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A BILEVEL GAME MODEL FOR ASCERTAINING COMPETITIVE TARGET
PRICES FOR A BUYER IN NEGOTIATION WITH MULTIPLE SUPPLIERS

Akhilesh Kumar1,2,*, Anjana Gupta1, and Aparna Mehra3

Abstract. In this paper, a decision-support is developed for a strategic problem of identifying target
prices for the single buyer to negotiate with multiple suppliers to achieve common goal of maintain-
ing sustained business environment. For this purpose, oligopolistic-competitive equilibrium prices of
suppliers are suggested to be considered as target prices. The problem of identifying these prices is
modeled as a multi-leader-single-follower bilevel programming problem involving linear constraints and
bilinear objective functions. Herein, the multiple suppliers are considered leaders competing in a Nash
game to maximize individual profits, and the buyer is a follower responding with demand-order al-
locations to minimize the total procurement-cost. Profit of each supplier is formulated on assessing
respective operational cost to fulfill demand-orders by integrating aggregate-production-distribution-
planning mechanism into the problem. A genetic-algorithm-based technique is designed in general for
solving large-scale instances of the variant of bilevel programming problems with multiple leaders and
single follower, and the same is applied to solve the modeled problem. The developed decision support
is appropriately demonstrated on the data of a leading FMCG manufacturing firm, which manufactures
goods through multiple sourcing.
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1. Introduction

Suppliers compete on prices to attract a competitive demand share from their buyer, in an oligopolistic-
monopsony market, for maximizing their profits. On the other side, the buyer intends to minimize the overall
procurement cost for receiving a regular supply of required products. To purse this objective, the buyer seeks
to exploit the competition between suppliers and therefore negotiates with them to lower down the prices.
The status of being a sole buyer of an oligopolistic-monopsony market provides a bargaining power to entice
suppliers with a larger share of demand-order in exchange for lowering the prices. In our problem, the buyer’s
overall demand is less than the combined output capacities of all the suppliers. In this situation, the buyer’s
bargaining power gets further increased, and therefore suppliers are forced to renegotiate prices for obtaining
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demand-orders. In such a scenario, the buyer can adopt an opportunistic discriminatory approach for negotiation
with suppliers to reduce the procurement cost to a minimum. Some of the suppliers’ prices negotiated in this
manner may be well below a point where all the suppliers would have agreed upon due to complete awareness
of competition in the discussed business environment. It develops a dissonance among such suppliers, and a
tendency of non-cooperation with the buyer starts emerging among suppliers [58]. This antipathy adversely
affects the buyer-supplier relationship [40, 68, 78, 84], which, in turn impacts performance of their supply chain
detrimentally [93]. On the other hand, if the buyer’s price-negotiations with suppliers settle at a point above an
equilibrium point of suppliers’ oligopolistic competition, the buyer’s financial interests are adversely affected,
incurring a potentially higher procurement cost. If suppliers resist lowering the prices towards the equilibrium
point, it compels the buyer to look for alternative sourcing arrangements as a long-term initiative to intensify
the competition among suppliers. This remedial action by the buyer results in reducing the supplier’s bargaining
power and their demand-shares in the future, resulting in reduced profit in the long run.

The aggrieved stakeholders on either side of the considered market situation have an adverse action space that
can thwart from maintaining a sustained and continuous business environment. Accordingly, the outcome of
price-negotiations should ensure long term gains through sustained and continuous replenishment of products
for the buyer vis-à-vis short-term gains through opportunistic discrimination in price negotiation. Similarly,
each supplier should prefer getting sustained and continuous replenishment orders from the buyer, vis-à-vis
creating an adverse action space that may affect their business prospects. Therefore, it is imperative to identify
prices for the business deal to achieve common goal while pursuing parallel individual objectives. Consequently,
it is appropriate for the stakeholders at both sides to settle at equilibrium prices of suppliers’ oligopolistic
competition.

Identifying suppliers’ oligopolistic competitive equilibrium prices as target prices for negotiation imposes the
competition among suppliers up to their individual production-distribution capabilities, and cost-efficiencies.
As a result, the negotiated prices leave no space for any opportunistic discrimination on the buyer’s part and
protect her/his financial interests as well. As these target prices for negotiation are based only on suppliers’
competitive capabilities, we appropriately term these as competitive target prices. Further, in case the price-
negotiations with some supplier(s) settle significantly away from these prices, it indicates that negotiations have
not resulted purely due to a fair competition among suppliers.

The oligopolistic-monopsony market ecosystem with the situation described above is common in many sectors.
It can emerge because of localization of the market of suppliers due to transportation cost efficiencies. Whenever
a manufacturing firm comes up with a new product, which involves a completely new technology, the market
situation emerging with its suppliers who associate for providing required components refers to oligopolistic-
monopsony market ecosystem. Another example of this market ecosystem is observed in case of sole manufactures
of non-substitutable products when they need to procure components or raw material from their suppliers for the
execution of manufacturing process. This situation is prevalent in case of specialized products, for example, in
case of luxury cars. A particular example for getting more insight can be discussed in context of Indian Railways.
Indian Railways is the only organization providing railway travel services within India and for providing these
services it manufactures train coaches at its own factories situated at multiple locations within India. For this
manufacturing it requires multiple electrical equipments with specific technical requirements, which are fulfilled
by a limited number of specialized suppliers. This makes the Indian Railways a single buyer for these specific
products, thereby positioning the market system as a monopsony from the buyer’s side, and oligopoly from the
suppliers’ side.

Although, multiple examples of the discussed market ecosystem are observed in many sectors, but to the best
of our knowledge, the problem of identifying target prices for negotiations among the buyer and suppliers is not
studied in the literature.

In this paper, we develop a decision support for identifying competitive target prices for the buyer’s negoti-
ations with multiple suppliers in the oligopolistic-monopsony market. We model the problem of identifying the
competitive target prices as a multi-leader-single-follower (MLSF) bilevel programming problem. The model
formulated as MLSF bilevel programming problem involves linear constraints and bilinear objective functions.
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The model involves integer variables for capturing an actual practice of supply chain where demand orders,
production and logistic quantities take integral values. For formulating the action-and-reaction mechanism of
price-negotiations in our bilevel programming model, we consider suppliers as leaders and the buyer as a fol-
lower. This is based on the chronology of communication among them viz, suppliers making the first move by
offering the price quotes to the buyer, whereas the buyer responding to those in terms of the demand-order
allocation. The price-competition among the group of suppliers for receiving maximum profitable demand shares
from the buyer leads to a game situation among these suppliers, thereby making it appropriate to model the
problem as an MLSF bilevel programming problem. In the oligopolistic competition among suppliers, the assess-
ment of price offers by the buyer requires an integrated planning, as the total cost of fulfilling demand-orders
is related to different operating costs of production and distribution. Therefore, for assessing total operating
costs and production-and-logistics capacity constraints of each supplier it is compelling to embed the aggregate-
production-distribution-planning (APDP) of suppliers in the formulation of our model. The optimal demand-
order allocation problem from the point of view of buyer is woven as the follower’s reaction mechanism in the
formulation of the model. By considering all the essential factors highlighted above in design of the model, a
solution of the problem thus formulated represents competitive target prices.

The structure of modeled problem corresponds to a specific type of MLSF bilevel programming problem
which involves linear constraints and bilinear objective functions at both levels. Direct methods existing in the
literature have been experienced as incapable of handling the large-scale instance of the modeled problem with
practical data taken from industry. In this situation, first a nested GA based solution method is suggested for
solving generic problems of the specified type of bilevel programming problems. Then, a modification is further
suggested in the solution algorithm to capture a peculiar interdependence of variables of the modeled problem.
Finally, the proposed model and the solution method are then illustrated on a data set of an FMCG sector firm
concerned about optimality of the procurement cost of ingredients required for manufacturing its products in
an environment discussed above.

The paper is organized as follows. Section 2 presents literature review. Section 3 describes the problem,
its assumptions and formulation as an MLSF bilevel game model. Section 4 describes the GA-based solution
methodology proposed for solving the discussed problem. Section 5 demonstrates an experimental study of
a manufacturing firm and analysis of the results obtained through the formulation and algorithm. Manage-
rial implications of adopting the suggested approach and utilizing the proposed decision-support are listed in
Section 6. Section 7 concludes the paper with the scope of the research work.

2. Literature review

2.1. Price setting and negotiation pricing problems

From the perspective of a supplier, problems of optimal price-setting (including high and low pricing strate-
gies), flexible pricing (like market segmentation), differential pricing, price skimming, penetration pricing, and
revenue management based pricing are studied in literature and reviewed by Dolgui and Proth [32]. The pricing
problem, when demand is influenced by prices to maximize the turnover, is modeled as a bilevel programming
problem by Labbé et al. [57], and implemented on a toll setting problem. Dempe and Zemkoho [27] use non-
smooth analysis to design Karush–Kuhn–Tucker (KKT) type optimality conditions, which preserve essential
data in the traffic assignment problem. Some other studies which model the toll price-setting problems include
[18, 29, 46, 105]. Kumar et al. [55] studied a strategic pricing problem in a non-competitive environment from
a small-scale supplier, coherently discerning operational capacities before quoting the prices to the buyer. A
monograph by Nagle and Müller [79] is appropriate to refer to the basics of pricing, price competition, and
price negotiations. A survey on price setting problems modeled as bilevel programming problems is provided by
Labbé and Violin [56].

Negotiation pricing problems attempt to identify the prices where both seller and buyer mutually agree as
beneficial price. The research on devising a mechanism for price negotiation seems limited and evolving, with
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some of research developments in this field to name (e.g., [14, 37, 42, 75, 87, 97, 98]). None of the framework in
existing studies match our situation.

2.2. Supplier selection and order allocation

The supplier selection is a crucial strategic decision-making process for the procurement of the required
products or the raw material. The primary literature on it begins with the work of Dickson [30]. The next
accompanying vital decision is on the order allocation under multiple sourcing. Gaballa [38] and Jayaraman
et al. [52] developed decision support for the order allocation problem to minimize the total procurement cost.
The prevalent use of just-in-time approach for inventory procurement resulted in the recommendation of multiple
factors for supplier selection [59, 92, 102]. Several researchers investigated the order allocation in concurrence
with supplier selection [10,80,96]. The supplier selection and order allocation issues have been modeled as multi-
objective decision-making problems also [4, 25, 90]. One can refer to the recent literature review by Aouadni
et al. [3] on supplier selection and order allocation techniques.

2.3. Operational planning problems

Planning of various tasks to fulfill the demand of end-users over a short-term horizon is termed as opera-
tional planning under the supply chain management [72]. Production planning in regular-time, over-time, and
outsourcing (in each plant in each period), shipping volumes from the production facility or stack buffers to
warehouses, shipping volumes from warehouses and stack buffers directly to end-users, inventory of finished
products in warehouses at each period, is categorized as aggregate production-distribution planning (APDP)
[36]. The literature in the field of APDP problems is extensive and classified into seven categories [36]. Some of
the significant contributions worth citing in APDP are [35, 64, 65, 85]. Recent research developments in opera-
tional planning include [74,81].

2.4. MLSF bilevel game problem

In certain business planning situations, the decision-makers are often unable to realize their decisions inde-
pendently but forced to act according to a specific hierarchy. The programming problem formulated to solve this
situation is a multilevel programming problem with a case as a bilevel programming problem involving a leader
and a follower. A leader is the decision-maker who can take an independent position in analyzing and using the
reaction of the dependent decision-maker, and the latter one is the follower. For the theoretical development,
algorithms, and applications of bilevel programming, one can refer to excellent texts [6,16,26]. One can refer to
Sinha et al. [91] for a detailed review of classical and evolutionary algorithms and several applications of bilevel
optimization. Multilevel decision-making problems, including applications into the supply chain, are reviewed
by Lu et al. [69]. Some of the issues in supply chain planning and management are studied using the bilevel
programming framework (e.g., [5, 88,99]).

MLSF bilevel games are categorized as a variant of bilevel programming problems, which involve multiple
competing leaders and each one needs to incorporate the response of their common follower in their deci-
sion making. Some interesting practical problems have been modeled using this bilevel-game framework (e.g.,
[45,46,89]). Theoretical developments are suggested in the literature for solving such problem by reformulating
them using stationarity conditions [51, 60]. The suggested solution methodologies in the literature solve the
multi-leader-common-follower (MLCF) bilevel game problems in terms of strong-stationary points [60] and
strong-stationary equilibrium points [51]. Leyffer and Munson [60] suggested a direct method for obtaining
strong-stationary points by solving a nonlinear programming problem derived from strong-stationarity condi-
tions by posing complementarity conditions as the objective function to be minimized to zero. The authors
demonstrated the proposed approach through numerical experiments on randomly generated small-scale and
medium-scale electricity market problems involving 150 constraints and 160 variables. Hori and Fukushima
[51] proposed a Gauss-Seidel method for numerical convergence to a strong-stationary equilibrium point, which
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involves solving a penalty-based quadratic optimization problem in each of the iterations. Five examples, involv-
ing a maximum of 12 variables and less than 10 constraints, are presented to demonstrate the process. An
extensive literature review of methodologies for solving MLCF bilevel game problems has indicated that none
of the methods have been tested on large-scale problems involving more than 160 variables and 150 constraints.
Moreover, no algorithm is developed for solving an MLCF bilevel game problem involving integer variables.

2.5. Genetic algorithms approaches

Genetic algorithms are bio-inspired artificially intelligent random search algorithms, which are developed due
to seminal works of pioneers Holland [50] and Goldberg [43]. Initial development of GA encodes chromosomes as
binary strings and thus is called Binary Coded GA (BCGA). The real coded GA (RCGA) [20,70], which encodes
chromosomes as strings of real numbers has been found superior to BCGA in terms of efficiency of exploration
and against challenges like Hamming Cliff [44, 104]. Contributions towards further development improved the
efficiency and acceptance of RCGA [34, 86]. Eventually, several researchers have employed RCGA for solving
numerical optimization problems involving continuous variables [21,34,48,49,77,100,104]. Due to the capability
of solving majority of complex NP-hard real-world large scale optimization problems, RCGA has been used
in almost every area of practical application (e.g., [7, 8, 19, 71, 94, 95]). Later, an Integer Coded GA (ICGA)
was developed to solve integer or mixed integer programming problems. Crossover and mutation operators have
specifically been developed for ICGA [1,19,22–24,82]. One can refer to Mirjalili [76] for rudimentary prelude and
a bird’s-eye review on developments of GA. Some standard problems of supply chain planning and management,
which are NP-hard, are solved using GA and its variants [35, 41, 67]. GA and its other variants are extensively
used in supplier selection problems [28,31,66,106].

