satisfying the condition necessary for global convergence, converg-
ing globally to solutions of problems and solving non-smooth problems. Apart from adding to the very few
HZ methods that exist for solving systems of monotone nonlinear equations with convex constraints, another
contribution of the new schemes is their applications in sparse signal reconstruction and image de-blurring
problems.

We organized the remaining sections of the article as follows: Section 2 deals with preliminaries leading
to derivation of the methods as well as their algorithms. Analysis of the methods’ convergence properties
are presented in Section 3 and reports of numerical experiments conducted to highlight effectiveness of the
methods proposed are presented in Section 4. Applications of the methods in compressed sensing are presented
in Section 5. Section 6 is used to make concluding remarks.

2. PRELIMINARIES AND THE PROPOSED METHODS

This section presents preliminaries as well as details involved in deriving the methods proposed. Before we
proceed to derive the methods, we first describe the projection method [64], for which a sequence {z} is
generated, where

2p = Tk + tedp, (2.1)
and t; > 0 is a step size obtained by employing appropriate line search method in the direction dj so that
9(z)" (= ) > 0. (2.2)

Since g is a monotone mapping, then for each of solution z* of (1.1), we can have

g(z)" (2" = 2) = (g(z1) — g(2")) " (@" = 21.) < 0. (2:3)
Hence, by (2.2) and (2.3) we have that the hyperplane

H = {z € R"|g(z4)" (z = 2) = 0}, (2.4)
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separates the current iterate xj strictly from the solution z* of (1.1). In [64], this idea was employed and
the authors suggested that the next iterate xx41 should be the projection of zj onto the hyperplane Hy and
determined as
g(z)" (@x — 21)
Tht1 = Tk — T (Zk) (25)
9(zk)" g(zk)
In [85], Zhang and Zhou presented a new line search with backtracking technique to complete the projection
scheme, where the steplength t; is obtained as

ty = max{cy' :i=0,1,2,...}, (2.6)
satisfying
2
—g(x + tpdy) " di >ty | dil”, (2.7)
with v € (0,1), n > 0 and & € (0,1) is set as the initial value for the steplength ¢;. Here and in the remaining
parts of the article, ||| denotes the ¢o-norm, {-,-) denotes inner product of vectors, gr = g(zx), gr—1 = g(xk—_1),

Yr—1 = g(xg) — g(Tk—1), Sk—1 = Tk — Tx—1, and I(-) stands for the projection operator, which exhibits the
nonexpansive property:
[Ho(z) — o)l < llz—yll, Vz,y e R, (2.8)

and consequently
[Ma(z) —yll < [lz—yll, Vye (2.9)

The assumptions stated below are also required in the next section of the paper:

Assumption 2.1. The mapping g is monotone.
Assumption 2.2. A solution x* € Q exists such that g(z*) = 0.

Assumption 2.3. The mapping g is Lipschitz continuous; namely, there exists a positive constant L such that
for all z,y € R", the following holds:

lg(x) =gl < Lllz —yl. (2.10)

Hager and Zhang [28] presented a CG scheme that is much related to the method by Perry [55] and Shanno
[62]. Particularly, Hager and Zhang [28,30] presented the scheme as

dr, = —Vibg + Br di—1, do = —Vo, (2.11)
T 2q, T

ﬁ]]c\f —_ Z;’/}k Yk—1 72Hyk—,1TH Vl/)/c dg_l. (212)
k—1Yk—1 (df_ yr—1)

A remarkable feature of the method in (2.11) and (2.12) is that it generates descent directions, i.e., the condition

7
Vyldy < —glIVunll®, k> 1, (2.13)
is satisfied. In furtherance of (2.11) and (2.12) and to achieve global convergence, Hager and Zhang [28, 30]
improved on it and gave a modified version with update parameter
-1
||| min{7, [ Ve||}

were 7] is a positive constant. Furthermore, by making some modifications in the classical Hestenes—Stiefel (HS)
[37] scheme, Hager and Zhang [29] proposed the following one-parameter CG update:

Vi Y1 o, lyr—1l* Vi di—1
d%ﬂflyk—l dgflyk—l dzllyk—l 7

O =max{BY, i}, = | (2.14)

B = (6 > 0). (2.15)
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It can be observed that for 6 = 2, (2.15) reduces to the scheme in (2.12). Considering that the parameter 6
is nonnegative, researchers in recent years have shown interests in finding appropriate values for the parame-
ter. By conducting eigenvalue study Waziri et al. [70] modified the HZ scheme (2.15) and gave the following
approximations for the parameter 6y:

(nglyk—lf

Or1 = Rl — R2—F1200) (2.16)
(7 T
where R1 > % and R2 < 0, and
st Zn_ 2
0k2::R34—R44§;E1%f13243, (2.17)
21"l skl
where (00,0}
smax{vy, s
Zk—1 = Yk—1 + Cﬁdk—la v = 6(Yr—1 — ) + 3(gr—1 + gk, Sk-1), (>0, (2.18)
k—1%k—1
with R3 > 1 and R4 < 0. Clearly, in both (2.16) and (2.17) 6 > 1, for which the authors showed that the
scheme in [70] satisfies the inequality necessary for global convergence, namely
gbdy < =D|gell>,  VE>1. (2.19)

By minimizing the Frobenius condition number of a search direction matrix as well as minimizing the difference
between the smallest and largest singular value, Sabi’u et al. [60] presented two HZ-type schemes with the
following approximations of the HZ parameter:

(3571“776—1)2

= ————5—3, (2.20)
[sk—1lI”[|0k—1]]
and
[Isk=1llllwg—1l
00 =4 ———, 2.21
k2 Sf_lﬂikq ( )
where

_max{vg, 0}

Wg—1 = Yk—1+p Sk-1, p€[0,1]. (2.22)

s ]”
The authors proved that the methods are effective and converge globally under mild conditions. Recently,
inspired by the work in [8,60,70], Sabi’u et al. [61] proposed two other HZ-type methods for convex constrained
monotone equations with the following parameters:

sT 2
Ors =1+ |1+ (’“’“) , (2.23)

k-1 [lllwg—1|

and
2 — 2 - 2 4 _ 4
g _ IsialPlmeal (sF- 1) sl lme s yol
k4 — T - 2 + 20 — 2 + T - 4 ( : )
(sF_ wp—1) l[sk—1 " |wk—1]] (sF_ wp—1)
where (04,01
_ _maxy Vg _
Wg—1 = Yg—1 + pi’sk_l, p€[0,1]. (2.25)

lsk—]*

Still, finding optimal values for the parameter 6y of the one-parameter HZ method is open for research. So,
with inspiration from the works in [60, 61, 70], we also propose two optimal choices, for the HZ parameter,
and consequently present two modified HZ methods for system of nonlinear monotone equations with convex
constraint, which are effective and always satisfy the condition (2.19).
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2.1. First proposed method
By considering (2.15), we suggest a modified HZ search direction defined by

T = 2 T

9k Yk—1 Yk—1 9k Sk—1

dp = —gr + Tk — — bk ~HT H NTk Sk—1, (2.26)
Sp—1Yk—1 Yie—15k—1 Yp_1Sk—1

where §x_1 = yr—1 + cSp—1, with c€ R, ¢ > 0.
Proposition 2.4. For all k > 0, the search direction presented in (2.26) is well-defined.

Proof. For (2.26) to be well-defined, g,{flsk_l must not be equal to zero. Using the definition of y;_1, we have
Tirsko1 = (ys—1 + esi1)sko1 = (9(zn) — g(@e—1))" (@ — 2x1) + sk %, (2.27)
and applying the monotonicity of the mapping g, yields
b 151 = cllsk—a]® > 0. (2.28)
|
Also, equation (2.26) can be re-written as
dr = —Ergr, (2.29)

where Ej, in (2.29) is a search direction matrix defined by

Ikl sk-157_1
ngflSk—l 331371316—1

7
Sk—1Yk—1

Ey,=1-—
y%lygk—l

+ 05

(2.30)

Interestingly, equation (2.30) is similar to the quasi-Newton scheme in [65], whose updating scheme is defined
as

~T T 2 T
Sk—1Yp_1 T Yk—15k_ _ Sk—1Sj,_
Hy=1- umd L+ Hﬁ’“ 1 et (2.31)
Yie_15k—1 Yi_15k—1 ) Yp_15k—1

where Hj approximates the inverse Hessian V2@[J(xk)71. Since Ej is a rank-two update, with the formula in
[65], namely
det (I + ajal + agaf) =(1+ alTag) (1+ a3Ta4) — (alTa4) (azTag), (2.32)
we obtain its determinant as ) )
| gr—1l"lIsk—1l"
_ 2
(F1_15%-1)

It can be observed that the matrix in (2.31) is symmetric but the matrix Ej in (2.30) is not. So, to obtain
a similar form for (2.30) as (2.31), we need to symmetrize Ej. Using Perry’s approach [56] and employing a
rank-one update, we obtain the following version of (2.30):

det(Ek) = Qk (233)

 Ske1Pho T h-184g Lo, [ Sk—15k_1

Ak =1
~T ~T ~T
Yie_15k—1 Yie_15k—1 Yp_1Sk—1

(2.34)

It is observed that if we take

~T
Sk—
O =1+ 1Bl (2.35)
G-
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then Ay reduces to the memoryless BFGS method discussed in [5] and defined by (2.31). Using (2.34), we
present the revised search direction as
dk- = *Akgka 0, 1, e (236)

Now, in order to obtain another appropriate choice for the parameter 8, that will consequently guarantee the
condition (2.19) as well as conditioning of the symmetric matrix Ay, we conduct eigenvalue analysis of Ay.

Theorem 2.5. Let the matriz Ay be given by (2.34) with 0, > 1,Vk. Then the eigenvalues of Ay are 1, with
multiplicity (n — 2), f,j and &, . Also, the last two eigenvalues 5,‘: and & are positive real numbers.

Proof. By (2.28) gjg_lsk_l > 0, therefore, each vectors §x_1 and s;_1 are nonzero. Let ¢ be the vector space
spanned by 71 and s;_1, namely, ¢ = span{gx_1,5x_1} C R", then dim(s) < 2. Also, let ¢* be the orthogonal
complement of ¢, then dim(¢*) > n — 2. Therefore, a set of mutually orthogonal vectors {v}, ;}""? C ¢t exists
such that

231{—1’/12—1 = 5%—1’/11—1 =0, (2.37)

which from (2.34) leads to 4 4 4
At =Alvi  =vi , i=1,...,n—2. (2.38)
So, for i =1,...,n — 2, vi_,, represents eigenvectors of the matrix A, corresponding to eigenvalue 1 each. Let

the other two eigenvalues of Ay be Elj and ¢, respectively. From (2.34), we can re-write Ay, as

T
. - - 2
Sk—1 ((ykT,lsk—1)yk—1 | 5k—1> Teo1sT

Ak‘ = I — ~ I
(37,?,151@—1)2 Jio18k-1

(2.39)

which clearly represents a rank-two update. So, using similar approach as in the previous case, we obtain the
determinant as

2~ 2 2~ 2
ot = gyl Pl sl el .10
Y _1Sk—1 Yp_15k—1
Also, from (2.34) and the fact that for a square symmetric matrix, the trace is equivalent to sum of its eigenvalues,
we obtain ) )
skl NFr—1ll

trace(Ag) =n — 2+ 0 =
Yie—15k—1Yp—15k—1

=14...+1+4& +&7, 2.41
+.. o+ 146+ &, ( )

(n — 2) times

for which we have ) )
st 123>

& +& =0 — > (2.42)
(T 156-1)
From (2.42), we see that for 6 > 0,
& +¢, >0 (2.43)
Therefore, for the matrix Ay to be positive-definite, we require
cre g s lPlmeal®  Isoallanl® | -
bk UL sk—1 Uiy sk—1
Utilizing (2.40) we see that (2.44) is satisfied if
O > 1. (2.45)
Now, for simplicity, we set
2 ~ 2
_ skl lge—a ™ (2.46)

(i‘jkquk—l)z
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Hence, by utilizing (2.40) and (2.42), & and &, are obtained as the roots of the quadratic equation:

€2 — Opuré + Opuy — uy, = 0. (2.47)
Specifically, we can write
+ 1 2
fk = B [Hkuk + \/(Gkuk — 2) + 4(0ruy — 1)} (2.48)
Utilizing (2.45), (2.46), the Cauchy—Schwartz inequality and performing some algebra, we have that
0<& <1<t (2.49)
O

Now, multiplying through (2.39) by gi and setting &, = £ € (0, 1), we have
A gr = —gf Argr < —€llgkl® < 0, (2.50)

for which the positive definiteness of Ay is satisfied.

Definition 2.6 ([67]). Given any arbitrary nonsingular matrix H, the condition number of H is a scalar x(H),
which is defined by B o
w(H) = = 7. (2.51)

In [67], it was noted that decreasing the condition number can improve the numerical stability of a matrix-
based computational process. Hence, an optimal choice for 8, for which the condition number of Ay, is minimized,
is determined by minimizing the distance between the eigenvalues 5; and ¢, and making them as close as
possible. Namely, the optimal value of 8, is given by

(ggf13k—1)2

— " (2.52)
k-1 "l Gk—1]]

O = arg min (& — &) =2
k

Still, equation (2.52) as defined may fail at some instances to satisfy (2.45), in which case Ay cannot be positive-
definite. So, to guard against such situations, we propose the following choice for the parameter 6y:

05y = max{0p1,9}, 9 € (1,00). (2.53)

We therefore, write the revised modified HZ update parameter as

« T~ ~ 2 T
00 _ Ik Yk—1 0%, [Fk—1ll"  gj sk—1 (2.5)

~ ~ ~ ) .
g Sfflykq sf,lykq 3£,1yk71

with search direction given by

dgzl = —4go, k=0,

AR = —gp 4 sy, k=1,2,..., (2.55)
where ﬁZ’tl is as defined in (2.54).
Lemma 2.7. The search direction defined by (2.54) and (2.55) satisfies the inequality,

gldi < —®|lgull>, k=0,1,2,..., (2.56)

_ 1 * 1
where ® = (1 — %) and 07, > ;.
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Proof. For k = 0, using (2.55) we have g'dy = ||go||?, where ® = 1. Now, for k > 1, we consider two cases.

Case 1. 9 > 0y, then 0}, = 9. So, using (2.54) and (2.55), we have

gl (oF sk0)?