Evolutionary approaches for solving the bilevel programming problems are studied separately from those
developed for solving general optimization problems due to the special structure of the bilevel problems. More-
over, due to the same reason, evolutionary approaches have been developed in the literature for specific variants
of the bilevel programming problems. Pricing problems modeled in the bilevel programming framework have
also been solved using GA [33,103], and a similar artificially intelligent algorithm viz., particle search optimiza-
tion algorithm [39]. GA based evolutionary algorithms have been used to solve some special classes of bilevel
programming problems [9, 11, 15, 47, 54, 55, 61, 63, 101, 107]. Among the evolutionary algorithms developed for
solving bilevel programming problems, those based on nested approach are effectively used over those devel-
oped for solving general optimization problem. In this approach, only the leader(s) variables are encoded and
explored randomly, while the respective values of follower’s variables are obtained directly by solving follower(s)
problem after passing the values of leader’s variables as parameters. Therefore, the nested GA for bilevel pro-
gramming problems focuses on developing the reaction mechanism for the follower(s) problem in response to
the given values of leader’s variables and formulating the fitness function. Algorithms developed under this
approach for solving some particular cases of bilevel programming problems can be referred in the literature
[2, 12, 13, 54, 62, 73, 107, 108]. But none of the studies have considered solving a bilevel programming problem
involving integer variables particularly at followers’ level.

In this backdrop, we are now ready to present our problem statement, model formulation, and the associated
theoretical developments. In subsequent sections we present an algorithm developed for solving the formulated
model and its illustration on a real-life case.

3. Bilevel game for ascertaining competitive target prices

3.1. Problem description

The negotiation process among buyer and suppliers is considered in the following setup.

– A buyer has already identified a set of suppliers based on their production and logistic infrastructural capac-
ities and the quality standards of both products and services.
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Figure 1. Depiction of structure.

– Each of these suppliers can produce some or all the required products and deliver them at various locations
of the buyer.

– Considering the supply capacities of all the suppliers the total requirements of the buyer for various products
can be fulfilled in each period.

– This setup is considered for a pre-defined planning horizon fixed by suppliers and the buyer together. The
planning horizon is further divided into multiple time intervals, called periods1.

The buyer wishes to negotiate on prices with these suppliers before entering into a new agreement. At this stage,
suppliers have opportunity to review and agree on the prices of the goods considering production-and-logistics
costs over the planning period and competition from the other suppliers. We consider the business setup where
the suppliers bear the cost of on-time delivery at various delivery locations. It compels the suppliers to assess
their transportation cost, inventory cost, and production cost in pricing while negotiating with the buyer.

The price-negotiation process of the buyer with each supplier begins with the supplier’s offer on the prices
of the products. The buyer tries to negotiate with each supplier to lower the prices of the products by offering
a greater proportion of the demand-order. The supplier rethinks on the profit while discerning the production-
distribution costs and reviews the competition from those suppliers who deal with the buyer in these products
particularly. The supplier then agrees for these prices or tries to negotiate further with the buyer. The process
of price negotiation gets over once the supplier and the buyer arrive at the final prices. Figure 1 provides a
schema for the discussed negotiation process. We develop a model for the buyer to identify competitive target
prices for negotiations with a relatively competitive group of suppliers.

1The planning horizon is identified as that time duration by which the actual realization of various costs is expected to remain
same as per the assessments. The planning horizon can be any duration, for example a month, quarter, or a year and can be
discretized into multiple periods, say weeks, fortnights, or months, respectively, depending on replenishment frequencies of various
suppliers.
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3.2. Basic assumptions of the model

– Any alternative modes or business options will have an adverse impact on the overall business prospects
of stakeholders of either side. This consideration for an oligopolistic-monopsony market compels all the
stakeholder of the market to discipline themselves for the stability of the market ecosystem.

– The buyer has a knowledge of production and logistic resources and infrastructure of each supplier, to assess
an aggregate-production-distribution plan on behalf of the later for any given demand order allocation2. This
enables the buyer to have an idea of production-distribution capacities and cost efficiencies of suppliers which
are required as inputs of our model.

– Each supplier may deal in some or all products among those required by the buyer. This is assumed to consider
a more general situation in which different suppliers deal in subsets of the set of all products required by the
buyer.

– Each product is homogenous in form, quality, quantity, size, across various suppliers dealing in that product.
This is assumed to consider the perfect substitutability of the products of various suppliers which keeps only
the price as a decision-variable for competition among suppliers.

– The prices of products are to be negotiated for a fixed time horizon which is discretized into equal subintervals.
These subintervals are termed as periods. The demand orders are to be allocated to various suppliers for the
delivery of products at each delivery location, during every period of planning horizon.

– The number of periods, into which the planning horizon be discretized, is considered to be the same for all the
suppliers. This assumption is considered for reducing the complexity of the model formulation, which would
otherwise be involved by considering it to be different for different suppliers. The same can be practically
achieved by considering the length of each period as least common multiple of replenishment frequencies of
various suppliers.

– Each supplier has a single production center with no capacity to store any inventory over a period. This
is an assumption considered to capture into the model the actual practice observed generally about the
production-distribution setups of manufacturers in B2B markets.

– All or some part of products manufactured in any period can be transported directly to various delivery
locations of the buyer. In general, the products are transported first from the production center to distribution
centers for inventory and cross-docking, and from there transported to the different delivery locations. This
transportation arrangement of each supplier is depicted in Figure 2. This arrangement of transportation is
considered for capturing into the model the most general provisions of transportation arrangements.

– The distribution centers can store each product that the supplier is dealing in. Likewise, all delivery locations
can accommodate all types of products.

– Suppliers are aware of the production-distribution capacities of their competitors through their market intelli-
gence. This practical assumption on competitive awareness of suppliers is considered to capture in our model
the competency of negotiators from each supplier which enables them to estimate that up to what their
counterparts can lower their price offers. Such an assumption is required as a basic consideration from the
game theory that players in a game opt only for their best strategy.

– Suppliers’ possible cost fluctuations are taken into consideration during the estimation of parameters. Assum-
ing this makes it possible to consider the parameters as fixed numbers any not fuzzy, as fuzziness will further
complicate the model to a very high level of complexity.

– The cost (per unit) of the products by the suppliers is estimated by including all direct and indirect expenses,
if any. This relieves from the hassle of considering the fixed costs of production or distribution separately in
the APDP part of the model responsible for computing the total cost of supply incurred to each supplier.

– No significant changes in technology and business environment are expected during the planning horizon
which may impact the costs drastically. This assumption is made for considering the parameter values taken
in our model to beat par with their estimates during the planning horizon. As the planning horizon is of short-
term this assumption is realized most of the times apart from some exceptional unprecedented incidences.

2Such an assumption is practical in view of the assessment by the buyer during the supplier selection process.
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Figure 2. Production and distribution structure.

– The variance between the forecasted demand and actual demand for the required products shall be negligible
at the buyers end during the planning horizon. Since the planning horizon is short-term, it is reasonable to
assume that the buyer can forecast demand encompassing fluctuations in it.

– The buyer knows the price for each supplier below which the supplier would no longer be able to bargain.
These prices are identified through break-even prices of suppliers and can be estimated by the buyer during
the supplier assessment made during the supplier selection process.

– Discounts or differential pricing are not provisioned in our model. This is assumed for preventing the formu-
lation of our model from including binary integer variables, as they will complicate the model from solution
point of view.

3.3. Model formulation

Price quotes from suppliers are a requisition for computing the demand shares by the buyer, which in turn is a
requirement for each supplier to assess the profit to be earned as a result. This is a perplexed problem involving
action-and-reaction among suppliers and the buyer. The bilevel programming framework is appropriate to
model this situation, which terms the action takers as leaders and reaction givers as followers. According to
this terminology of bilevel programming, we identify in our problem the suppliers as leaders and the buyer
as follower. As there are multiple leaders (suppliers) and single follower (buyer) in the addressed situation,
therefore the formulation of model corresponds to a MLSF bilevel programming problem.

Suppliers decide on best price offers, and thereupon prepare the aggregate-production-distribution-plan based
on the demand shares received from the buyer in response to the offered prices. Depending on individual resources
and surmised prices of other suppliers, each supplier tries to decide on such price offers which can provide
appropriate demand allocations from the buyer for achieving the maximum total profit over the planning horizon.
This suggests considering the prices and production distribution arrangements of suppliers as leaders variables,
whereas the demand allocation decisions as followers variables. Formulating this model of price competition
among suppliers thereby requires embedding the APDP problem at leaders’ level while posing the demand
allocation problem of the supplier at follower’s level.

With this basic structure of the model introduced here, the nomenclature of indices, parameters and decision-
variables is detailed below, followed by an explanation of components of the model.
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3.3.1. Nomenclature

The indices, parameters, and variables used to mathematically formulate our model are listed below. Here,
production center of a supplier is termed as “PC”. A warehouse/distribution center, which is used for storing
the inventory and for cross-docking the in-supply of consignment to out-supply for various delivery locations of
the buyer, is termed as “DC”. Delivery location of the buyer is denoted as “DL”. Prices are discussed in the
official currency of the Republic of India, the Indian Rupee, with currency code INR.

Indices and sets
𝐾 Number of suppliers; 𝑘 = 1, 2, . . . ,𝐾
𝑁 Number of different type of products; 𝑛 = 1, 2, . . . , 𝑁
𝐽 Number of Buyer’s Delivery Locations (DLs); 𝑗 = 1, 2, . . . , 𝐽
𝑇 Number of periods in the planning horizon; 𝑡 = 1, 2, . . . , 𝑇
𝑁𝑘 Set of indices of the products that the supplier 𝑘 deals in (𝑁𝑘 ⊆ {1, 2, . . . , 𝑁}); 𝑛𝑘 ∈ 𝑁𝑘
𝐼𝑘 Number of Distribution Centers of the supplier 𝑘; 𝑖𝑘 = 1, 2, . . . , 𝐼𝑘

𝑖𝑘 = 0 stands for the PC of the supplier 𝑘, to act as a source to transport products to directly to
DLs.

Leaders’ parameters and variables (This is practically interpreted as break-even price of the supplier for
a product.)
Parameters
𝑙𝑝𝑘𝑛𝑘𝑗 Minimum reservation price of product 𝑛𝑘 from supplier 𝑘 for its demand at buyer’s DL 𝑗

(INR/unit)3
𝐿𝑝𝑘𝑛𝑘𝑗 Maximum reservation price of product 𝑛𝑘 from supplier 𝑘 for its demand at buyer’s DL 𝑗

(INR/unit)
𝑎𝑘𝑛𝑘𝑡 Regular time production cost of product 𝑛𝑘 for supplier 𝑘 in period 𝑡 (INR/unit)
𝑏𝑘𝑛𝑘𝑡 Overtime production cost of product 𝑛𝑘 for supplier 𝑘 in period 𝑡 (INR/unit)
𝑟𝑘𝑛𝑘𝑡 Machine-hours required by supplier 𝑘 for production of per unit of product 𝑛 in period 𝑡
𝑡𝑐𝑝𝑘𝑛𝑘𝑖𝑘𝑡 Cost of transportation of product 𝑛𝑘 from PC to DC 𝑖𝑘 of supplier 𝑘 in period 𝑡 (INR/unit)
𝑡𝑐𝑘𝑛𝑘𝑖𝑘𝑗𝑡 Cost of transportation of product 𝑛𝑘 from DC 𝑖𝑘 of supplier 𝑘 to buyer’s DL 𝑗 in period 𝑡

(INR/unit)
𝑑𝑘𝑛𝑘𝑖𝑘𝑡 Inventory carrying cost of product 𝑛𝑘 at DC 𝑖𝑘 of supplier 𝑘 in period 𝑡 (INR/unit)
𝑣𝑛 Space occupied by per unit of product 𝑛𝑘(cu-ft/unit)
MR𝑘𝑡 Maximum regular machine-hours (man-hours) available with supplier 𝑘 in period 𝑡
𝑀𝑘𝑡 Maximum total machine-hours (man-hours) available with supplier 𝑘 in period 𝑡
𝑉𝑖𝑘𝑡 Maximum space available in DC 𝑖𝑘 of supplier 𝑘 in period 𝑡 (cu-ft)
Variables
𝑧𝐿𝑘

Gross profit of supplier 𝑘
𝑝𝑘𝑛𝑘𝑗 Per unit price of product 𝑛𝑘 from supplier 𝑘 for its demand at DL 𝑗 (INR/unit)
𝑄𝑘𝑛𝑘𝑡 Regular time production volume of product 𝑛𝑘 of supplier 𝑘 in period 𝑡 (units)
𝑂𝑘𝑛𝑘𝑡 Overtime production volume of product 𝑛𝑘 of supplier 𝑘 in period 𝑡 (units)
SS𝑘𝑛𝑘𝑖𝑘𝑡 Inventory level (safety stock) of product 𝑛𝑘 at DC 𝑖𝑘 of supplier 𝑘 in period 𝑡 (units)
𝐼𝑘𝑛𝑘𝑖𝑘𝑡 Consignment volume of product 𝑛𝑘 to be sent from PC to DC 𝑖𝑘 of the supplier 𝑘 in period 𝑡

(units)
𝑥𝑘𝑛𝑘𝑖𝑘𝑗𝑡 Consignment volume of product 𝑛𝑘 from DC 𝑖𝑘 of supplier 𝑘 to buyer’s DL 𝑗 in period 𝑡
Follower’s parameters and variables
Parameters
𝑧𝐹 Total cost of procurement and holding products at various DLs (INR/unit)
𝐷𝑗𝑛𝑡 Total forecasted demand of product 𝑛 at buyer’s DL 𝑗 in period 𝑡 (units)
𝑀𝑦𝑘𝑛𝑘

Maximum purchase volume of product 𝑛𝑘 from supplier 𝑘 in any period
VF𝑗 Maximum inventory carrying space at DL 𝑗 of the buyer (cu-ft)
Variables
𝑦𝑘𝑛𝑘𝑗𝑡 Number of units of product 𝑛𝑘 to be purchased from supplier 𝑘 for DL 𝑗 in period 𝑡

3This is practically interpreted as break-even price of the supplier for a product.
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The mathematical model (Price-BLP) for ascertaining competitive target prices using the MLSF bilevel
programming framework can be summarized as follows.

3.3.2. Suppliers’ optimization problem

Objective function

For each supplier (𝑘 = 1, 2, . . . ,𝐾), the objective is to maximize the total profit through the decision on values
of price variables (𝑝𝑘𝑛𝑘𝑗) for each product 𝑛𝑘 ∈ 𝑁𝑘 and each delivery location 𝑗 = 1, 2, . . . , 𝐽 , and thereupon
values of variables of production, inventory, and transportation (𝑄𝑘𝑛𝑘𝑗 , 𝑂𝑘𝑛𝑘𝑗 ,SS𝑘𝑛𝑘𝑖𝑘𝑡, 𝐼𝑘𝑛𝑘𝑖𝑘𝑡, 𝑥𝑘𝑛𝑘𝑖𝑘𝑗𝑡) based
on the demand shares received as a response to the prices quoted by all the suppliers. The objective function is
given as following.

Max 𝑧𝐿𝑘
=

𝑇∑︁
𝑡=1

∑︁
𝑛𝑘∈𝑁𝑘

𝐽∑︁
𝑗=1

𝑝𝑘𝑛𝑘𝑗𝑦𝑘𝑛𝑘𝑗𝑡 −

{︃
𝑇∑︁
𝑡=1

∑︁
𝑛𝑘∈𝑁𝑘

(𝑎𝑘𝑛𝑘𝑡𝑄𝑘𝑛𝑘𝑡 + 𝑏𝑘𝑛𝑘𝑡𝑂𝑘𝑛𝑘𝑡)

+

(︃
𝑇∑︁
𝑡=1

∑︁
𝑛𝑘∈𝑁𝑘

𝐼𝑘∑︁
𝑖𝑘=1

𝑑𝑘𝑛𝑘𝑖𝑘𝑡SS𝑘𝑛𝑘𝑖𝑘𝑡 +
𝑇∑︁
𝑡=1

∑︁
𝑛𝑘∈𝑁𝑘

𝐼∑︁
𝑖=1

𝑡𝑐𝑝𝑘𝑛𝑘𝑖𝑘𝑡𝐼𝑘𝑛𝑘𝑖𝑘𝑡

+
𝑇∑︁
𝑡=1

∑︁
𝑛𝑘∈𝑁𝑘

𝐼∑︁
𝑖=0

𝐽∑︁
𝑗=1

𝑡𝑐𝑘𝑛𝑘𝑖𝑘𝑗𝑡𝑥𝑘𝑛𝑘𝑖𝑘𝑗𝑡

⎞⎠⎫⎬⎭. (3.1)

Price bounds

The prices are speculated within bounds; lower bounds are the minimum prices acceptable to the supplier
emerging due to their cost efficiencies, whereas the upper bounds are enforced through the competition imposed
by the other suppliers. Lower bounds on these prices are termed as minimum reservation prices and upper
bounds as maximum reservation prices.

𝑙𝑝𝑘𝑛𝑘𝑗 ≤ 𝑝𝑘𝑛𝑘𝑗 ≤ 𝐿𝑝𝑘𝑛𝑘𝑗 , ∀𝑛𝑘,∀𝑗. (3.2)

Regular time production hours

The production volumes for various products are restricted by the regular time production hours.∑︁
𝑛𝑘∈𝑁𝑘

𝑟𝑘𝑛𝑘𝑡𝑄𝑘𝑛𝑘𝑡 ≤ MR𝑘𝑡, ∀𝑡. (3.3)

Total production hours

The total production volumes obtainable through the provisions of overtime engagement of labor/machines
along with the regular time production are also restricted by the total available production hours.∑︁

𝑛𝑘∈𝑁𝑘

𝑟𝑘𝑛𝑘𝑡(𝑄𝑘𝑛𝑘𝑡 +𝑂𝑘𝑛𝑘𝑡) ≤𝑀𝑘𝑡, ∀𝑡. (3.4)

Inventory balancing constraints

The demand orders received for each product are fulfilled through the total production volumes together
with the available inventory volumes maintained in the previous period while maintaining required inventory
volumes for the current period.

𝑄𝑘𝑛𝑘𝑡 +𝑂𝑘𝑛𝑘𝑡 +
𝐼𝑘∑︁
𝑖𝑘=1

SS𝑘𝑛𝑘𝑖𝑘(𝑡−1) −
𝐼𝑘∑︁
𝑖𝑘=1

SS𝑘𝑛𝑘𝑖𝑘𝑡 =
𝐽∑︁
𝑗=1

𝑦𝑘𝑛𝑘𝑗𝑡, ∀𝑛𝑘,∀𝑡. (3.5)
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Space constraints at DC

At any period, the consignment volumes of various products to be received at each DC (𝐼𝑘𝑛𝑘𝑖𝑘𝑡) along with
the products already available there as inventory maintained during the previous period (SS𝑘𝑛𝑘𝑖𝑘(𝑡−1)) should
be capacitated in the available space at the DC.∑︁

𝑛𝑘∈𝑁𝑘

𝑣𝑛
(︀
𝐼𝑘𝑛𝑘𝑖𝑘𝑡 + SS𝑘𝑛𝑘𝑖𝑘(𝑡−1)

)︀
≤ 𝑉𝑖𝑘𝑡, ∀𝑡, ∀𝑖𝑘. (3.6)

Transport plan for delivery at each DL

For each period, the consignment volumes of various products from PC to DC(s), from DC(s) to DLs, and
directly from PC to DLs are to be planned to fulfill the demand of each DL for each product. Following three
constraints govern this requirement. First two of the following constraints describe the transportation plan from
DC(s) to DLs, whereas the third one describes transportation plan directly from PC to DLs.

𝐼∑︁
𝑖=0

𝑥𝑘𝑛𝑘𝑖𝑘𝑗𝑡 ≥ 𝑦𝑘𝑛𝑘𝑗𝑡, ∀𝑗,∀𝑛𝑘,∀𝑡, (3.7)

𝐽∑︁
𝑗=1

𝑥𝑘𝑛𝑘𝑖𝑘𝑗𝑡 ≤ 𝐼𝑘𝑛𝑘𝑖𝑘𝑡 + SS𝑘𝑛𝑘𝑖𝑘(𝑡−1) − SS𝑘𝑛𝑘𝑖𝑘𝑡, ∀𝑖𝑘 ̸= 0,∀𝑛𝑘,∀𝑡, (3.8)

𝐽∑︁
𝑗=1

𝑥𝑘𝑛𝑘0𝑗𝑡 = 𝑄𝑘𝑛𝑘𝑡 +𝑂𝑘𝑛𝑘𝑡 −
𝐼𝑘∑︁
𝑖𝑘=1

𝐼𝑘𝑛𝑘𝑖𝑘𝑡, 𝑖𝑘 = 0,∀𝑛𝑘,∀𝑡. (3.9)

3.3.3. Buyer’s optimization problem

Based on the price quotations received from various suppliers, the buyer solves the cost optimal demand
allocation problem.

Objective function

The buyer decides on allocating demand shares (𝑦𝑘𝑛𝑘𝑗𝑡) corresponding to the received price quotes (𝑝𝑘𝑛𝑘𝑗)
from each supplier for various products for minimum total procurement cost.

Min 𝑧𝐹 =
𝐾∑︁
𝑘=1

𝐽∑︁
𝑗=1

∑︁
𝑛𝑘∈𝑁𝑘

𝑇∑︁
𝑡=1

𝑝𝑘𝑛𝑘𝑗𝑦𝑘𝑛𝑘𝑗𝑡. (3.10)

Constraint on maximum purchase volumes

The total of purchase volumes of each product over all DLs is restricted by a maximum value in any period
by each supplier. Such restrictions are pre-decided by the suppliers due to the potential of their production line
or sometimes the supplier managing business with multiple buyers.

𝐽∑︁
𝑗=1

𝑦𝑘𝑛𝑘𝑗𝑡 ≤𝑀𝑦𝑘𝑛𝑘
, ∀𝑘, ∀𝑛𝑘,∀𝑡. (3.11)

Constraint on maximum purchase volumes

The total of purchase volumes of each product for each period from various suppliers must meet the demand
of each DL.

𝐾∑︁
𝑘=1

𝑦𝑘𝑛𝑘𝑗𝑡 = 𝐷𝑗𝑛𝑡, ∀𝑗,∀𝑛𝑘,∀𝑡. (3.12)
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Space constraint

The total of purchase volumes of all the products from various suppliers at each DL should be up to maximum
inventory carrying capacity of the DL, for each period.

𝐾∑︁
𝑘=1

∑︁
𝑛𝑘∈𝑁𝑘

𝑣𝑛𝑦𝑘𝑛𝑘𝑗𝑡 ≤ VF𝑗 , ∀𝑗,∀𝑡. (3.13)

3.3.4. Price-negotiation problem in a MLSF bilevel game framework

The MLSF bilevel game problem for obtaining competitive target prices is described below as (Price-BLP),
considering suppliers as leaders and the buyer as follower. The problem formulated to determine values of vari-
ables {{𝑝𝑘𝑛𝑘𝑗}, {𝑄𝑘𝑛𝑘𝑡}, {𝑂𝑘𝑛𝑘𝑡}, {SS𝑘𝑛𝑘𝑖𝑘𝑡}, {𝐼𝑘𝑛𝑘𝑖𝑘𝑡}, {𝑥𝑘𝑛𝑘𝑖𝑘𝑗𝑡} : 𝑛𝑘, 𝑖𝑘, 𝑗, 𝑡} for each supplier (𝑘 = 1, 2, . . . ,𝐾)
and respective demand allocations {𝑦𝑘𝑛𝑘𝑗𝑡 : 𝑛𝑘, 𝑗, 𝑡, 𝑘} for the buyer.

(Price-BLP)

(LDMP− 𝑘) Max 𝑧𝐿𝑘
=

𝑇∑︁
𝑡=1

∑︁
𝑛𝑘∈𝑁𝑘

𝐽∑︁
𝑗=1

𝑝𝑘𝑛𝑘𝑗𝑦𝑘𝑛𝑘𝑗𝑡 −

{︃
𝑇∑︁
𝑡=1

∑︁
𝑛𝑘∈𝑁𝑘

(𝑎𝑘𝑛𝑘𝑡𝑄𝑘𝑛𝑘𝑡 + 𝑏𝑘𝑛𝑘𝑡𝑂𝑘𝑛𝑘𝑡)

+

(︃
𝑇∑︁
𝑡=1

∑︁
𝑛𝑘∈𝑁𝑘

𝐼𝑘∑︁
𝑖𝑘=1

𝑑𝑘𝑛𝑘𝑖𝑘𝑡SS𝑘𝑛𝑘𝑖𝑘𝑡 +
𝑇∑︁
𝑡=1

∑︁
𝑛𝑘∈𝑁𝑘

𝐼∑︁
𝑖=1

𝑡𝑐𝑝𝑘𝑛𝑘𝑖𝑘𝑡𝐼𝑘𝑛𝑘𝑖𝑘𝑡

+
𝑇∑︁
𝑡=1

∑︁
𝑛𝑘∈𝑁𝑘

𝐼∑︁
𝑖=0

𝐽∑︁
𝑗=1

𝑡𝑐𝑘𝑛𝑘𝑖𝑘𝑗𝑡𝑥𝑘𝑛𝑘𝑖𝑘𝑗𝑡

⎞⎠⎫⎬⎭
subject to

𝑙𝑝𝑘𝑛𝑘𝑗 ≤ 𝑝𝑘𝑛𝑘𝑗 ≤ 𝐿𝑝𝑘𝑛𝑘𝑗 , ∀𝑛𝑘,∀𝑗,∑︁
𝑛𝑘∈𝑁𝑘

𝑟𝑘𝑛𝑘𝑡𝑄𝑘𝑛𝑘𝑡 ≤ MR𝑘𝑡, ∀𝑡,

∑︁
𝑛𝑘∈𝑁𝑘

𝑟𝑘𝑛𝑘𝑡(𝑄𝑘𝑛𝑘𝑡 +𝑂𝑘𝑛𝑘𝑡) ≤𝑀𝑘𝑡, ∀𝑡,

𝑄𝑘𝑛𝑘𝑡 +𝑂𝑘𝑛𝑘𝑡 +
𝐼𝑘∑︁
𝑖𝑘=1

SS𝑘𝑛𝑘𝑖𝑘(𝑡−1) −
𝐼𝑘∑︁
𝑖𝑘=1

SS𝑘𝑛𝑘𝑖𝑘𝑡 =
𝐽∑︁
𝑗=1

𝑦𝑘𝑛𝑘𝑗𝑡, ∀𝑛𝑘,∀𝑡,∑︁
𝑛𝑘∈𝑁𝑘

𝑣𝑛
(︀
𝐼𝑘𝑛𝑘𝑖𝑘𝑡 + SS𝑘𝑛𝑘𝑖𝑘(𝑡−1)

)︀
≤ 𝑉𝑖𝑘𝑡, ∀𝑡, ∀𝑖𝑘,

𝐼∑︁
𝑖=0

𝑥𝑘𝑛𝑘𝑖𝑘𝑗𝑡 ≥ 𝑦𝑘𝑛𝑘𝑗𝑡, ∀𝑗,∀𝑛𝑘,∀𝑡,

𝐽∑︁
𝑗=1

𝑥𝑘𝑛𝑘𝑖𝑘𝑗𝑡 ≤ 𝐼𝑘𝑛𝑘𝑖𝑘𝑡 + SS𝑘𝑛𝑘𝑖𝑘(𝑡−1) − SS𝑘𝑛𝑘𝑖𝑘𝑡, ∀𝑖𝑘 ̸= 0,∀𝑛𝑘,∀𝑡,

𝐽∑︁
𝑗=1

𝑥𝑘𝑛𝑘0𝑗𝑡 = 𝑄𝑘𝑛𝑘𝑡 +𝑂𝑘𝑛𝑘𝑡 −
𝐼𝑘∑︁
𝑖𝑘=1

𝐼𝑘𝑛𝑘𝑖𝑘𝑡, 𝑖𝑘 = 0,∀𝑛𝑘,∀𝑡,

𝑝𝑘𝑛𝑘𝑗 , 𝑄𝑘𝑛𝑘𝑡, 𝑂𝑘𝑛𝑘𝑡, 𝐼𝑘𝑛𝑘𝑖𝑘𝑡,SS𝑘𝑛𝑘𝑖𝑘𝑡, 𝑥𝑘𝑛𝑘𝑖𝑘𝑗𝑡 ≥ 0, ∀𝑛𝑘,∀𝑖𝑘,∀𝑗,∀𝑘, ∀𝑡,
𝑄𝑘𝑛𝑘𝑡, 𝑂𝑘𝑛𝑘𝑡, 𝐼𝑘𝑛𝑘𝑖𝑘𝑡,SS𝑘𝑛𝑘𝑖𝑘𝑡, 𝑥𝑘𝑛𝑘𝑖𝑘𝑗𝑡 are integer variables, ∀𝑛𝑘,∀𝑖𝑘,∀𝑗,∀𝑘, ∀𝑡;

where, {𝑦𝑘𝑛𝑘𝑗𝑡 : 𝑘, 𝑛𝑘, 𝑗, 𝑡} is rational response obtained from following problem
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(FDMP) Min 𝑧𝐹 =
𝐾∑︁
𝑘=1

𝐽∑︁
𝑗=1

∑︁
𝑛𝑘∈𝑁𝑘

𝑇∑︁
𝑡=1

𝑝𝑘𝑛𝑘𝑗𝑦𝑘𝑛𝑘𝑗𝑡

subject to
𝐽∑︁
𝑗=1

𝑦𝑘𝑛𝑘𝑗𝑡 ≤𝑀𝑦𝑘𝑛𝑘
, ∀𝑘,∀𝑛𝑘,∀𝑡,

𝐾∑︁
𝑘=1

𝑦𝑘𝑛𝑘𝑗𝑡 = 𝐷𝑗𝑛𝑡, ∀𝑗,∀𝑛𝑘,∀𝑡,

𝐾∑︁
𝑘=1

∑︁
𝑛𝑘∈𝑁𝑘

𝑣𝑛𝑦𝑘𝑛𝑘𝑗𝑡 ≤ VF𝑗 , ∀𝑗,∀𝑡,

𝑦𝑘𝑛𝑘𝑗𝑡 ≥ 0, ∀𝑗,∀𝑛𝑘,∀𝑘,∀𝑡,
𝑦𝑘𝑛𝑘𝑗𝑡 are integer variables, ∀𝑗,∀𝑛𝑘,∀𝑘,∀𝑡.