T~
o5 2 Ik Ye—1
g dit = —llgell” + F——gi sk s
Sk—1Yk-1 (sk_lyk_l) (2.57)
- - 2 . . 2 ’
k1 (st k1) (97 se—1) = llgrll” (s Gk —1)* = Ol Ge—1lI” (9§ 1)
= N 2
(st—19k-1)
By setting u; = \/%(sfflgjk_l)gk, Uy = v/ Zﬁ(ggsk_l)gjk_l and applying the inequality,
T 1 2 2
up g < g ([l ]* + [luz]?), (2.58)
on the first term of the second equality in (2.57), we obtain
~ 2 2 ~ 2 2 ~ 2
gL < —(1 = &) (T 10k=1) "Nlgell” + O ge—1lI" (9F sk-1)" — IFr—1l" (9% s%-1)
k% = ~ 2
(8k—1,Fk—1) (2.59)

IR T
——(1- 35 lar®

Case 2. ¥ < 01, then 0}, = 01, where 0 is as defined in (2.52). So, using (2.54) and (2.55), we have

_ ~ 2 2
Ok llgn—1 1" (g s1-1)

T~
o5 2 Ik Yk—1
ngdkkl = —|lgxll +5Tkﬁ91{5k—1 (T - )2
k—1J8— Sp—1Yk—1
2.60)
~ ~ 2 ~ 2 = ~ 2 (
- g,?yk_l(sf,lyk_l)(g,fsk_l) — llgwll (8{,1%—1) — O |Gk (ngSk—l)
= - 2
(st_19k-1)
Applying similar argument as in case 1, we obtain
_ 2 2 a7 = 2 2 7 s 2
o (0 ) Toai) e + Bl s 511)” — Bl (0 1)
G di < T -~ 2
(sk_17k-1) (2.61)

1 2
(1 — )
(1= 55 Il

So, if 0,1 =0 > i, the result is established. Consequently, in both cases, equation (2.56) is satisfied.
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The algorithm for the first scheme is described as follows:
Algorithm 1: New Improved Hager-Zhang Projection Method (NTHZPM).
Input: Select 20 € R", e>0,¢>0,1n7>0,6 € (0,1),v€(0,1),0 <A< 2. Set k=0,dy = —go.
Step 1: Determine g(z). If ||g(z1)|| < €, stop, else goto Step 2.
Step 2: Find z, = xy, + tgdk, with ¢ given by (2.6) such that (2.7) is satisfied.
Step 3: If ||g(zr)|| < € stop, otherwise goto Step 4.

Step 4: Determine
zp+1 = Holvr — Akg(2i)], (2.62)
where "
g = 9(zk)” (zx — 2x)
lg(ze) 12
Step 5: Generate the search direction dj from (2.54) and (2.55).
Step 6: Setting £ = k + 1, goto Step 1.

, g(zk) #0. (2.63)

2.2. The second proposed method

Here, we conduct singular value study of the non-singular nonsymmetric matrix Ej, in (2.30) and consequently
suggest another optimal value for the HZ parameter. First, using (2.35), we propose the following adaptive choice

for 0y:
3%;1gk—1
9k2 =@ T +1 s (264)
| Fr—1l]

where ¢ > 0 represents a real parameter. It can be observed that setting ¢ = 1, Ej becomes similar to the
Memoryless BFGS updating formula presented in (2.31). Next, we give the following definition:

Definition 2.8 ([67]). Suppose @ € R"*" is a non-singular matrix having singular values 71 > 1 > ... > 7, >
0. Then the scalar x(Q) is called its condition number and is defined as

1
R(Q) = L. (2.65)
Tn
To proceed with our discussion, we need to determine singular values of Ej. Since from (2.28), si_,gx—1 # 0,
it implies that a set of mutually orthonormal vectors {a};_l}?;f exists such that
nglagcfl :glzﬂflagcfl :0? i = 1,2,-..,7’7/—27 (266)
for which from (2.30), we obtain

Enal =Elal =af |, i=12,....,n—2. (2.67)

This implies that the matrix Fj has (n — 2) singular values with multiplicity 1. Let the remaining two singular
values be T]:r and 7, respectively. By applying properties of Frobenius norm, we have

| Exllr = \/trace(EL Ey). (2.68)

Squaring both sides of (2.68), we get
| Ex||7 = trace(EL Ex)

2 ~ 2 4| ~ 4
k=117l gr—all” | o llse—all"1gn—1 " (2.69)

=n — 2 —+ — k
(sf_lyk,l)Q (s{flgk_l)“
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Also, given an arbitrary matrix Q € R™*™ with rank r, we know that

T
1QulE =77,
i=1

where || - | denotes the Frobenius norm. Hence, using (2.69) and (2.70) we can have

S N ey 7y ey £y [ 7t
(7 )"+ (7)) PN N
(sh_19k-1) (st_19k-1)
Also, when r = m = n, we have
n
|det(Qr)| = HTi-
i=1

So, by utilizing (2.33) and (2.72), we obtain

2~ 2
[sk—1lI"llgr-1l”

=0

Next, we define
2 ~ 2
_ lse—a 7 l1ga—all”

(Sif_l@kflf
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(2.70)

(2.71)

(2.72)

(2.73)

(2.74)

Therefore, using (2.33), (2.73), (2.74) with some algebra and rearrangements, we obtain the remaining singular

values of E as

1
Tki:2{\/(9kwk+1)2+wk—1i\/(kak—1)2+wk—1 .

(2.75)

Applying the Cauchy—Schwartz inequality and the fact that the parameter 6, > 0, we obtain that the singular
value le_ > 1. Using similar argument and the fact that 7, < 7',:'_ , it is easily seen that 7,7 < 1, and we conclude
that 7, <1< T]:r . Therefore, we obtain an upper bound for the spectral condition number of E}, as follows:

+
Tk

w(E) = B < )+ ()",

T T Th
Utilizing (2.64), (2.33), and (2.73), we get

T 2 ~ 2

S — _ _
T = w( it 1) [ T1” NHyk 12”

l[Fr—1l] (sT_10k-1)

and

2~ 2 T -~ 2 4~ 4
_ _ S — _ _
(T:)Q_’_(T—)?: ||3k 1” ||yk 1|| + 2( k—1Yk—1 +1> l| sk 1|| Hyk 1” .

* (s i)’ s (s k1)

From (2.76), (2.77), and (2.78), we have

~ 2 2 ~
13611 w( sl ||sk_1||2||yk_1||2>.

1
K(Ey) < — . — ~
¢ (sT_ydk—1 + [Ga-1]1%) St k-1 (sf,l?]k—1)2

(2.76)

(2.77)

(2.78)

(2.79)
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After some algebra, we obtain the following as minimizer of the upper bound of the spectral condition number
given in (2.79):
1Gr—1lls5—19k-1

L= — S (2.80)
It (52_sdies + 131 )
Therefore, from (2.64) and (2.80), we obtain the value for the HZ parameter as
T ~
_ s _
Oz = 1 SUS (2.81)

Isk—1ll|Fx—1l

But, equation (2.81) as defined may not satisfy (2.56) in the interval (0, %) Using earlier approach, the following
revised form is proposed:

. 1
02 = max{fy2,0}, o€ <4,oo). (2.82)
We, therefore, obtain the second revised HZ update parameter as
_ - 2
ﬂa,’;z _ szyk—l _ o l|Gr—1]] g,?sk_l (2.83)
4§ sT k1 2 sE k-1 ST k-1
with search direction given by
dg;:2 = —9Yo, k= )
A = —gp + 8% sy, k=1,2,..., (2.84)

where 392" is as defined in (2.83).
Lemma 2.9. The search direction given in (2.83) and (2.84) satisfies the inequality (2.56).