Here, it is noted that all the constraints of the MLSF bilevel game problem modeled above are linear and
objective functions of leaders and follower are bilinear. With this niceness of linearity in constraints and bi-
linearity of objective functions involved in the model, a challenge is to handle integer variables. In the next
section, we concentrate on solving a MLCF bilevel programming problem with the special properties noted
above.

4. Solution methodology

In the model formulated above, the variables 𝑄𝑘𝑛𝑘𝑡, 𝑂𝑘𝑛𝑘𝑡, 𝐼𝑘𝑛𝑘𝑖𝑘𝑡,SS𝑘𝑛𝑘𝑖𝑘𝑡, 𝑥𝑘𝑛𝑘𝑖𝑘𝑗𝑡 and 𝑦𝑘𝑛𝑘𝑗𝑡 are considered
to have integer values, only for realizing the actual practices of industry. But no direct or evolutionary method is
available in the literature for solving a MLSF bilevel programming problem which particularly involves integer
variables. In this situation, a possible approach is to relax the integer restriction on these variables and then try
to solve the equivalent MLSF bilevel programming problem by applying any of the state-of-the-art approaches
by Leyffer and Munson [60] and Hori and Fukushima [51]. We attempted to solve an instance of our practical
problem, for which the data was obtained from a manufacturing firm by following this scheme. This instance of
the modeled problem involves a total of 1000 variables (760 of leaders’ and 240 of the follower). The equivalent
nonlinear optimization problems formulated by following the referred approaches could not converge even to a
local optimal solution after long hours of computation on computers. From this experience it is evident that
direct methods based on the theoretical approaches suggested in literature turn out to be incapable of handling
large scale MLSF bilevel game problems. Therefore, it is compelling to adopt some evolutionary search technique
for solving a large instance of our problem.

Although, as mentioned in the literature review, evolutionary algorithms are developed specifically for some
variants of the bilevel programming problems, even then we made a sincere attempt for solving the considered
instance of MLSF bilevel programming problem using the general GA. Also, we attempted to apply integer-
coded GA [24] for solving our original problem with integer restriction on variables imposed again. Both the
GA approaches also failed to converge to even a feasible solution of the problem. This impels us to develop an
algorithm capable of handling large scale MLSF bilevel game problems to obtain strong-stationary points.

In this situation, we propose solution method for solving MLSF bilevel game problems involving integer
variables and having the specific structure as involved in our model, viz. linear constraints, and bilinear objective
functions at both levels. The proposed solution method is based on nested GA approach and uses some theoretical
concepts from of Leyffer and Munson approach [60] particularly for devising fitness function. We express below
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a general MLSF bilevel programming problem with linear constraints and bilinear objective functions at both
levels followed by a discussion on appropriately structuring theoretical concepts for developing a nested GA
based solution method.
(MLSF-BL-BLP)

(LDMP− 𝑖) min
𝑢𝑖≥0

𝑓𝑖(𝑢𝑖, 𝑣)

subject to
𝑔𝑖(𝑢𝑖, 𝑣) ≥ 0,
𝐺𝑖(𝑢𝑖, 𝑣) = 0,
where, 𝑣 is optimal response of the follower corresponding to the leaders’
variables, 𝑢 = {𝑢𝑖 : 𝑖 = 1, 2, . . . , 𝑘},

(FDMP) min
𝑤

𝑏(𝑢, 𝑤)

subject to
𝑐(𝑢,𝑤) ≥ 0,
𝑤 ≥ 0
Here, constraints 𝑔𝑖(𝑢𝑖, 𝑣) ≥ 0, 𝐺𝑖(𝑢𝑖, 𝑣) ≥ 0, and 𝑐(𝑢, 𝑣) ≥ 0 are
considered as linear and objective functions 𝑓𝑖(𝑢𝑖, 𝑣) and 𝑏(𝑢, 𝑣)
are bilinear in the sense that functions 𝑓𝑖 and 𝑏 are linear in the
variable 𝑣 for when 𝑢 is considered as parameter and vice-versa. (4.1)

Here, (LDMP− 𝑖) is optimization problem of leader 𝑖(𝑖 = 1, 2, . . . , 𝑘), in which the follower’s optimization
problem (FDMP) is incorporated as a constraint.

A MLSF bilevel programming problem is solved by obtaining strong stationary points [60], or further by
obtaining strong stationary Nash-equilibrium points4, if one such exists [51]. We have developed nested GA
based solution method for obtaining strong stationarity points by using some theoretical concepts from the
penalty based approach of Leyffer and Munson [60] (explained in Appendix A). The theoretical development in
connection with features of the problem (MLSF-BL-BLP) that enables designing the nested GA based solution
methodology for it is outlined below.

4.1. Structuring theoretical concepts to design nested GA based solution method for
solving (MLSF-BL-BLP)

A nested GA based solution method for any bilevel programming problem principally requires devising the
reaction mechanism of follower’s (followers’) problem, corresponding to a given value of leader’s variables, and
formulating the fitness function. In the following subsections, we explain devising the reaction mechanism and
formulating the fitness function of chromosomes through a typical structuring of the theoretical concepts taken
from penalty based approach [60].

4.1.1. Devising the reaction mechanism for the proposed nested GA

For the considered specific structure of the MLSF bilevel programming problem (MLSF-BL-BLP), the follower
decision problem is a linear programming problem (LPP) or a mixed integer linear programming problem
(MILPP) parameterized in the leader’s variables 𝑢. We put forward exploring values of leaders’ variables 𝑢 in

4If a strong stationary point is obtained, then one can further test whether it is a strong stationary Nash-equilibrium point,
following the procedure remarked in Appendix C.
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Figure 3. Chromosome structure.

GA, through their encoding as a chromosome, while obtaining the corresponding follower’s responses (values of
follower’s variable 𝑣) by directly solving the parameterized LPP/MILPP with the chromosome values supplied
as parameter 𝑢. Accordingly, for any chromosome representing the value 𝑢* of leaders’ variables 𝑢, the reaction of
the follower, say 𝑣*, can be obtained. This gives (𝑢*, 𝑣*) as a feasible solution of the MLSF bilevel programming
problem with considered specific structure. Devising such a reaction mechanism for nested GA gives an advantage
over general GA that every chromosome corresponds to a feasible solution of (MLSF-BL-BLP), thereby the
exploration remains in the feasible region throughout all the generations of GA.

Remark 4.1. As we are developing a heuristic search algorithm, it is acceptable to relax the integer condition
from follower’s variables, if there is any, and then solve the equivalent parameterized LPP instead of MILPP
for approximating the follower’s response. This privilege of obtaining approximate values of follower’s responses
is justified because by the heuristic approach anyways obtain an approximate solution of the problem. The
approximate real values of the variables (originally integer restricted) can be rounded-off eventually. Relaxing
the integer conditions and then rounding-off the approximated real value of the obtained solution is justified by
Joseph et al. [53] for obtaining near optimal solutions.

4.1.2. Using theoretical developments for formulating the fitness function of nested GA

A feasible solution (𝑢*, 𝑣*), obtained by the procedure suggested above, can further be tested for strong
stationary point by adopting the procedure detailed in Appendix B. For this purpose, we need to solve the
LPP (Para− LP) by substituting the values (𝑢*, 𝑣*) as parameters and check the optimal value. Referring
to the result in Appendix B, if the optimal value is zero, then (𝑢*, 𝑣*) represents a strong stationary point
of the considered MLSF bilevel programming problem. Therefore, for a chromosome representing a feasible
solution (𝑢*, 𝑣*) of (MLSF-BL-BLP), we define the fitness value as the objective function value 𝑐𝑝𝑝 of the LPP
(Para− LP) with values of (𝑢*, 𝑣*) substituted as parameters.

The objective function value of (Para− LP) is always non-negative for any feasible solution. Therefore, for
guiding the algorithm towards a chromosome representing strong stationary point (i.e., fitness value 0) it is
appropriate to identify a chromosome as better fit than another on the smaller value of fitness function.

With this background, the minute details of the proposed algorithm are provided in the following subsection.

4.2. Nested GA for solving (MLSF-BL-BLP)

GA components used in our algorithm are presented below followed by their assembly into the algorithm
presented through a pseudocode.

4.2.1. Chromosome encoding

For leaders’ variables 𝑢 = {𝑢𝑖 : 𝑖 = 1, 2, . . . , 𝑘}, where each 𝑢𝑖 = {𝑢𝑖1, 𝑢𝑖2, . . . , 𝑢𝑖𝑟𝑖
}, the chromosomes of the

population are encoded as an array of length equal to the number of all the leaders’ variables indicating the
values {𝑢𝑖 : 𝑖 = 1, 2, . . . , 𝑘}. A general chromosome structure used in the implementation of the algorithm is
shown in Figure 3.
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4.2.2. Initialization

The following GA parameters are used in the proposed algorithm: population size popsize; number of gener-
ations 𝐺; current generation 𝑔, (𝑔 = 1, 2, . . . , 𝐺); crossover rate pc; mutation rate pm; location parameter 𝑎 and
scaling parameter 𝑏 > 0 for Laplace crossover; index of power mutation 𝑝.

4.2.3. Incorporating follower’s reaction and fitness evaluation

Follower’s reaction and inputs for (Para – LP): for each chromosome in population (which corresponds to
leaders’ variables 𝑢), problem (FDMP) is solved. The optimal response 𝑣 thus obtained is supplied along with
𝑢 for testing the feasibility of each chromosome (LDMP – 𝑘) of (MLSF-BL-BLP). Through this complete
information about (𝑢, 𝑣), the values of variables 𝑠 and 𝑡𝑖 are calculated using relations referred in (A.7e) and
(A.7g).

Fitness evaluation: for each chromosome, with its value 𝑢 = {𝑢𝑖 : 𝑖 = 1, 2, . . . , 𝑘} and obtained values 𝑣, 𝑠,
𝑡𝑖 : 𝑖 = 1, 2, . . . , 𝑘, the problem (Para – LP) is solved. Corresponding value of the objective function 𝐶penalty is
considered as the fitness value of that chromosome.

4.2.4. Genetic operators

Selection operator : tournament selection operator is used to choose relatively fit chromosome. A tournament
selection mechanism, (with size 2), is adopted for selecting chromosomes with better fitness. For guiding the
search of the algorithm towards strong stationary points, a chromosome with smaller fitness value is considered
to have better fitness that the other.

Crossover operator : we use a single point crossover for a chromosome, Laplace crossover (LX) operator with
the probability pc [24]. The same is explained in [54].

Mutation operator : the mutation is performed on a chromosome with the probability pm using the power
mutation (PM) operator [24]. The same is explained in [54].

We note that LX and the PM operators do not disturb feasibility of chromosomes in terms of reservation
price bounds in problem (LDMP – 𝑘).

4.2.5. Updating the new population

The new population obtained from the parent population 𝑃 𝑔 is adopted to be a population of the next
generation 𝑃 𝑔+1 only if it’s maximum fitness value, in comparison to the maximum fitness value of the previous
generation, does not decrease. Otherwise, the population 𝑃 𝑔 is preserved as population 𝑃 𝑔+1 for regenerating
the next generation.

4.2.6. Termination criterion

The execution of the algorithm is terminated after the completion of pre-defined maximum number of gener-
ations 𝐺. The value of 𝐺 may be tuned by observing stability in the fitness value through various combinations
of GA parameters.

Finally, the steps involved in the proposed GA are summarized below through a pseudocode presented in
Algorithms 1 and 2. Algorithms 1 and 2, collectively represent a nested type of GA, with Algorithm 2 performing
as a subprogram of the main program given by Algorithm 1. Here, Algorithm 2 is responsible for evaluating
optimal reaction of the follower corresponding to leaders’ potential actions represented by each chromosome of
the population (nested action), and thereby determining the fitness values of chromosomes.
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Algorithm 1: Nested GA for solving (MLSF-BL-BLP).
Data: Input data and GA parameters
𝑔 ← 0;
Initialize population (values of LDMs’ variables 𝑢𝑖 : 𝑖 = 1, 2, . . . , 𝑘);
Evaluate fitness of population members (along with corresponding response 𝑣) (using Algorithm 2);
while 𝑔 < 𝐺 do

Tournament selection (retaining best-fit chromosome);
Generate new individuals through extended Laplace Crossover and Power Mutation.
Evaluation fitness of population members (along with corresponding response 𝑣) (using Algorithm 2);
Update new population for next generation.
𝑔 ← 𝑔 + 1;
Select best-fit chromosome of the new generation (along with corresponding response 𝑣);

end
Return best-fit chromosome (along with corresponding response 𝑣) over all generations

Algorithm 2: Fitness evaluation of population members – for (MLSF-BL-BLP).
Input: GA population of chromosomes
for 𝑖← 1 to 𝑃𝑜𝑝 𝑠𝑖𝑧𝑒 do

Substitute values of LDM variables 𝑢𝑖 : 𝑖 = 1, 2, . . . , 𝑘 (represented by chromosome) in (FDMP) to
solve the follower’s relaxed LPP for obtaining 𝑣;
Round-off values of 𝑣 to the closest integers;
Obtain 𝑠 = ℎ(𝑢, 𝑣) and 𝑡𝑖 = 𝑔𝑖(𝑢𝑖, 𝑣);
Solve (Para – LP) by supplying values of 𝑢, 𝑣, 𝑠, 𝑡𝑖.
Evaluate the fitness value as objective function value of (Para – LP);

end
Output: Fitness values of all chromosomes of the population (along with corresponding response 𝑣)

Going back to solve our model (Price-BLP), a particular problem in the class of (MLSF-BL-BLP) problems,
a specific interdependence among leader’s variables can be noticed. Some modifications in the proposed algo-
rithm are suggested further in the following subsection to capture this interdependence of variables for solving
particularly the modeled problem (Price-BLP).