Using similar argument as Lemma 2.7, the result can easily be established. Now, following the above discus-
sion, it is imperative to give the following remark regarding the two choices of the HZ parameter obtained, i.e.,
05, and 6;,.

Remark 2.10. Careful study of the two choices of modified Hager-Zhang parameters provided in (2.53) and
(2.82) indicates that they satisfy the inequality (2.56) for values in the intervals (1, 00) and (,00). This clearly
shows an improvement over the parameter choices for the schemes in [61] given by (2.23) and (2.25), both of
which lie in the interval (2, 00).

Next, we describe the algorithm as follows:

Algorithm 2: New Enhanced Hager-Zhang Projection Method (NEHZPM).
Input: Select a point zp € R, ¢ >0,¢>0,7> 0,6 € (0,1), 7€ (0,1),0 < A < 2. Set k=0,dy = —go.
Step 1: Compute g(zy). If [|g(zx)| < €, stop, else goto Step 2.
Step 2: Find z = xy, + tgdk, with ¢ given by (2.6) such that (2.7) is satisfied.
Step 3: If ||g(zr)]| < € stop, else goto Step 4.

Step 4: Determine
w1 = Holog — Afigg(2x)], (2.85)
where ’
= 9k)” @k — )
19 ()2
Step 5: Generate the direction dj from (2.83) and (2.84).
Step 6: Set k := k + 1, and goto Step 1.

, g(zk) #0. (2.86)
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Lemma 2.11. The line search technique (2.7) employed in step 2 of Algorithms 1 and 2 is well-defined.

Proof. We approach the proof using contradiction. Let there exists an iterate index k for which (2.7) is not
satisfied. Then, by setting t; = (¢, we have

i T ~ i .
—g(wg + Cvidg) dg < 6y |dg 1?0 > 0. (2.87)

By employing continuity of the function g and allowing the nonnegative integer i to approach infinity in (2.87),
i.e., 1 — 00, we have

g(zg)" dg 0. (2.88)
From (2.56) and (2.88), it is easy to deduce that g(x;) = 0. Interestingly, for both Algorithms 1 and 2, considering

steps 1 and 2, when the line search is calculated, indicates that g(xz) # 0, and this clearly contradicts the result
that g(zj) = 0. O

3. CONVERGENCE RESULTS OF THE METHODS

Here and in the rest of this section, global convergence of Algorithms 1 and 2 is discussed. We proceed with
the following lemma, which holds for both algorithms.

Lemma 3.1. Given that Assumptions 2.1-2.3 hold, then the sequences {x} and {z} generated by Algorithm 1
are bounded and

Jim tr|ldi || = 0. (3.1)

Proof. Firstly, the boundedness of the sequences {z;} and {zj} has to be shown. Suppose x* € Q is a solution
of (1.1). Then by monotonicity of g, we have

(zr — ) g(zi) = (xr — 2 + 26 — %) g(z1)
= (w1 — )" g(z) + (2 — %) g(zn)
o (3.2)
> (ar —21) g(z) + (2 — %) g(z¥)
(sck — Zk) (Zk)
Also from (2.9), (2.86), and the fact that 0 < A < 2, we have
|zt — 2*|* = |Ma(ex — Afing(zr)) — ||
< ||z, — Mirg(zr) — 2*|)?
= ||(z — 2*) = Aig(z0)|I”
= |loi — 2*|* — 2Afieg(z) " (21 — @) + A3 |l g(zn) |12
(3.3)

< law — 2| = 20fig(z) " (2 — 22) + A2 ]| g(z) ||
2
(960)" wr — )
lg(z)1I”

= ||lzi — 2*||* = A(2 = A)
< g — |,

which consequently reduces to
[@hir — 2" < flze — 2™, VE=0. (3.4)



252 M.Y. WAZIRI ET AL.

And recursively, inequality (3.4) implies that ||z — z*| < ||zo — 2*||, Vk. Hence, the sequence {||zx — z*||} is
decreasing and bounded, which also implies that {x}} is bounded. Also, using Assumption 2.2, (2.10) and (3.4)
we obtain

lg(er)ll = llg(zr) — g(z*)|| < Lllax — ™| < Lfjzo — 2|, (3-5)
where L||zg — 2*|| = 7. Hence, we obtain that
lg(zn)|| < . (3.6)
Also, using (2.7) and definition of zx, we see that
9(z0)" (xr = 22) = —tag(z)" di = | di|* = mller — 2> (3.7)

Utilizing the monotonicity of g and the Cauchy—Schwartz inequality, we can write

g(z1)" (e — z1) = (9(2) — g(an)) T (21 — 21) + glaw) " (2 — 2)

(3.8)
< lg(zr)llllzx — 2l
By (3.6), (3.7) and (3.8) we get
lae = zll* < g lllaw — 2, (3.9)
which leads to -
[z — 2] < = (3.10)

n
Therefore, the sequence {zx} is also bounded.
Moreover, the boundedness of {z;}, implies that {||z —z*| } is bounded, namely there exists 7 > 0 such that
for any z* € Q

2k — 2| < 7. (3.11)
Also, from (2.10) and (3.11), we have
lgCzi)ll = llg(zr) — g(a™)| < Lllze — ™| < LT = 0. (3.12)
Hence
lg(z)|| < . (3.13)
Also, using the line search condition (2.7), we have
2,4 4 _ 42 T,\2
ntilae] < 6 (9(z)"di ) (3.14)
By combining (3.3) and (3.14), we get
2 ||9(Zk)|| ( * 2)
telldr - - . 1
it < AC=—A) lz — 2 |* = opsr — 2*]| (3.15)

Now, from (3.3) we obtain that the sequence {|lxy — 2*||} is convergent, and {g(zx)} is also bounded by (3.13).
So, taking limits of both sides of (3.15) as k grows to infinity, we obtain

n? Jim tHdi||* <0, (3.16)
for which we get
lim t||dy]| = 0. (3.17)
k — oo
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Lemma 3.2. . Let Assumption 2.3 hold. Then there exists a constant @ > 0 such that
ldull < &, V. (3.18)

Proof. Considering (2.53) two cases are analyzed:

Case 1. 0y > 9. Then 0}, = ;1. So, using (2.52) and the Cauchy-Schwartz inequality, we get

T oy
_ s
||Sk 1k Hyk il ||5k s Ika 1k
Also using (2.10), (2.28), (2.54), (2.55), (3.6), (3.19) and the Cauchy—Schwartz inequality, we obtain
o
Il = || ~gs + B i
T ~ 2T
_ _ _ Sk
=||—9x + 72’6 L 9k1—||ykT1” ~gk "
Sk—1Yk—1 (Sk_lyk—l)
gkl gk -1l o (le=alllgwllll sl
< lgull + 57— llsk-1ll + |61 o skl
bt ;H \ (sK-108-1) (3.20)
La|sp—1]| L2 |[sp—1]]
2 2 4
cllsk—1ll lskl
L L3m
c c

Case 2. 0;; < 9. Then 0}, = 9. So, using (2.10), (2.28), (2.54), (2.55), (3.6), and the Cauchy—Schwartz
inequality, we obtain

0

il = | ~gx + B i |

9% Gk—1 ||gk71||291::5k71
=gkt k-1 — (V)= sk-1

’ ST (sT_1d)’

gl gk -1l 15111 g 151 |
gl + =7 l[sk—1ll + 9] [[sk—1ll
e-1¥et (s 19)° (3.21)
Lrl|s—1|| gLl -1l
e S R e e

IN

Il
3
+

|
+
J

I
N
=
+
ot~
+
<
N o
——
3
|
g
[ V]

Therefore, by setting o = max{w, w2} we establish the result.

The subsequent theorem is used to prove global convergence of Algorithm 1.
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Theorem 3.3. Let Assumptions 2.1-2.3 hold. Consider the sequences {xy} and {2z} generated by Algorithm 1.
Then

lliminf llg(xk)|| = 0. (3.22)

Proof. The proof takes the form of contradiction. Suppose (3.22) does not hold, then it implies there exists
g0 > 0 such that

lg(zk)|| > €0 holds, Vk. (3.23)
Two cases are analyzed here:
(1) If liminfg o tx > 0, then by (2.56) and (3.17), we get liminfy _,  ||g(zk)|| = 0, which is a contradiction

with (3.23).
(2) On the other hand, if lim infy, _, o tx = 0, namely an infinite indexing set K exists such that

keKl?inH o t, = 0. (3.24)

Then from (2.7), and for k € K sufficiently large, if ¢, # 7, then y~'t; does not satisfy (2.7), namely

_ T _
—g(xk + 1t;€dk) di, <nvy ltkHdkHQ. (3.25)

Also, using Assumption 2.3, (2.56), and (2.7), we can write

| g(a)|* < —g(ar)" di
_ T _ T
=g(ze + 7 tedi — gr) " di — gi die — g + 7 M trdi)” di (3.26)
<y (L )l

So,

Oy ||gx?

i ldy]| > — LR,
Il = el

(3.27)

From both sides of the last inequality, we take limits as k grows to infinity to obtain a contradiction with (3.17),
which implies that liminfy _,  ||g(zk)|| = 0. O

Since Lemma 3.1 also holds for Algorithm 2, we only need to show boundedness of the search direction
generated by Algorithm 2.

Lemma 3.4. Suppose Assumption 2.3 holds. Let the bounded sequence {xx} be generated by Algorithm 1. Then
there exists a constant M > 0 such that

|dy|| < M, Vk. (3.28)
Proof. Here, we also consider the two possible cases outlined from (2.82):
Case 1. 02 > 0. Then 0}, = Oi2. So, using (2.81) and the Cauchy—Schwarz inequality, we get

nglgk—l
l[sk—1[l|gk—1ll

[sk—allllgr-all _

< ol =1 (3.29)
l[sk—1[l|gx—1ll

[0z =
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Also using (2.10), (2.28), (2.83), (2.84), (3.6), (3.29), and the Cauchy—Schwartz inequality, we obtain

o>
lld|| ::‘y_gk'+'ﬁk25k71H
T~ ~ 2T
- - _ Sp—
o o, gl
Sp_1Yk—1 (sk_lyk—l)
g 11751 =1 1P Nl gw s
< gkl + =7 llsk—1ll + [Ox2] e |
Sp_1Yk—1 (sF_1Gk-1) (330)
Lr|si—1 [ | L2llsk—1]*[lsk-1]
< 5 . L
cllsk—1ll 2||sk—1]]
Lr L?x
=T+ —+ —
¢ ¢

L I? ~
C C

Case 2. 0 < 0. Then by (2.82), 65 = 0. So, using (2.10), (2.28), (2.83), (2.84), (3.6), and the Cauchy—Schwartz
inequality, we obtain

o
il = || g0+ 62 su |
T~ ~ 2 7T
- _ Sp—
o il
Sk—1Yk—1 (skflyk—l)
g Fr—1 15711 g Il sk |
< gl + T7~||Sk*1” + o] p— 5 llsk—1]l
Sk—1Yk—1 (sF_ 1 k-1) (331)
Lr|lsi | | LPmsea]l”
T sl [lsp—1]*
Lr L*n
=T+ —+0—5
c C
L L2 N
== <1++0—2>7TM2,
c c
Therefore, by setting M = max{Ml, Mz}, the required result is obtained. 0

We now employed the following theorem for global convergence of Algorithm 2.
Theorem 3.5. Let the sequence {xy} be generated by Algorithm 2. Then
llicm inf ||g(zx)|| = 0. (3.32)

The proof follows the same pattern as that of Algorithm 1. Since the directions of Algorithm 2 also satisfy
(2.56), using similar arguments as for Algorithm 1, the result is obtained.

4. NUMERICAL EXPERIMENTS AND COMPARISONS

At this juncture, the report of a set of numerical experiments is presented to exhibit performance and efficiency
of the methods proposed. We test the performances of Algorithm 1 (NIHZPM) and Algorithm 2 (NEHZPM)
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with the modified HZ methods in [61,78,83] and the efficient projected gradient method in [39], which are called
MHZM1, MHZM2, CGD and EPGM for simplicity. For all the six methods, the backtracking line search defined
in (2.7) was used, and the parameters for Algorithms 1 and 2 are set as follows:

— Algorithm 1: n=10"2,y=0.48,6 =0.6,9=12,c=1,A =1.9.
— Algorithm 2: =107, vy = 0.48, & = 0.6,0 = 0.28,¢ = 0.001, A = 1.9.

For the MHZM1, MHZM2, CGD and EPGM methods, the parameters are set as they are used by the
respective authors. In addition, the codes used for implementation of all the algorithms were done in Matlab
R2015a platform, and run on a personal computer with configuration (CPU 1.8 GHz, 4 GB memory). The
iteration process terminates when it exceeds 1000 or ||g(zx)|| < € or |lg(z1)| < €, with e = 1078,

Also, reports of the experiments carried out are presented in Tables 1-6, where “Pnum” and “NVars” stands
for problem solved and number of variables for each problem, while “Ipt” and “Inum” denotes initial guess
and the total iterations achieved respectively. “Fval” and “Ptime” represent number of functions values and
processing time respectively. The residual at stopping point is represented by “Norm”, while “xx” indicate
failure of a method to converge to a solution.

The following problems were used, where g(z) = (g1(x), g2(z), . .., gn(z))7T.

Problem 4.1. The Logarithmic Function obtained from [83].
gz(x)zlog(irz—’_l)_%v i:2a"'n7
where Q = R}

Problem 4.2. Exponential Function obtained from [43].
gi(z) =e" —1,

gi(x):]_io(ezi_‘_l‘i—l_l)? i:2a3a"'an7

where 2 = R}

Problem 4.3. Non-smooth Function [82].
gi(x) =x; —sin|z; — 1|, i=1,2,...,n,
where Q ={z e R": Y | ; <n, z;>-1, i=12...,n}

Problem 4.4. A modification of Problem 4.2 in [82].
gi(x) =x; — 2sinz; — 1|, i=1,2,...,n,
where Q ={z e R": Y | ; <n, z;>-1, i=12...,n}

Problem 4.5. Tridiagonal Exponential Function [46].