4.3. Modifications in the proposed algorithm for solving (Price-BLP)

As in the problem (Price-BLP), the values of Leaders’ price variables ({𝑝𝑘𝑛𝑘𝑗 : 𝑘, 𝑛𝑘, 𝑗}) decide the demand
allocations {𝑦𝑘𝑛𝑘𝑗𝑡 : 𝑘, 𝑛𝑘, 𝑗, 𝑡} by the follower, and thereafter the values of production-and-distribution planning
variables (𝑄𝑘𝑛𝑘𝑗 , 𝑂𝑘𝑛𝑘𝑗 ,SS𝑘𝑛𝑘𝑖𝑘𝑡, 𝐼𝑘𝑛𝑘𝑖𝑘𝑡, 𝑥𝑘𝑛𝑘𝑖𝑘𝑗𝑡 : 𝑘, 𝑛𝑘, 𝑖𝑘, 𝑗, 𝑡) can be obtained, depending on these demand
allocations. This interdependence of one part of leader’s variables with other gives a specific structure to the
bilevel programming problem (Price-BLP). A problem-specific minor modification is thus presented below for
the proposed GA for solving particularly the problem (Price-BLP) for capturing this interdependence and
thereby maintaining feasibility during the GA exploration.

We encode the chromosomes as a row vector of values corresponding to leaders’ price variables (𝑝𝑘𝑛𝑘𝑗) only,
with each value ranging in the interval [𝑙𝑝𝑘𝑛𝑘𝑗 , 𝐿𝑝𝑘𝑛𝑘𝑗 ] for 𝑘 = 1, 2, . . . ,𝐾, 𝑛𝑘 = 1, 2, . . . , 𝑁𝑘, 𝑗 = 1, 2, . . . , 𝐽 .
Values of the rest of leaders’ variables are obtained during the fitness evaluation. For the values of leaders’
prices {𝑝𝑘𝑛𝑘𝑗 : 𝑘, 𝑛𝑘, 𝑗} generated as a chromosome, we first evaluate the optimal response of the follower
{𝑦𝑘𝑛𝑘𝑗𝑡 : 𝑘, 𝑛𝑘, 𝑗, 𝑡} by solving (FDMP) as a parameterized LPP in price variables {𝑝𝑘𝑛𝑘𝑗 : 𝑘, 𝑛𝑘, 𝑗}. Thereby,
(LDMP− 𝑘) is solved to obtain 𝑄𝑘𝑛𝑘𝑡, 𝑂𝑘𝑛𝑘𝑡,SS𝑘𝑛𝑘𝑖𝑘𝑡, 𝐼𝑘𝑛𝑘𝑖𝑘𝑡, 𝑥𝑘𝑛𝑘𝑖𝑘𝑗𝑡 : 𝑘, 𝑛𝑘, 𝑖𝑘, 𝑗, 𝑡 for each leader 𝑘, by solving
a LPP parameterized in variables {𝑦𝑘𝑛𝑘𝑗𝑡 : 𝑘, 𝑛𝑘, 𝑗, 𝑡}.

The concatenated vector values for {𝑝𝑘𝑛 𝑘𝑗 , 𝑄𝑘𝑛𝑘𝑗 , 𝑂𝑘𝑛𝑘𝑗 ,SS𝑘𝑛𝑘𝑖𝑘𝑡, 𝐼𝑘𝑛𝑘𝑖𝑘𝑡, 𝑥𝑘𝑛𝑘𝑖𝑘𝑗𝑡, 𝑦𝑘𝑛𝑘𝑗𝑡 : 𝑘, 𝑛𝑘, 𝑖𝑘, 𝑗, 𝑡} thus
becomes a feasible solution of (Price-BLP), in concurrence with a feasible solution (𝑢, 𝑣) of the general game
problem (MLSF-BL-BLP).
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Due to the sequential dependence of follower’s variables 𝑦𝑘𝑛𝑘𝑗𝑡 on leader’s prices 𝑝𝑘𝑛 𝑘𝑗 , and in turn, of other
variables of leaders 𝑄𝑘𝑛𝑘𝑗 , 𝑂𝑘𝑛𝑘𝑗 ,SS𝑘𝑛𝑘𝑖𝑘𝑡, 𝐼𝑘𝑛𝑘𝑖𝑘𝑡, 𝑥𝑘𝑛𝑘𝑖𝑘𝑗𝑡 on 𝑦𝑘𝑛𝑘𝑗𝑡, these modifications suggested above are
appropriate for any chromosome to represent a feasible solution of (Price-BLP) problem. As, on the contrary, if
we encode all the variables of leaders 𝑝𝑘𝑛 𝑘𝑗 , 𝑄𝑘𝑛𝑘𝑗 , 𝑂𝑘𝑛𝑘𝑗 ,SS𝑘𝑛𝑘𝑖𝑘𝑡, 𝐼𝑘𝑛𝑘𝑖𝑘𝑡, 𝑥𝑘𝑛𝑘𝑖𝑘𝑗𝑡 as chromosomes, then the
issue of infeasibility of values for 𝑄𝑘𝑛𝑘𝑗 , 𝑂𝑘𝑛𝑘𝑗 ,SS𝑘𝑛𝑘𝑖𝑘𝑡, 𝐼𝑘𝑛𝑘𝑖𝑘𝑡, 𝑥𝑘𝑛𝑘𝑖𝑘𝑗𝑡 in connection with the values of 𝑝𝑘𝑛 𝑘𝑗

(through the responses 𝑦𝑘𝑛𝑘𝑗𝑡 calculated as usual by solving (FDMP)) will be of a concern. This manifests the
appropriateness of modifications suggested in the proposed GA for the specific bilevel programming problem
(Price-BLP) in hand.

The algorithm modified for the problem (Price-BLP) is summarized through the following pseudocode.

Algorithm 3: Modified nested GA for (Price-BLP).
Data: Input data and GA parameters
𝑔 ← 0;
Initialize population (values of LDMs’ variables 𝑝𝑘𝑛𝑘𝑗 : 𝑘, 𝑛𝑘, 𝑗);
Evaluate fitness of population members (along with complete vectors of 𝑢 and 𝑣) (using Algorithm 4);
while 𝑔 < 𝐺 do

Tournament selection (retaining best-fit chromosome);
Generate new individuals through extended Laplace Crossover and Power Mutation;
Evaluate fitness of population members (along with complete vectors of 𝑢 and 𝑣) (using Algorithm 4);
update new population for next generation;
𝑔 ← 𝑔 + 1;
Select best-fit chromosome of the new generation (along with complete vector of 𝑢 and 𝑣, as obtained in
Algorithm 4);

end
Return best-fit chromosome (along with complete vectors of 𝑢 and 𝑣) over all the generations

Algorithm 4: Fitness evaluation of population members – for (Price-BLP).
Input: GA population of chromosomes
for 𝑖← 1 to 𝑃𝑜𝑝 𝑠𝑖𝑧𝑒. do

Substitute LDM prices 𝑝𝑘𝑛𝑘𝑗 (represented by chromosome) in (FDMP) to solve the follower’s relaxed LPP for
obtaining 𝑦𝑘𝑛𝑘𝑗𝑡;
Round-off values of 𝑦𝑘𝑛𝑘𝑗𝑡 to the closest integer;
For each leader 𝑘, solve (LDMP− 𝑘) to obtain 𝑄𝑘𝑛𝑘𝑡, 𝑂𝑘𝑛𝑘𝑡, SS𝑘𝑛𝑘𝑖𝑘𝑡, 𝐼𝑘𝑛𝑘𝑖𝑘𝑡, 𝑥𝑘𝑛𝑘𝑖𝑘𝑗𝑡

Obtain 𝑠 and 𝑡𝑖 following the rule 𝑠 = ℎ(𝑢, 𝑣) and 𝑡𝑖 = 𝑔𝑖(𝑢𝑖, 𝑣) with
𝑢 = {𝑝𝑘𝑛 𝑘𝑗 , 𝑄𝑘𝑛𝑘𝑗 , 𝑂𝑘𝑛𝑘𝑗 , SS𝑘𝑛𝑘𝑖𝑘𝑡, 𝐼𝑘𝑛𝑘𝑖𝑘𝑡, 𝑥𝑘𝑛𝑘𝑖𝑘𝑗𝑡, 𝑦𝑘𝑛𝑘𝑗𝑡} and 𝑣 = {𝑦𝑘𝑛𝑘𝑗𝑡};
Solve (Para – LP) with values of 𝑢, 𝑣, 𝑠, 𝑡𝑖 supplied as parameters;
Evaluate the fitness value as objective function value of (Para – LP);

end
Output: Fitness values of all chromosomes of the population (along with complete vectors of 𝑢 and 𝑣)

5. An experimental study from a manufacturing firm

5.1. Relevant information about the firm

The formulation of our model is inspired by a scenario of a leading manufacturing firm of the fast-moving
consumer goods (FMCG) sector. The firm has 5 production plants in the southern region of the Republic of
India. Each of its production plants manufactures certain finished products, which require 5 ingredients of varied
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Table 1. Supplier’s profile (products and DCs).

Supplier (𝑘)
1 2 3 4 5 6 7

Product sets (𝑁𝑘) {1} {2, 3} {1} {4} {2, 3} {1, 4} {2, 3, 4}
Number of DC(s) (𝐼𝑘) 2 1 1 0 1 2 2

quantities over each week, depending upon the production plan. A production plan is prepared for a block of
4 weeks. The requirement arises for procuring different amounts of ingredients for each of the manufacturing
plants by suppliers over each week. These ingredients are procured from a total of 8 suppliers who deal with
some or all these ingredients. The buyer has already identified these suppliers through various quality and
potential parameters. Further, as the buyer and suppliers are at economies of scale in the present environment
of localized buying and selling, therefore the ecosystem for purchasing of these ingredients pertains to an
oligopolistic-monopsony market. As most of the required components involve frequently fluctuating production
costs to vary over each month, the price-quotes must be invited from the suppliers. Based on their price-quotes,
the demand allocation is done to these suppliers to supply the ingredients over the planning horizon of 4 weeks.

For its financial planning, the firm is concerned about assessing the total budget allocated for the procurement
of ingredients before the invitation of price quotes from suppliers. More importantly, the firm is also keen to
observe whether its suppliers are competing for price quotes or having a co-operative game to settle at some
higher prices. The latter situation may result in a dominance of its suppliers over the buyer. In such a case,
the buyer firm would need to consider more suppliers for selection and demand order allocation to induce more
competition to the existing suppliers. A manufacturer is vigilant for performing such analysis in pursuit of
minimizing procurement cost, which comes as a significant component of production cost. At the same time,
the firm is a production giant with a high brand value in the market of its finished products. Another priority
concern of such a firm at this point of time is supplier integration to strengthen its inbound supply chain. In
this line of thought, the firm is open to suggesting that any of its suppliers adjust the price quotes to avoid
their opportunity losses for the same demand order allocation in case of raised prices. Further, through a prior
assessment of prices, the firm would be better prepared to manage its inbound supply chain to be snag-free by
allocating demand orders to its suppliers. As the concerns of this manufacturing firm match the theme of our
framework therefore a case data from this firm is taken-up our study.

5.2. Data input

Henceforth, the manufacturing firm is the buyer, whereas the ingredients to be procured from its suppliers are
products. Out of the five, one product is patent with a specific supplier, and the supplier can supply this product
only, so there is no competition. We consider the remaining 4 products to be provided by 7 suppliers. Each of the
seven suppliers has a single production center (PC) and a different number of distribution centers/warehouses
for inventory storage as well as for cross-docking of shipments of products for transportation from PC to delivery
location(s) DL(s). For reference, the products, suppliers, and their DC(s), and DLs numbered with corresponding
indices.

The 4th product is a volatile product in a liquid state and is transported only through special containers, so
neither its cross-docking nor maintaining inventory is considered practically feasible. This specification of the
structural setup can easily be incorporated into the modeling by not defining any variable against the product
for inventory and transportation to DC(s) for all suppliers dealing in this product. The details of suppliers
dealing in products and other data relevant to the problem is tabulated in Tables 1–9.
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Table 2. Forecasted demands of products at each DL for each time period.

𝐷𝑗𝑛𝑡
DL (𝑗)

1 2 3 4 5
Product Time period (𝑡) Time period (𝑡) Time period (𝑡) Time period (𝑡) Time period (𝑡)
(𝑛) 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 150 75 100 75 125 100 75 50 75 75 50 50 75 50 75 50 200 100 120 80
2 75 75 75 75 75 75 75 50 75 50 75 25 75 75 50 25 100 100 80 50
3 125 125 100 50 100 75 75 75 100 75 50 50 80 80 100 15 130 130 90 90
4 50 75 75 50 50 75 75 25 75 75 50 0 60 60 80 0 80 80 80 60

Table 3. Reservation prices and maximum purchase volumes.

Supplier (𝑘)
1 2 3 4 5 6 7

DL 𝑛1 𝑛2 𝑛3 𝑛4 𝑛5 𝑛6 𝑛7

(𝑗) 1 2 3 1 4 2 3 1 4 2 3 4

𝑙𝑝𝑘𝑛𝑘𝑗

1 25 700 5560 5550 31 000 89 600 4750 4695 24 250 90 050 5790 6010 92 700
2 25 800 5660 5700 31 100 89 300 4850 4795 24 100 89 800 6040 6260 92 800
3 25 950 5810 5450 31 175 89 700 5000 4945 24 200 89 350 6365 6585 92 875
4 25 950 5560 5050 30 300 91 000 5000 4945 24 350 89 600 6340 6560 92 000
5 25 600 5160 4850 29 800 90 600 4650 4595 24 250 89 850 5640 5860 91 500

𝐿𝑝𝑘𝑛𝑘𝑗

1 28 700 5700 5700 32 900 94 500 5100 4900 27 700 92 500 6250 6350 97 400
2 28 800 5800 5850 33 000 94 200 5200 5000 27 550 92 250 6500 6600 97 500
3 28 950 5950 5600 33 075 94 600 5350 5150 27 650 91 800 6825 6925 97 575
4 28 950 5700 5200 32 200 95 900 5350 5150 27 800 92 050 6800 6900 96 700
5 28 600 5300 5000 31 700 95 500 5000 4800 27 700 92 300 6100 6200 96 200

𝑀𝑦𝑘𝑛𝑘 175 350 430 225 175 275 350 250 100 300 300 100

Table 4. Production costs – regular-time and overtime (INR per unit), and machine-hours
required for production (hours per unit).