1) — 21 — eloos 5
(cos L) L5 g 1
1 = P n = cae -
gl(x) ‘r’t € (COS rn_1+mn) 9 1 » 7n’ )
gn(x) =2, — € nHT

where Q = R}.

Problem 4.6. Exponential Function [43].
g(2) = e — 1,

gi(r)=e*+a;, —1, i=2,...,n,
where 2 = R}

Problem 4.7. [54].

g1(z) = =221 — o + €™ — 1,

gi(x) =2x; —xj 1 —xip1+ e -1, i=23,...,.n—1,
gn(x) = 22, — Tp_q + " — 1.

where Q ={z e R": Y &, <n, z;>0, i=1,...,n}.
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0.1

FIGURE 1. Iterations performance profiles for the six methods.

Problem 4.8. Modification of Problem 4.5 in [18].
gi(a) = 2(z; — 1) + 4(2;;1 ;- 0.25)3@, i=1,2,....n,
where ¢ =107°, Q=R/.

Problem 4.9. Non-smooth Function [42].
gi(x) =2x; —sin|z;|, i=1,2,...,n,
where 2 = R}

Problem 4.10. [66].
gi(x) =e% —2, i=2,...,n,
where Q = R}

Problem 4.11. [42].
gi(x) = min{min{|xi|,x?},max{|xi|,x?}}7 i=1,2,...n,
where Q = R}.

Problem 4.12. Troesch problem obtained from [43].
g1(z) = 21 + oh? sinh(px1) — 22,
gi(x) = 2x; + oh?sinh(ox;) — xi 1 — wip1, 1=2,3,...,n—1,
gn(x) = 22, + 0h? sinh(ozy,) — 1.
where h = %4-179 =10, Q2 =R.

Clearly, Problems 4.3, 4.4 and 4.9 are nonsmooth at # = (1,1,...,1)T, 2 = (1,1,..., )T and x = (0,0,...,0)T
respectively. For each of the above test functions, 24 numerical experiments were performed with variables 1000,
5000, and 10000, and the following starting points:

1 2 r —2(=1" = 3)\" 1 2 r
rl=(1—-—1——,...,0) , 22=1(42,....——— | , 23=(n——n——,....n—1] ,
n n 2 n

T
x4 = (1;:) ,oab= (4,4, 4", 26=(55...,5", 27=(7,7,....7)", 28=(8,8,...,8)".

Careful study of results displayed in Tables 1-6 reveals that the NIHZPM and NEHZPM methods solve all
problems successfully, and more problems with minimum number of iterations and processing time than the
MHZM1, MHZM2, EPGM and CGD methods, which also failed to solve some of the problems considered. In
addition, a summary of the reported results from Tables 1 to 6 is presented in Table 7 to outline performance
of each of the six methods in relation to number of iterations, function evaluations, and processing time. It is
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TWO NEW HAGER-ZHANG ITERATIVE SCHEMES WITH IMPROVED PARAMETER CHOICES
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TABLE 7. Summary of results from Tables 1 to 6 displaying least number of iterations, function
values and processing time by the six methods.

Method Inum  Percentage Fval Percentage Ptime Percentage
NIHZPM 30 10.42% 8 2.78% 70 24.31%
NEHZPM 65 22.57% 97 33.68% 111 38.54%
MHZM1 19 6.60% 19 6.60% 56 19.45%
MHZM?2 13 4.51% 25 8.68% 20 6.94%
EPGM 0 0% 0 0% 7 2.43%
CGD 18 6.25% 30 10.42% 24 8.33%
Undecided 143 49.65% 109  37.84% 0 0%

FIGURE 2.

FIGURE 3. Processing time performance profiles for the six methods.

observed from the summary table that the NIHZPM and NEHZPM methods solved 10.42% (30 out of 288)
and 22.57% (65 out of 288) of all the problems in the conducted experiments with least number of iterations
compared to the MHZM1, MHZM2, EPGM and CGD methods, which recorded 6.60% (19 out of 288), 4.51%
(13 out of 288), 0% (0 out of 288), and 6.25% (18 out of 288) respectively. The table also shows that 49.65%
(143 out of 288) of the problems were solved by either 2,3,4,5 or all six methods involved in the experiments
with the same number of iterations. The summary table also shows that the NTHZPM and NEHZPM methods
solved 2.78% (8 out of 288) and 33.68% (97 out of 288) of all the problems with minimum function evaluations
compared to the MHZM1, MHZM2, EPGM and CGD methods, which recorded 6.60% (19 out of 288), 8.68%
(25 out of 288), 0% (0 out of 288), and 10.42% (30 out of 288) respectively. Moreover, the table indicates that
37.84% (109 out of 288) of the problems were solved with equal number of function evaluations by either 2, 3,4, 5
or all six methods in the experiments. Finally, it is observed from the summarized results that the NIHZPM
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and NEHZPM methods solved 24.31% (70 out of 288) and 38.54% (111 out of 288) of all the problems with
least processing time as against the MHZM1, MHZM2, EPGM and CGD methods, which solved 19.45% (56
out of 288), 6.94% (20 out of 288), 2.43% (7 out of 288), and 8.33% (24 out of 288) respectively.

Remark 4.13. As an important observation, Tables 1-6 reveals the impact of the eight starting points on the
numerical results for the experiments conducted. The results indicate that the six methods are sensitive to the
initial points, which clearly affects the values of the three metrics considered in the experiments. All the six
schemes are especially, sensitive to the initial points 22, x4, 26, 27 and x8 as problems solved with them require
more number of iterations, functions evaluations, mostly two or three digits, and processing time respectively.
The eight initial points are particularly challenging for the MHZM1 and CGD schemes, where, for each of the
initial points, the MHZM1 scheme fail to solve Problems 4.3, 4.4, 4.5 and 4.10, while the CGD scheme fail to
solve Problems 4.1 and 4.2 for each of the starting points.

Furthermore, to conveniently access the impact of the choices of the HZ parameters on the new schemes,
three figures are plotted by adopting the popular tool designed by Dolan and Moré [19], which can be expressed
as