Product Supplier (𝑘)
(𝑛) 1 2 3 4 5 6 7

𝑎𝑘𝑛𝑘𝑡

1 20 000 – 21 000 – – 20 500 –
2 – 3600 – – 3500 – 3400
3 – 3500 – – 3450 – 3600
4 – – – 81 000 – 80 500 83 000

𝑏𝑘𝑛𝑘𝑡

1 20 200 – 21 200 – – 20 700 –
2 – 3650 – – 3550 – 3450
3 – 3550 – – 3500 – 3650
4 – – – 82 000 – 81 500 84 000

𝑟𝑘𝑛𝑘𝑡

1 0.75 0.5 0.75 – – 0.75 –
2 – 0.5 – – 0.5 – 0.33
3 – – – – 0.5 – 0.33
4 – – – 1.5 – 1.5 1.25
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Table 5. Maximum machine-hours available regular-time and total (including overtime).

Supplier (𝑘)
1 2 3 4 5 6 7

MR𝑘𝑡 168 144 168 168 288 336 456
𝑀𝑘𝑡 168 168 168 168 336 336 504

Table 6. Transportation costs from PC to DC(s) and costs of inventory at DC(s) (INR per
unit), maximum space available at DC(s).

𝑘 𝑛𝑘 𝑖𝑘 𝑡𝑐𝑝𝑘𝑛𝑘𝑖𝑘𝑡 𝑑𝑘𝑛𝑘𝑖𝑘𝑡 𝑉𝑖𝑘𝑡

1 1
1 1200 10 4000
2 900 10 6000

2
2 1 1000 10 4000
3 1 1000 10

3 1 1 6500 10 6000

5
2 1 400 9 4000
3 1 400 9

6 1
1 900 10 5000
2 600 10 5000

7

2
1 850 10 4000
2 950 10 4000

3
1 850 10
2 950 10

Table 7. Costs of transportation from PC or DC(s) to DLs (As all the suppliers in the problem
have DCs not more than 2, due to this fact the costs of transportation have been listed in a
single table only. But this doesn’t mean that all the suppliers have same DCs. It is simply an
enumeration of DCs. They own or hire for their individual warehouses which are located even
at different places).

𝑡𝑐𝑘𝑛𝑘𝑖𝑘𝑗𝑡 𝑖𝑘 = 0 𝑖𝑘 = 1 𝑖𝑘 = 2
Supplier Product DL (𝑗) DL (𝑗) DL (𝑗)
(𝑘) (𝑛𝑘) 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 1 1000 1100 1250 1000 850 500 600 750 750 400 750 800 900 700 400

2
2 500 600 750 750 400 600 700 850 600 200 – – – – –
3 500 600 750 750 400 600 700 850 600 200 – – – – –

3 1 5500 5000 4800 5500 6500 1400 1500 1575 700 200 – – – – –
4 4 500 200 600 1900 1500 – – – – – – – – – –

5
2 900 1000 1000 1000 400 500 600 750 750 400 – – – – –
3 900 1000 1000 1000 400 500 600 750 750 400 – – – – –

6
1 1500 1250 800 1050 1300 500 600 750 750 400 1100 950 200 1200 1100
4 1500 1250 800 1050 1300 – – – – – – – – – –

7

2 1400 1500 1575 700 200 600 800 1150 1550 850 1100 1350 1675 1650 950
3 1400 1500 1575 700 200 600 800 1150 1550 850 1100 1350 1675 1650 950
4 1400 1500 1575 700 200 – – – – – – – – – –
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Table 8. Space occupied per tonne (in sq. ft).

𝑣𝑛
Product (𝑛)

1 2 3 4

8 8 8 12.5

Table 9. Maximum inventory carrying space at DLs of the buyer (This accounts for the
capacity to accommodate all the products except product 4, which needs to be stored in a
separately installed container (at each DL) having storage capacity which is more sufficient to
accommodate the demand for each period.) (sq. ft).

VF𝑗
DL (𝑗)

1 2 3 4 5

8000 8000 4000 5500 6000

5.3. Implementation of GA

The (Price-BLP) problem modeled as a MLSF game, discussed in context of manufacturing firm with the
input data tabulated above is solved using the modified algorithm proposed in the Section 4.3. The program is
coded in MATLAB 2019a. The parameters of Laplace crossover and power mutation along with population size
(𝑃𝑜𝑝 𝑠𝑖𝑧𝑒) are tuned for various combinations of probabilities of crossover, mutation, and tournament selection.
The best found are 𝑃𝑜𝑝 𝑠𝑖𝑧𝑒 = 20, 𝑎 = 0, 𝑏 = 0.15, 𝑝 = 1 or 10. We set the maximum number of generations
to 1000 after tuning the parameters for attainment of the best fitness value equal to zeros for strong stationary
point. For each combination of parameters (Tab. 10), we performed a set of 10 experiments of GA. Table 10
tabulates the relative error of the best solutions obtained for each combination of parameters against the ideal
fitness value zero in comparison with the arithmetic mean of the best fitness values of various combinations.
Figure 4 shows the variation in the best fitness attained in various generations of a GA run. Among 240
solutions generated (24 combinations with 10 runs each) for (Price-BLP), 22 strong-stationary points (fitness
value = 0) were obtained. The arithmetic mean of total procurement cost of the buyer corresponding to these 22
instances of prices (corresponding the strong-stationarity points) is INR 166 844 775, with a standard deviation
of 266 396.83, giving coefficient of variation 0.16%. This indicates parity among all the 22 strong-stationarity
points from buyer’s perspective, in terms of the total procurement cost. The desired fitness value zero (for
strong-stationarity points) is attained for the runs of 18 out of 24 combinations of GA parameters, whereas for
rest of the combinations there no improvement in fitness value for more than last 300 generations.

5.4. Analysis of the results of computation

The strong-stationarity point with the total procurement cost closest to the arithmetic mean of all the 22 ones
obtained from our computation is detailed as following. Table 11 shows the competitive target prices to settle
negotiations with each of suppliers for various products they deal in and deliver at each of 5 DLs. As a response
to these prices, the consequent demand allocations from the buyer are tabulated in Table 12. The consequent
total procurement cost of the buyer in this instance is assessed as INR 166 871 150. The accompanying part of
the results comprising of respective aggregate-production-distribution plans for each of 7 suppliers are presented
through Tables D.1–D.20 in Appendix D. It is noted that the inventory volumes for all the suppliers at each
of their warehouses are obtained as zeros for all products during each period, indicating the availability of a
cost-wise efficient production and distribution setup at suppliers ends. It adds an advantage to the suppliers
owing to multiple operational challenges of warehousing and inventory management.
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Table 10. Error analysis for different combinations of parameters in GA; those giving strong-
stationary points highlighted in bold.

pt pc pm 𝑝 Fitness value Relative error

0.8 0.7 0.001 1 0 0
0.8 0.7 0.001 10 6263 0.920
0.8 0.7 0.005 1 0 0
0.8 0.7 0.005 10 0 0
0.8 0.8 0.001 1 0 0
0.8 0.8 0.001 10 12780 1.877
0.8 0.8 0.005 1 0 0
0.8 0.8 0.005 10 0 0
0.8 0.9 0.001 1 0 0
0.8 0.9 0.001 10 1145 0.168
0.8 0.9 0.005 1 3500 0.514
0.8 0.9 0.005 10 0 0
0.9 0.7 0.001 1 0 0
0.9 0.7 0.001 10 3500 0. 514
0.9 0.7 0.005 1 0 0
0.9 0.7 0.005 10 0 0
0.9 0.8 0.001 1 0 0
0.9 0.8 0.001 10 0 0
0.9 0.8 0.005 1 0 0
0.9 0.8 0.005 10 0 0
0.9 0.9 0.001 1 197 0.029
0.9 0.9 0.001 10 0 0
0.9 0.9 0.005 1 0 0
0.9 0.9 0.005 10 0 0

Figure 4. Best fitness value vs. Generation of a solution.
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Table 11. Suppliers’ prices (competitive target prices) 𝑝𝑘𝑛𝑘𝑗 (INR per tonne),

DL (𝑗)
Supplier (𝑘) Product (𝑛𝑘) 1 2 3 4 5

1 1 28 700 25 800 25 950 28 950 28 599.92

2
2 5560 5560 5950 5560 5160
3 5689.914 5850 5450 5050 4850

3 1 32 899.92 33 000 31 175 30 300 29 800
4 4 89 600 94 200 93 504.25 91 000 90 600

5
2 4750 4850 5000 5000 4650
3 4695 4795 4945 5150 4595

6
1 24 250 27 550 24 200 24 350 24 250
4 92 499.98 89 800 89 350 92 050 93292.56

7

2 6250 6499.984 6824.942 6800 6100
3 6350 6599.426 6925 6882.551 6200
4 92 707.78 92 800 92 875 96 700 91 500

Remark 5.1. Further testing of the 22 strong-stationarity points for strong-stationarity Nash-equilibrium point
is not being taken-up for the following reasons.

(1) There is parity among all the obtained strong-stationarity points in terms of total procurement cost of the
buyer (the problem being studied from buyer’s perspective only).

(2) The decision-makers of the discussed firm (buyer here) confirmed the efficacy of the results obtained so far in
the context of total procurement cost assessed corresponding to competitive prices obtained corresponding
to all the 22 strong-stationarity points when compared with the actual costs incurred. From the perspective
of business management, this indicates that for the buyer a scope of further negotiation on prices was there
without any compromise on the cooperative relation with suppliers.

(3) Thus, even if the buyer would have considered the target prices as any one of those obtained corresponding
to these strong-stationarity points, and negotiated the same with suppliers, then the objective of strategic
pricing discussed in Section 1, would be satisfactorily achieved.

(4) Over that, theoretically, there is no surety of obtaining a strong-stationarity Nash-equilibrium point, and
the question of its existence remaining unconfirmed.

The competitive target prices depicted in Table 11 are a set of prices at which the suppliers can settle during
negotiations due to a fair competition among them. Further, if the negotiations are settled at these prices,
then the demand orders from the buyer is listed in Table 12. Let us try to have an insight of these results in
connection with the production and distribution efficiencies of the suppliers. For product 1, the competition is
between suppliers 1, 3, and 6, and the demand order allocation for this product seems distributed among them
specific to DLs. Demand order for DL 1 is allocated completely to the supplier 6, completely to supplier 1 for
DL 2, for DL 3 distributed between suppliers 1 and 6, and for DL 4 and DL 5 completely to supplier 6 and
supplier 3, respectively. This allocation of demand orders is clearly reflected to the prices listed in Table 11.
This competition of their prices is evidently due to their cost efficiencies. For example, per unit production costs
(regular and overtime) for product 1 are lower for supplier 1 and 6 in comparison to supplier 3 (c.f., Tab. 4).
Further, it is evident from the reservation prices of these suppliers given in Table 3 that supplier 3 cannot
compete with other suppliers except for DL 5, that too up to some extent only. Thereby with its lowest quote it
gets almost a complete share of demand order for delivery at DL 5. Similarly from Tables 11 and 12, it can be
observed that for the products 2 and 3 the supplier 5, due to its lowest prices, gets more demand orders than
suppliers 2 and 7.
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Table 12. Buyer’s Demand allocation 𝑦𝑘𝑛𝑘𝑗𝑡 (number of tonnes to be purchased)

DL (𝑗)

1 2 3 4 5

Supplier Product Time period (𝑡) Time period (𝑡) Time period (𝑡) Time period (𝑡) Time period (𝑡)

(𝑘) (𝑛𝑘) 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 1 0 0 0 0 125 100 75 50 50 0 25 25 0 0 0 0 0 0 0 0

2
2 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 100 100 80 0

3 0 0 0 0 0 0 0 0 0 0 0 0 80 80 100 15 105 55 0 0

3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 200 100 120 30

4 4 50 75 75 50 0 0 0 0 0 0 0 0 60 60 80 0 65 40 20 60

5
2 75 75 75 75 75 75 75 50 75 50 75 25 50 75 50 25 0 0 0 50

3 125 125 100 50 100 75 75 75 100 75 50 50 0 0 0 0 25 75 90 90

6
1 150 75 100 75 0 0 0 0 25 75 25 25 75 50 75 50 0 0 0 50

4 0 0 0 0 25 25 50 25 75 75 50 0 0 0 0 0 0 0 0 0

7

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 25 50 25 0 0 0 0 0 0 0 0 0 15 40 60 0

Further, even though supplier 7 has better cost competencies of production and distribution for products 2
and 3 (c.f., Tabs. 4 and 7), still the prices for supplier 7 for these products, listed in Table 11, are higher than
those of suppliers 2 and 5. Consequently, no demand orders would be allocated to supplier 7 for these products,
as reflected in Table 12. Whereas supplier 7 is observed to compete quite well with suppliers 4 and 6 for product
4 to receive a substantial demand share. This indicates that supplier 7 is more interested in dealings product
4, which is costlier in comparison to products 2 and 3. This market insight of supplier 7 seems clear from the
reservation prices (given in Tab. 4) as noted here. Minimum reservation prices (𝑙𝑝𝑘𝑛𝑘𝑗) of products 2 and 3 are
higher for supplier 7 in comparison of other suppliers. This restricts the negotiations for products 2 and 3 up
to a limit and allows the supplier 7 to negotiate better on product 4.

A significant conclusion comes out from these observations that although the model is being discussed from
the buyer’s point of view, still the suppliers hold self-control over lowering their prices in the competitive
environment. As the considered problem addresses a complex market structure with multiple factors included,
accordingly many more similar observations can be made by looking into the results while connecting them
with the input data. To summarize, the overall results of computation presented in this section evince the
accomplishment of the proposed method to handle a large-scale instance of our problem.

6. Managerial implications

Negotiations handled transparently using this decision support system will portray the buyer’s intention
of creating constructive competition and non-indulgence into opportunistic discrimination with the motive of
minimizing procurement cost. Similarly it will ensure that the suppliers arrive at a settlement price for supply
which have adequate margin of safety with regard to their profitability. Thus, the use of developed decision
support will ensure that there is no opportunistic discrimination from the buyer by exploiting the bargaining
power as a single buyer. On the contrary, with the negotiations settled at prices suggested by the decision
support the suppliers too cannot reap enormous surplus profits defying the competition. Hence, this model
helps to arrive at that satisficing point of demand and supply which will be logically beneficial for both buyers
and sellers in the discussed market situation.
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In all, the decision support system developed for our study will help in creating healthy entrepreneurial
platform in which the business interests of the buyer and sellers are protected. Eventually, such a business
relationship with the suppliers inculcates a support behavior in them which proves to be helpful in combating
sudden unforeseen contingency situations in the future. The use of this decision support system can help even in
reducing the lengthy negotiation and communication time span, as the target prices ascertained by the model
can be used as consensus base prices for fixing the deal.

The proposed model can be appropriately used by any buyer firm which is concerned for minimizing the total
procurement costs by creating a healthy competition among its suppliers through a non-cooperative game for
their price quotes. The scope of application of our model is listed below.

(1) The model can be used by government authorities for assessment of competitive prices for the tenders invited
for the purchase of required material. An indication can be obtained about the existing suppliers for any
possible cartels, as these practices are prevalently found among those who supply products to government
organizations.

(2) In case of the setup of strategic business units by the suppliers dealing in multiple products, our model is
capable of catering such a scenario due to consideration of transportation cost as product dependent.

(3) This model can be used by non-trading and non-manufacturing organizations like Universities, hospitals
which procure a sizable proportion of purchases locally.

(4) The situation of suppliers having multiple production centers can also be catered through simple extension
of our model by merely introducing additional index for the production centers.

Major challenges of study

Exact assessment of suppliers’ operational parameters is a major challenge. Technical expertise at managerial
level is a major requirement for an effective use of this model.

7. Conclusions

This work is first of its kind to mathematically address the problem of ascertaining competitive target prices
for the buyer of an oligopolistic-monopsony market to negotiate with suppliers in line with a balanced approach
of safeguarding the financial interests of each supply-chain partner. The problem is formulated as an MLSF
bilinear bilevel game model, featuring suppliers as leaders and the buyer as a follower, as it fits naturally to
the problem. Annexing suppliers’ operational planning with the bilevel game problem of price-setting enables
the buyer to assess the capacities of suppliers for fulfilling the demand-orders. Faced with lack of solution
methodologies to handle large-scale instances, a GA-based method is proposed to solve a general MLSF bilevel
game problem with bilinear objectives and linear constraints. Further, a modification to the proposed algorithm
is suggested to solve the bilevel game problem having a specific dependence structure among variables at leaders’
level, as present in our proposed model. The decision support developed is finally illustrated by a study on an
FMCG manufacturing firm’s procurement setup having similar concerns.

An interesting future research direction is to specifically design an algorithm for handling MLCF bilevel
programming problems with integer variables in a large-scale situation. Another challenging potential problem
can be addressed for the case of differential pricing. Similar problems may be studied for other market setups,
for example, where multiple buyers also compete to fulfill their demands-orders.

Appendix A. Penalty approach [60]

Theoretical developments of the penalty approach [60] for solving the general MLSF bilevel programming
problem (MLSF-BLP) given in (4.1) is explained below.
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(MLSF-BLP)

(LDMP− 𝑖) min
𝑢𝑖≥0

𝑓𝑖(𝑢𝑖, 𝑣)

subject to
𝑔𝑖(𝑢𝑖, 𝑣) ≥ 0,
𝐺𝑖(𝑢𝑖, 𝑣) = 0,
where, 𝑣 is optimal response of the follower corresponding
to the leaders’ variables, 𝑢 = {𝑢𝑖 : 𝑖 = 1, 2, . . . , 𝑘},

(FDMP) min
𝑤

𝑏(𝑢,𝑤)

subject to
𝑐(𝑢,𝑤) ≥ 0,
𝑤 ≥ 0. (A.1)

Observation: The MLSF bilevel programming problem with linear constraints and bilinear objective functions
(MLSF-BL-BLP) is a particular case of the general problem (MLSF-BLP), with all the notations taken
appropriately as same. Therefore, the penalty approach [60] explained here for the general problem can
directly be referred in the discussion in Section 4 with notations 𝑓𝑖, 𝑔𝑖, 𝐺𝑖, 𝑏, 𝑐, 𝑤, 𝑢, 𝑣 symbolizing same
functions and variables at both places.

Definition A.1. If, for any given vector 𝑢 = {𝑢𝑖 : 𝑖 = 1, 2, . . . , 𝑘}, 𝑦 is an optimal solution of (FDMP) in
(MLSF-BLP), such that the vector (𝑢, 𝑣) satisfy constraints 𝑔𝑖(𝑢𝑖, 𝑣) ≥ 0 and 𝐺𝑖(𝑢𝑖, 𝑣) = 0, (𝑖 = 1, 2, . . . , 𝑘),
then (𝑢, 𝑣) is a feasible solution of (MLSF-BLP).

For the (MLSF-BLP) problem described above, the penalty approach is described in following the steps.

Step 1. The KKT equivalent of (FDMP) (in 𝑤)

0 ≤ 𝑤⊥∇𝑤𝑏(𝑢,𝑤)−∇𝑤𝑐(𝑢,𝑤)𝑧 ≥ 0 (A.2a)
0 ≤ 𝑧⊥𝑐(𝑢,𝑤) ≥ 0. (A.2b)

Step 2: (a) Redefining 𝑦 as 𝑣 = (𝑤, 𝑧), and defining

ℎ(𝑢, 𝑣) =
[︂
∇𝑤𝑏(𝑢,𝑤)−∇𝑤𝑐(𝑢,𝑤)𝑧

𝑐(𝑢,𝑤)

]︂
. (A.3)

(b) Introducing slack variables 𝑠, the conditions become

ℎ(𝑢, 𝑣)− 𝑠 = 0 (A.4a)
0 ≤ 𝑣⊥𝑠 ≥ 0. (A.4b)

Step 3. Incorporating the conditions reduces (MLSF-BLP) to the following Equilibrium Problem with Equi-
librium Constraints (EPEC).
For each leader 𝑖 = 1, 2, . . . , 𝑘

min
𝑢𝑖≥0

𝑓𝑖(𝑢𝑖, 𝑣)

subject to
𝑔𝑖(𝑢𝑖, 𝑣) ≥ 0,
𝐺𝑖(𝑢𝑖, 𝑣) = 0,
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ℎ(𝑢, 𝑣)− 𝑠 = 0,
0 ≤ 𝑣⊥𝑠 ≥ 0.

The above EPEC is rewritten as following.

(SLNG) min 𝑓𝑖(𝑢𝑖, 𝑣)
subject to

−𝑔𝑖(𝑢𝑖, 𝑣) ≤ 0,
𝐺𝑖(𝑢𝑖, 𝑣) = 0,
𝑠− ℎ(𝑢, 𝑣) = 0,
−𝑢𝑖 ≤ 0,
−𝑣 ≤ 0,
−𝑠 ≤ 0,
𝑉 𝑠 ≤ 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(A.5)

(Here, 𝑉 = diag(𝑣1, 𝑣2, . . . , 𝑣𝑟).)
Step 4. A desired solution to (SLNG) is a solution of the following strong-stationarity conditions

∇𝑥𝑖
𝑓𝑖(𝑢𝑖, 𝑣)− 𝜆′𝑖∇𝑥𝑖

𝑔𝑖(𝑢𝑖, 𝑣)− 𝜈′𝑖∇𝑥𝑖
𝐺𝑖(𝑢𝑖, 𝑣)− 𝜇′𝑖∇𝑥𝑖

ℎ(𝑢𝑖, 𝑣)− 𝜒𝑖 = 0 (A.6a)
∇𝑦𝑓𝑖(𝑢𝑖, 𝑣)− 𝜆′𝑖∇𝑦𝑔𝑖(𝑢𝑖, 𝑣)− 𝜈′𝑖∇𝑦𝐺𝑖(𝑢𝑖, 𝑣)− 𝜇′𝑖∇𝑦ℎ(𝑢𝑖, 𝑣)− 𝜓𝑖 + 𝑆𝜉𝑖 = 0 (A.6b)
𝜇′𝑖∇𝑠(𝑠− ℎ(𝑢, 𝑣))− 𝜎′𝑖∇𝑠(𝑠)− 𝜉′𝑖∇𝑠(𝑉 𝑠) = 0 (A.6c)
0 ≤ 𝑔𝑖(𝑢𝑖, 𝑣)⊥𝜆𝑖 ≥ 0 (A.6d)
𝐺𝑖(𝑢𝑖, 𝑣) = 0 (A.6e)
ℎ(𝑢, 𝑣)− 𝑠 = 0 (A.6f)
0 ≤ 𝑢𝑖⊥𝜒𝑖 ≥ 0 (A.6g)
0 ≤ 𝑣⊥𝜓𝑖 ≥ 0 (A.6h)
0 ≤ 𝑠⊥𝜎𝑖 ≥ 0 (A.6i)
0 ≤ −𝑉 𝑠⊥𝜉𝑖 ≥ 0. (A.6j)

(Here, 𝑆 = diag(𝑠1, 𝑠2, . . . , 𝑠𝑟).)

Definition A.2. A feasible solution (𝑢, 𝑣) of (MLSF-BLP) is called a strong-stationarity point if there exist
multipliers 𝜆𝑖, 𝜒𝑖, 𝜓𝑖, 𝜎𝑖, 𝜉𝑖, 𝜈𝑖, 𝜇𝑖 which satisfy strong-stationarity conditions (A.6).

Step 5. Among the strong-stationarity conditions written above, as (A.6d), (A.6g)–(A.6j) are complementarity
conditions, therefore the process of solving the system of conditions (A.6) can be eased out by solving instead
the following nonlinear programming problem. If an optimal solution of (A.7) gives the objective function
value zero i.e., 𝐶penalty = 0, then that optimal solution satisfies the strong-stationarity conditions (A.6).

(Pen-NLP) min 𝐶penalty =
𝑘∑︁
𝑖=1

(𝑢′𝑖𝜒𝑖 + 𝑡′𝑖𝜆𝑖 + 𝑣′𝜓𝑖 + 𝑠′𝜎𝑖) + 𝑣′𝑠 (A.7a)

subject to
∇𝑢𝑖

𝑓𝑖(𝑢𝑖, 𝑣)− 𝜆′𝑖∇𝑢𝑖
𝑔𝑖(𝑢𝑖, 𝑣)− 𝜈′𝑖∇𝑢𝑖

𝐺𝑖(𝑢𝑖, 𝑣)− 𝜇′𝑖∇𝑢𝑖
ℎ(𝑢𝑖, 𝑣)− 𝜒𝑖 = 0, ∀𝑖 = 1, 2, . . . , 𝑘,

(A.7b)

∇𝑣𝑓𝑖(𝑢𝑖, 𝑣)− 𝜆′𝑖∇𝑣𝑔𝑖(𝑢𝑖, 𝑣)− 𝜈′𝑖∇𝑣𝐺𝑖(𝑢𝑖, 𝑣)− 𝜇′𝑖∇𝑣ℎ(𝑢𝑖, 𝑣)− 𝜓𝑖 + 𝑆𝜉𝑖 = 0, ∀𝑖 = 1, 2, . . . , 𝑘,
(A.7c)

𝜇𝑖 − 𝜎𝑖 + V𝜉𝑖 = 0, ∀𝑖 = 1, 2, . . . , 𝑘,
(A.7d)
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− 𝑔𝑖(𝑢𝑖, 𝑣) + 𝑡𝑖 = 0, ∀𝑖 = 1, 2, . . . , 𝑘,
(A.7e)

𝐺𝑖(𝑢𝑖, 𝑣) = 0, ∀𝑖 = 1, 2, . . . , 𝑘,
(A.7f)

ℎ(𝑢, 𝑣)− 𝑠 = 0, (A.7g)
𝑢𝑖 ≥ 0, 𝑣 ≥ 0, 𝑠 ≥ 0, 𝑡𝑖 ≥ 0, 𝜆𝑖 ≥ 0, 𝜒𝑖 ≥ 0, 𝜓𝑖 ≥ 0, 𝜎𝑖 ≥ 0, 𝜉𝑖 ≥ 0, (A.7h)
𝜈𝑖, 𝜇𝑖 unrestricted in sign. (A.7i)

(Here, 𝑉 = diag(𝑣1, 𝑣2, . . . , 𝑣𝑟).)
Result. If (𝑢*, 𝑣*, 𝑠*, 𝑡*𝑖 , 𝜆

*
𝑖 , 𝜒

*
𝑖 , 𝜓

*
𝑖 , 𝜎

*
𝑖 , 𝜉

*
𝑖 , 𝜈

*
𝑖 , 𝜇

*
𝑖 ) is a local solution of (A.7) with 𝐶penalty = 0, then (𝑢*, 𝑣*) is

a strong-stationary point of (MLSF-BLP).

Thus for testing a feasible solution (𝑢*, 𝑣*) of (MLSF-BLP)to be a strong-stationary point, it is sufficient to
solve the (Pen-NLP) parameterized in (𝑢, 𝑣) = (𝑢*, 𝑣*) for optimal values of 𝑠, 𝑡𝑖, 𝜆𝑖, 𝜒𝑖, 𝜓𝑖, 𝜎𝑖, 𝜉𝑖, 𝜈𝑖, 𝜇𝑖 and
check whether the objective function value 𝐶penalty = 0.

Appendix B. A special case of (MLSF-BLP)

We now discuss a special case of (MLSF-BLP) and observe a practical method to test the strong-stationarity
for a feasible solution of this special case.

If in (MLSF-BLP) the upper level constraint functions 𝑔𝑖, 𝐺𝑖 are linear in (𝑢, 𝑣), lower level constraints 𝑐
are linear in (𝑢,𝑤); and upper level objective functions 𝑓𝑖 are bilinear in (𝑢𝑖, 𝑣), lower level objective is bilinear
in (𝑢,𝑤), then for a feasible solution (𝑢*, 𝑣*) of (MLSF-BLP) the optimization problem (A.7) becomes a linear
programming problem in variables 𝜆𝑖, 𝜒𝑖, 𝜓𝑖, 𝜎𝑖, 𝜉𝑖, 𝜈𝑖, 𝜇𝑖, and parameterized in corresponding values 𝑢, 𝑣, 𝑠, 𝑡𝑖.
Reason: because, for a given feasible solution (𝑢*, 𝑣*), the values of 𝑠 can be obtained using (A.7g), say it as
𝑠*. Also, then the values of 𝑆 and 𝑉 become known as 𝑆 = diag(𝑠1, 𝑠2, . . . , 𝑠𝑟) and 𝑉 = diag(𝑣1, 𝑣2, . . . , 𝑣𝑟).
Further, the non-negativity of 𝑡𝑖 can be tested using the condition (A.7e), say it as 𝑡*𝑖 .