9

(@) = | {s€C: o <
pww_|C| y 'min{tsﬁw:w€W}_w

where C represent set of experiments conducted, |C| stands for number of the problems in the set of experiments
C, W denotes number of schemes considered while for each s € C and w € W, ¢, ,, represents either processing
time in each iteration, iterations number or function values obtained. We begin with Figure 1, which highlights
performances of each of the six schemes considered in the experiments with respect to number of iterations.
The figure clearly shows that the NIHZPM and NEHZPM schemes outperform the MHZM1, MHZM2, EPGM
and CGD schemes by solving more problems with much less number of iterations. In order to explain this,
we employ the results from Tables 1 to 6 and the summary in Table 7. The summarized results indicate that
the NTHZPM and NEHZPM methods alone, solved 10.42% and 22.57% of the problems with least number of
iterations. However, simple computations from Tables 1 to 6 reveals that 37.11% and 36.54% of the problems
were solved by the NIHZPM and NEHZPM methods and at least one of the other five methods with the least
similar number of iterations. In each case, the two values sum up to 47.53% and 59.11%, which are clearly
captured by the right-hand side of the curves representing the NIHZPM and NEHZPM scheme on the vertical
axis in Figure 1 respectively. The figure also shows that the NIHZPM and NEHZPM methods are more robust
than the MHZM1, EPGM and CGD methods as the former’s cumulative distribution function p(w) got to 1 for
minimal w, while that of the latter stayed below 1. On the other hand, the MHZM?2 scheme competed well with
the NIHZPM and NEHZPM schemes for 6.2 < w < 8.2. However, the NITHZPM and NEHZPM methods appear
to be slightly more robust than the MHZM2 scheme. In a similar manner, the summary table and computations
arising from results in Tables 1-6 involving problems, where ties are recorded by each method with at least
one of the other five schemes, indicate that the MHZM1, MHZM2, EPGM and CGD schemes recorded 32.6%,
27.43%, 17%, and 18.84% as shown by their curves on the vertical axis in Figure 1 respectively. Next, we
consider Figure 2, which displays performance profile of the six methods with regards to function evaluations.
The summary table and computations from Tables 1 to 6 indicate that the NIHZPM, NEHZPM and MHZM2
methods are more superior to the other three methods with respect to function evaluations as the methods
solved more problems with minimum function evaluations, which can be observed from the pattern displayed by
their curves in Figure 2. As in the above case, Figure 2 indicate that both NIHZPM and NEHZPM methods are
more robust, followed by the MHZM2 scheme, than the remaining three methods, as the former’s cumulative
distribution function p(w) attain 1 for minimal wo, while the latter remained below 1. Again, following similar
approach, the summarized table and computations arising from results in Tables 1-6 involving problems, where
ties are recorded by each method with at least one of the other five schemes, indicate that the MHZM1, EPGM
and CGD schemes record 28.60%, 14.5%, and 20% as exhibited by their curves on the vertical axis in Figure 2
respectively. It can be observed from the summary table that the EPGM method failed to solve any problem
alone with the least function values. However, the scheme solved 14.5% of the problems with at least one of the
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five methods, which is clearly displayed by its curve in Figure 2. Lastly, Figure 3 shows that the NIHZPM and
NEHZPM methods have an edge over the MHZM1, MHZM2, EPGM and CGD schemes, since the former solve
more problems with less processing time than the latter. Careful inspection shows that the same values that
are recorded in the summary table are displayed in Figure 3. In addition, Figure 3 shows that the NIHZPM,
NEHZPM and MHZM?2 are also more robust than the MHZM1, EPGM and CGD methods with respect to
processing time.

Therefore, following the above discussion and analysis, it can be concluded that the NEHZPM and NIHZPM
methods are better than the MHZM1, MHZM2, EPGM and CGD methods for solving system of monotone
nonlinear equations of the reported collection.

5. THE METHODS’ APPLICATIONS IN COMPRESSED SENSING

In this section, the NIHZPM and NEHZPM methods are applied to solve problems that often arise in
compressed sensing; namely sparse signal reconstruction and blurred image restoration problems. Over the years,
much effort have been made by researchers to obtain sparse solutions to under-determined or ill-conditioned
linear systems of equations, which often arise in compressed sensing and other applications (see [20, 22, 59,
80]). As a result, a number of iterative methods have been proposed to address the problem. The simplest
approach involves minimizing a function with a quadratic ¢2-norm error term and a sparseness including ¢;-norm
regularization term, which can be formulated as

1
min o || Hz — g3 + @[|z]h, (5.1)

where 2 € R™ represents the signal to be reconstructed, ¢ € R’ denotes an observed data, H € R™*"™(I < n) is
a linear operator, w is a regularization parameter, ||z||; and ||z||2 are the ¢; and ¢3 norms respectively. Clearly,
(5.1) represents a convex unconstrained optimization problem, which is typically found in compressed sensing.
So, an original signal, which is sparse or approximately sparse can be reconstructed exactly by solving (5.1).

A number of iterative methods are employed to solve (5.1) see [11,23,24,31], but the most popular are the
gradient-based schemes, especially the gradient projection method for sparse reconstruction (GPSR) proposed
by Figueiredo et al. [24]. Using this scheme, equation (5.1) is reformulated as a convex quadratic problem, where
each vector x € R" is split in to two parts and presented as

r=v—v, v>0, v>0, v,veR". (5.2)
with v; = (z;)4, v = (—23)4 Vi = 1,2,...,n and (.); = max{0,-}. By the ¢;-norm definition, ||z||; =
ETv+ ETv, where E,, = (1,1,...,1)T € R". Applying the above representation to (5.1), we obtain

1
min§||H(v—l/) —q||3+wETv 4+ wETy, (5.3)

Also, according to Figueiredo et al. [24], the problem presented in (5.3) can be re-written as the following
quadratic program problem

1
min isTBs +DTBs, s>0, (5.4)

(v . —y T ~( H'H -H'H
S<l/)7 DWE2n+<y>7 y*H q, B<_HTH HTH . (55)

Since the matrix B is positive semi-definite, it implies that (5.4) is a convex quadratic program problem. Quite
recently, Xiao et al. [79] translated problem (5.4) into a linear variable inequality (LVI) problem, which they
indicated is equivalent to a linear complementary problem, whose solution is s if and only if it is a solution of
the nonlinear equations given by

where

g(s) =min{s, Bs+ D} =0, (5.6)
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FIGURE 4. In descending order: Original signal, measurement, and recovery signals by
NEHZPM and EPGM methods.

where g represents a vector-valued mapping. Also, since g is Lipschitz continuous and monotone (see [53,79]),
it can be solved using the NITHZPM and NEHZPM schemes (Fig. 4).

5.1. Sparse signal reconstruction with NEHZPM and EPGM methods

In this subsection, some experiments are carried out to further demonstrate performance of the NEHZPM
method. The focus is on a compressive sensing problem, where the target is reconstruction of a sparse signal
with length n from [ observations. The quality of restoration is measured by employing the mean square error
(MSE) to the original signal &, namely

1
MSE = H”i — x| (5.7)

with x* representing the restored signal. In the experiment, we implemented the NEHZPM scheme with the
parameters all set as used in the earlier numerical experiments. In addition, the size of the signal is set as
n =212 and | = 219, while the original signal contains randomly nonzero elements. Also, command randn(l, n)
in Matlab generates the Gaussian matrix H. In this experiment, the measurement ¢ is disturbed by noise, i.e.,

qg=Hi+w, (5.8)

where w denotes the Gaussian noise distributed as N(0,10~%). In order to test the performance of the NEHZPM
scheme in signal restoration, it is compared with the EPGM method [39], which was recently applied to solve
the same problem. The merit function is also given as ¢(z) = $|lg — Hz|3 + @||z|)x.

As with the measure considered in [24], in this experiment the value of @ is forced to decrease. Also, the
iterative process for the experiment is started by the measurement signal i.e., o = H”q, and terminates when
the relative change between successive iterates fall below 107° i.e.,

%k — 1]

<1075, 5.9
T (59)

where 1, denotes the function value at xj.
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TABLE 8. Reported results of fifteen experiment with average for NEHZPM and EPGM meth-
ods on #1-norm regularization problem.