Thus, for testing a feasible solution (𝑢*, 𝑣*) of this special case of (MLSF-BLP) to be a stationary point, it
reduces to:

(1) obtain values of 𝑡*𝑖 and 𝑠* using (A.7e) and (A.7g), respectively, such that 𝑠*⊥𝑣*, test check for non-
negativity conditions, then

(2) solve the linear programming problem (Para-LP) given in (B.1) parameterized in (𝑢*, 𝑣*, 𝑠*, 𝑡*𝑖 ), for
𝜆𝑖, 𝜒𝑖, 𝜓𝑖, 𝜎𝑖, 𝜉𝑖, 𝜈𝑖, 𝜇𝑖, and then

(3) check the objective function value 𝐶𝑝𝑝 = 0 for an optimal solution.

(Para-LP) min
𝜆𝑖,𝜒𝑖,𝜓𝑖,𝜎𝑖,𝜉𝑖,𝜈𝑖,𝜇𝑖

𝐶𝑝𝑝 =
𝑘∑︁
𝑖=1

(𝑢*′𝑖 𝜒𝑖 + 𝑡*′𝑖 𝜆𝑖 + 𝑣*′𝜓𝑖 + 𝑠*′𝜎𝑖)

subject to
∇𝑢𝑖𝑓𝑖(𝑢

*
𝑖 , 𝑣

*)− 𝜆′𝑖∇𝑢𝑖𝑔𝑖(𝑢
*
𝑖 , 𝑣

*)− 𝜈′𝑖∇𝑢𝑖𝐺𝑖(𝑢
*
𝑖 , 𝑣

*)− 𝜇′𝑖∇𝑢𝑖ℎ(𝑢*𝑖 , 𝑣
*)− 𝜒𝑖 = 0, ∀𝑖 = 1, 2, . . . , 𝑘,

∇𝑣𝑓𝑖(𝑢*𝑖 , 𝑣*)− 𝜆′𝑖∇𝑣𝑔𝑖(𝑢*𝑖 , 𝑣*)− 𝜈′𝑖∇𝑣𝐺𝑖(𝑢*𝑖 , 𝑣*)− 𝜇′𝑖∇𝑣ℎ(𝑢*𝑖 , 𝑣
*)− 𝜓𝑖 + 𝑆*𝜉𝑖 = 0, ∀𝑖 = 1, 2, . . . , 𝑘,

𝜇𝑖 − 𝜎𝑖 + 𝑉 *𝜉𝑖 = 0, ∀𝑖 = 1, 2, . . . , 𝑘,
𝜆𝑖 ≥ 0, 𝜒𝑖 ≥ 0, 𝜓𝑖 ≥ 0, 𝜎𝑖 ≥ 0, 𝜉𝑖 ≥ 0,
𝜈𝑖, 𝜇𝑖 unrestricted in sign. (B.1)
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Appendix C. Theoretical development for solving special case of
(MLSF-BLP)

For the special case of (MLSF-BLP) discussed above, if a vector values for the variable 𝑢 is chosen randomly,
then the lower-level problem (FDMP) in (4.1) becomes a linear programming problem (LPP) in variables 𝑤,
parametrized in the values of 𝑢. This LPP can be easily solved for obtaining an optimal solution 𝑣. And therefore,
the corresponding vector of values for (𝑢, 𝑣) would satisfy the KKT conditions (A.2). Accordingly, the vector
of values for the variable 𝑠 can be obtained using (A.7g) (same as (A.4)). Further, the values of each variable
𝑡𝑖 can be obtained using (A.7e) and tested for non-negativity. If, through all these computations a vector of
values for (𝑢, 𝑣) is obtained which satisfies the testing criteria just discussed, then it is a feasible solution of
(MLSF-BLP). Then for the obtained values of (𝑢, 𝑣, 𝑠, 𝑡𝑖) the (Para-LP) can be solved for an optimal solution.
If the objective function value 𝐶𝑝𝑝 = 0, then we get (𝑢, 𝑣) as a strong stationary point of (MLSP-BLP).

Through this discussion it is learnt that if we randomly generate a vector of values for leaders’ variables 𝑢,
we can obtain follower’s reaction 𝑣 and test for strong-stationary point of this special case of (MLSP-BLP).
Thus, if we use a real-coded GA by coding the chromosomes as vectors of values for 𝑢, obtain corresponding
values for 𝑣, and take the fitness value of each chromosome as objective function value 𝐶𝑝𝑝 to be computed by
the above procedure, then we can achieve a stationary-point in some generation obtained through reproduction
operators of GA. A GA-based approach is proposed in Section 4 for solving the special case of (MLSF-BLP)
which involves linear constraints and bilinear objective functions.

Based on above discussion, a GA based approach, for solving a MLSF game involving linear constraints and
bilinear objective functions, is proposed in Section 4.

Remark: a strong-stationarity point (𝑢*, 𝑣*) for 𝑢* = {𝑢*𝑖 : 𝑖 = 1, 2, . . . , 𝑘}, thus obtained can further be tested
for a strong-stationary Nash-equilibrium point of the (MLSF-BLP) by repeatedly solving single-leader-single-
follower bilevel programming problems for each leader given by:(︀

LDMP− 𝑖−1
)︀

min
𝑢𝑖≥0

𝑓𝑖(𝑢𝑖, 𝑣)

subject to
𝑔𝑖(𝑢𝑖, 𝑣) ≥ 0,
𝐺𝑖(𝑢𝑖, 𝑣) = 0,
where, 𝑣 is optimal response of the follower corresponding
to above values of 𝑢𝑖 and keeping values of other leaders’
variables fixed as 𝑢𝑖̄ = 𝑢*

𝑖̄
: 𝑖̄ = 1, 2, . . . , 𝑘, 𝑖̄ ̸= 𝑖,

(FDMP) min
𝑤

𝑏(𝑢,𝑤)

subject to
𝑐(𝑢,𝑤) ≥ 0
𝑤 ≥ 0. (C.1)

For solving such a problem having large number of variables, it further requires a heuristic algorithm. One
such algorithm is proposed by Kumar et al. [55].

Appendix D. Complementary results

Table D.1. Production volumes (regular-time and over-time): Supplier 1.

Time period (𝑡)
1 2 3 4

𝑄𝑘𝑛𝑘𝑡 𝑛𝑘 = 1 175 100 100 75
𝑂𝑘𝑛𝑘𝑡 𝑛𝑘 = 1 0 0 0 0
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Table D.2. Consignment volumes from PC to DC(s): Supplier 1.

𝐼𝑘𝑛𝑘𝑖𝑘𝑡 Time period (𝑡)

DC (𝑖𝑘) 1 2 3 4
1 0 0 0 0
2 0 0 0 0

Table D.3. Transportation volumes from PC to DC(s): Supplier 1 (𝑛𝑘 = 1).

𝑥𝑘𝑛𝑘𝑖𝑘𝑗𝑡 DC (𝑖𝑘)
0 1 2

DL Time period (𝑡) Time period (𝑡) Time period (𝑡)
(𝑗) 1 2 3 4 1 2 3 4 1 2 3 4

1 0 0 0 0 0 0 0 0 0 0 0 0
2 125 100 75 50 0 0 0 0 0 0 0 0
3 50 0 25 25 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0

Table D.4. Production volumes (regular-time and over-time): Supplier 2.

Time period (𝑡)
Product (𝑛𝑘) 1 2 3 4

𝑄𝑘𝑛𝑘𝑡
1 103 100 80 0
2 185 135 100 15

𝑂𝑘𝑛𝑘𝑡
1 22 0 0 0
2 0 0 0 0

Table D.5. Consignment volumes from PC to DC(s): Supplier 2 (DC: 𝑖𝑘 = 1).

𝐼𝑘𝑛𝑘𝑖𝑘𝑡 Time period (𝑡)
Product (𝑛𝑘) 1 2 3 4

2 0 0 0 0
3 0 0 0 0

Table D.6. Transportation volumes from PC to DC(s): Supplier 2.

𝑥𝑘𝑛𝑘𝑖𝑘𝑗𝑡 𝑖𝑘 = 0 𝑖𝑘 = 1
Product DL Time period (𝑡) Time period (𝑡)
(𝑛𝑘) (𝑗) 1 2 3 4 1 2 3 4

2

1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0
4 25 0 0 0 0 0 0 0
5 100 100 80 0 0 0 0 0

3

1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0
4 80 80 100 15 0 0 0 0
5 105 55 0 0 0 0 0 0
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Table D.7. Production volumes (regular-time and over-time): Supplier 3.

Time period (𝑡)
Product (𝑛𝑘) 1 2 3 4

𝑄𝑘𝑛𝑘𝑡 1 200 100 120 30
𝑂𝑘𝑛𝑘𝑡 1 0 0 0 0

Table D.8. Consignment volumes from PC to DC(s) (𝐼𝑘𝑛𝑘𝑖𝑘𝑡; 𝑛3 = 1, 𝑖3 = 1): Supplier 3.

Time period (𝑡)

1 2 3 4
0 0 0 0

Table D.9. Transportation volumes from PC to DC(s) (𝑛3 = 1): Supplier 3.

𝑥𝑘𝑛𝑘𝑖𝑘𝑗𝑡 𝑖𝑘 = 0 𝑖𝑘 = 1
DL Time period (𝑡) Time period (𝑡)
(𝑗) 1 2 3 4 1 2 3 4

1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0
5 200 100 120 30 0 0 0 0

Table D.10. Production volumes (regular-time and over-time) (𝑛𝑘 = 5): Supplier 4.

Time period (𝑡)
1 2 3 4

𝑄𝑘𝑛𝑘𝑡 175 175 175 110
𝑂𝑘𝑛𝑘𝑡 0 0 0 0

Table D.11. Transportation volumes from PC to DC(s) (𝑖𝑘 = 0, 𝑛𝑘 = 5): Supplier 4.

Time period (𝑡)
DL (𝑗) 1 2 3 4

1 50 75 75 50
2 0 0 0 0
3 0 0 0 0
4 60 60 80 0
5 65 40 20 60
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Table D.12. Production volumes (regular-time and over-time): Supplier 5.

Time period (𝑡)
1 2 3 4

𝑄𝑘𝑛𝑘𝑡
𝑛𝑘 = 2 226 226 261 225
𝑛𝑘 = 3 350 350 315 265

𝑂𝑘𝑛𝑘𝑡
𝑛𝑘 = 2 49 49 14 0
𝑛𝑘 = 3 0 0 0 0

Table D.13. Consignment volumes from PC to DC(s): Supplier 5.

Time period (𝑡)
1 2 3 4

𝑛𝑘 = 2, 𝑖𝑘 = 1 0 0 0 0
𝑛𝑘 = 3, 𝑖𝑘 = 1 0 0 0 0

Table D.14. Transportation volumes from PC to DC(s): Supplier 5.

𝑥𝑘𝑛𝑘𝑖𝑘𝑗𝑡 𝑖𝑘 = 0 𝑖𝑘 = 1
DL Time period (𝑡) Time period (𝑡)
(𝑗) 1 2 3 4 1 2 3 4

𝑛𝑘 = 2

1 75 75 75 75 0 0 0 0
2 75 75 75 50 0 0 0 0
3 75 50 75 25 0 0 0 0
4 50 75 50 25 0 0 0 0
5 0 0 0 50 0 0 0 0

𝑛𝑘 = 3

1 125 125 100 50 0 0 0 0
2 100 75 75 75 0 0 0 0
3 100 75 50 50 0 0 0 0
4 0 0 0 0 0 0 0 0
5 25 75 90 90 0 0 0 0

Table D.15. Production volumes (regular-time and over-time): Supplier 6.

Product Time period (𝑡)
(𝑛𝑘) 1 2 3 4

𝑄𝑘𝑛𝑘𝑡
1 250 200 200 200
5 100 100 100 25

𝑂𝑘𝑛𝑘𝑡
1 0 0 0 0
5 0 0 0 0
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Table D.16. Consignment volumes from PC to DC(s): Supplier 6.

𝐼𝑘𝑛𝑘𝑖𝑘𝑡
Time period (𝑡)

1 2 3 4

𝑛𝑘 = 2, 𝑖𝑘 = 1 150 75 100 75
𝑛𝑘 = 3, 𝑖𝑘 = 1 0 0 0 0

Table D.17. Transportation volumes from PC to DC(s): Supplier 6

𝑥𝑘𝑛𝑘𝑖𝑘𝑗𝑡
DC (𝑖𝑘)

0 1 2
Product DL Time period (𝑡) Time period (𝑡) Time period (𝑡)
(𝑛𝑘) (𝑗) 1 2 3 4 1 2 3 4 1 2 3 4

1

1 0 0 0 0 150 75 100 75 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0
3 25 75 25 25 0 0 0 0 0 0 0 0
4 75 50 75 50 0 0 0 0 0 0 0 0
5 0 0 0 50 0 0 0 0 0 0 0 0

5

1 0 0 0 0 – – – – – – – –
2 25 25 50 25 – – – – – – – –
3 75 75 50 0 – – – – – – – –
4 0 0 0 0 – – – – – – – –
5 0 0 0 0 – – – – – – – –

Table D.18. Production volumes (regular-time and over-time): Supplier 7.

Product Time period (𝑡)
(𝑛𝑘) 1 2 3 4

𝑄𝑘𝑛𝑘𝑡

1 0 0 0 0
3 0 0 0 0
5 40 90 85 0

𝑂𝑘𝑛𝑘𝑡

1 0 0 0 0
3 0 0 0 0
5 0 0 0 0

Table D.19. Consignment volumes from PC to DC(s) (𝐼𝑘𝑛𝑘𝑖𝑘𝑡): Supplier 7.

Time period (𝑡)
Product (𝑛𝑘) DC (𝑖𝑘) 1 2 3 4

2
1 0 0 0 0
2 0 0 0 0

3
1 0 0 0 0
2 0 0 0 0
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Table D.20. Transportation volumes from PC to DC(s): Supplier 7.

𝑥𝑘𝑛𝑘𝑖𝑘𝑗𝑡
DC (𝑖𝑘)

0 1 2
Product DL Time period (𝑡) Time period (𝑡) Time period (𝑡)
(𝑛𝑘) (𝑗) 1 2 3 4 1 2 3 4 1 2 3 4

1

1 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0

3

1 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0

5

1 0 0 0 0 – – – – – – – –
2 25 50 25 0 – – – – – – – –
3 0 0 0 0 – – – – – – – –
4 0 0 0 0 – – – – – – – –
5 15 40 60 0 – – – – – – – –
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