NEHZPM EPGM
ObjFun Ptime Inum MSE ObjFun Ptime Inum MSE
4.389 x 107! 5.17 165 1.751 x 107° 4.420 x 107t 5.77 179 5.532 x 107°
4678 x 107 4.30 140 1.899 x 107° 4830 x 107! 5.23 162 9.049 x 107°
3.302 x 107! 4.92 159 1.407 x 1075 3.351 x 107! 5.73 176 5.370 x 1075
5.170 x 107! 4.86 159 2.220 x 1075 5.342 x 107! 5.59 173 1.142 x 1074
3.870 x 1071 4.75 155 1.547 x 107° 3.800 x 107! 5.83 175 4.180 x 107°
3.156 x 107! 5.23 161 1.232 x 107° 3.182x 107! 5.86 179 4.103 x 107°
5122 x 107! 4.73 150 2.331 x 107° 5.367 x 1071 5.42 164 1.672 x 1074
4140 x 1071 5.50 173 1.925 x 1075 4173 x 107! 6.11 192 6.206 x 107°
4.062 x 1071 5.20 161 1.780 x 10~° 4.096 x 107! 6.00 178 5.912 x 107°
3.789 x 107! 5.03 161 1.516 x 107° 3.921 x 107! 5.17 166 9.400 x 1075
3.285 x 107! 5.22 171 1.273 x 1075 3.308 x 107! 6.39 208 4.025 x 107°
4.008 x 107! 5.03 166 1.816 x 1075 4.045 x 107! 5.58 183 6.289 x 107°
3.942 x 107! 5.14 164 1.853 x 107° 3.971 x 107! 5.97 191 5.689 x 107°
4.091 x 107t 4.75 161 1.582 x 107° 4107 x 107! 5.50 178 4.087 x 107°
5.712 x 107! 5.00 155 2.692 x 107° 5.821 x 107! 5.47 172 1.113 x 1074
AVERAGE 4.18x 10 ' 4988 160.06 1.78 x 10~ ° 425 x10°Y 5.708 17840 7.693x 10 °

00

MSE

ObjFun

S0

Number of iterations

0 50 100 150 200

50 100 150 200
Number of terations.

F1GURE 5. Comparison results of NEHZPM and EPGM methods. From the left, the horizontal
axes of the first and third figures represent number of iterations while that of the second and
fourth figures represent processing time in seconds. The vertical axes of the first and second
figures represent the mean square error (MSE), while that of third and fourth figures represent

the function values.

For the NEHZPM and EPGM schemes, we carried out fifteen experiments for different noise samples and
report the results, which highlights the original sparse signal, the measurement as well as the reconstructed
signal by each of the methods in Table 8. Also, four graphs are plotted to exhibit the convergence behavior of
both methods through their mean square error (MSE) and function evaluations results, as well as number of
iterations and processing time respectively. As can be observed from Figure 5, our proposed method exhibits
much faster descent rates of MSE and function evaluations than the EPGM method. It can also be seen from
the figures that the NEHZPM method requires less number of iterations and processing time in order to recover
the original signal compared to that required by the EPGM method for the same process.

5.2. Image restoration experiment with NIHZPM and CGD methods

Here, some experiments are conducted with the NIHZPM and CGD methods to further highlight application
and performance of the NIHZPM scheme. The experiment is on image restoration, which involves recovering
or reconstructing an obscure or blurry image. Four different images are employed for the experiment, which
includes, Finstein, Lena, Barbara and Cameraman. MATLAB R2014a is employed to generate all the codes
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TABLE 9. Performance results for NIHZPM and CGD methods based on objective function
(ObjFun) value, mean square error (MSE), SNR and SSIM index.

Image & ObjFun MSE SNR SSIM
size

NIHZPM CGD NIHZPM CGD NIHZPM CGD NIHZPM CGD
Einstein 4.132 x 10 4.049 x 10° 7.9283 x 10 5.7765 x 10! 20.94 22.32 0.78 0.82
256 x 256
Lena 256 x  1.451 x 10°  1.513 x 10° 6.4591 x 10 9.0027 x 10! 24.37 22.93 0.90 0.87
256
Barbara 1.491 x 108 1.585 x 10° 1.1545 x 102 2.0627 x 102 22.07 19.55 0.84 0.75
256 X 256
Cameraman  1.394 x 10  1.473 x 10° 1.1335 x 102 1.7757 x 102 22.00 20.05 0.88 0.83
256 x 256

Original

CGD

Blurred NIHZPM

Blurred NIHZPM CGD
;@ f
B

FIGURE 6. Original and blurred images (First two columns from the left). Restored images by
the two methods (Third and Fourth columns).

with the same configuration and parameter values as used in the last experiment with v = 0.6. Also, to obtain
an insight into the performance of the NITHZPM method, it is compared with CGD [78] solver, which is used
in image restoration problem. The parameters for this method are the same as used by the authors. The
performance of both schemes in terms of number of iterations (Niter), processing time (PT(s)), mean square
error (MSE), signal to noise ratio (SNR), which is given by
1]l
SNR = 20 x loglo <—A s
|z — &
where  represents the recovered image, x denotes the original image, and the structural similarity index
(SSIM), which computes the similarity between original image and the restored one in each of the experiments
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conducted. In the experiment, H represents a partial Discrete Wavelet Transform (DWT) matrix, for which
the m rows are selected randomly from the n x n DWT matrix. The encoding matrix H is able to be tested
on large images without storing any matrix, since it doesn’t require storage and also enables fast matrix-vector
multiplications involving H and HT. Results of the experiments conducted are presented in Table 9, while
Figure 6 displays the original, blurred, and reconstructed images obtained by the NIHZPM and CGD schemes.
It can be observed from Table 9 that the NIHZPM scheme has an edge over the CGD scheme in all the four
metrics considered, namely objective function (ObjFun), mean square error (MSE), signal to noise ratio (SNR)
and structural similarity index (SSIM). Figure 6 also show that, for the exception of Finstein, images restored
from the blurred images by NIHZPM scheme appears slightly closer to the original one than the restored images
by CGD method. Hence, based on this analysis, it can be concluded that the NIHZPM method is suitable for
reconstruction of the images considered. The MATLAB implementation of the SSIM index can be obtained at
http://www.cns.nyu.edu/lcv/ssim/.

6. CONCLUSION

Two effective algorithms for solving systems of nonlinear monotone equations with convex constraint are
presented in this article. The schemes are based on the one-parameter Hager—Zhang method for unconstrained
optimization. By carrying out eigenvalue study of a modified Hager—Zhang search direction matrix, and singular
value analysis of its revised symmetric version, two new Hager—Zhang search directions are derived, which are
combined with the projection technique. An attractive feature of the proposed methods is that they require low
memory to implement, which is an attribute that qualifies them to solve large scaled problems. The schemes also
solve nonsmooth nonlinear equations, since they are derivative-free. By applying basic conditions, we proved
global convergence of the methods proposed and numerical results of experiments carried out show that both
methods perform much better than the two recently proposed Hager—Zhang schemes and two other methods
in the literature. To further demonstrate the effectiveness of the new methods, they are applied to solve signal
and image reconstruction problems in compressed sensing. Finally, as a future research, we anticipate extending
modified versions of the methods proposed to solve motion control problems in engineering and other real life
applications.
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